JP2009222293A - Heating device using exhaust heat of cogeneration device - Google Patents

Heating device using exhaust heat of cogeneration device Download PDF

Info

Publication number
JP2009222293A
JP2009222293A JP2008066822A JP2008066822A JP2009222293A JP 2009222293 A JP2009222293 A JP 2009222293A JP 2008066822 A JP2008066822 A JP 2008066822A JP 2008066822 A JP2008066822 A JP 2008066822A JP 2009222293 A JP2009222293 A JP 2009222293A
Authority
JP
Japan
Prior art keywords
flow path
radiator
heat
air
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008066822A
Other languages
Japanese (ja)
Other versions
JP5189387B2 (en
Inventor
Soichiro Tsujimoto
聡一郎 辻本
Yuji Nakanishi
裕士 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2008066822A priority Critical patent/JP5189387B2/en
Publication of JP2009222293A publication Critical patent/JP2009222293A/en
Application granted granted Critical
Publication of JP5189387B2 publication Critical patent/JP5189387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating device using exhaust heat of a cogeneration device not requiring a water-water heat exchanger for exchanging heat with cooling water for cooling a heat source, capable of generating hot air by a radiator provided in the cogeneration device, not requiring a radiator at a use destination, and capable of reducing the facility cost of the water-water heat exchanger and the radiator and an installation space of the radiator. <P>SOLUTION: The heating device is provided with a circulation passage 12 for making the cooling water flow for cooling the heat source 11 of the cogeneration device 1. The circulation flow passage 12 is provided with a pump 13 and a radiator 14. A return flow passage 2 is connected to an inflow part 14a for cooling air of the radiator 14 for returning air from a use destination, a supply flow passage 3 is connected to an outflow part 14b for the cooling air of the radiator 14 for supplying hot air generated in the radiator 14 to the use destination, and a blower 31 is provided in the supply flow passage 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱電併給装置の排熱を利用した暖房装置に関するものである。   The present invention relates to a heating device that uses exhaust heat of a combined heat and power supply device.

従来より、熱電併給装置において原動機等の熱源で発生する排熱を利用した装置が知られており(例えば特許文献1参照)、例えば図2に示すように、熱源11で発生する排熱により水を加熱して温水を生成する給湯器等がよく利用されている。これは、熱電併給装置1の熱源11を冷却する冷却水の循環流路12と、循環流路12に水−水熱交換器17とを備えている。
特開2003−302100号公報
2. Description of the Related Art Conventionally, an apparatus using exhaust heat generated by a heat source such as a prime mover in a combined heat and power supply apparatus is known (see, for example, Patent Document 1). For example, as shown in FIG. A hot water heater or the like that generates hot water by heating is often used. This includes a circulation channel 12 for cooling water that cools the heat source 11 of the combined heat and power supply device 1, and a water-water heat exchanger 17 in the circulation channel 12.
JP 2003-302100 A

しかしながら、上記従来例においては、熱源11を冷却する冷却水との間で熱交換を行う水−水熱交換器17を設けているが、温風を生成して暖房として利用したい場合、前記温水と熱交換を行なうための放熱器74を使用先(栽培施設4)に設ける必要があった。また、温水や温風を利用しない場合には、冷却水を放熱器18により冷却しなければならず、この放熱器18が必要となるものであった。つまり、水−水熱交換器17、放熱器74、放熱器18の3つの熱交換器が必要であった。なお、図2中の符号12は循環流路、18は放熱器、75は循環流路、9は制御装置、91、92は電磁弁、93は温度計である。   However, in the above-described conventional example, the water-water heat exchanger 17 that exchanges heat with the cooling water that cools the heat source 11 is provided. It was necessary to provide a heat sink 74 for performing heat exchange with the user (cultivation facility 4). Further, when hot water or hot air is not used, the cooling water must be cooled by the radiator 18, and the radiator 18 is necessary. That is, three heat exchangers of the water-water heat exchanger 17, the radiator 74, and the radiator 18 are necessary. In FIG. 2, reference numeral 12 is a circulation flow path, 18 is a radiator, 75 is a circulation flow path, 9 is a control device, 91 and 92 are electromagnetic valves, and 93 is a thermometer.

本発明は上記従来の問題点に鑑みて発明したものであって、その目的とするところは、熱源を冷却する冷却水との間で熱交換を行う水−水熱交換器が不要となり、また、温風を熱電併給装置内に設けた放熱器で生成することができて、使用先に放熱器を設ける必要がなく、水−水熱交換器や放熱器の設備費及び放熱器の設置スペースの低減化を図ることができる熱電併給装置の排熱を利用した暖房装置を提供する。   The present invention has been invented in view of the above-mentioned conventional problems, and its object is to eliminate the need for a water-water heat exchanger that exchanges heat with cooling water that cools the heat source, and , Hot air can be generated by a radiator installed in the combined heat and power supply device, there is no need to install a radiator at the place of use, the equipment cost of the water-water heat exchanger or radiator and the installation space of the radiator Provided is a heating device that uses exhaust heat of a combined heat and power supply device that can reduce the temperature.

上記課題を解決するために請求項1に係る発明にあっては、熱電併給装置1の熱源11を冷却するための冷却水を流す循環流路12を設け、循環流路12にポンプ13と放熱器14とを設け、放熱器14の冷却空気の流入部14aに空気を使用先から戻すための戻り流路2を接続すると共に、放熱器14の冷却空気の流出部14bに放熱器14で生成した温風を使用先に供給するための供給流路3を接続して該供給流路3にブロア31を設けて成ることを特徴とするものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is provided with a circulation flow path 12 through which cooling water for cooling the heat source 11 of the combined heat and power supply device 1 flows. And a return flow path 2 for returning air from the use destination to a cooling air inflow portion 14a of the radiator 14, and also generated by the radiator 14 at a cooling air outflow portion 14b of the radiator 14. A supply flow path 3 for supplying the warm air to the user is connected, and a blower 31 is provided in the supply flow path 3.

このような構成とすることで、温風を生成して暖房として利用する場合、熱源11を冷却する冷却水との間で熱交換を行う水−水熱交換器17が不要となり、また、温風を熱電併給装置1内に設けた放熱器14で生成することができて、使用先に放熱器14を設ける必要がなく、水−水熱交換器17や放熱器14の設備費及び放熱器14の設置スペースの低減化を図ることが可能となる。   With this configuration, when hot air is generated and used as heating, the water-water heat exchanger 17 that performs heat exchange with the cooling water that cools the heat source 11 is not necessary. The wind can be generated by the radiator 14 provided in the combined heat and power supply apparatus 1, and it is not necessary to provide the radiator 14 at the use destination, and the equipment costs and the radiator of the water-water heat exchanger 17 and the radiator 14 are eliminated. The installation space of 14 can be reduced.

また、使用先の空気を循環利用することができて、外気を取込んで加熱して使用先に供給する場合と比較すると、この場合には同量の空気が外部に排気されるため、熱エネルギーの無駄を低減することができ、広い空間の熱負荷を効率良く賄うことができる。   In addition, compared with the case where the air used can be circulated and used, and the outside air is taken in and heated and supplied to the user, the same amount of air is exhausted to the outside in this case. It is possible to reduce energy waste and efficiently cover the heat load in a wide space.

また、請求項2に係る発明においては、請求項1に係る発明において、使用先以外の外気と連通し途中に弁51を備えた放散流路5を供給流路3から分岐すると共に、使用先以外の外気と連通し途中に弁61を備えた外気取込流路6を戻り流路2から分岐して成ることを特徴とするものである。   Further, in the invention according to claim 2, in the invention according to claim 1, the dissipating flow path 5 provided with the valve 51 in the middle of communication with outside air other than the use destination is branched from the supply flow path 3. The outside air intake flow path 6 provided with the valve 61 is branched from the return flow path 2 in the middle of communication with the other external air.

このような構成とすることで、図2に示す従来例のように2つの熱交換器(水−水熱交換器17と放熱器18)を用いることをしなくても、外気取込流路6を介して冷たい外気を取込んで、使用先の温度調節が可能となる。また、使用先での熱負荷がない場合でも放散流路5を介して温風を排気すると共に、外気取込流路6を介して冷たい外気を取込んで放熱器14に供給することができて、熱電併給装置1の熱源11を冷却が可能となる。つまり、従来例と比べて2つの熱交換器を削減できる。   By adopting such a configuration, the outside air intake channel can be obtained without using two heat exchangers (water-water heat exchanger 17 and radiator 18) as in the conventional example shown in FIG. The outside temperature can be taken in via 6 and the temperature of the user can be adjusted. Further, even when there is no heat load at the use site, the hot air can be exhausted through the dissipating flow path 5 and cold outside air can be taken in through the external air intake flow path 6 and supplied to the radiator 14. Thus, the heat source 11 of the cogeneration apparatus 1 can be cooled. That is, two heat exchangers can be reduced compared to the conventional example.

また、請求項3に係る発明においては、請求項1又は2に係る発明において、使用先に暖房能力を高めるために暖房機7を設置し、該暖房機7の空気取込口71の面積を供給流路3の下流端の吐出口32の面積よりも大きく形成すると共に、前記吐出口32を前記空気吸入口の面積内に収まるように配置して成ることを特徴とするものである。   Further, in the invention according to claim 3, in the invention according to claim 1 or 2, the heater 7 is installed to increase the heating capacity at the use place, and the area of the air intake port 71 of the heater 7 is reduced. The discharge passage 32 is formed to be larger than the area of the discharge port 32 at the downstream end of the supply flow path 3, and the discharge port 32 is disposed so as to be within the area of the air suction port.

このような構成とすることで、使用先に設置した暖房機7に供給流路3からの温風を供給し易くなり、暖房機7で要する風量を供給流路3からの温風の風量よりも大きく設定することで、供給流路3から供給される温風の全量を暖房機7に供給することが可能となり、暖房機7に供給されず散逸して無駄になる温風をなくすことができる。   By adopting such a configuration, it becomes easy to supply the warm air from the supply flow path 3 to the heater 7 installed at the use destination, and the amount of air required by the heater 7 is larger than the amount of warm air from the supply flow path 3. Is set to be large, it becomes possible to supply the entire amount of hot air supplied from the supply flow path 3 to the heater 7, and it is possible to eliminate the warm air that is not supplied to the heater 7 and is wasted and wasted. it can.

また、暖房機7の空気取込口71の面積は供給用ダクト3aの吐出口32の面積の3倍以上が好ましい。より好ましくは5倍以上である。これにより前記空気取込口71の面積が前記吐出口32の存在により減少してしまう割合が小さくなる。その結果、前記熱電併給装置1の運転を停止して前記供給用ダクト3aからの空気の供給がない場合でも、前記暖房機7に必要な空気を十分に前記空気取込口71から直接吸入できるようになる。その結果、前記暖房機7の性能がより十分に確保できるようになる。   The area of the air intake port 71 of the heater 7 is preferably three times or more than the area of the discharge port 32 of the supply duct 3a. More preferably, it is 5 times or more. As a result, the rate at which the area of the air intake port 71 decreases due to the presence of the discharge port 32 is reduced. As a result, even when the operation of the cogeneration apparatus 1 is stopped and no air is supplied from the supply duct 3a, the air necessary for the heater 7 can be sufficiently sucked directly from the air intake port 71. It becomes like this. As a result, the performance of the heater 7 can be more sufficiently ensured.

本発明の熱電併給装置の排熱を利用した暖房装置においては、熱源を冷却する冷却水との間で熱交換を行う水−水熱交換器が不要となり、また、温風を熱電併給装置内に設けた放熱器で生成することができて、使用先に放熱器を設ける必要がなく、水−水熱交換器や放熱器の設備費及び放熱器の設置スペースの低減化を図ることが可能となる。   In the heating device using the exhaust heat of the combined heat and power supply device of the present invention, a water-water heat exchanger for exchanging heat with the cooling water for cooling the heat source becomes unnecessary, and the hot air is fed into the combined heat and power supply device. It is possible to reduce the installation cost of the water-water heat exchanger and radiator and the installation space of the radiator. It becomes.

以下、本発明の一実施形態について図1に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG.

本発明の暖房装置は、熱電併給装置1の排熱を利用するもので、熱電併給装置1としては、発電機や燃料電池等の発電手段を備えると共に、発電機の動力源となる原動機や燃料電池等の熱源11を備え、発電手段で発生した電力の利用及び熱源11で発生した熱の利用を図るものであれば特に限定されない。また、原動機としてはガスエンジン、ディーゼルエンジン、ガスタービン等が挙げられるが特に限定されない。以下にガスエンジからなる原動機で発電機(図示せず)を駆動させるものとして説明する。   The heating device of the present invention uses the exhaust heat of the combined heat and power supply device 1, and the combined heat and power supply device 1 includes a power generator such as a generator and a fuel cell, and a prime mover or fuel that is a power source of the generator. There is no particular limitation as long as it includes a heat source 11 such as a battery and uses the power generated by the power generation means and the heat generated by the heat source 11. Further, examples of the prime mover include a gas engine, a diesel engine, and a gas turbine, but are not particularly limited. The following description will be made assuming that a generator (not shown) is driven by a prime mover made of a gas engine.

熱電併給装置1には、熱源11を冷却するための冷却水を流す循環流路12が設けてあると共に、この循環流路12にポンプ13と放熱器14とが設けてある。循環流路12は冷却水を流す配管からなるもので、原動機を冷却するため原動機本体に配管を配設するほか、配管の途中に、原動機から排出される燃焼排ガスGから熱回収を行うための熱交換器15を設けてある。   The combined heat and power supply apparatus 1 is provided with a circulation flow path 12 through which cooling water for cooling the heat source 11 flows, and a pump 13 and a radiator 14 are provided in the circulation flow path 12. The circulation flow path 12 is composed of piping through which cooling water flows. In order to cool the prime mover, the circulation passage 12 is provided with a piping in the prime mover main body, and for recovering heat from the combustion exhaust gas G discharged from the prime mover in the middle of the piping. A heat exchanger 15 is provided.

放熱器14は、冷却水を冷却するための冷却空気の流入部14aに後述する戻り流路2が接続されると共に、冷却空気の流出部14bに後述する供給流路3が接続されるもので、冷却空気の流路の途中にブロア16が設けてある。また本実施形態では、圧力損失を考慮して、供給流路3の途中にもブロア31を追設してある。   The radiator 14 is connected with a return flow path 2 to be described later to a cooling air inflow portion 14a for cooling the cooling water, and to a supply flow path 3 to be described later to a cooling air outflow portion 14b. A blower 16 is provided in the middle of the cooling air flow path. In the present embodiment, the blower 31 is additionally provided in the middle of the supply flow path 3 in consideration of pressure loss.

熱電併給装置1は、これら発電手段、熱源11、循環流路12、ポンプ13、放熱器14を備えた構成となっている。   The combined heat and power supply apparatus 1 has a configuration including these power generation means, a heat source 11, a circulation flow path 12, a pump 13, and a radiator 14.

この熱電併給装置1には、使用先に上記放熱器14で生成される温風を供給するための供給流路3が接続されると共に、使用先から空気を戻すための戻り流路2が接続される。供給流路3は、供給用ダクト3aの上流端を上述したように放熱器14の冷却空気の流出部14bに接続すると共に、下流端の吐出口32を使用先の空間に配設して構成される。使用先としては、ビニールハウスや温室といった栽培施設4やその他の屋内空間等、様々であるが特に限定されない。本実施形態では栽培施設4として説明する。戻り流路2は、戻り用ダクト2aの上流端を使用先の空間に配設するとともに、下流端を上述したように放熱器14の冷却空気の流入部14aに接続して構成される。   Connected to this combined heat and power supply apparatus 1 is a supply flow path 3 for supplying hot air generated by the radiator 14 to a user and a return flow path 2 for returning air from the user. Is done. The supply flow path 3 is configured by connecting the upstream end of the supply duct 3a to the cooling air outflow portion 14b of the radiator 14 as described above, and disposing the discharge port 32 at the downstream end in the space of use. Is done. There are various uses such as cultivation facilities 4 such as a greenhouse and a greenhouse, and other indoor spaces, but there is no particular limitation. In this embodiment, the cultivation facility 4 will be described. The return flow path 2 is configured by disposing the upstream end of the return duct 2a in the space of use and connecting the downstream end to the cooling air inflow portion 14a of the radiator 14 as described above.

また本実施形態では、給流路の途中から、使用先以外の外気(大気)と連通し途中に弁51を備えた放散流路5を分岐すると共に、戻り流路2の途中から、使用先以外の外気と連通し途中に弁61を備えた外気取込流路6を分岐している。   Further, in the present embodiment, the dissipating flow path 5 provided with the valve 51 is branched from the middle of the supply flow path to the outside air (atmosphere) other than the use destination, and from the middle of the return flow path 2 to the use destination. The outside air intake passage 6 provided with the valve 61 is branched in the middle of communication with outside air other than the above.

また本実施形態では、使用先となる栽培施設4内には暖房機7を設置するもので、暖房機7としては天然ガス、プロパン等のLPG、灯油、重油を燃料とする燃焼式や、電力や原動機を駆動源とするヒートポンプ13等が挙げられる。暖房機7は、空気取込口71から空気を取込んで、内部の熱交換器15(図示せず)を通すことで温風を生成し、空気吐出口72から温風を吐出する。空気吐出口72には、下流側が多数に分岐する分散ダクト8が接続されると共に、空気吐出口72にはブロア73が設けてあり、温風は分散ダクト8より栽培施設4の多数の畝に向けて分散して吐出される。   In this embodiment, a heater 7 is installed in the cultivation facility 4 to be used. The heater 7 is a combustion type that uses natural gas, LPG such as propane, kerosene, or heavy oil as fuel, or electric power. And a heat pump 13 using a prime mover as a drive source. The heater 7 takes in air from the air intake port 71, passes the internal heat exchanger 15 (not shown), generates hot air, and discharges the hot air from the air discharge port 72. The air discharge port 72 is connected to a dispersion duct 8 that is branched in a large number on the downstream side, and the air discharge port 72 is provided with a blower 73. Dispersed and discharged.

また本実施形態では、暖房機7の空気取込口71の面積を供給流路3の下流端の吐出口32の面積よりも大きく形成し、前記吐出口32を前記空気吸入口の面積内に収まるように配置している。   Moreover, in this embodiment, the area of the air intake port 71 of the heater 7 is formed larger than the area of the discharge port 32 at the downstream end of the supply flow path 3, and the discharge port 32 is within the area of the air intake port. Arranged to fit.

上述した本実施形態の運転の一例を示すと、ガスエンジン発電機の出力25kW、60Hz、ガスエンジンの燃料のLPG使用量2.95m3N/h、冷却水の放熱器14入口温度85℃、放熱器14出口温度80℃、流量110L/min、熱出力38kW、放熱器14の空気流量110m3/min、暖房機7はLPGを燃料とする熱風発生機であり、燃焼部の熱出力50kw、LPG使用量2.2m3N/h、暖房機7の空気取込口71は下方に開口していると共に空気吐出口72は上方に開口しており、空気吐出口72に設けたブロア73の風量160m3/min(供給流路3の風量より大きい)である。   An example of the operation of the present embodiment described above is as follows: gas engine generator output 25 kW, 60 Hz, gas engine fuel LPG usage 2.95 m 3 N / h, cooling water radiator 14 inlet temperature 85 ° C., radiator 14 outlet temperature 80 ° C., flow rate 110 L / min, heat output 38 kW, air flow rate of radiator 14 110 m 3 / min, heater 7 is a hot air generator using LPG as fuel, heat output 50 kW of combustion section, LPG usage 2.2 m3 N / h, the air intake port 71 of the heater 7 is opened downward and the air discharge port 72 is opened upward, and the air volume of the blower 73 provided in the air discharge port 72 is 160 m3 / min ( Larger than the air volume of the supply flow path 3).

この例では原動機を用いているため、定常運転で問題が発生しないようにするため、原動機に戻る冷却水温度は一定の温度範囲、例えば60℃〜90℃を維持する必要がある。そのため、例えば起動直後のように冷却水の温度が低すぎる場合は、冷却水は放熱器14をバイパスして放熱させずに循環させてもよい。この場合には図示しないバイパス流路を設けると共に切替弁を設ける。   In this example, since the prime mover is used, it is necessary to maintain the temperature of the cooling water returning to the prime mover within a certain temperature range, for example, 60 ° C. to 90 ° C. in order to prevent a problem from occurring during steady operation. Therefore, for example, when the temperature of the cooling water is too low immediately after startup, the cooling water may be circulated without bypassing the radiator 14 and radiating heat. In this case, a bypass flow path (not shown) is provided and a switching valve is provided.

放散流路5と外気取込流路6とを利用する運転について説明する。これは、使用先で暖房を必要としない時に、外気取込流路6の弁61を開いて、該外気取込流路6を介して冷たい外気を取込むと共に、放散流路5の弁51を開いて、該放散流路5を介して放熱器14で発生した温風を外気に放散して、使用先で熱負荷がない場合でも熱電併給装置1の熱源11の冷却を可能とするものである。   The operation | movement using the diffusion flow path 5 and the external air intake flow path 6 is demonstrated. This is because when the user does not need heating, the valve 61 of the outside air intake passage 6 is opened to take in cold outside air through the outside air intake passage 6 and the valve 51 of the diffusion passage 5. The heat source 11 of the cogeneration apparatus 1 can be cooled even when there is no heat load at the place of use by radiating the warm air generated in the radiator 14 through the diffusion flow path 5 to the outside air. It is.

放散流路5は、下流端において使用先以外の外気と連通し、途中に弁51を備えた放散用ダクト5aの上流側を供給流路3から分岐させるか、あるいは前記放散用ダクト5aの上流端を放熱器14の流出部14b近傍に設置して構成される。外気取込流路6は、上流端において使用先以外の外気と連通し、途中に弁61を備えた外気取込用ダクト6aの下流端を供給流路3から分岐させるか、あるいは前記外気取込用ダクト6aの下流端を放熱器14の流入部14a近傍に設置して構成される。   The diffusion channel 5 communicates with outside air other than the use at the downstream end, and the upstream side of the diffusion duct 5a provided with the valve 51 is branched from the supply channel 3 or upstream of the diffusion duct 5a. The end is installed in the vicinity of the outflow portion 14b of the radiator 14. The outside air intake passage 6 communicates with outside air other than the use at the upstream end, and the downstream end of the outside air intake duct 6a provided with a valve 61 is branched from the supply passage 3 or the outside air intake. The downstream end of the insertion duct 6 a is configured in the vicinity of the inflow portion 14 a of the radiator 14.

放散流路5は、本実施形態では図1に示すように、供給流路3から分岐させる場合には、供給流路3の屈曲部から分岐させて、供給流路3の上流側から放散流路5の下流側に向けて略直線状となるように配置することで、放散流路5へ分岐して流れる空気の圧力損失を抑えることができると共に、放散流路5の弁51を開くことで、供給流路3の下流端の暖房機7のブロア73を駆動しない場合には、放熱器14の空気の流出部14bから流出して供給流路3を流れる空気の殆どが放散流路5を流れることとなり、供給流路3側に弁を設けなくても放散流路5に流すか供給流路3の下流側に流すかの切り替えが可能となる。また、放散用ダクト5aと外気取込用ダクト6aをできるだけ短くすることでも圧力損失を低減することができる。   In the present embodiment, as shown in FIG. 1, the diffusion flow path 5 is branched from the bent portion of the supply flow path 3 and branched from the upstream side of the supply flow path 3 when branched from the supply flow path 3. By disposing it so as to be substantially linear toward the downstream side of the path 5, it is possible to suppress the pressure loss of the air branched and flowing into the diffusion flow path 5 and to open the valve 51 of the diffusion flow path 5. Thus, when the blower 73 of the heater 7 at the downstream end of the supply flow path 3 is not driven, most of the air that flows out of the air outflow portion 14b of the radiator 14 and flows through the supply flow path 3 is the diffusion flow path 5. Therefore, even if a valve is not provided on the supply flow path 3 side, switching between the flow to the diffusion flow path 5 or the flow to the downstream side of the supply flow path 3 is possible. Further, the pressure loss can be reduced by shortening the diffusion duct 5a and the outside air intake duct 6a as short as possible.

また、外気取込流路6も同様に、戻り流路2から分岐させる場合には、戻り流路2の屈曲部から分岐させて、外気取込流路6の上流側から戻り流路2の下流側に向けて略直線状となるように配置することで、外気取込流路6から戻り流路2にかけて流れる空気の圧力損失を抑えることができると共に、外気取込流路6の弁61を開くことで、放熱器14の空気の流入部14aから流入する空気の殆どが外気取込流路6から流入することとなり、戻り流路2側に弁を設けなくても戻り流路2から流すか外気取込流路6から流すかの切り替えが可能となる。   Similarly, when the outside air intake channel 6 is branched from the return channel 2, the outside air intake channel 6 is branched from the bent portion of the return channel 2, and the return channel 2 is connected from the upstream side of the outside air intake channel 6. By arranging it so as to be substantially linear toward the downstream side, it is possible to suppress the pressure loss of the air flowing from the outside air intake passage 6 to the return passage 2 and to control the valve 61 of the outside air intake passage 6. Is opened, most of the air flowing in from the air inlet 14a of the radiator 14 flows in from the outside air intake passage 6, and even if no valve is provided on the return passage 2 side, It is possible to switch between flowing from the outside air intake passage 6.

図示しないが、上記放散用ダクト5aと外気取込用ダクト6aとに設けた弁61、51の他に、供給流路3であって放散流路5よりも下流側、および戻り流路2であって外気取込流路6よりも上流側にそれぞれ弁を設け、計4個の弁を設けてもよい。   Although not shown, in addition to the valves 61 and 51 provided in the diffusion duct 5a and the outside air intake duct 6a, in the supply flow path 3 downstream of the diffusion flow path 5 and in the return flow path 2 Thus, a valve may be provided on the upstream side of the outside air intake passage 6 and a total of four valves may be provided.

また、いずれの場合でも、弁を流量調整可能とすることで、使用先の温度調節が可能となる。また、弁は電磁弁等の自動で開閉可能な弁とすることで、温度の自動調整が可能となる。   In any case, the temperature of the user can be adjusted by adjusting the flow rate of the valve. In addition, the temperature can be automatically adjusted by using a valve that can be opened and closed automatically, such as a solenoid valve.

この例の運転で、使用先で熱負荷がない場合、放散流路5の弁51を開くと共に外気取込流路6の弁61を開くことで、供給流路3及び戻り流路2を流れる空気の流量を殆ど無視できるレベルに低減することができて、弁61、51を放散流路5と外気取込流路6に設けた2個に低減できた。   In the operation of this example, when there is no heat load at the use destination, the valve 51 of the diffusion channel 5 is opened and the valve 61 of the outside air intake channel 6 is opened to flow through the supply channel 3 and the return channel 2. The flow rate of the air can be reduced to a level that can be almost ignored, and the valves 61 and 51 can be reduced to two provided in the diffusion flow path 5 and the outside air intake flow path 6.

また、供給流路3から供給される温風の全量を暖房機7に流入させることができ、供給流路3からの温風が暖房機7の空気取込口71から取込まれず散逸して暖房機7の周辺の温度が上昇してしまうような現象は見られなかった。   In addition, the entire amount of hot air supplied from the supply flow path 3 can flow into the heater 7, and the hot air from the supply flow path 3 is dissipated without being taken in from the air intake port 71 of the heater 7. There was no phenomenon in which the temperature around the heater 7 rose.

本発明の一実施形態の構成図である。It is a block diagram of one Embodiment of this invention. 従来例の構成図である。It is a block diagram of a prior art example.

符号の説明Explanation of symbols

1 熱電併給装置
11 熱源
12 循環流路
13 ポンプ
14 放熱器
14a 流入部
14b 流出部
15 熱交換器
16 ブロア
2 戻り流路
2a 戻り用ダクト
3 供給流路
3a 供給用ダクト
31 ブロア
32 吐出口
4 栽培施設
5 放散流路
5a 放散用ダクト
51 弁
6 外気取込流路
6a 外気取込用ダクト
61 弁
7 暖房機
71 空気取込口
72 空気吐出口
73 ブロア
8 分散ダクト
G 燃焼排ガス
DESCRIPTION OF SYMBOLS 1 Cogeneration apparatus 11 Heat source 12 Circulation flow path 13 Pump 14 Radiator 14a Inflow part 14b Outflow part 15 Heat exchanger 16 Blower 2 Return flow path 2a Return duct 3 Supply flow path 3a Supply duct 31 Blower 32 Outlet 4 Cultivation Facility 5 Dissipation flow path 5a Dissipation duct 51 Valve 6 Outside air intake flow path 6a Outside air intake duct 61 Valve 7 Heater 71 Air intake port 72 Air discharge port 73 Blower 8 Dispersion duct G Combustion exhaust gas

Claims (3)

熱電併給装置の熱源を冷却するための冷却水を流す循環流路を設け、循環流路にポンプと放熱器とを設け、放熱器の冷却空気の流入部に空気を使用先から戻すための戻り流路を接続すると共に、放熱器の冷却空気の流出部に放熱器で生成した温風を使用先に供給するための供給流路を接続して該供給流路にブロアを設けて成ることを特徴とする熱電併給装置の排熱を利用した暖房装置。   A circulation channel for cooling water to cool the heat source of the combined heat and power supply device is provided, a pump and a radiator are provided in the circulation channel, and a return is made to return air from the place of use to the cooling air inlet of the radiator. A flow path is connected, and a supply flow path for supplying hot air generated by the heat sink to the use destination is connected to the cooling air outflow portion of the heat sink, and a blower is provided in the supply flow path. A heating system that uses the exhaust heat of the combined heat and power unit. 使用先以外の外気と連通し途中に弁を備えた放散流路を供給流路から分岐すると共に、使用先以外の外気と連通し途中に弁を備えた外気取込流路を戻り流路から分岐して成ることを特徴とする請求項1記載の熱電併給装置の排熱を利用した暖房装置。   The dissipating flow path with a valve in the middle of communication with outside air other than the use branch from the supply flow path, and the outside air intake flow path with a valve in the middle of communication with outside air other than the use from the return flow path The heating device using exhaust heat of the combined heat and power supply device according to claim 1, wherein the heating device is branched. 使用先に暖房機を設置し、該暖房機の空気取込口の面積を供給流路の下流端の吐出口の面積よりも大きく形成すると共に、前記吐出口を前記空気吸入口の面積内に収まるように配置して成ることを特徴とする請求項1又は2記載の熱電併給装置の排熱を利用した暖房装置。   A heater is installed at the use destination, and the area of the air intake port of the heater is formed larger than the area of the discharge port at the downstream end of the supply flow path, and the discharge port is within the area of the air intake port. The heating device using exhaust heat of the combined heat and power supply device according to claim 1, wherein the heating device is arranged so as to be accommodated.
JP2008066822A 2008-03-14 2008-03-14 Heating device using waste heat of cogeneration device Expired - Fee Related JP5189387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008066822A JP5189387B2 (en) 2008-03-14 2008-03-14 Heating device using waste heat of cogeneration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008066822A JP5189387B2 (en) 2008-03-14 2008-03-14 Heating device using waste heat of cogeneration device

Publications (2)

Publication Number Publication Date
JP2009222293A true JP2009222293A (en) 2009-10-01
JP5189387B2 JP5189387B2 (en) 2013-04-24

Family

ID=41239267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008066822A Expired - Fee Related JP5189387B2 (en) 2008-03-14 2008-03-14 Heating device using waste heat of cogeneration device

Country Status (1)

Country Link
JP (1) JP5189387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112160838A (en) * 2020-08-31 2021-01-01 大连派思燃气设备有限公司 Electric heating device before starting combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108532A (en) * 1980-12-26 1982-07-06 Meidensha Electric Mfg Co Ltd Waste heat recovering type power plant
JPH0238013U (en) * 1988-09-07 1990-03-13
JPH07119994A (en) * 1993-10-28 1995-05-12 Nec Corp Recycle duct system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108532A (en) * 1980-12-26 1982-07-06 Meidensha Electric Mfg Co Ltd Waste heat recovering type power plant
JPH0238013U (en) * 1988-09-07 1990-03-13
JPH07119994A (en) * 1993-10-28 1995-05-12 Nec Corp Recycle duct system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112160838A (en) * 2020-08-31 2021-01-01 大连派思燃气设备有限公司 Electric heating device before starting combustion engine

Also Published As

Publication number Publication date
JP5189387B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
US10280870B2 (en) Combined heat and power system
EP2634020B1 (en) Electric vehicle and thermal management system therefor
US7040544B2 (en) System and method for warm air space heating with electrical power generation
JP2005341700A (en) Thermoelectric generator
JP2011185267A (en) Cooling circuit of internal combustion engine
JP2009103418A (en) Cogeneration system
JP2007064049A (en) Waste heat recovery system for gas turbine cogeneration equipment
KR20140087618A (en) Accumulated type thermoelectric generator for a vehicle
WO2016031089A1 (en) Drive system
US10989442B2 (en) Heating and hot water supply device
JP5251370B2 (en) Fuel cell power generator and cooling method for fuel cell power generator
JP5326577B2 (en) Engine waste heat utilization device
KR100821960B1 (en) Local heating system for energy saving in cogeneration
JP5189387B2 (en) Heating device using waste heat of cogeneration device
JP2016205751A (en) Cogeneration system and heating equipment
JP4128054B2 (en) Fuel cell system and operating method thereof
JP2020136041A (en) Fuel cell system
JP5921416B2 (en) Cogeneration system and hot water supply equipment
JP2006105452A (en) Cogeneration system and its control method
SK8540Y1 (en) Method and system of the cooling for heat generation by combustion
JP3182633U (en) Building energy plant
JP2005129537A (en) Fuel cell having heating and/or cooling circuit
JP2018527699A (en) Fuel cell system
KR20140067751A (en) Outside heating system for ship
JP4382513B2 (en) Combined thermoelectric device and thermoelectric ratio control method for its output

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees