JP2009223069A - Led illuminator - Google Patents

Led illuminator Download PDF

Info

Publication number
JP2009223069A
JP2009223069A JP2008068604A JP2008068604A JP2009223069A JP 2009223069 A JP2009223069 A JP 2009223069A JP 2008068604 A JP2008068604 A JP 2008068604A JP 2008068604 A JP2008068604 A JP 2008068604A JP 2009223069 A JP2009223069 A JP 2009223069A
Authority
JP
Japan
Prior art keywords
light
led
lens
irradiation
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008068604A
Other languages
Japanese (ja)
Inventor
Kinya Kawanobu
欽哉 川延
Shingo Tsunoda
慎吾 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FRASCOOP CORP
Aoki Electric Industrial Co Ltd
Original Assignee
FRASCOOP CORP
Aoki Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FRASCOOP CORP, Aoki Electric Industrial Co Ltd filed Critical FRASCOOP CORP
Priority to JP2008068604A priority Critical patent/JP2009223069A/en
Publication of JP2009223069A publication Critical patent/JP2009223069A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Illuminated Signs And Luminous Advertising (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new illuminator using an LED as a light source, which has not been provided hitherto. <P>SOLUTION: The illuminator 10 using the LED as the light source includes an irradiation member 20 arranged on the inside of a side surface 12 formed nearly in a perpendicular direction to a light emitting surface 11 of the illuminator 10, and a reflection member 60 bending the light from the irradiation member 20 to the light emitting surface 11. Then, the irradiation member 20 includes a plurality of LEDs 30, in a longitudinal direction of an irradiation member body 21, and formed by attaching a primary lens 40 and a secondary lens 50 to each of the LEDs 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、光源にLEDを使用した照明装置に関するものである。   The present invention relates to an illumination device using an LED as a light source.

地球温暖化を防止するために、CO2の排出量を抑制すべく、看板等の照明装置の省エネルギー化が求められている。
これに対しては、光源を蛍光灯から省エネルギーのLEDへ代替させた照明装置が種々開発されている。
In order to prevent global warming, there is a demand for energy saving in lighting devices such as signboards in order to suppress CO2 emissions.
In response to this, various lighting devices have been developed in which the light source is replaced with an energy-saving LED from a fluorescent lamp.

このうち、特許文献1は、前面が開放した箱体と、該箱体の側壁部と平行に互いに対向して配置された少なくとも2枚の配線板と、該配線板に設置された複数の発光素子と、該箱体の底部に配置された光反射板と、該箱体の前面開口部に設置された透光性の光拡散表面板からなるライトボックスであって、前記光反射板は前記箱体前面開口部に向かって突出した山型凸部を有し、前記箱体の底部と前記発光素子の発光部の最低部との距離をh、前記箱体の底部と前記光拡散表面板との距離をd、前記箱体の底部と前記山型凸部の頂点との距離をL、とするとき、「h<L≦(h+d)/2」を満たすことを特徴とするライトボックスである。   Among these, Patent Document 1 discloses a box having an open front surface, at least two wiring boards disposed opposite to each other in parallel to the side wall portion of the box, and a plurality of light emitting devices installed on the wiring board. A light box comprising an element, a light reflecting plate disposed at the bottom of the box, and a translucent light diffusing surface plate installed in a front opening of the box, wherein the light reflecting plate is A convex portion protruding toward the front opening of the box, h being the distance between the bottom of the box and the lowest light emitting part of the light emitting element, and the bottom of the box and the light diffusion surface plate A light box that satisfies “h <L ≦ (h + d) / 2”, where d is the distance between the bottom of the box and the apex of the peak-shaped convex portion. is there.

ところで、前方向に光を照射する放物曲線鏡面反射鏡は、光を前に照射することに適しているが、反射のために設けた放物曲線鏡面で反射された光は反転屈折するので、LEDで発光した光を直線で照射することができない。
また、放物曲線鏡面反射鏡は、曲面を構成する形状において深さが必要で、照射部材の縦方向の厚さを薄くすることができないので、LEDの発光位置を同じとしても、放物曲線鏡面反射鏡先端までの距離は、薄型前方向照射レンズと比較して厚くなり、照射部材の構成が大きくなり取り付け面積を大きくしてしまう。
By the way, the parabolic curved mirror reflector that irradiates light in the forward direction is suitable for irradiating light forward, but the light reflected by the parabolic curved mirror surface provided for reflection is inverted and refracted. The light emitted from the LED cannot be irradiated in a straight line.
In addition, the parabolic curved mirror reflector needs a depth in the shape of the curved surface, and the vertical thickness of the irradiation member cannot be reduced. Therefore, even if the light emitting position of the LED is the same, the parabolic curve The distance to the front end of the specular reflector becomes thicker than that of the thin front irradiation lens, which increases the configuration of the irradiation member and increases the mounting area.

特開2006−202729号公報JP 2006-202729 A

しかし、特許文献1には、以下のような課題を有している。
(1)特許文献1では、配線板上の長手方向に複数の発光素子(LED)を1列または2列以上に整列させて配設したものを使用するが(同明細書「0012」及び同図面図1他)、光源であるLEDをそのまま使用するため、LEDの光の到達距離に限定されたサイズのライトボックスになってしまう。
すなわち、LEDの光は、図4(A)に示すように、実装型LEDでは65度から140度・砲弾型LEDは15度から50度の照射角度方向に拡散する性質がある。
従って、光の到達距離が極めて短く、この短い到達距離に応じたサイズの反射面を2面持つライトボックスにならざるを得ない。
(2)また、同様にLEDの光は、LEDの最小照射角度製品で、実装型は65度で・砲弾型は15度に拡散される。明るさのある実装型LEDは最小照射角度製品が広いので光の拡散においては適しているが、狭い範囲で遠方を照射するにはで適していない。砲弾型LEDは照射最小照射角度が15度でも、光源部分の光軸太さは5mmと細く、光源から100mmの距離で約30mmの太さとなり、照明装置を点灯する光として均一な光量を確保できない(光量が分散してしまう)。
しかし、LEDの数を多くすれば省エネルギー化に反することになり、コスト高の要因にもなる。また、LEDの数に比例してLEDからの発光発熱量が多くなり、LEDの寿命を低下させる要因になる。
(3)なお、光量不足を補う手段として高輝度LED(ハイパワーLED)を使用することも考えられる。しかし、高輝度LEDを使用すれば当然に発光発熱量もそれ相応に増加し、放熱処理が解消されていない限り高輝度LEDの使用は無理である(光源と放熱は一体として考える必要がある)。
(4)LED素子の点光源である光を、LEDパッケージで一定の角度で照射する面光源とすることができても、光はそのまま拡散され、直進する光はLEDパッケージの先端に設けられている凸レンズ効果で、光線を集光することはできても、直進する光線として太くすることはできない。
(5) 反射シートは、透明樹脂板を使う導光板方式と異なり一定角度だけで反射できる光ではないので、反射面も異なる角度から入光される光に対応した反射面を構成しないと、反射面を有効に使うことはできない。
However, Patent Document 1 has the following problems.
(1) In Patent Document 1, a plurality of light emitting elements (LEDs) arranged in one or more rows in the longitudinal direction on a wiring board is used (see “0012” and the same specification). Since the LED as the light source is used as it is, it becomes a light box of a size limited to the reachable distance of the LED light.
That is, as shown in FIG. 4A, the LED light has a property of diffusing in the irradiation angle direction from 65 degrees to 140 degrees for mounting LEDs and from 15 degrees to 50 degrees for bullet-type LEDs.
Accordingly, the light reaching distance is extremely short, and the light box has to have two reflecting surfaces with sizes corresponding to the short reaching distance.
(2) Similarly, the LED light is a product with the minimum irradiation angle of the LED, the mounting type is 65 degrees, and the shell type is diffused to 15 degrees. A brightly mounted LED has a wide minimum illumination angle product and is suitable for light diffusion, but is not suitable for irradiating far away in a narrow range. Even though the bullet-type LED has a minimum irradiation angle of 15 degrees, the optical axis thickness of the light source part is as thin as 5 mm, and is about 30 mm at a distance of 100 mm from the light source, ensuring a uniform amount of light as the light for lighting the lighting device Cannot (light intensity is dispersed).
However, if the number of LEDs is increased, it will be contrary to energy saving and it will be a factor of high cost. In addition, the amount of heat emitted from the LEDs increases in proportion to the number of LEDs, which causes a reduction in the lifetime of the LEDs.
(3) It is also conceivable to use a high-intensity LED (high power LED) as means for compensating for the shortage of light. However, if a high-brightness LED is used, the light emission heat generation amount naturally increases accordingly, and unless the heat dissipation process is eliminated, the use of the high-brightness LED is impossible (the light source and heat dissipation must be considered as one). .
(4) Even if the light that is the point light source of the LED element can be a surface light source that irradiates the LED package at a certain angle, the light is diffused as it is, and the light that goes straight is provided at the tip of the LED package. Even with the convex lens effect, the light beam can be collected, but it cannot be thickened as a straight beam.
(5) Unlike the light guide plate method using a transparent resin plate, the reflection sheet is not light that can be reflected only at a certain angle. Therefore, if the reflection surface does not constitute a reflection surface corresponding to light incident from a different angle, the reflection sheet is reflected. The face cannot be used effectively.

そこで、本願発明は、以下の目的を達成するべき、本願発明者らによって完成されたものである。
(1)大型の照明装置にも対応できる。
(2)LEDの数をできるかぎり減らすことができる。
(3)LEDの高輝度化に対応できる(放熱処理実現)
(4)既設の照明装置へ対応できる。
(5)照明装置の発光面の有効面積を大きく取れる。
(6)凹凸がある照明装置発光面でも、陰影を減少できる。
Therefore, the present invention has been completed by the present inventors, who should achieve the following object.
(1) It can cope with a large-sized lighting device.
(2) The number of LEDs can be reduced as much as possible.
(3) It can cope with high brightness of LED (realization of heat dissipation)
(4) Applicable to existing lighting devices.
(5) The effective area of the light emitting surface of the lighting device can be increased.
(6) Shadows can be reduced even on the light emitting surface of the illumination device having irregularities.

上記目的を達成するため、
第1の発明は、光源にLEDを使用した照明装置であって、照明装置の発光面に対して略垂直方向に形成される側面内側に配置する照射部材と、照射部材からの光を発光面へ屈曲させる反射部材とを備え、照射部材は、側面長手方向に複数のLEDを設けるとともに、各LEDに光の到達距離を伸ばす1次レンズを取り付けたことを特徴とするLED照明装置である。
ここで「1次レンズ」とは、LED内の発光素子が発光し、その素子が組み込まれているLEDパッケージを反射して放出された光を太くして、前方向に照射するための反射レンズであり、薄型反射レンズ(特開2006−202729号公報参照)が好ましい。
第2の発明は、照明部材の発光部分および発光した光を1次レンズで95%以上前方向に鋭角で直線的に照射する薄型レンズを使うことで、放物曲面反射鏡のような厚みが不要で、更に放物曲面反射鏡に必ず現れる光の反射屈折を起こさないので焦点深度のスペースも不要となり、2次レンズを使った際の屈折空間が不要となり、照射部材の構造を薄型化することができる。このように薄型化することで、照明装置内の反射面が大きく取れ、その結果、照明装置面発光面積を大きく取ることができる。
第3の発明は、照射部材は、側面長手方向に複数のLEDを設けるとともに、各LEDに光の到達距離を伸ばす1次レンズ及び近郊部に光を拡散して照射するためと照射した光を拡散する2つの目的を持つ2次レンズを取り付けたことを特徴とする同LED照明装置である。
ここで「2次レンズ」とは、拡散レンズのことである。例えば、凹レンズ、非球面レンズ、波板レンズ、シリンドカルレンズ、レンチキュラーレンズ、微細凹凸拡散レンズ等で成型品あるいは板状またはシート形状のレンズがあるが、光拡散方向性の理由から板状波板レンズが好ましい。
なお光拡散方向性とは、各LEDが1次レンズと組み合わせて複数1次レンズが密着状態で配列されている場合、光は1次レンズ効果により太い光が並ぶ状態となることから、この並ぶ方向への拡散の必要性はなく、各LEDの配列に対して左右方向への目的拡散を言う。
但し光を直視する場合、1次レンズを非密着状態で配列する場合は、光拡散方向性を問わない全周囲拡散レンズが好ましい。
また、2次レンズに入光させる光は、事前に照射角度により広げられた光を2次レンズで広げた手法が無理なく均一な拡散照射を得ることができ、本発明においては薄型前方向照射レンズ(1次レンズ)を使用した際に僅かに拡散される光を含めて平面あるいは、曲線面とした2次レンズに照射することで、光を無駄なく照射光として利用することができる。
第4の発明は、照射部材を反射部材に対して照射角度を調整できることを特徴とする同LED照明装置である。
また照射部材の照射位置を反射部材に対して照射装置垂直面中心線より発光面側に設け、照射角度を調整することで、照射装置の反射構成角度を低くすることができる。
第5の発明は、反射部材は、樹脂シート又は鏡面板であることを特徴とする同LED照明装置である。
ここで、「樹脂シート」には、樹脂シートにアルミ板(強度補強用)を積層させたものや、アルミを蒸着させたアルミ蒸着樹脂シートが含まれる。
また、「鏡面板」には、アルミを蒸着させたアルミ蒸着鏡面板や、そのアルミ蒸着鏡面板に拡散用樹脂によるパターン印刷の施されたものが含まれる。
反射シートの取り付け構造は、LED照射部分から近郊部・中間部・遠方部の3段階反射角を設けた手法とすることで、1次レンズおよび2次レンズを通過してきた光を、反射シート形状からも照明装置発光面からの光を灯火させることができる。
第6の発明は、LEDに電気を供給するために設ける通電用銅箔面の面積を広くして、LEDのハンダ接点から伝わる熱を熱伝導の優れた通電用銅箔に均衡のための熱伝導として伝えて、通電用銅箔に絶縁材を介して伝わる金属系放熱板による平板あるいは立体構造を有する自然放熱あるいは強制放熱することで、LEDの発光発熱を放熱し、LEDの熱による破損および劣化を防止できる。
また、「金属系放熱板」とは、例えば、アルミ,銅,銀,鉄等を材料とした平板または立体構造を持つ放熱板で、立体構造とはフィン形状を言い、照明装置を形成する外装金属を放熱板とすることもできる。
To achieve the above objective,
1st invention is the illuminating device which uses LED for the light source, Comprising: The irradiation member arrange | positioned inside the side surface formed in the substantially perpendicular direction with respect to the light emission surface of an illuminating device, and the light emission surface from the irradiation member And an irradiation member provided with a plurality of LEDs in the longitudinal direction of the side surface, and attached with a primary lens that extends the reach of light to each LED.
Here, the “primary lens” refers to a reflective lens for emitting light emitted from a light emitting element in an LED, thickening the light emitted by reflecting the LED package in which the element is incorporated, and irradiating in the forward direction. A thin reflective lens (see JP 2006-202729 A) is preferable.
The second invention uses a thin lens that linearly irradiates the light emitting part of the illumination member and the emitted light with an acute angle of 95% or more forward with a primary lens, so that the thickness of a parabolic curved reflector is reduced. It is unnecessary, and since it does not cause reflection / refraction of light that always appears in the parabolic curved reflector, the space for the focal depth is also unnecessary, and the refraction space when using the secondary lens is unnecessary, and the structure of the irradiation member is made thin. be able to. By reducing the thickness in this way, a large reflecting surface in the illuminating device can be obtained, and as a result, the illuminating device surface emitting area can be increased.
In the third aspect of the invention, the irradiation member is provided with a plurality of LEDs in the side surface longitudinal direction, and the primary lens that extends the light reach distance to each LED and the light emitted for diffusing and irradiating light in the vicinity. The LED illumination device is characterized in that a secondary lens having two purposes of diffusing is attached.
Here, the “secondary lens” is a diffusing lens. For example, there are concave lenses, aspherical lenses, corrugated lenses, cylindrical lenses, lenticular lenses, fine concavo-convex diffusing lenses, etc., which are molded or plate-shaped or sheet-shaped lenses. A plate lens is preferred.
The light diffusion directionality means that when each LED is combined with a primary lens and a plurality of primary lenses are arranged in close contact, the light is in a state where thick light is arranged due to the primary lens effect. There is no need for diffusion in the direction, which refers to target diffusion in the left-right direction with respect to the array of LEDs.
However, when the light is directly viewed, an all-around diffusing lens regardless of the light diffusing direction is preferable when the primary lenses are arranged in a non-contact state.
In addition, the light that is incident on the secondary lens can be obtained with a uniform diffused irradiation by using a method in which the light that has been previously spread according to the irradiation angle is spread with the secondary lens. By irradiating the secondary lens having a flat surface or curved surface including light slightly diffused when the lens (primary lens) is used, the light can be used as irradiating light without waste.
According to a fourth aspect of the present invention, there is provided the LED illumination device characterized in that the irradiation angle of the irradiation member with respect to the reflection member can be adjusted.
In addition, by providing the irradiation position of the irradiation member on the light emitting surface side with respect to the reflection member from the center line of the irradiation device vertical surface, and adjusting the irradiation angle, the reflection configuration angle of the irradiation device can be lowered.
5th invention is the LED lighting apparatus characterized by a reflection member being a resin sheet or a mirror surface board.
Here, the “resin sheet” includes a resin sheet obtained by laminating an aluminum plate (for strength reinforcement) and an aluminum vapor-deposited resin sheet obtained by vapor-depositing aluminum.
The “mirror plate” includes an aluminum vapor-deposited mirror plate on which aluminum is vapor-deposited, and an aluminum vapor-deposited mirror plate that has been subjected to pattern printing with a diffusion resin.
The reflection sheet mounting structure is a method of providing a three-stage reflection angle from the LED irradiation part to the suburbs, intermediates, and far parts, so that the light that has passed through the primary lens and the secondary lens is reflected in the shape of the reflection sheet. Can also light the light from the light emitting surface of the lighting device.
According to a sixth aspect of the present invention, the surface of the energizing copper foil provided to supply electricity to the LED is widened, and the heat transferred from the solder contacts of the LED is balanced with the energizing copper foil having excellent heat conduction. It is transmitted as conduction, and the heat radiation of the LED is radiated by the natural heat radiation or forced heat radiation with a flat plate or a three-dimensional structure by the metal heat radiation plate transmitted through the insulating material to the copper foil for energization, Deterioration can be prevented.
In addition, the “metal heat sink” is a heat sink having a flat plate or a three-dimensional structure made of, for example, aluminum, copper, silver, iron, etc., and the three-dimensional structure is a fin shape, and forms an illuminating device. Metal can also be used as a heat sink.

本願発明によれば、以下のような効果を有する。
(1)照射装置の発光面に対して略垂直方向に並べて設置した1個以上のLEDに、光の到達距離を伸ばす1次レンズを取り付けたものとすることで、LEDの光が拡散減少することなく光の到達距離が長くなり、それだけ大型の照明装置を提供することができる。
また、1次レンズを使うことで、LED発光による点光源を面光源とすることができるので、
光の拡散が少なく太い光源として照射することができ、大きな面積に光を照射することができる。
LEDの光の照射方法は、照明装置の発光面を直接照射する方法・直接照射での光の強弱差を低減するために照明装置発光面の手前にある拡散シートに当ててから照射する方法・あるいは一度光を反射照射させて発光させる方式の単独あるいは、これらを組み合わせて照明装置の発光面を明るく投影することができる。
(2)照明装置の照射部材は、光をコントロールするための薄型前方向照射レンズを使うことで、放物曲面鏡面反射鏡が不要となり、放物曲面鏡面反射鏡と比較して厚さを半分以下にすることができる。
照射装置発光面を大きく取ることができる。いわゆるLEDの光を無駄なく照射装置発光面の端部から照射できる。
光を照射装置発光面の端部から照射することで、直接照明装置の発光面に照射する方法と、直接照射での光の強弱差を低減するために照明装置発光面の手前に設ける拡散シートに当ててから照射する方法・あるいは光を反射部材に反射させて発光させる方式の単独あるいは、これらを組み合わせて照明装置の発光面を明るく大きく投影することができる。
(3)照明部材として各LEDに光の到達距離を伸ばす1次レンズ及び伸ばした光を拡散する2次レンズを取り付けることで、1次レンズで太くした光で到達距離が長くなるとともに2次レンズで光の拡散がおき、この二つの組み合わさった光でLEDの数を少なくすることができる。
(4)2次レンズに、拡散方向性がある場合は、LEDの配列方向に拡散方向を平行設置すると、光源部分を直線とすることができる。
またLEDの配列方向に拡散方向を直角に設置すると、光源部分は直視すると1次レンズの拡散光源は見えるものの、対物照射するとLEDの配列方向に直角方向の左右に拡散されている。
(5)1次レンズと2次レンズとの配置距離を近接あるいは密着すると、2次レンズ内を通過する光がレンズの境面反射により拡散される光なので、拡散照射率は低くなる。しかし配置距離を1次レンズの拡散性を考慮した一定の距離を構成することで、1次レンズで拡散された光を2次レンズで広域に拡散することができる。
(6)2次レンズの大きさ、いわゆる拡散方向のレンズ幅は、1次レンズの照射角度に比例した大きさとすると、最適な拡散をすることができる。
(7)また二次レンズで反射された光を、有効に活用する方法として、1次レンズと2次レンズの間を透明樹脂または2次レンズと同じ材料とし、1次レンズから見た両側面を平行または鋭角あるいは鈍角形状とすることで、照明部材を側面から見たとき、1次レンズと2次レンズの間を明るく見せることができる。
(8)この2次レンズで反射された光を、再度前方向に照射する方法として、1次レンズと2次レンズの間を直線あるいは放物曲線の鏡面とすることで、前方向照射光として活用することもできる。
(9)照射部材が反射部材に対して照射角度を調整できることで、発光面に生じる陰影の差(ムラ)を調整することができる(発光面の凹凸に伴う陰影差も含む)
なお、陰影差の調整は、照射部材ではなく、反射部材の反射角度(屈曲角度)の調整によるものとしてもよい。
(10)既存の蛍光灯を使った照明装置(看板の印刷文字やケース等)あるいは灯火照明装置に利用できる。
(11)照明装置の発光面として、1つの照明部材として片面発光であるが、上下あるいは左右に取り付けることで2連続の大型化に対応でき、上下あるいは左右の取り付けで反射部材を仕切り反射板とすることで、両面反射式の照明装置とすることもできる。
(12)1次レンズおよび2次レンズを通過した光は、直進と拡散性能を持つ光なので、反射面への到達距離と到達時の光の強さおよび照射角度によって、反射面LED照射部分から近郊部・中間部・遠方部の3段階反射角を設けることで、1次レンズおよび2次レンズを通過してきた光を、反射シート形状からも照射装置発光面明るく灯火させることができる。
(13)LEDの発光した発熱を、1次レンズの大きさの熱伝導性に優れた通電用銅箔面に伝えることで、絶縁材を介して密着する金属系放熱板に広い熱源として接触伝達できるので、LEDの性能・寿命を十分に引き出すことが出来る。従って、LEDの高輝度化(高電流型LED=ハイパワーLED)にも対応でき、照明の輝度を向上させることも可能である。
(14)通電銅箔放熱板と照明構造の筐体(ケース)とを、絶縁したうえで接合させることで、筐体(ケース)を放熱板として外部放熱できる。
(15)導光板(アクリル5mmt板)を使用しないので、軽量化が可能で、導光板分をコストダウンできる。
(16)工事が容易である(イニシャルコストダウン)。
The present invention has the following effects.
(1) The primary lens that extends the reach of light is attached to one or more LEDs arranged side by side in a substantially vertical direction with respect to the light emitting surface of the irradiation device, so that the light from the LED is reduced in diffusion. Therefore, the reachable distance of the light becomes long, and a large illuminating device can be provided.
In addition, by using a primary lens, a point light source based on LED emission can be used as a surface light source.
Light can be irradiated as a thick light source with little light diffusion, and light can be irradiated over a large area.
LED light irradiation method is a method of directly irradiating the light emitting surface of the illuminating device, a method of irradiating after applying to the diffusion sheet in front of the light emitting surface of the illuminating device in order to reduce the light intensity difference in the direct irradiation, Alternatively, the light emitting surface of the illumination device can be projected brightly by using a method in which light is once reflected and irradiated to emit light alone or in combination.
(2) The illumination device's illumination member uses a thin front-illuminated lens to control light, eliminating the need for a parabolic curved mirror reflector and halving the thickness compared to a parabolic curved mirror reflector. It can be:
A large light emitting surface of the irradiation device can be taken. So-called LED light can be emitted from the end of the light emitting surface of the irradiation device without waste.
A method of irradiating the light emitting surface of the illuminating device directly by irradiating light from the end of the illuminating device emitting surface, and a diffusion sheet provided in front of the illuminating device emitting surface in order to reduce the difference in intensity of light in direct irradiation The light emitting surface of the lighting device can be projected brightly and largely by using a method of irradiating the light to the light, or a method of emitting light by reflecting light on a reflecting member, or a combination thereof.
(3) By attaching a primary lens that extends the reach of light to each LED as a lighting member and a secondary lens that diffuses the stretched light, the secondary lens increases the reach distance with light thickened by the primary lens. The diffusion of light occurs, and the number of LEDs can be reduced with the combined light of the two.
(4) When the secondary lens has a diffusion directionality, the light source portion can be made a straight line by setting the diffusion direction parallel to the LED arrangement direction.
Further, when the diffusion direction is set at right angles to the LED arrangement direction, the light source portion can be viewed directly, but the primary lens diffusion light source can be seen, but when the object is irradiated, it is diffused right and left in the direction perpendicular to the LED arrangement direction.
(5) When the arrangement distance between the primary lens and the secondary lens is close or in close contact, the light passing through the secondary lens is diffused due to the boundary reflection of the lens, so that the diffusion irradiation rate becomes low. However, by configuring the arrangement distance to be a constant distance considering the diffusibility of the primary lens, the light diffused by the primary lens can be diffused by the secondary lens over a wide area.
(6) Optimum diffusion can be achieved if the size of the secondary lens, that is, the lens width in the so-called diffusion direction, is a size proportional to the irradiation angle of the primary lens.
(7) Also, as a method for effectively utilizing the light reflected by the secondary lens, the transparent lens or the same material as the secondary lens is used between the primary lens and the secondary lens, and both side surfaces as viewed from the primary lens. When the illumination member is viewed from the side, it is possible to make the space between the primary lens and the secondary lens bright.
(8) As a method of irradiating the light reflected by the secondary lens again in the forward direction, a straight or parabolic mirror surface between the primary lens and the secondary lens can be used as the forward irradiation light. It can also be used.
(9) Since the irradiation member can adjust the irradiation angle with respect to the reflection member, it is possible to adjust the difference (unevenness) of the shadow generated on the light emitting surface (including the shadow difference due to the unevenness of the light emitting surface).
The shadow difference may be adjusted by adjusting the reflection angle (bending angle) of the reflecting member instead of the irradiation member.
(10) The present invention can be used for lighting devices (printing characters and cases for signboards) or lighting devices using existing fluorescent lamps.
(11) As the light emitting surface of the lighting device, one surface light emission is used as one lighting member. However, by attaching it vertically or horizontally, it is possible to cope with two continuous enlargements. By doing so, a double-sided reflection type lighting device can be obtained.
(12) The light that has passed through the primary lens and the secondary lens is light that travels straight and diffuses, so that depending on the reach distance to the reflecting surface, the intensity of light at the time of arrival, and the irradiation angle, By providing the three-stage reflection angle of the suburbs, the middle part, and the far part, the light that has passed through the primary lens and the secondary lens can be lit brightly from the light emitting surface of the irradiation device even from the shape of the reflection sheet.
(13) By transmitting the heat generated by the LED to the copper foil surface for energization, which is excellent in the thermal conductivity of the size of the primary lens, contact transmission as a wide heat source to the metal heat sink that is in close contact with the insulating material As a result, the performance and life of the LED can be fully exploited. Therefore, it is possible to cope with higher LED brightness (high current type LED = high power LED), and it is possible to improve the brightness of illumination.
(14) The insulated copper foil heat radiating plate and the housing (case) of the lighting structure are insulated and joined, whereby the case (case) can be radiated to the outside as a heat radiating plate.
(15) Since no light guide plate (acrylic 5 mmt plate) is used, the weight can be reduced and the cost of the light guide plate can be reduced.
(16) Construction is easy (initial cost reduction).

本願発明の実施形態を図面に基づいて説明する。
図1は、本願発明に係るLED照明装置の構造を示す概念図である。
図1(A)は、基本構造を示す。光源にLEDを使用した照明装置10は、照明装置10の発光面11に対して略垂直方向に形成される側面12の内側に配置する照射部材20と、照射部材20からの光を発光面11へ屈曲させる反射部材60とを備えることで、発光面が陰影差なく光り、照明装置としての機能を発揮する。
図1(B)は、図1(A)の基本構造を背中合わせにして、両面に発光面を有する照明装置としたものである。
図1(C)は、図1(A)の基本構造を縦方向に連続して、大型の発光面を有する照明装置としたものである。
図1(D)は、図1(B)と図1(C)を組合せて、両面・大型の発光面を有する照明装置としたものである。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram showing the structure of an LED lighting device according to the present invention.
FIG. 1A shows a basic structure. The illuminating device 10 using an LED as a light source includes an irradiation member 20 disposed inside a side surface 12 formed in a direction substantially perpendicular to the light emitting surface 11 of the illuminating device 10, and light emitted from the irradiation member 20. By providing the reflecting member 60 that is bent to the right, the light emitting surface shines with no shadow difference, and functions as a lighting device.
FIG. 1B shows a lighting device having light emitting surfaces on both sides with the basic structure of FIG. 1A back to back.
FIG. 1C illustrates a lighting device having a large light-emitting surface in which the basic structure of FIG.
FIG. 1D is a combination of FIG. 1B and FIG. 1C to provide a lighting device having a double-sided and large light-emitting surface.

図2及び図3は、LEDに1次レンズ及び2次レンズを組合せた照射部材の斜視図及び断面図である。
照射部材20は、照射部材本体21の長手方向に複数のLED30,30,…を設けるとともに、各LED30に1次レンズ40及び2次レンズ50を取り付けたものである。1次レンズ40には、LEDの光の到達距離を伸ばす薄型レンズを使用し、2次レンズ50には、LEDの光を拡散する波板レンズを使用した。なお、LED30の背後には放熱部22を備える。
2 and 3 are a perspective view and a cross-sectional view of an irradiation member in which a primary lens and a secondary lens are combined with an LED.
The irradiation member 20 is provided with a plurality of LEDs 30, 30,... In the longitudinal direction of the irradiation member main body 21 and a primary lens 40 and a secondary lens 50 attached to each LED 30. The primary lens 40 is a thin lens that extends the reach of the LED light, and the secondary lens 50 is a corrugated lens that diffuses the LED light. A heat radiating portion 22 is provided behind the LED 30.

図4は、1次レンズ又は2次レンズの特徴を示す説明図である。
図4(A)は、レンズを取り付けていないLEDの照射イメージである。凸レンズが組み込まれていないLEDの場合、光の到達距離が僅かで、広い拡散率で光が拡散してしまう。LEDに凸レンズが透明樹脂により組み込まれていても、光源部分から拡散しない細長い照射光ができるが、均一に長い範囲を照射する光源となってしまう。
図4(B)は、1次レンズを取り付けたLEDの照射イメージである。直進方向に照射され、太い照射光で到達距離が飛躍的に伸びる。
図4(C)は、2次レンズを取り付けたLEDの照射イメージである。光の到達距離は図4(A)の場合とほぼ同じであるが、光が波ライン状に拡散してしまう。(LEDと2次レンズの距離図は省略)
図4(D)は、1次レンズ及び2次レンズを取り付けたLEDの照射イメージである。図4(B)の光の到達距離には及ばないものの、図4(B)の光にはない直進性の光と同時に拡散を生じる。
この拡散方向の光を連続して並べることで、広く長い光を得ることができる。
FIG. 4 is an explanatory diagram showing characteristics of the primary lens or the secondary lens.
FIG. 4A is an irradiation image of an LED without a lens attached. In the case of an LED in which a convex lens is not incorporated, the light reaches a short distance, and light diffuses with a wide diffusion rate. Even if a convex lens is incorporated in the LED with a transparent resin, elongated light that does not diffuse from the light source portion can be produced, but it becomes a light source that uniformly illuminates a long range.
FIG. 4B is an irradiation image of an LED with a primary lens attached. Irradiated in the straight direction, the reach distance is dramatically increased by thick irradiation light.
FIG. 4C is an irradiation image of an LED with a secondary lens attached. The arrival distance of light is almost the same as in the case of FIG. 4A, but the light diffuses in a wave line shape. (Distance diagram of LED and secondary lens is omitted)
FIG. 4D is an irradiation image of an LED to which a primary lens and a secondary lens are attached. Although it does not reach the reach of the light in FIG. 4B, diffusion occurs simultaneously with the straight light that does not exist in the light of FIG.
Widely long light can be obtained by continuously arranging the light in the diffusion direction.

図5は、1次レンズ又は2次レンズの効果を示す説明図である。
図5(A)は、1次レンズ及び2次レンズを取り付けたLEDの光の水平方向の光源を直視した断面図であり、図5(B)は、2次レンズのみを取り付けたLEDの光の水平方向の光源を直視した断面図である。これによれば、1次レンズによって光束の太い面光源が生じ、2次レンズによってこれが短手方向に拡散されている。2次レンズのみの図5(B)と比較すると、少ないLEDで広い照射面積を発生させていることが判明する。従って、1次レンズと2次レンズを組合せることで、LEDを効率良く利用(延伸・拡散)できる。
FIG. 5 is an explanatory diagram showing the effect of the primary lens or the secondary lens.
FIG. 5A is a cross-sectional view of a light source in the horizontal direction of the light of the LED to which the primary lens and the secondary lens are attached, and FIG. 5B is the light of the LED to which only the secondary lens is attached. It is sectional drawing which looked directly at the light source of the horizontal direction. According to this, a surface light source having a large luminous flux is generated by the primary lens, and this is diffused in the short direction by the secondary lens. Compared to FIG. 5B with only the secondary lens, it is found that a large irradiation area is generated with a small number of LEDs. Therefore, by combining the primary lens and the secondary lens, the LED can be efficiently used (stretched / diffused).

図6は、反射部材を示す説明図である。
図6に示す反射部材60は、曲線面を有する反射部材であって、照射部材20からの距離に応じて近郊部(a)・中間部(b)・遠方部(c)に分けられる。そして、それぞれ「a」の区間は直線区間、「b」の区間は緩やかな曲線区間、「c」の区間は急な曲線区間に形成されている。このように、照射部材20からの距離に応じて反射部材60の反射面を変化させることで、1次レンズおよび2次レンズを通過してきた光を、照明装置10の発光面11に対して明るく発光させることができる。特に、発光面11に凹凸がある場合でも、発光面11に対して背後から均一な光量の光を供給することになるので、ムラ(陰)のない良好な発光面を提供できる。
FIG. 6 is an explanatory view showing a reflecting member.
The reflecting member 60 shown in FIG. 6 is a reflecting member having a curved surface, and is divided into a suburb portion (a), an intermediate portion (b), and a far portion (c) according to the distance from the irradiation member 20. The section “a” is formed as a straight section, the section “b” is formed as a gentle curve section, and the section “c” is formed as a steep curve section. In this way, by changing the reflecting surface of the reflecting member 60 in accordance with the distance from the irradiation member 20, the light that has passed through the primary lens and the secondary lens becomes brighter than the light emitting surface 11 of the lighting device 10. Can emit light. In particular, even when the light emitting surface 11 has irregularities, a uniform amount of light is supplied to the light emitting surface 11 from behind, so that a good light emitting surface free from unevenness (shade) can be provided.

図7は、照明装置の発光面を実測した照度データ及び照度グラフを示したものである。
<測定条件>
・測定位置:発光面から10mm位置
・測定場所:発光面の9箇所を測定(その平均値を算出した)
・照明部材:発光面に対して略垂直方向に形成される側面内側
<各実施例>
・実施例1:反射部材無し
・実施例2:反射部材としてアルミ鏡面反射板を照明装置内に斜め直線状に設置(図1(A)参照)
・実施例3:反射部材として白色反射シートを照明装置内に斜め直線状に設置(図1(A)参照)
・実施例4:反射部材として白色反射シートを照明装置内に斜め曲線状に設置(図6参照)
<結 論>
本願照明装置においては、反射シート又は反射鏡による対角線面反射方式(斜め直線状に設置)を設けるが、曲線面反射方式(図6)を用いることで、この対角線面反射方式と同等の反射性能を有することが確認できた。
FIG. 7 shows illuminance data and an illuminance graph obtained by actually measuring the light emitting surface of the illumination device.
<Measurement conditions>
・ Measurement position: 10 mm position from the light emitting surface ・ Measurement place: Nine locations on the light emitting surface were measured (the average value was calculated)
Illumination member: Side surface inner side formed in a direction substantially perpendicular to the light emitting surface <Each Example>
-Example 1: No reflecting member-Example 2: An aluminum specular reflector as a reflecting member is installed in a slanting straight line in the lighting device (see FIG. 1A).
-Example 3: A white reflective sheet is installed as a reflective member in a slanting straight line in the lighting device (see FIG. 1A).
-Example 4: A white reflective sheet is installed in the lighting device as a reflective member in an obliquely curved shape (see FIG. 6).
<Conclusion>
In the lighting device of the present application, a diagonal surface reflection method (installed in an oblique straight line) using a reflection sheet or mirror is provided, but by using the curved surface reflection method (FIG. 6), the reflection performance equivalent to this diagonal surface reflection method is provided. It was confirmed that the

本願発明は、発光面を備えた照明装置として以下のものに利用できるが、これに限定されるものではない。
(1) 看板
(2) 表示灯
(3) 案内板
(4) その他
Although this invention can be utilized for the following as an illuminating device provided with the light emission surface, it is not limited to this.
(1) Signboard (2) Indicator light (3) Information board (4) Other

LED照明装置の構造を示す概念図。The conceptual diagram which shows the structure of LED lighting apparatus. LEDに1次レンズ及び2次レンズを組合せた照射部材の斜視図。The perspective view of the irradiation member which combined the primary lens and the secondary lens with LED. LEDに1次レンズ及び2次レンズを組合せた照射部材の断面図。Sectional drawing of the irradiation member which combined the primary lens and the secondary lens with LED. 1次レンズ又は2次レンズの特徴を示す説明図。Explanatory drawing which shows the characteristic of a primary lens or a secondary lens. 1次レンズ又は2次レンズの効果を示す説明図。Explanatory drawing which shows the effect of a primary lens or a secondary lens. 反射部材を示す説明図。Explanatory drawing which shows a reflection member. 照明装置の発光面を実測した照度データ及び照度グラフ。Illuminance data and illuminance graph obtained by actually measuring the light emitting surface of the lighting device.

符号の説明Explanation of symbols

10 照明装置
11 発光面
12 側面
20 照射部材
21 照射部材本体
22 放熱部
30 LED
40 1次レンズ
50 2次レンズ
60 反射部材
DESCRIPTION OF SYMBOLS 10 Illuminating device 11 Light emission surface 12 Side surface 20 Irradiation member 21 Irradiation member main body 22 Radiating part 30 LED
40 Primary lens 50 Secondary lens 60 Reflective member

Claims (6)

光源にLEDを使用した照明装置であって、
照明装置の発光面に対して略垂直方向に形成される側面内側に配置する照射部材と、
照射部材からの光を発光面へ屈曲させる反射部材とを備え、
照射部材は、側面長手方向に複数のLEDを設けるとともに、各LEDに光の到達距離を伸ばすための1次レンズを取り付けたことを特徴とするLED照明装置。
An illumination device using an LED as a light source,
An irradiation member disposed inside the side surface formed in a direction substantially perpendicular to the light emitting surface of the lighting device;
A reflection member that bends light from the irradiation member to the light emitting surface;
The irradiation member is provided with a plurality of LEDs in the longitudinal direction of the side surface, and a primary lens for extending a light reaching distance is attached to each LED.
照明装置内に設置する照射部材の取り付け面積を小型薄型化するために、1次レンズとして薄型前方向照射レンズを取り付けたことを特徴とする請求項1のLED照明装置。   2. The LED illumination device according to claim 1, wherein a thin forward illumination lens is attached as a primary lens in order to reduce the size and thickness of the illumination member installed in the illumination device. 照射部材は、側面長手方向に複数のLEDを設けるとともに、各LEDに光の到達距離を伸ばす1次レンズ及び伸ばした光を拡散する2次レンズを取り付けたことを特徴とする請求項1,2記載のLED照明装置。   The irradiation member is provided with a plurality of LEDs in the longitudinal direction of the side surface, and a primary lens for extending the reach of light and a secondary lens for diffusing the extended light are attached to each LED. LED lighting apparatus of description. 照射部材は、反射部材に対して照射角度を調整できることを特徴とする請求項1,2又は3記載のLED照明装置。   The LED illumination device according to claim 1, wherein the irradiation member is capable of adjusting an irradiation angle with respect to the reflection member. 反射部材は、反射用樹脂シート又は鏡面板で、拡散する光と直進する光を到達点で直線面あるいは曲線面で反射することを特徴とする請求項1,2,3又は4記載のLED照明装置。   5. The LED illumination according to claim 1, wherein the reflecting member is a reflecting resin sheet or a specular plate, and reflects the diffusing light and the straightly traveling light at a reaching point by a linear surface or a curved surface. apparatus. 照射部材は、LEDの発光発熱を熱伝導させる熱伝導として通電用銅箔の幅および長さを放熱としたことを特徴とする請求項1,2,3,4又は5記載のLED照明装置。
6. The LED illumination device according to claim 1, 2, 3, 4, or 5, wherein the irradiating member is configured to dissipate a width and a length of the energizing copper foil as heat conduction for conducting heat emitted from the LED.
JP2008068604A 2008-03-17 2008-03-17 Led illuminator Pending JP2009223069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008068604A JP2009223069A (en) 2008-03-17 2008-03-17 Led illuminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068604A JP2009223069A (en) 2008-03-17 2008-03-17 Led illuminator

Publications (1)

Publication Number Publication Date
JP2009223069A true JP2009223069A (en) 2009-10-01

Family

ID=41239900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068604A Pending JP2009223069A (en) 2008-03-17 2008-03-17 Led illuminator

Country Status (1)

Country Link
JP (1) JP2009223069A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183860A (en) * 2010-03-05 2011-09-22 Honda Motor Co Ltd Vehicle
KR102073939B1 (en) * 2019-04-05 2020-02-05 사이텍 주식회사 Apparatus of displaying bus information and guide related with bis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183860A (en) * 2010-03-05 2011-09-22 Honda Motor Co Ltd Vehicle
KR102073939B1 (en) * 2019-04-05 2020-02-05 사이텍 주식회사 Apparatus of displaying bus information and guide related with bis

Similar Documents

Publication Publication Date Title
JP6864633B2 (en) Vehicle lighting fixtures and boards
JP4633589B2 (en) Surface lighting device
CN101761791A (en) Light emitting diode lamp
US8414175B2 (en) Light source apparatus with a light guide plate having a lighting units disposed adjacent to two opposing sides offset with each other
JP2010225395A (en) Led illumination device
US20110096565A1 (en) Light source apparatus
JP2007234385A (en) Backlight device
JP2008098025A (en) Vehicular lamp
JP2014190868A (en) Photoirradiation device
JP2009245910A (en) Long-distance reaching led luminaire
KR101529166B1 (en) Lamp for vehicle
JP2009223069A (en) Led illuminator
JP2010282869A (en) Line lighting device
JP6094618B2 (en) lamp
JP2012243680A (en) Lighting system
JP5914857B2 (en) lighting equipment
JP4971385B2 (en) Reflector, lamp unit and lamp panel
JP2011233308A (en) Lighting system
JP2008140713A (en) Lighting system
JP5419852B2 (en) Lighting device
TWI386592B (en) Led fluorescent lamp
JP6631327B2 (en) Light source unit and road lighting equipment
JP2009300843A (en) Led illumination device
CN213237059U (en) Lighting device and lamp
TW201205003A (en) LED illuminating device