JP2009215458A - Resin composition, prepreg, and metal-clad laminated plate - Google Patents

Resin composition, prepreg, and metal-clad laminated plate Download PDF

Info

Publication number
JP2009215458A
JP2009215458A JP2008061531A JP2008061531A JP2009215458A JP 2009215458 A JP2009215458 A JP 2009215458A JP 2008061531 A JP2008061531 A JP 2008061531A JP 2008061531 A JP2008061531 A JP 2008061531A JP 2009215458 A JP2009215458 A JP 2009215458A
Authority
JP
Japan
Prior art keywords
mass
resin
resin composition
prepreg
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008061531A
Other languages
Japanese (ja)
Other versions
JP5277670B2 (en
Inventor
Shuji Aitsu
周治 合津
Yasuhiro Murai
康裕 村井
Teruo Hirata
照夫 平田
Yoko Ichizawa
容子 市澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008061531A priority Critical patent/JP5277670B2/en
Publication of JP2009215458A publication Critical patent/JP2009215458A/en
Application granted granted Critical
Publication of JP5277670B2 publication Critical patent/JP5277670B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition with high heat-resistance and connection reliability of a substrate and sufficient punching processability of the substrate, a prepreg and a metal-clad laminated plate. <P>SOLUTION: The resin composition contains (A) 2-8 mass% of a tetrakis-hydroxyphenylethane type epoxy resin having an epoxy equivalent of 190-230, (B) 10-17 mass% of a multi-functional type epoxy resin having an epoxy equivalent of 175-220 except for (A), (C) 20-26 mass% of a phenol novolac type multi-functional curing agent having a number average molecular weight (Mn) of 1,300-1,500, a weight average molecular weight (Mw) of 8,500-10,500 and Mw/Mn of 6.0-7.5 and having an isolated phenol content of 1.5 mass% or less, and (D) 49-68 mass% of a bromine-containing epoxy resin. Further, in the resin composition, the resin having a novolac structure is 25-40 mass%, a bromine content is 11.5-14.5 mass% and (E) an inorganic filler is 20-30 mass%. The prepreg and the metal-clad laminated plate are provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、樹脂組成物、プリプレグ、及び金属張積層板に関するものである。   The present invention relates to a resin composition, a prepreg, and a metal-clad laminate.

電子機器に用いられているプリント配線板のはんだ付けには、従来、鉛−錫を用いた共晶はんだが使用されていた。しかし、環境問題の高まりと共に、鉛の人体、環境への影響を考慮し、脱鉛化が急速に進行している。
一般的に、鉛フリーはんだの溶融温度は、従来の鉛−錫系よりも高くなっている(210〜230℃)。そのため、従来、一般的に使用されていたプリント配線板用材料(FR−4)では、リフロー工程での基板の膨れの発生または絶縁信頼性が低下するという問題があった。
このため、基板に使用する樹脂のガラス転移温度(Tg)を高くするか、または充填材の凝集を防ぎながら充填材を多量に添加するといった手法がとられている(特許文献1参照)。
しかし、従来の高Tgの基板では、260℃前後のリフロー試験において膨れが発生してしまうという問題点、或いはシリカに代表される高硬度の充填材を高充填すると、打抜き加工性が悪化するという問題があった。
Conventionally, eutectic solder using lead-tin has been used for soldering printed wiring boards used in electronic devices. However, with increasing environmental problems, lead removal is rapidly progressing in consideration of the effects of lead on the human body and the environment.
Generally, the melting temperature of lead-free solder is higher than that of the conventional lead-tin system (210 to 230 ° C.). Therefore, the conventional printed wiring board material (FR-4) that has been conventionally used has a problem of occurrence of swelling of the substrate in the reflow process or a decrease in insulation reliability.
For this reason, a technique has been adopted in which the glass transition temperature (Tg) of the resin used for the substrate is increased, or a large amount of filler is added while preventing aggregation of the filler (see Patent Document 1).
However, with conventional high Tg substrates, there is a problem that blistering occurs in a reflow test at around 260 ° C., or when a high-hardness filler typified by silica is highly filled, the punching processability deteriorates. There was a problem.

特開2002−80624号公報JP 2002-80624 A

本発明は、前述した課題に鑑みてなされたものであり、鉛フリーはんだを使用したプリント配線板製造工程において、基板の耐熱性、スルーホール接続信頼性が高く、かつ、Tgをほとんど低下させることなく、基板の打抜き加工性が良好である樹脂組成物を提供することを目的とする。
本発明は、また、前記樹脂組成物を用いたプリプレグ、及び金属張積層板を提供することを目的とする。
The present invention has been made in view of the above-described problems. In a printed wiring board manufacturing process using lead-free solder, the substrate has high heat resistance, high through-hole connection reliability, and almost reduces Tg. And an object of the present invention is to provide a resin composition having good substrate punching processability.
Another object of the present invention is to provide a prepreg and a metal-clad laminate using the resin composition.

すなわち、本発明は、
1.樹脂成分と無機充填材とを含む樹脂組成物であって、前記樹脂成分は、(A)エポキシ当量190〜230のテトラキスヒドロキシフェニルエタン型エポキシ樹脂2〜8質量%、(B)(A)を除くエポキシ当量175〜220の多官能型エポキシ樹脂10〜17質量%、(C)数平均分子量(Mn)1300〜1500、重量平均分子量(Mw)8500〜10500、並びにMw/Mn6.0〜7.5であって、遊離フェノール含有率が1.5質量%以下であるフェノールノボラック型多官能型硬化剤20〜26質量%、及び、(D)臭素含有エポキシ樹脂49〜68質量%を含み、かつ、前記樹脂成分中、ノボラック構造を有する樹脂25〜40質量%、及び臭素含有率11.5〜14.5質量%であり、かつ前記樹脂組成物中の(E)無機充填材が20〜30質量%であることを特徴とする樹脂組成物、
2.前記(E)の無機充填材がシリカである上記1記載の樹脂組成物、
3.前記シリカの平均粒径が0.5〜5.0μm、かつ比表面積が3.3〜6.1m2/gである上記2に記載の樹脂組成物、
4.上記1〜3のいずれかに記載の樹脂組成物を基材に含浸させてなることを
特徴とするプリプレグ、
5.前記基材がガラス織布である上記4記載のプリプレグ、
6.上記4又は5に記載のプリプレグ、又はその積層体の両面もしくは片面に金属層が形成されてなることを特徴とする金属張積層板、
に関する。
That is, the present invention
1. A resin composition comprising a resin component and an inorganic filler, wherein the resin component comprises (A) 2-8% by mass of a tetrakishydroxyphenylethane type epoxy resin having an epoxy equivalent of 190-230, and (B) (A). 10 to 17% by mass of a polyfunctional epoxy resin having an epoxy equivalent of 175 to 220, (C) number average molecular weight (Mn) 1300 to 1500, weight average molecular weight (Mw) 8500 to 10500, and Mw / Mn 6.0 to 7.7. A phenol novolac polyfunctional curing agent having a free phenol content of 1.5% by mass or less, 20 to 26% by mass, and (D) a bromine-containing epoxy resin 49 to 68% by mass, and In the resin component, the resin having a novolak structure is 25 to 40% by mass, the bromine content is 11.5 to 14.5% by mass, and (E Resin composition inorganic filler, characterized in that 20 to 30 wt%,
2. 2. The resin composition according to 1 above, wherein the inorganic filler of (E) is silica,
3. 3. The resin composition according to 2 above, wherein the silica has an average particle size of 0.5 to 5.0 μm and a specific surface area of 3.3 to 6.1 m 2 / g.
4). A prepreg comprising a base material impregnated with the resin composition according to any one of the above 1 to 3,
5. The prepreg according to 4 above, wherein the substrate is a glass woven fabric,
6). A metal-clad laminate, wherein the prepreg according to 4 or 5 above, or a metal layer is formed on both sides or one side of the laminate,
About.

本発明の樹脂組成物、およびそれを用いたプリプレグ、及び金属張積層板は、鉛フリーはんだを使用した多層プリント配線板製造工程において、基板の耐熱性、及びスルーホール接続信頼性が高く、かつTgをほとんど低下させることなく、基板の打ち抜き加工性が良好となる。   The resin composition of the present invention, the prepreg using the same, and the metal-clad laminate are high in heat resistance of the substrate and through-hole connection reliability in a multilayer printed wiring board manufacturing process using lead-free solder, and The punching workability of the substrate is improved with almost no decrease in Tg.

以下、本発明を詳細に説明する。
本発明は、樹脂成分と無機充填材とを含む樹脂組成物であって、前記樹脂成分は、(A)エポキシ当量190〜230のテトラキスヒドロキシフェニルエタン型エポキシ樹脂2〜8質量%、(B)(A)を除くエポキシ当量175〜220の多官能型エポキシ樹脂10〜17質量%、(C)数平均分子量(Mn)1300〜1500、重量平均分子量(Mw)8500〜10500、並びにMw/Mn6.0〜7.5であって、遊離フェノール含有率が1.5質量%以下であるフェノールノボラック型多官能型硬化剤20〜26質量%、及び、(D)臭素含有エポキシ樹脂49〜68質量%を含み、かつ、前記樹脂成分中、ノボラック構造を有する樹脂25〜40質量%、及び臭素含有率11.5〜14.5質量%であり、かつ前記樹脂組成物中の(E)無機充填材が20〜30質量%であることを特徴とする樹脂組成物に関する。
The present invention will be described in detail below.
The present invention is a resin composition comprising a resin component and an inorganic filler, wherein the resin component is (A) a tetrakishydroxyphenylethane type epoxy resin having an epoxy equivalent of 190 to 230, 2 to 8% by mass, (B) 10 to 17% by mass of a polyfunctional epoxy resin having an epoxy equivalent of 175 to 220 excluding (A), (C) number average molecular weight (Mn) 1300 to 1500, weight average molecular weight (Mw) 8500 to 10500, and Mw / Mn6. 20-26% by mass of a phenol novolac type polyfunctional curing agent having a free phenol content of 1.5% by mass or less, and (D) a bromine-containing epoxy resin 49-68% by mass. And the resin component has a novolak structure of 25 to 40% by mass and a bromine content of 11.5 to 14.5% by mass, and the resin composition (E) an inorganic filler in the relates to a resin composition, which is a 20 to 30 wt%.

本発明に係る樹脂組成物中の樹脂成分(A)は、エポキシ当量190〜230のテトラキスヒドロキシフェニルエタン型エポキシ樹脂である。
このような(A)テトラキスヒドロキシフェニルエタン型エポキシ樹脂のテトラキスヒドロキシフェニルエタンとしては、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(3−メチル−4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(3、5−ジメチル−4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(3−クロロ−4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(3,5−ジクロロ−4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(3−t−ブチル−4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(3−メトキシ−4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(3,5−ジメトキシ−4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(3−クロロ−5−メチル−4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(3−メトキシ−5−メチル−4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(3−クロロ−5−フェニル−4−ヒドロキシフェニル)エタン、及び1,1,2,2−テトラキス[(4−ヒドロキシ−3−フェニル)フェニル]エタン等が挙げられる。
テトラキスヒドロキシフェニルエタン型エポキシ樹脂はこれらに限定されるものではなく、また、数種類を同時に用いても良い。
(A)成分のエポキシ当量と後述の硬化剤の水酸基当量を合わせた場合、エポキシ当量が190〜230の範囲内では、硬化剤添加量の顕著な増減がないので、耐熱性、機械特性が良好に維持される。また樹脂成分中の(A)成分の含有量が2〜8質量%の範囲内では、所期の効果が十分に発揮され、かつ硬化物の機械特性が良好に維持される。
The resin component (A) in the resin composition according to the present invention is a tetrakishydroxyphenylethane type epoxy resin having an epoxy equivalent of 190 to 230.
Examples of the tetrakishydroxyphenylethane of the (A) tetrakishydroxyphenylethane type epoxy resin include 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (3- Methyl-4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (3,5-dimethyl-4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (3-chloro-4-hydroxyphenyl) ) Ethane, 1,1,2,2-tetrakis (3,5-dichloro-4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (3-t-butyl-4-hydroxyphenyl) ethane, , 1,2,2-tetrakis (3,5-di-t-butyl-4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (3-metho Cis-4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (3,5-dimethoxy-4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (3-chloro-5-methyl-) 4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (3-methoxy-5-methyl-4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (3-t-butyl-5- Methyl-4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (3-chloro-5-phenyl-4-hydroxyphenyl) ethane, and 1,1,2,2-tetrakis [(4-hydroxy- 3-phenyl) phenyl] ethane and the like.
The tetrakishydroxyphenylethane type epoxy resin is not limited to these, and several types may be used simultaneously.
When the epoxy equivalent of the component (A) and the hydroxyl equivalent of the curing agent described later are combined, there is no significant increase or decrease in the amount of curing agent added when the epoxy equivalent is in the range of 190 to 230, so heat resistance and mechanical properties are good. Maintained. Moreover, when the content of the component (A) in the resin component is in the range of 2 to 8% by mass, the desired effect is sufficiently exhibited, and the mechanical properties of the cured product are well maintained.

本発明に係る樹脂組成物中の樹脂成分(B)は、(A)を除くエポキシ当量175〜220の多官能型エポキシ樹脂である。
このような(B)多官能型エポキシ樹脂としては、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノールビフェニレンノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリグリシジルイソシアヌレート、又はトリフェニルグリシジルエーテルメタン型エポキシ等の3官能型エポキシ樹脂;テトラグリシジルメタキシレンジアミン型エポキシ樹脂等の4官能型エポキシ樹脂等が挙げられるが、これらに限定されるものではなく、また、数種類を同時に用いても良い。
なお、基板の高Tg化、信頼性向上の為には、(B)成分は軟化点70〜140℃であることが好ましい。
樹脂成分中の(B)成分の含有量が10〜17質量%であると、Tgの顕著な低下もなく、また加工性も悪化することがない。またエポキシ当量と後述の硬化剤の水酸基当量を合わせた場合、エポキシ当量が175〜220の範囲内では、硬化剤添加量が顕著に増加、減少することがなく、その結果、耐熱性、機械特性が良好に保たれる。
The resin component (B) in the resin composition according to the present invention is a polyfunctional epoxy resin having an epoxy equivalent of 175 to 220 excluding (A).
Examples of such (B) polyfunctional epoxy resins include novolak epoxy resins such as cresol novolac epoxy resins, phenol novolac epoxy resins, phenol biphenylene novolac epoxy resins, bisphenol A novolac epoxy resins; and triglycidyl. Examples include trifunctional epoxy resins such as isocyanurate or triphenyl glycidyl ether methane type epoxy; tetrafunctional epoxy resins such as tetraglycidyl metaxylenediamine type epoxy resin, but are not limited thereto. Several types may be used simultaneously.
In order to increase the substrate Tg and improve the reliability, the component (B) preferably has a softening point of 70 to 140 ° C.
When the content of the component (B) in the resin component is 10 to 17% by mass, there is no significant decrease in Tg and the workability is not deteriorated. Further, when the epoxy equivalent and the hydroxyl group equivalent of the curing agent described later are combined, the addition amount of the curing agent is not significantly increased or decreased within the range of the epoxy equivalent of 175 to 220. As a result, the heat resistance and mechanical properties are reduced. Is kept good.

本発明に係る樹脂組成物中の樹脂成分(C)は、数平均分子量(Mn)1300〜1500、重量平均分子量(Mw)8500〜10500、並びにMw/Mn6.0〜7.5であって、遊離フェノール含有率が1.5質量%以下であるフェノールノボラック型多官能型硬化剤である。
このような(C)成分としては、クレゾールノボラック型、フェノールノボラック型、フェノールビフェニレンノボラック型等が挙げられるが、これらに限定されるものではなく、また、数種類を同時に用いても良い。なお、信頼性を確保するためには、(C)成分の軟化点が115〜125℃の範囲内であると、Tgが顕著に低下せず、かつ加工性も良好となるので、好ましい。
樹脂成分中の(C)成分の含有量が20〜26質量%の範囲内では、硬化物の耐熱性と加工性が良好に保たれる。
また、数平均分子量(Mn)が1300〜1500、重量平均分子量(Mw)が8500〜10500、Mw/Mnが6.0〜7.5の範囲内であると、打抜き加工性が良好に保たれる。また、遊離フェノール含有率が1.5質量%以下では、耐熱性が良好に保たれる。
The resin component (C) in the resin composition according to the present invention has a number average molecular weight (Mn) of 1300 to 1500, a weight average molecular weight (Mw) of 8500 to 10500, and Mw / Mn of 6.0 to 7.5, It is a phenol novolac type polyfunctional curing agent having a free phenol content of 1.5% by mass or less.
Examples of such component (C) include a cresol novolak type, a phenol novolak type, a phenol biphenylene novolak type, and the like, but are not limited thereto, and several types may be used simultaneously. In order to ensure the reliability, it is preferable that the softening point of the component (C) is in the range of 115 to 125 ° C., because Tg does not decrease remarkably and the workability becomes good.
When the content of the component (C) in the resin component is in the range of 20 to 26% by mass, the heat resistance and workability of the cured product are kept good.
In addition, when the number average molecular weight (Mn) is in the range of 1300 to 1500, the weight average molecular weight (Mw) is in the range of 8500 to 10500, and Mw / Mn is in the range of 6.0 to 7.5, the punching workability is kept good. It is. Further, when the free phenol content is 1.5% by mass or less, the heat resistance is kept good.

本発明に係る樹脂組成物中の樹脂成分(D)は、臭素含有エポキシ樹脂である。
このような(D)臭素含有エポキシ樹脂としては、二価フェノールの臭素化物とエピクロルヒドリンとの縮合反応物等が挙げられる。ここで、2価フェノールとしては、様々なものを挙げることができるが、特に2,2−ビス(4−ヒドロキシフェニル)プロパン[ビスフェノールA]、ビス(4−ヒドロキシフェニル)メタン[ビスフェノールF]、及び両者の中間的性格を有するビスフェノールADなどが挙げられ、それぞれ単独で用いてもよいし、二種以上を組み合わせて用いてもよいが、これらの中で特にビスフェノールAが好適である。
樹脂成分中の(D)成分の含有量が49〜69質量%であると、Tgの顕著な低下もなく、また加工性も悪化することがない。また(D)成分のエポキシ当量が370〜500であると、前記エポキシ当量と後述の硬化剤の水酸基当量を合わせた場合、この範囲内では、硬化剤添加量が顕著に増加、減少することがなく、その結果、耐熱性、機械特性が良好に保たれる。
The resin component (D) in the resin composition according to the present invention is a bromine-containing epoxy resin.
Examples of the (D) bromine-containing epoxy resin include a condensation reaction product of a brominated product of dihydric phenol and epichlorohydrin. Here, various divalent phenols can be exemplified, and in particular, 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane [bisphenol F], And bisphenol AD having an intermediate character between them may be used, each of which may be used alone or in combination of two or more. Among these, bisphenol A is particularly preferred.
When the content of the component (D) in the resin component is 49 to 69% by mass, there is no significant decrease in Tg and the workability is not deteriorated. In addition, when the epoxy equivalent of the component (D) is 370 to 500, when the epoxy equivalent and the hydroxyl equivalent of the curing agent described later are combined, the addition amount of the curing agent may be significantly increased or decreased within this range. As a result, heat resistance and mechanical properties are kept good.

本発明に関わる樹脂組成物においては、前記樹脂成分中のノボラック構造を有する樹脂の含有率は25〜40質量%の範囲において、Tgの低下がほとんどなく、加工性も良好に維持される。同様に、樹脂成分中の臭素含有率が11.5〜14.5質量%の範囲内において、十分な難燃性が確保され、かつ熱分解特性や耐熱性も維持される。   In the resin composition according to the present invention, the content of the resin having a novolak structure in the resin component is in the range of 25 to 40% by mass, there is almost no decrease in Tg, and the processability is maintained well. Similarly, when the bromine content in the resin component is in the range of 11.5 to 14.5% by mass, sufficient flame retardancy is ensured, and thermal decomposition characteristics and heat resistance are also maintained.

本発明に係る樹脂組成物中の(E)無機充填材としては、硝酸アルミニウム水和物、硫酸カルシウム水和物、シュウ酸カルシウム水和物等、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、クレー、ガラス、炭酸カルシウム、タルク、マイカ、アルミナ、シリカ、酸化チタン等の無機充填材が挙げられるが、これらに限定されるものではなく、また、数種類を同時に用いても良い。これらのうち、無機充填材としては、耐熱性、基材の熱膨張性を考慮すると、シリカを使用することが望ましい。また、無機充填材の添加量が全樹脂組成物中の20〜30質量%の範囲内であると、接続信頼性を確保するための低熱膨張特性が得られ、かつ外層ピール強度が維持されると共に、ドリル磨耗量も増加しない。また、シリカの平均粒径が0.5〜5.0μmであり、かつ比表面積が3.3〜6.1m2/gの範囲内のシリカを用いると、シリカの凝集、沈降を抑えることができ、良好なワニス状態を得ることができて好ましい。 Examples of the inorganic filler (E) in the resin composition according to the present invention include aluminum nitrate hydrate, calcium sulfate hydrate, calcium oxalate hydrate, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, Examples include inorganic fillers such as clay, glass, calcium carbonate, talc, mica, alumina, silica, and titanium oxide. However, the present invention is not limited to these, and several types may be used simultaneously. Among these, as the inorganic filler, it is desirable to use silica in consideration of heat resistance and thermal expansion of the substrate. Moreover, when the addition amount of the inorganic filler is in the range of 20 to 30% by mass in the total resin composition, low thermal expansion characteristics for ensuring connection reliability are obtained, and the outer layer peel strength is maintained. At the same time, the amount of drill wear does not increase. Further, when silica having an average particle diameter of 0.5 to 5.0 μm and a specific surface area of 3.3 to 6.1 m 2 / g is used, aggregation and settling of silica can be suppressed. This is preferable because a good varnish state can be obtained.

本発明の樹脂組成物においては、さらに硬化促進剤を用いることができる。
硬化促進剤としては、特に制限はないが、例えば、イミダゾール系化合物、有機リン含有化合物、第2級アミン、第3級アミン、第4級アンモニウム塩等が用いられ、これらから単独または2種以上が選択される。
硬化促進剤の含有量は、特に制限はないが、樹脂組成物中のエポキシ樹脂100質量部に対して、通常、0.05〜1.00質量部程度である。
In the resin composition of the present invention, a curing accelerator can be further used.
Although there is no restriction | limiting in particular as a hardening accelerator, For example, an imidazole type compound, an organic phosphorus containing compound, a secondary amine, a tertiary amine, a quaternary ammonium salt etc. are used, From these alone or 2 or more types Is selected.
Although there is no restriction | limiting in particular in content of a hardening accelerator, Usually, it is about 0.05-1.00 mass part with respect to 100 mass parts of epoxy resins in a resin composition.

イミダゾール系化合物としては、イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−ヘプタデシルイミダゾール、4、5−ジフェニルイミダゾール、2−メチルイミダゾリン、2−フェニルイミダゾリン、2−ウンデシルイミダゾリン、2−ヘプタデシルイミダゾリン、2−イソプロピルイミダゾール、2、4−ジメチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−エチルイミダゾリン、2−イソプロピルイミダゾリン、2、4−ジメチルイミダゾリン、2−フェニル−4−メチルイミダゾリン等が挙げられる。
これらイミダゾール系化合物は、マスク剤によりマスクされていてもよい。
前記マスク化剤としては、アクリロニトリル、フェニレンジイソシアネート、トルイジンイソシアネート、ナフタレンジイソシアネート、メチレンビスフェニルイソシアネート、メラミンアクリレート等が挙げられる。
有機リン系化合物としては、エチルホスフィン、プロピルホスフィン、ブチルホスフィン、フェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン/トリフェニルボラン錯体、テトラフェニルホスホニウムテトラフェニルボレート等が挙げられる。
第2級アミンとしては、モルホリン、ピペリジン、ピロリジン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジベンジルアミン、ジシクロヘキシルアミン、N−アルキルアリールアミン、ピペラジン、ジアリルアミン、チアゾリン、チオモルホリン等が挙げられる。
第3級アミンとしては、ベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジアミノメチル)フェノール等が挙げられる。
Examples of imidazole compounds include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 2-hepta. Decylimidazole, 4,5-diphenylimidazole, 2-methylimidazoline, 2-phenylimidazoline, 2-undecylimidazoline, 2-heptadecylimidazoline, 2-isopropylimidazole, 2,4-dimethylimidazole, 2-phenyl-4- Examples include methylimidazole, 2-ethylimidazoline, 2-isopropylimidazoline, 2,4-dimethylimidazoline, 2-phenyl-4-methylimidazoline.
These imidazole compounds may be masked with a masking agent.
Examples of the masking agent include acrylonitrile, phenylene diisocyanate, toluidine isocyanate, naphthalene diisocyanate, methylene bisphenyl isocyanate, and melamine acrylate.
Examples of organophosphorus compounds include ethylphosphine, propylphosphine, butylphosphine, phenylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, trioctylphosphine, triphenylphosphine, tricyclohexylphosphine, triphenylphosphine / triphenylborane complex, tetra Examples include phenylphosphonium tetraphenylborate.
Secondary amines include morpholine, piperidine, pyrrolidine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, dibenzylamine, dicyclohexylamine, N-alkylarylamine, piperazine, diallylamine, thiazoline, thiomorpholine, etc. Is mentioned.
Tertiary amines include benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (diaminomethyl) phenol, and the like.

本発明の樹脂組成物は、溶剤で希釈してワニス化して使用することが好ましい。
このとき使用される溶剤の種類は特に制限はなく、例えば、メタノール、エタノール、ブタノール、イソプロパノール等のアルコール系溶剤;テトラヒドロフラン、エチレングリコールモノメチルエーテル等のエーテル系溶剤;アセトン、メチルエチルケトン(以下、「MEK」と言う。)、メチルイソブチルケトン等のケトン系溶剤;N−メチルピロリドン、N、N’−ジメチルホルムアミド等のアミド系溶剤;ベンゼン、トルエン、キシレン、トリメチルベンゼン等の芳香族炭化水素系溶剤;酢酸エチル、メチルセロソルブアセテート等のエステル系溶剤;ブチロニトリル等のニトリル系溶剤等があり、これらは単独で用いても複数種を混合してもよい。
The resin composition of the present invention is preferably used after being diluted with a solvent to form a varnish.
The type of solvent used at this time is not particularly limited, and examples thereof include alcohol solvents such as methanol, ethanol, butanol, and isopropanol; ether solvents such as tetrahydrofuran and ethylene glycol monomethyl ether; acetone, methyl ethyl ketone (hereinafter, “MEK”) Ketone solvents such as methyl isobutyl ketone; amide solvents such as N-methylpyrrolidone and N, N′-dimethylformamide; aromatic hydrocarbon solvents such as benzene, toluene, xylene and trimethylbenzene; acetic acid There are ester solvents such as ethyl and methyl cellosolve acetate; nitrile solvents such as butyronitrile and the like. These may be used alone or in combination.

また、ワニスの固形分濃度は特に制限はなく、樹脂組成や配合量等により適宜変更できるが、プリプレグを作製する場合は、通常、50〜85質量%、好ましくは60〜80質量%、より好ましくは60〜75質量%である。
ワニスの固形分濃度が、上記の50〜85質量%の範囲内において、ワニス粘度もプリプレグの樹脂分の粘度も適度となり、ワニスが顕著に増粘することなく、かつプリプレグの外観等も良好に維持される。
Further, the solid content concentration of the varnish is not particularly limited and can be appropriately changed depending on the resin composition, blending amount, and the like. However, when preparing a prepreg, it is usually 50 to 85 mass%, preferably 60 to 80 mass%, more preferably. Is 60-75 mass%.
When the solid content concentration of the varnish is within the range of 50 to 85% by mass, the viscosity of the varnish and the resin content of the prepreg are moderate, the varnish is not significantly thickened, and the appearance of the prepreg is good. Maintained.

本発明に係るプリプレグは、前記樹脂組成物を基材に含浸させてなるものである。
前記基材としては、金属箔張り積層板や多層印刷配線板を製造する際に用いられるものであれば、特に制限されないが、通常織布や不織布等の繊維基材が用いられる。
前記繊維基材の材質としては、ガラス、アルミナ、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維;アラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維;およびこれらの混抄系等があり、特にガラス繊維の織布が好ましく用いられる。特にプリプレグに使用される基材としては、10〜200μmのガラス織布が好適に用いられる。
The prepreg according to the present invention is formed by impregnating a base material with the resin composition.
The substrate is not particularly limited as long as it is used when producing a metal foil-clad laminate or a multilayer printed wiring board, but a fiber substrate such as a woven fabric or a nonwoven fabric is usually used.
Examples of the material of the fiber base material include inorganic fibers such as glass, alumina, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia; aramid, polyether ether ketone, polyether imide, polyether sal There are organic fibers such as phon, carbon and cellulose; and mixed papers of these, and glass fiber woven fabrics are particularly preferably used. In particular, a glass woven fabric having a thickness of 10 to 200 μm is suitably used as a base material used for the prepreg.

これらの樹脂組成物のワニスを基材に含浸させ、80〜200℃の範囲で乾燥させて、プリプレグを製造する。樹脂組成物を基材に含浸させる方法としては、ワニスに基材を浸漬する方法、基材表面に樹脂組成物を塗布する方法などが挙げられる。   A prepreg is produced by impregnating the varnish of these resin compositions into a base material and drying in a range of 80 to 200 ° C. Examples of the method of impregnating the substrate with the resin composition include a method of immersing the substrate in varnish, a method of applying the resin composition to the surface of the substrate, and the like.

プリプレグの製造条件等は特に制限するものではないが、ワニスに使用された溶剤が80質量%以上揮発していることが好ましい。このため、製造方法や乾燥条件等も制限はなく、乾燥時の温度は80〜200℃、時間は、ワニスのゲル化時間との兼ね合いで特に制限はなく適宜選択される。また、ワニスの含浸量は、ワニス固形分と基材の総量に対して、ワニス固形分が35〜80質量%になるようにされることが好ましい。   The production conditions of the prepreg are not particularly limited, but it is preferable that the solvent used for the varnish is volatilized by 80% by mass or more. For this reason, there are no restrictions on the production method, drying conditions, etc., the temperature during drying is 80 to 200 ° C., and the time is appropriately selected without any particular limitation in view of the gelation time of the varnish. Moreover, it is preferable that the amount of impregnations of a varnish shall be 35-80 mass% with respect to a varnish solid content and the total amount of a base material.

本発明におけるプリプレグは通常130〜250℃、好ましくは150〜200℃の範囲の温度で、通常0.5〜20MPa、好ましくは1〜8MPaの範囲の圧力で、加熱加圧成形される。   The prepreg in the present invention is heat-press molded at a temperature of usually 130 to 250 ° C., preferably 150 to 200 ° C., usually 0.5 to 20 MPa, preferably 1 to 8 MPa.

前記加熱加圧成形の際の構成材は、特に制限されるものではないが、銅箔付き積層体、銅箔、アルミ箔付積層体、離型フィルム(旭硝子:アフレックス)等が用いられる。
以下に、実施例により本発明をさらに詳しく説明するが、本発明の技術思想を逸脱しない限り、本発明はこれらの実施例に限定されるものではない。
Although the constituent material in the said heat press molding is not restrict | limited in particular, A laminated body with copper foil, a copper foil, a laminated body with aluminum foil, a release film (Asahi Glass: Aflex), etc. are used.
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples without departing from the technical idea of the present invention.

(実施例1)
撹拌装置、コンデンサ、温度計を備えたガラスフラスコに、(A)テトラキスヒドロキシフェニルメタン型エポキシ樹脂(エポキシ当量:200、ジャパンエポキシレジン株式会社製、エピコート1031S)3.8質量%、(B)フェノールノボラック型エポキシ樹脂(エポキシ当量:178、ジャパンエポキシレジン株式会社製、エピコート154)15.3質量%、(C)フェノールノボラック型フェノール樹脂(日立化成工業株式会社製、HP1100、Mn:1、400、Mw:9、100、Mw/Mn:6.5、遊離フェノール含有率1.0%)23.7質量%、(D)臭素含有樹脂(エポキシ当量:475、ジャパンエポキシレジン株式会社製、エピコート5046)57.2質量%、(E)シリカ(福島窯業株式会社製、F05−30、平均粒径4.2μm、比表面積5.8m2/g)25.6質量%、及び硬化促進剤として2E4MZ(四国化成株式会社製)0.1質量%を、それぞれMEK100質量部に溶解、希釈し、1時間室温にて撹拌を行い、固形分60質量%の樹脂組成物ワニスになるようにMEKで調整した。
このワニスを厚さ約100μmのガラス布(日東紡績株式会社製、スタイル2116、Eガラス)に含浸後、150℃で5分乾燥して樹脂分50質量%のプリプレグを得た。このプリプレグを16枚積層し、その両側に12μmの銅箔を重ね、170℃、90分、及び4.0MPaのプレス条件で、厚さ約1.6mmの銅張積層板を作製した。
(実施例2)
Example 1
In a glass flask equipped with a stirrer, a condenser and a thermometer, (A) tetrakishydroxyphenylmethane type epoxy resin (epoxy equivalent: 200, manufactured by Japan Epoxy Resin Co., Ltd., Epicoat 1031S) 3.8% by mass, (B) phenol Novolak type epoxy resin (epoxy equivalent: 178, manufactured by Japan Epoxy Resin Co., Ltd., Epicoat 154) 15.3% by mass, (C) phenol novolak type phenolic resin (manufactured by Hitachi Chemical Co., Ltd., HP1100, Mn: 1,400, Mw: 9, 100, Mw / Mn: 6.5, free phenol content 1.0%) 23.7% by mass, (D) bromine-containing resin (epoxy equivalent: 475, manufactured by Japan Epoxy Resins Co., Ltd., Epicoat 5046 ) 57.2% by mass, (E) Silica (Fukushima Ceramic Co., Ltd., F 5-30, the average particle diameter of 4.2 .mu.m, a specific surface area 5.8m 2 /g)25.6 wt%, and 2E4MZ (manufactured by Shikoku Kasei Co., Ltd.) 0.1 mass% as curing accelerator, respectively MEK100 parts by Then, the mixture was stirred at room temperature for 1 hour, and adjusted with MEK to obtain a resin composition varnish having a solid content of 60% by mass.
The varnish was impregnated into a glass cloth (Nitto Boseki Co., Ltd., Style 2116, E glass) having a thickness of about 100 μm and dried at 150 ° C. for 5 minutes to obtain a prepreg having a resin content of 50% by mass. Sixteen prepregs were laminated, 12 μm copper foils were laminated on both sides thereof, and a copper clad laminate having a thickness of about 1.6 mm was produced under the press conditions of 170 ° C., 90 minutes, and 4.0 MPa.
(Example 2)

配合量を表1記載の配合量に変更した以外は、実施例1と同様にして約1.6mmの銅張積層板を作製した。
(実施例3)
A copper clad laminate having a thickness of about 1.6 mm was produced in the same manner as in Example 1 except that the amount was changed to the amount shown in Table 1.
(Example 3)

配合量を表1記載の配合量に変更した以外は、実施例1と同様にして約1.6mmの銅張積層板を作製した。
(実施例4)
A copper clad laminate having a thickness of about 1.6 mm was produced in the same manner as in Example 1 except that the amount was changed to the amount shown in Table 1.
Example 4

さらに(D−2)臭素含有樹脂(エポキシ当量:395、ジャパンエポキシレジン株式会社製、エピコート5050)を2.3質量%添加し、配合量を表1記載の配合量に変更した以外は、実施例1と同様にして約1.6mmの銅張積層板を作製した。
(比較例1)
Furthermore, (D-2) Implementation was performed except that 2.3% by mass of a bromine-containing resin (epoxy equivalent: 395, manufactured by Japan Epoxy Resin Co., Ltd., Epicoat 5050) was added and the blending amount was changed to the blending amount shown in Table 1. In the same manner as in Example 1, a copper clad laminate having a thickness of about 1.6 mm was produced.
(Comparative Example 1)

配合量を表1記載の配合量とした以外は、実施例1と同様にして約1.6mmの銅張積層板を作製した。
(比較例2)
A copper clad laminate having a thickness of about 1.6 mm was produced in the same manner as in Example 1 except that the blending amount was changed to the blending amount shown in Table 1.
(Comparative Example 2)

さらにBPA型固形エポキシ樹脂(エポキシ当量:475、ジャパンエポキシレジン株式会社製、エピコート1001)を5.6質量%添加し、配合量を表1記載の配合量に変更した以外は、実施例1と同様にして約1.6mmの銅張積層板を作製した。
以上、作製した銅張積層板を用いて、以下の評価方法で特性評価を実施した。結果を表1に示す。
Furthermore, except that 5.6 mass% of BPA type solid epoxy resin (epoxy equivalent: 475, manufactured by Japan Epoxy Resin Co., Ltd., Epicoat 1001) was added and the blending amount was changed to the blending amount described in Table 1, Example 1 and In the same manner, a copper clad laminate having a thickness of about 1.6 mm was produced.
As described above, characteristics evaluation was performed by the following evaluation method using the produced copper-clad laminate. The results are shown in Table 1.

評価方法
(1)ガラス転移温度(Tg)
TMA 2940(Dupont社製、TMA(Thermal Mechanical Analyzer))を用いガラス転移温度を測定。
(2)スルーホール接続信頼性
ドリル直径φ0.4mm、めっき厚み20μm、ランド径φ0.6mmのテストパターンを作製し、「−55℃30分→室温→150℃30分→室温」を1サイクルとし、スルーホール接続抵抗値が10%低下するまでのサイクル数をカウントした。試験は100サイクルを1セットとして実施した。500サイクルの試験をしてもスルーホールの接続抵抗値の低下が10%未満のとき、500cycleOKと記載した。一方、200サイクルの試験をしている間に前記接続抵抗値が10%以上低下したときには、200cycleNGと記載した。
(3)はんだ耐熱性
JISC6481の試験方法を用いて、5時間煮沸処理したサンプルを288℃のはんだ槽に浸漬させ、サンプルの膨れ等、外観を観察し、変化のないものをOK、変化のあるものをNGとした。
(4)基板打抜き剥離面積(白化量)
打抜き用超硬合金金型により、上下型の抜きクリアランスを25μmとして80トンプレスによって基板を打抜き、その時の基板打抜き剥離面積(白化量)を測定した。
Evaluation method (1) Glass transition temperature (Tg)
The glass transition temperature was measured using TMA 2940 (manufactured by Dupont, TMA (Thermal Mechanical Analyzer)).
(2) Through-hole connection reliability A test pattern with a drill diameter of φ0.4mm, plating thickness of 20μm, and land diameter of φ0.6mm was prepared, and “-55 ° C 30 minutes → room temperature → 150 ° C. 30 minutes → room temperature” was set as one cycle. The number of cycles until the through-hole connection resistance value decreased by 10% was counted. The test was conducted with 100 cycles as one set. When the reduction in the connection resistance value of the through hole was less than 10% even after 500 cycles of testing, it was described as 500 cycleOK. On the other hand, when the connection resistance value decreased by 10% or more during the 200-cycle test, it was described as 200 cycleNG.
(3) Solder heat resistance Using the test method of JISC6481, the sample boiled for 5 hours is immersed in a solder bath at 288 ° C., the appearance of the sample such as blistering is observed, and the sample with no change is OK. The thing was set to NG.
(4) Substrate punching peeling area (whitening amount)
The substrate was punched with an 80-ton press with a punching cemented carbide mold with an upper and lower punching clearance of 25 μm, and the substrate punching peel area (whitening amount) at that time was measured.

Figure 2009215458
Figure 2009215458

表1から、実施例1〜4における銅張積層板は耐熱性に優れ、また、スルーホール接続信頼性、絶縁信頼性及び打抜き白化量のバランスに優れることがわかる。
これに対して、比較例1は耐熱性及びスルーホール接続信頼性には優れるが、打抜き加工性が劣ることが判明した。
また、比較例2は打抜き加工性には優れるが、スルーホール接続信頼性、耐熱性、及びTgが実施例に比べて劣ることがわかる。
From Table 1, it can be seen that the copper-clad laminates in Examples 1 to 4 are excellent in heat resistance and excellent in the balance of through-hole connection reliability, insulation reliability, and punching whitening amount.
In contrast, Comparative Example 1 was found to be excellent in heat resistance and through-hole connection reliability, but inferior in punching workability.
Moreover, although the comparative example 2 is excellent in punching workability, it turns out that through-hole connection reliability, heat resistance, and Tg are inferior compared with an Example.

本発明は、鉛フリーはんだを使用したプリント配線板の製造工程において、基板の膨れ等の不具合発生が少なく、基板の接続信頼性や絶縁信頼性が良好であり、また基板の打抜き加工性が良好である樹脂組成物、該樹脂組成物を用いたプリプレグ及び金属張積層板を提供する。   In the manufacturing process of the printed wiring board using lead-free solder, the present invention is less likely to cause problems such as swelling of the board, has good board connection reliability and insulation reliability, and has good board punching processability. And a prepreg and a metal-clad laminate using the resin composition.

Claims (6)

樹脂成分と無機充填材とを含む樹脂組成物であって、前記樹脂成分は、
(A)エポキシ当量190〜230のテトラキスヒドロキシフェニルエタン型エポキシ樹脂2〜8質量%、
(B)(A)を除くエポキシ当量175〜220の多官能型エポキシ樹脂10〜17質量%、
(C)数平均分子量(Mn)1300〜1500、重量平均分子量(Mw)8500〜10500、並びにMw/Mn6.0〜7.5であって、遊離フェノール含有率が1.5質量%以下であるフェノールノボラック型多官能型硬化剤20〜26質量%、及び、
(D)臭素含有エポキシ樹脂49〜68質量%、
を含み、かつ、前記樹脂成分中、
ノボラック構造を有する樹脂25〜40質量%、及び臭素含有率11.5〜14.5質量%であり、かつ前記樹脂組成物中の(E)無機充填材が20〜30質量%であることを特徴とする樹脂組成物。
A resin composition comprising a resin component and an inorganic filler, wherein the resin component is
(A) 2-8% by mass of tetrakishydroxyphenylethane type epoxy resin having an epoxy equivalent of 190-230,
(B) 10 to 17% by mass of a polyfunctional epoxy resin having an epoxy equivalent of 175 to 220 excluding (A),
(C) Number average molecular weight (Mn) 1300 to 1500, weight average molecular weight (Mw) 8500 to 10500, and Mw / Mn 6.0 to 7.5, and free phenol content is 1.5% by mass or less 20 to 26% by mass of a phenol novolac type polyfunctional curing agent, and
(D) 49-68% by mass of bromine-containing epoxy resin,
And in the resin component,
The resin having a novolac structure is 25 to 40% by mass, the bromine content is 11.5 to 14.5% by mass, and the (E) inorganic filler in the resin composition is 20 to 30% by mass. A resin composition characterized.
前記(E)の無機充填材がシリカである請求項1記載の樹脂組成物。   The resin composition according to claim 1, wherein the inorganic filler (E) is silica. 前記シリカの平均粒径が0.5〜5.0μm、かつ比表面積が3.3〜6.1m2/gである請求項2に記載の樹脂組成物。 The resin composition according to claim 2, wherein the silica has an average particle size of 0.5 to 5.0 μm and a specific surface area of 3.3 to 6.1 m 2 / g. 請求項1〜3のいずれかに記載の樹脂組成物を基材に含浸させてなることを
特徴とするプリプレグ。
A prepreg comprising a substrate impregnated with the resin composition according to claim 1.
前記基材がガラス織布である請求項4記載のプリプレグ。   The prepreg according to claim 4, wherein the substrate is a glass woven fabric. 請求項4又は5に記載のプリプレグ、又はその積層体の両面もしくは片面に金属層が形成されてなることを特徴とする金属張積層板。   A metal-clad laminate comprising a metal layer formed on both sides or one side of the prepreg according to claim 4 or 5, or a laminate thereof.
JP2008061531A 2008-03-11 2008-03-11 Resin composition, prepreg, and metal-clad laminate Expired - Fee Related JP5277670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061531A JP5277670B2 (en) 2008-03-11 2008-03-11 Resin composition, prepreg, and metal-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061531A JP5277670B2 (en) 2008-03-11 2008-03-11 Resin composition, prepreg, and metal-clad laminate

Publications (2)

Publication Number Publication Date
JP2009215458A true JP2009215458A (en) 2009-09-24
JP5277670B2 JP5277670B2 (en) 2013-08-28

Family

ID=41187650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061531A Expired - Fee Related JP5277670B2 (en) 2008-03-11 2008-03-11 Resin composition, prepreg, and metal-clad laminate

Country Status (1)

Country Link
JP (1) JP5277670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109027A (en) * 2012-12-04 2014-06-12 Hitachi Chemical Co Ltd Epoxy resin composition, prepreg, metal-clad laminate, and printed wiring board made therefrom

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179800A (en) * 1992-12-14 1994-06-28 Hitachi Chem Co Ltd Epoxy resin hardener and epoxy resin composition
JPH11279246A (en) * 1998-03-26 1999-10-12 Matsushita Electric Works Ltd Production of phenolic resin and resin molding material
JP2007161979A (en) * 2005-11-16 2007-06-28 Hitachi Chem Co Ltd Resin composition for lamianted board, prepreg for laminated board using the same, the resultant laminated board, and metal-clad laminated board
JP2008050566A (en) * 2006-07-28 2008-03-06 Hitachi Chem Co Ltd Resin composition, prepreg, and laminate sheet clad with metal using the prereg
JP2008179768A (en) * 2006-12-27 2008-08-07 Hitachi Chem Co Ltd Resin composition, prepreg, and laminated sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179800A (en) * 1992-12-14 1994-06-28 Hitachi Chem Co Ltd Epoxy resin hardener and epoxy resin composition
JPH11279246A (en) * 1998-03-26 1999-10-12 Matsushita Electric Works Ltd Production of phenolic resin and resin molding material
JP2007161979A (en) * 2005-11-16 2007-06-28 Hitachi Chem Co Ltd Resin composition for lamianted board, prepreg for laminated board using the same, the resultant laminated board, and metal-clad laminated board
JP2008050566A (en) * 2006-07-28 2008-03-06 Hitachi Chem Co Ltd Resin composition, prepreg, and laminate sheet clad with metal using the prereg
JP2008179768A (en) * 2006-12-27 2008-08-07 Hitachi Chem Co Ltd Resin composition, prepreg, and laminated sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109027A (en) * 2012-12-04 2014-06-12 Hitachi Chemical Co Ltd Epoxy resin composition, prepreg, metal-clad laminate, and printed wiring board made therefrom

Also Published As

Publication number Publication date
JP5277670B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
CN102093666B (en) Halogen-free resin composite and preparation method of halogen-free copper clad laminate using same
JP2002080693A (en) Epoxy resin composition and its cured product
JP2008517136A (en) Non-halogen flame retardant epoxy resin composition, and prepreg and copper clad laminate using the same
EP2933293B1 (en) Halogen-free flame-retardant resin composition and use thereof
JP2017101152A (en) Modified polyimide resin composition and manufacturing method therefor, and prepreg and laminate using the same
JP5194750B2 (en) Prepreg and laminate
JP4581642B2 (en) Metal-clad laminate and printed wiring board
JP5040586B2 (en) Resin composition, prepreg and laminate
JP4915549B2 (en) Resin composition for printed wiring board, prepreg and laminate using the same
JP6228799B2 (en) Epoxy resin composition and cured product thereof
KR100777500B1 (en) Varnish for laminate or prepreg, laminate or prepreg obtained with this varnish, and printed circuit board made with this laminate or prepreg
JP2009215457A (en) Resin composition, prepreg, and metal-clad laminated plate
JP5277670B2 (en) Resin composition, prepreg, and metal-clad laminate
JP4797248B2 (en) Pre-preg for printed wiring board and laminated board using the same
JP5509625B2 (en) Prepreg resin composition, prepreg, laminated board, and printed wiring board
JP4961903B2 (en) Epoxy resin composition, epoxy resin prepreg, metal-clad laminate and printed wiring board
JP5157045B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP2008050566A (en) Resin composition, prepreg, and laminate sheet clad with metal using the prereg
JPH07202418A (en) Interlayer adhesive for multilayer printed wiring board, copper foil applied with adhesive and production of multilayer printed wiring board
JP2005048036A (en) Prepreg and metal foil-clad laminate board using the same
JP4337204B2 (en) Interlayer insulation adhesive for multilayer printed wiring boards
JP2005154739A (en) Resin composition, and prepreg and laminate using the composition
JPH08104737A (en) Epoxy resin composition and prepreg prepared using the same
JP2019048934A (en) Thermosetting resin composition
JP4567132B2 (en) Epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R151 Written notification of patent or utility model registration

Ref document number: 5277670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees