JP2009213723A - Apatite coated biological implant having biomolecule fixed on its surface, and cell culture carrier - Google Patents

Apatite coated biological implant having biomolecule fixed on its surface, and cell culture carrier Download PDF

Info

Publication number
JP2009213723A
JP2009213723A JP2008061886A JP2008061886A JP2009213723A JP 2009213723 A JP2009213723 A JP 2009213723A JP 2008061886 A JP2008061886 A JP 2008061886A JP 2008061886 A JP2008061886 A JP 2008061886A JP 2009213723 A JP2009213723 A JP 2009213723A
Authority
JP
Japan
Prior art keywords
hydroxyapatite
film
orientation
plane
biomaterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008061886A
Other languages
Japanese (ja)
Other versions
JP5234743B2 (en
Inventor
Masahiko Inagaki
雅彦 稲垣
Takao Saito
隆雄 斎藤
Tetsuya Kameyama
哲也 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008061886A priority Critical patent/JP5234743B2/en
Publication of JP2009213723A publication Critical patent/JP2009213723A/en
Application granted granted Critical
Publication of JP5234743B2 publication Critical patent/JP5234743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological implant, such as an artificial joint and an artificial dental root, having basic protein, such as bone morphogenetic protein, fixed on the surface of hydroxyapatite, and to provide a cell culture carrier. <P>SOLUTION: A biomaterial consists of ceramic primarily composed of hydroxyapatite, wherein a (001) face (c face) of a crystal of the hydroxyapatite HA in the ceramic has a face preferentially exposed to the surface, an orientation by a thin film orientation analysis of XRD of HA (004) surface shows a high crystalline orientation of 13.5° or more and the basic protein is selectively fixed to a part at least near the surface of the applicable face. The biomaterial provides the hydroxyapatite membrane which has a high orientation observed in a dental enamel of a person, and scarcely includes calcium oxide which is supposed to cause inflammation especially in a living body, at least near the surface of the membrane, the biological implant having the membrane, and the cell culture carrier. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水酸アパタイト皮膜の表面に塩基性タンパク質を固定した生体材料に関するものであり、更に詳しくは、水酸アパタイト(HA)の結晶の(001)面(c面)が表面に優先的に露出した面を有し、配向度が13.5°以上の高い結晶配向を有し、当該面の少なくとも表面近傍に塩基性タンパク質を選択的に固定した生体材料に関するものである。本発明は、例えば、人工関節、人工歯根などの生体インプラント材及び細胞培養担体を提供するものである。   The present invention relates to a biomaterial in which a basic protein is immobilized on the surface of a hydroxyapatite film. More specifically, the (001) plane (c-plane) of a hydroxyapatite (HA) crystal is preferential to the surface. The present invention relates to a biomaterial having a surface exposed to the surface, a crystal orientation with a high degree of orientation of 13.5 ° or more, and a basic protein selectively immobilized at least near the surface of the surface. The present invention provides biological implant materials and cell culture carriers such as artificial joints and artificial roots.

骨形成タンパク質(Bone Morphogenetic Protein,BMP)の未分化間葉系細胞の骨芽細胞・軟骨芽細胞への分化促進と他の系統の細胞への分化抑制により、BMPを固定した担体などの周囲には、骨組織が誘導される。BMPの生体内における特定の物質の薬効を効果的に発現させるためには、本物質を局所に保持し、適度な速度で徐放するような担体が必須である。   Bone morphogenetic protein (BMP) promotes the differentiation of undifferentiated mesenchymal cells into osteoblasts and chondroblasts and suppresses differentiation into cells of other strains, and so on around the carrier on which BMP is fixed The bone tissue is induced. In order to effectively express the medicinal effects of a specific substance in the living body of BMP, a carrier that holds the substance locally and releases it slowly at an appropriate rate is essential.

一般には、人工関節や人工歯根の表面へコーティングされる水酸アパタイト(HA)の表面には、タンパク質が強く固定されないことが知られている。人工関節の表面に、BMPなどの塩基性タンパク質を固定する方法として、タンパク質を含むリン酸カルシウムの前駆体溶液からタンパク質を含有するリン酸カルシウム皮膜を析出させる方法が提案されている(特許文献1、2参照)。   In general, it is known that proteins are not strongly fixed on the surface of hydroxyapatite (HA) coated on the surface of an artificial joint or an artificial tooth root. As a method of fixing a basic protein such as BMP on the surface of an artificial joint, a method of depositing a calcium phosphate film containing protein from a precursor solution of calcium phosphate containing protein has been proposed (see Patent Documents 1 and 2). .

しかしながら、これらの方法では、皮膜の形成に1〜7日程度必要であり、使用するタンパク質の量に対して、固定されるタンパク質の量が少ないため、BMPなどの高価なタンパク質を多量に使用しなければならないという問題がある。また、これらの方法では、形成されるタンパク質含有リン酸カルシウム皮膜の密着性が低いという問題がある。このように、従来、BMPなどの塩基性タンパク質をHA材表面に吸着させるだけの簡便な固定法ならびにそのようにタンパク質を表面に固定したHA材は、これまでに知られていない。   However, in these methods, it takes about 1 to 7 days to form a film, and since the amount of protein to be immobilized is small relative to the amount of protein used, a large amount of expensive protein such as BMP is used. There is a problem of having to. Moreover, in these methods, there exists a problem that the adhesiveness of the protein containing calcium phosphate membrane | film | coat formed is low. Thus, conventionally, a simple immobilization method that simply adsorbs a basic protein such as BMP to the surface of the HA material and an HA material in which the protein is immobilized on the surface have not been known so far.

水酸アパタイト(HA)の結晶は、主に、(100)又は(010)面(a面)と(001面)(c面)が現われる。これらの面では、タンパク質などの分子の吸着に差があることが知られており(非特許文献1)、唾液などの体液への溶解性に差がある(非特許文献2)。生体では、このような水酸アパタイト(HA)の結晶面の性質の差をうまく利用しており、例えば、人歯のエナメル質は、HA結晶が(001)配向した構造を有し、唾液に対して不活性なc面が優先的に表面に現われている。   In the hydroxyapatite (HA) crystal, (100) or (010) plane (a plane) and (001 plane) (c plane) mainly appear. In these aspects, it is known that there is a difference in adsorption of molecules such as proteins (Non-Patent Document 1), and there is a difference in solubility in body fluids such as saliva (Non-Patent Document 2). The living body makes good use of the difference in the crystal surface properties of hydroxyapatite (HA). For example, human tooth enamel has a (001) -oriented structure of HA crystals, In contrast, an inactive c-plane appears preferentially on the surface.

結晶配向性を任意に制御したHA材料の作製が実現できれば、HA結晶の物性の異方性や、結晶面の性質を引き出すような新しい生体材料としての可能性が期待できると考えられる。従来、プラズマ溶射法を用いてc面配向HA皮膜を作製したことが報告されている(非特許文献3、4)。そして、塩基性タンパク質は、主にHAのc面に吸着することは知られていたが、高い結晶配向性を有するHO−HACにおいて、配向度が13.5℃以上で塩基性タンパク質が選択的に固定されることは知られていなかった。   If an HA material with arbitrarily controlled crystal orientation can be realized, it can be expected that the material can be used as a new biomaterial that can bring out the anisotropy of the physical properties of the HA crystal and the properties of the crystal plane. Conventionally, it has been reported that a c-plane oriented HA film is produced using a plasma spraying method (Non-Patent Documents 3 and 4). And although it was known that basic protein mainly adsorb | sucks to the c surface of HA, in HO-HAC which has high crystal orientation, basic protein is selective with an orientation degree of 13.5 degreeC or more. It was not known to be fixed to.

特開2005−21208号公報Japanese Patent Laid-Open No. 2005-21208 特開2005−112848号公報Japanese Patent Laid-Open No. 2005-112848 T.kawasaki,J.chromatogr.554,147(1991)T.A. Kawasaki, J. et al. chromatogr. 554, 147 (1991) 青木秀希、表面科学、10.96−104(1989)Hideki Aoki, Surface Science, 10.96-104 (1989) M.Inagaki et al.,Journal of Materials Science;Materials in Medicine.14.919−22(2003)M.M. Inagaki et al. , Journal of Materials Science; Materials in Medicine. 14.919-22 (2003) M.Inagaki et al.,BIOMATERIALS,28,2923−31(2007)M.M. Inagaki et al. , BIOMATERIALS, 28, 2923-31 (2007)

このような状況の中で、本発明は、上記従来技術に鑑みて、BMPなどの塩基性タンパク質をHA表面に吸着させるだけの簡便な固定法及びそのようにタンパク質を表面に固定したHA材を主成分とする生体材料を開発することを目標として鋭意研究を積み重ねた結果、配向度が13.5°以上の高い結晶配向を有する水酸アパタイト(HA)の結晶の(001)面(c面)が表面に優先的に露出した面を有するHAを用いることにより所期の目的を達成できることを見出し、更に研究を重ねて、本発明を完成するに至った。そして、本発明では、配向度が13.5°以上、より好ましくは18.0°以上の場合、塩基性タンパク質の選択的担持が生じることが確認された。   Under such circumstances, in view of the above-mentioned conventional technology, the present invention provides a simple fixing method in which a basic protein such as BMP is adsorbed on the HA surface, and an HA material having the protein fixed on the surface. As a result of intensive research aimed at developing biomaterials as the main component, (001) plane (c-plane) of hydroxyapatite (HA) crystals having a high crystal orientation with an orientation degree of 13.5 ° or more ) Has been found to be able to achieve the intended purpose by using HA having a surface preferentially exposed on the surface, and further research has been made to complete the present invention. And in this invention, when orientation degree was 13.5 degrees or more, More preferably, it was confirmed that selective carrying | support of a basic protein arises when it is 18.0 degrees or more.

本発明は、上記の問題を解決するものであり、水酸アパタイトの表面に、骨形成タンパク質などの塩基性タンパク質が固定された、人工関節、人工歯根などの生体インプラント及び細胞培養担体を提供することを目的とするものである。また、本発明は、塩基性タンパク質を表面に固定した水酸アパタイト及び当該水酸アパタイトの皮膜を有する生体インプラントならびに細胞培養担体をより少量のタンパク質を用いて短時間に作製し、提供することを目的とするものである。   The present invention solves the above problems, and provides biological implants such as artificial joints and artificial tooth roots and cell culture carriers, in which basic proteins such as bone morphogenetic proteins are fixed on the surface of hydroxyapatite. It is for the purpose. In addition, the present invention is to provide a hydroxyapatite having a basic protein immobilized on its surface, a biological implant having a film of the hydroxyapatite, and a cell culture carrier in a short time using a smaller amount of protein, and providing It is the purpose.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)水酸アパタイトを主成分とするセラミックスから成る生体材料であって、当該セラミックス中の水酸アパタイト(HA)の結晶の(001)面(c面)が表面に優先的に露出した面を有し、HA(004)面のXRDの薄膜配向度解析による配向度が少なくとも13.5°の高い結晶配向を示し、かつ、当該面の少なくとも表面近傍に塩基性タンパク質を選択的に固定したことを特徴とする生体材料。
(2)上記生体材料が、セラミックス又は金属から成る基材上に形成された水酸アパタイトを主成分とするアパタイト皮膜を有し、当該皮膜がラメラ状に堆積した粒子から成り、当該皮膜中の水酸アパタイトの結晶のc軸方向が基材に対して垂直方向に優先的に配向することで、(001)面(c面)が表面に優先的に露出した面を有する、前記(1)に記載の生体材料。
(3)三リン酸カルシウムならびに基材に対して垂直方向に結晶のa軸方向が優先的に配向した四リン酸カルシウムを含有する、前記(2)に記載の生体材料。
(4)前記(1)から(3)のいずれか1項に記載の生体材料を構成要素として有することを特徴とする細胞培養担体。
(5)厚さが5〜1000μmのアパタイト皮膜を有する、前記(4)に記載の細胞培養担体。
(6)前記(1)から(3)のいずれか1項に記載の生体材料を構成要素として有することを特徴とする生体インプラント材。
(7)チタン又はチタン合金から成る基材上にアパタイト皮膜を有し、当該皮膜内にチタン又はチタン合金とそれらの窒化物の混合物を含有する層が形成されていて皮膜の基材に対する密着性が高められている、前記(6)に記載の生体インプラント材。
(8)厚さが5〜1000μmのアパタイト皮膜を有する、前記(6)又は(7)に記載の生体インプラント材。
(9)生体インプラント材の表面の限定された範囲に凹凸が形成されている、前記(6)から(7)のいずれか1項に記載の生体インプラント材。
The present invention for solving the above-described problems comprises the following technical means.
(1) A biomaterial composed of ceramics mainly composed of hydroxyapatite, wherein the (001) plane (c-plane) of hydroxyapatite (HA) crystals in the ceramic is preferentially exposed on the surface. And has a high crystal orientation of at least 13.5 ° by XRD thin film orientation analysis of the HA (004) plane, and a basic protein is selectively fixed at least near the surface of the plane. A biomaterial characterized by that.
(2) The biomaterial has an apatite film mainly composed of hydroxyapatite formed on a base material made of ceramics or metal, and the film is composed of particles deposited in a lamellar shape. (1) The (001) plane (c plane) has a plane preferentially exposed on the surface by preferentially orienting the c-axis direction of the hydroxyapatite crystal in the direction perpendicular to the substrate. The biomaterial described in 1.
(3) The biomaterial according to (2), comprising calcium triphosphate and calcium tetraphosphate in which the a-axis direction of the crystal is preferentially oriented in a direction perpendicular to the substrate.
(4) A cell culture carrier comprising the biomaterial according to any one of (1) to (3) as a constituent element.
(5) The cell culture carrier according to (4), which has an apatite film having a thickness of 5 to 1000 μm.
(6) A living body implant material comprising the living body material according to any one of (1) to (3) as a constituent element.
(7) Having an apatite film on a substrate made of titanium or a titanium alloy, a layer containing a mixture of titanium or a titanium alloy and a nitride thereof is formed in the film, and the adhesion of the film to the substrate The living body implant material according to (6), wherein
(8) The living body implant material according to (6) or (7), which has an apatite film having a thickness of 5 to 1000 μm.
(9) The biological implant material according to any one of (6) to (7), wherein unevenness is formed in a limited range of the surface of the biological implant material.

次に、本発明について更に詳細に説明する。
本発明は、水酸アパタイトを主成分とするセラミックスから成る生体材料であって、当該セラミックス中の水酸アパタイト(HA)の結晶の(001)面(c面)が表面に優先的に露出した面を有し、HA(004)面のXRDの薄膜配向度解析による配向度が少なくとも13.5°の高い結晶配向を示し、かつ、当該面の少なくとも表面近傍に塩基性タンパク質を選択的に固定したことを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a biomaterial made of ceramics mainly composed of hydroxyapatite, and the (001) plane (c-plane) of hydroxyapatite (HA) crystals in the ceramic is preferentially exposed on the surface. It has a crystal orientation with a high degree of orientation of at least 13.5 ° by XRD thin film orientation analysis of the HA (004) plane, and a basic protein is selectively fixed at least near the surface of the surface. It is characterized by that.

本発明では、上記生体材料が、セラミックス又は金属から成る基材上に形成された水酸アパタイトを主成分とするアパタイト皮膜を有し、当該皮膜がラメラ状に堆積した粒子から成り、当該皮膜中の水酸アパタイトの結晶のc軸方向が基材に対して垂直方向に優先的に配向することで、(001)面(c面)が表面に優先的に露出した面を有すること、三リン酸カルシウムならびに基材に対して垂直方向に結晶のa軸方向が優先的に配向した四リン酸カルシウムを含有すること、を好ましい実施の態様としている。   In the present invention, the biomaterial has an apatite film mainly composed of hydroxyapatite formed on a base material made of ceramics or metal, and the film is composed of particles deposited in a lamellar shape. The c-axis direction of the hydroxyapatite crystal is preferentially oriented in the direction perpendicular to the base material, so that the (001) plane (c-plane) has a plane preferentially exposed on the surface, calcium triphosphate In addition, it is preferable to include calcium tetraphosphate in which the a-axis direction of the crystal is preferentially oriented in a direction perpendicular to the base material.

また、本発明は、上記生体材料を構成要素として有する細胞培養担体の点、上記生体材料を構成要素として有する生体インプラント材の点、を特徴とするものである。また、本発明では、チタン又はチタン合金から成る基材上にアパタイト皮膜を有し、当該皮膜内にチタン又はチタン合金とそれらの窒化物の混合物を含有する層が形成されていて皮膜の基材に対する密着性が高められていること、生体インプラント材の表面の限定された範囲に凹凸が形成されていること、を好ましい実施の態様としている。   In addition, the present invention is characterized by the point of a cell culture carrier having the biomaterial as a constituent element and the point of a bioimplant material having the biomaterial as a constituent element. Further, in the present invention, the base material of the film has an apatite film on a base material made of titanium or a titanium alloy, and a layer containing a mixture of titanium or a titanium alloy and a nitride thereof is formed in the film. It is a preferred embodiment that the adhesion to the surface of the living body is enhanced and that the irregularities are formed in a limited range of the surface of the biological implant material.

本発明は、水酸アパタイトの結晶のc軸方向が表面に対して垂直方向に優先的に配向し、かつ、水酸アパタイトの少なくとも表面近傍に塩基性タンパク質を固定した点に最大の特徴を有する水酸アパタイト及び当該水酸アパタイト皮膜を有する生体インプラント材ならびに細胞培養担体である。本発明では、当該塩基性タンパク質を固定した水酸アパタイトをセラミックス、ポリマー又は金属から成る基材上に被覆して利用することが適宜可能である。   The present invention has the greatest feature in that the c-axis direction of a hydroxyapatite crystal is preferentially oriented in the direction perpendicular to the surface, and a basic protein is fixed at least near the surface of the hydroxyapatite. A hydroxyapatite, a biological implant material having the hydroxyapatite film, and a cell culture carrier. In the present invention, it is possible to appropriately use the hydroxyapatite on which the basic protein is immobilized by coating it on a substrate made of ceramic, polymer or metal.

本発明では、水酸アパタイトの結晶のc軸方向が表面に対して垂直方向に優先的に配向し、かつ、水酸アパタイト皮膜の少なくとも表面近傍に塩基性タンパク質を固定した水酸アパタイト又はその被覆物をセラミックス、ポリマー又は金属から成る基材に被覆して生体インプラントを製造する。本発明で云うセラミックス、ポリマー又は金属からなる基材は、使用目的に必要な特性を有するものであれば、セラミックス又は金属の組成、形状ならびに使用形態などは、特に限定されるものではない。   In the present invention, a hydroxyapatite or a coating thereof, in which the c-axis direction of hydroxyapatite crystals is preferentially oriented in the direction perpendicular to the surface, and a basic protein is fixed at least near the surface of the hydroxyapatite film An article is coated on a substrate made of ceramic, polymer or metal to produce a biological implant. The base material made of ceramics, polymer or metal in the present invention is not particularly limited as long as it has the necessary properties for the purpose of use, and the composition, shape and form of use of the ceramics or metal.

本発明で云う生体インプラント材とは、少なくとも表面近傍に水酸アパタイトの結晶のc軸方向が表面に対して垂直方向に優先的に配向し、かつ、水酸アパタイト皮膜の少なくとも表面近傍に塩基性タンパク質を固定した被覆組成物が形成された、生体内で使用するための成形体を意味する。生体インプラント材は、生体内で使用するために必要な特性と安全性を有するものであれば、形状ならびに使用形態などは、特に限定されるものではない。   The biological implant material referred to in the present invention means that the c-axis direction of a hydroxyapatite crystal is preferentially oriented in the direction perpendicular to the surface at least near the surface, and is basic at least near the surface of the hydroxyapatite film. It means a molded body for use in a living body in which a coating composition immobilizing proteins is formed. If a biological implant material has the characteristic and safety | security required in order to use it in_vivo | within_body, a shape, a usage form, etc. will not be specifically limited.

本発明の生体インプラント材は、例えば、形状としては、柱状、板状、シート状、ブロック状、ワイヤ状、繊維状、粉末状など任意の形状のものが使用できる。また、使用形態としては、人工股関節用ステム、人工ひざ関節、人工椎体、人工椎間板、骨補填材、骨プレート、骨スクリュー、人工歯根などの製品形態を適宜採用することが可能である。   For example, the biological implant material of the present invention can have any shape such as a columnar shape, a plate shape, a sheet shape, a block shape, a wire shape, a fiber shape, and a powder shape. Moreover, as a usage form, product forms such as an artificial hip joint stem, an artificial knee joint, an artificial vertebral body, an artificial intervertebral disc, a bone filling material, a bone plate, a bone screw, and an artificial tooth root can be appropriately employed.

本発明で云う細胞培養担体とは、表面近傍に水酸アパタイトの結晶のc軸方向が表面に対して垂直方向に優先的に配向し、かつ、水酸アパタイト皮膜の少なくとも表面近傍に塩基性タンパク質を固定した被覆組成物が形成された細胞を培養するための成形体を意味する。細胞を培養に使用するために必要な特性を有するものであれば、形状ならびに使用形態などは特に限定されるものではない。   The cell culture carrier referred to in the present invention means that the c-axis direction of hydroxyapatite crystals is preferentially oriented in the direction perpendicular to the surface in the vicinity of the surface, and the basic protein is at least in the vicinity of the surface of the hydroxyapatite film. It means a molded body for culturing the cells on which the coating composition to which is fixed is formed. As long as it has the characteristics necessary for using the cells for culturing, the shape and form of use are not particularly limited.

本発明の細胞培養担体は、例えば、形状としては、板状、シート状、ブロック状、柱状、ワイヤ状、繊維状、粉末状など、任意の形状のものが使用できる。また、使用形態としては、細胞培養用シャーレ、細胞培養用シートなどの製品形態を適宜採用することが可能である。   As the cell culture carrier of the present invention, for example, any shape such as a plate shape, a sheet shape, a block shape, a column shape, a wire shape, a fiber shape, and a powder shape can be used. Moreover, as a use form, it is possible to employ | adopt suitably product forms, such as a petri dish for cell cultures, a sheet | seat for cell cultures.

本発明の生体材料の作製方法としては、具体的には、例えば、平均粒径が80μmの水酸アパタイト粉末を熱プラズマに導入し、プラズマ直下の基材上に堆積して、被覆組成物を形成した後に、熱処理したものを、塩基性タンパク質の溶液に浸漬する方法が好適なものとして例示される。しかし、本発明は、これらの方法に制限されるものではなく、上記プラズマガスの組成、粉体の種類及び粒径又は基材の種類は、目的製品に応じて適宜選択、設計及び変化させることが可能であり、適宜の方法で実施することが可能である。   As a method for producing the biomaterial of the present invention, specifically, for example, a hydroxyapatite powder having an average particle size of 80 μm is introduced into a thermal plasma and deposited on a substrate directly under the plasma to form a coating composition. A method of immersing the heat-treated one after the formation in a basic protein solution is exemplified. However, the present invention is not limited to these methods, and the composition of the plasma gas, the type of powder and the particle size, or the type of substrate may be appropriately selected, designed and changed according to the target product. It is possible to carry out by an appropriate method.

本発明で云う水酸アパタイトの結晶のc軸方向が表面に対して垂直方向に優先的に配向したとは、水酸アパタイト成形物の形成する表面の凹凸において、1000μm以下のものを無視した平均的な表面の法線方向に水酸アパタイトの結晶のc軸方向配向していることを意味する。本発明で云う配向度とは、ブラッグの条件にあるHA(004)面の格子面の法線に対する試料表面の法線の角度ψに対して回折強度をプロットし、ψ=0のときの積分強度に対して積分強度が50%となるψの角度を意味する。   The c-axis direction of hydroxyapatite crystals referred to in the present invention is preferentially oriented in the direction perpendicular to the surface. The average of the surface irregularities formed by the hydroxyapatite molded product is neglected to be 1000 μm or less. This means that the c-axis direction of the hydroxyapatite crystal is oriented in the normal direction of the surface. In the present invention, the degree of orientation refers to the diffraction intensity plotted against the angle ψ of the normal surface of the sample surface to the normal surface of the lattice plane of the HA (004) plane under the Bragg condition, and the integration when ψ = 0. It means the angle of ψ at which the integrated intensity is 50% of the intensity.

従来、人工関節の表面に、BMPなどの塩基性タンパク質を固定する方法として、例えば、タンパク質を含むリン酸カルシウムの前駆体溶液からタンパク質を含有するリン酸カルシウム皮膜を析出させる方法が提案されていたが、この種の方法では、皮膜の形成に1〜7日程度必要であり、また、使用するタンパク質の量に対して、固定されるタンパク質の量が少ないため、BMPなどの高価なタンパク質を多量に使用しなければならないこと、また、形成されるタンパク質含有カルシウム皮膜の密着性が低いこと、などの問題点があった。   Conventionally, as a method for fixing a basic protein such as BMP on the surface of an artificial joint, for example, a method of depositing a calcium phosphate film containing a protein from a precursor solution of calcium phosphate containing a protein has been proposed. In this method, it takes about 1 to 7 days to form a film, and since the amount of protein to be immobilized is small relative to the amount of protein to be used, a large amount of expensive protein such as BMP must be used. In addition, there are problems such as that the adhesion of the formed protein-containing calcium film is low.

これに対して、本発明では、水酸アパタイト(HA)の結晶の(001)面(c面)が表面に優先的に露出した面を有し、かつ配向度が13.5°以上、好ましくは18.0°以上の結晶配向をするHA面を使用すること、及び当該面の少なくとも表面近傍に塩基性タンパク質を選択的に固定すること、により、短時間に、多量のタンパク質を使用することなく、しかも、基材に対して高い密着性を有するアパタイト皮膜−タンパク質複合体を有する生体材料を提供することを可能としたものである。   In contrast, in the present invention, the (001) plane (c-plane) of the hydroxyapatite (HA) crystal has a plane that is preferentially exposed on the surface, and the degree of orientation is 13.5 ° or more, preferably Use a large amount of protein in a short time by using an HA surface with a crystal orientation of 18.0 ° or more and selectively fixing a basic protein at least near the surface of the surface. In addition, it is possible to provide a biomaterial having an apatite film-protein complex having high adhesion to a substrate.

本発明により、次のような効果が奏される。
(1)BMPなどの塩基性タンパク質をHA材料表面に選択的に吸着、固定した生体材料を提供することができる。
(2)塩基性タンパク質をHA材料表面に選択的に固定させる簡便な固定手法を提供することができる。
(3)特定の塩基性タンパク質を表面近傍に選択的に固定した細胞培養担体及び生体インプラント材を提供することができる。
(4)チタン又はチタン合金から成る基材上にアパタイト皮膜を有し、当該皮膜の基材に対する密着性が高められている生体インプラント材を提供することができる。
(5)表面に固定した骨形成タンパク質や新生血管の形成を促進する繊維芽細胞成長因子等により骨組織や血管の形成能を高めたインプラント材を提供することができる。
The present invention has the following effects.
(1) A biomaterial in which a basic protein such as BMP is selectively adsorbed and immobilized on the surface of the HA material can be provided.
(2) A simple immobilization technique for selectively immobilizing a basic protein on the surface of the HA material can be provided.
(3) It is possible to provide a cell culture carrier and a biological implant material in which a specific basic protein is selectively immobilized near the surface.
(4) A biological implant material having an apatite film on a substrate made of titanium or a titanium alloy and having improved adhesion of the film to the substrate can be provided.
(5) It is possible to provide an implant material in which the ability to form bone tissue or blood vessels is enhanced by a bone morphogenetic protein immobilized on the surface, a fibroblast growth factor that promotes the formation of new blood vessels, or the like.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

プラズマ溶射法を用いて、c面配向HA皮膜を作製した。溶射条件により配向性の高いHA皮膜(HO−HAC)と配向性の低いHA皮膜(LO−HAC)を作製した。リファレンスとして、焼結体HA(S−HA)(1200℃、2h焼結)を作製した。それぞれの試料の結晶配向度をHAの(004)の回折ピークを用いて、XRDの薄膜配向度解析により評価した。ブラッグの条件にある特定の格子面の法線に対する試料表面の法線の角度ψに対して回折強度をプロットした。   A c-plane oriented HA coating was prepared using plasma spraying. A HA film with high orientation (HO-HAC) and a HA film with low orientation (LO-HAC) were produced according to the thermal spraying conditions. As a reference, a sintered body HA (S-HA) (1200 ° C., 2 h sintering) was produced. The degree of crystal orientation of each sample was evaluated by XRD thin film orientation analysis using the (004) diffraction peak of HA. The diffraction intensity was plotted against the angle ψ of the sample surface normal to the specific lattice plane normal under Bragg conditions.

図1に、ψ−回折強度曲線を示す。試料のψ=0のときの積分強度に対して、積分強度が50%となるψの角度を配向度(OD)とした。HO−HACでは、配向度の異なるOD=13.5°と18.0°の皮膜が得られた。上記S−HA、LO−HAC、HO−HAC(OD=13.5°)及びHO−HAC(OD=18.0°)を試料として用いた。   FIG. 1 shows a ψ-diffraction intensity curve. The angle of ψ at which the integrated intensity is 50% with respect to the integrated intensity when ψ = 0 of the sample was defined as the degree of orientation (OD). In HO-HAC, films with OD = 13.5 ° and 18.0 ° having different orientation degrees were obtained. The above S-HA, LO-HAC, HO-HAC (OD = 13.5 °) and HO-HAC (OD = 18.0 °) were used as samples.

本実施例では、上記試料に吸着させる塩基性タンパク質としてラクトフェリンを用いた。FITCラベルしたラクトフェリン(FITC−LAC)を22μg/100μlでリン酸バッファー(PBS)に溶かした溶液を、各試料表面に室温で30分吸着させた。これをNaCl濃度を154、250、500、1000mMとしたリン酸バッファーで洗浄した後、蛍光顕微鏡で観察し、得られた像から蛍光強度を測定した。   In this example, lactoferrin was used as a basic protein to be adsorbed on the sample. A solution of FITC-labeled lactoferrin (FITC-LAC) dissolved in phosphate buffer (PBS) at 22 μg / 100 μl was adsorbed on the surface of each sample at room temperature for 30 minutes. This was washed with a phosphate buffer with NaCl concentrations of 154, 250, 500, and 1000 mM, then observed with a fluorescence microscope, and the fluorescence intensity was measured from the obtained image.

図2に、タンパク質を吸着した試料表面を異なるNaCl濃度のリン酸バッファーで洗浄した後の蛍光強度を、洗浄液のNaCl濃度に対してプロットしたものを示す。いずれの場合においても、コントロールのS−HAでは、蛍光強度が低く、タンパク質の吸着量が低かった。   FIG. 2 shows a plot of the fluorescence intensity after washing the protein-adsorbed sample surface with a phosphate buffer having a different NaCl concentration against the NaCl concentration of the washing solution. In any case, the control S-HA had low fluorescence intensity and low protein adsorption.

等電点が8.5の塩基性タンパク質であるラクトフェリンの場合は、配向性の低いLO−HACに較べ、配向性の高いHO−HACの蛍光強度は、NaCl濃度を1000mMとして洗浄した場合には75%以上高く、配向性の高いHA皮膜の方がタンパク質の保持量が高いことが分かった。配向性の高いHO−HACにおいて、より配向性の高いOD=13.5°の方が蛍光強度が強く、タンパク質を約65%多く吸着した。   In the case of lactoferrin, which is a basic protein with an isoelectric point of 8.5, the fluorescence intensity of HO-HAC with high orientation is higher than that of LO-HAC with low orientation when the NaCl concentration is washed at 1000 mM. It was found that the HA film having a higher orientation of 75% or more and higher orientation has a higher protein retention. In HO-HAC with high orientation, the fluorescence intensity was stronger when OD = 13.5 ° with higher orientation, and about 65% of protein was adsorbed.

本実施例では、上記試料に吸着させる塩基性タンパク質としてシトクロムCを用いた。FITCラベルしたシトクロムC(FITC−CCC)を22μg/100μlでリン酸バッファー(PBS)に溶かした溶液を、各試料表面に室温で30分吸着させた。NaCl濃度を154、250、500、1000mMとしたリン酸バッファーで洗浄した後、蛍光顕微鏡で観察し、得られた像から蛍光強度を測定した。   In this example, cytochrome C was used as the basic protein to be adsorbed on the sample. A solution of FITC-labeled cytochrome C (FITC-CCC) dissolved in phosphate buffer (PBS) at 22 μg / 100 μl was adsorbed on the surface of each sample at room temperature for 30 minutes. After washing with a phosphate buffer with a NaCl concentration of 154, 250, 500, or 1000 mM, the fluorescence intensity was measured from the obtained image by observing with a fluorescence microscope.

図3に、タンパク質を吸着した各試料表面を異なるNaCl濃度のリン酸バッファーで洗浄した後の蛍光強度を、洗浄液のNaCl濃度に対してプロットしたものを示す。いずれの場合においても、コントロールのS−HAでは、蛍光強度が低く、タンパク質の吸着量が低かった。   FIG. 3 shows a plot of the fluorescence intensity after washing each sample surface adsorbed with protein with a phosphate buffer having a different NaCl concentration against the NaCl concentration of the washing solution. In any case, the control S-HA had low fluorescence intensity and low protein adsorption.

等電点が約10.9の塩基性タンパク質であるシトクロムCの場合は、配向性の低いLO−HACに較べ、配向性の高いHO−HAC(OD=13.5°)の蛍光強度は、NaCl濃度を1000mMとして洗浄した場合には83%程度高く、配向性の高いHA皮膜の方がタンパク質の保持量が高いことが分かった。配向性の高いHO−HACにおいて、配向度が18°程度の場合は、配向性の低いLO−HACに較べ、顕著な差がなく、より塩基性の高いタンパク質の場合は、配向度の影響が強く発現した。   In the case of cytochrome C, which is a basic protein having an isoelectric point of about 10.9, the fluorescence intensity of HO-HAC (OD = 13.5 °) having high orientation is lower than that of LO-HAC having low orientation. When the NaCl concentration was washed at 1000 mM, it was found that the HA coating having a higher orientation was higher by about 83% and the protein retention was higher. In a highly oriented HO-HAC, when the degree of orientation is about 18 °, there is no significant difference compared to LO-HAC with a low degree of orientation, and in the case of a highly basic protein, the degree of orientation is affected. Strongly expressed.

本実施例では、上記試料に吸着させる塩基性タンパク質としてリゾチームを用いた。FITCラベルしたリゾチーム(FITC−Lyz)を22μg/100μlでリン酸バッファー(PBS)に溶かした溶液を、各試料表面に室温で30分吸着させた。NaCl濃度を154、250、500、1000mMとしたリン酸バッファーで洗浄した後、蛍光顕微鏡で観察し、得られた像から蛍光強度を測定した。   In this example, lysozyme was used as the basic protein to be adsorbed on the sample. A solution of FITC-labeled lysozyme (FITC-Lyz) dissolved in phosphate buffer (PBS) at 22 μg / 100 μl was adsorbed on the surface of each sample at room temperature for 30 minutes. After washing with a phosphate buffer with a NaCl concentration of 154, 250, 500, or 1000 mM, the fluorescence intensity was measured from the obtained image by observing with a fluorescence microscope.

図4に、タンパク質を吸着した各試料表面を異なるNaCl濃度のリン酸バッファーで洗浄した後の蛍光強度を、洗浄液のNaCl濃度に対してプロットしたものを示す。いずれの場合においても、コントロールのS−HAでは、蛍光強度が低く、タンパク質の吸着量が低かった。   FIG. 4 shows a plot of the fluorescence intensity after washing each sample surface adsorbed with protein with a phosphate buffer having a different NaCl concentration against the NaCl concentration of the washing solution. In any case, the control S-HA had low fluorescence intensity and low protein adsorption.

等電点が約11.2の塩基性タンパク質であるリゾチームの場合は、配向性の低いLO−HACに較べ、配向性の高いHO−HAC(OD=13.5°)の蛍光強度は、NaCl濃度を1000mMとして洗浄した場合には2.2倍程度高く、配向性の高いHA皮膜の方がタンパク質の保持量が高いことが分かった。配向性の高いHO−HACにおいて、配向度が18°程度の場合は、配向性の低いLO−HACに較べ、顕著な差がなく、より塩基性の高いタンパク質の場合は、配向度の影響が強く発現した。   In the case of lysozyme, which is a basic protein having an isoelectric point of about 11.2, the fluorescence intensity of HO-HAC (OD = 13.5 °) with high orientation is higher than that of LO-HAC with low orientation. When washed at a concentration of 1000 mM, it was found that the HA film having a higher orientation was higher by about 2.2 times and the protein retention was higher. In a highly oriented HO-HAC, when the degree of orientation is about 18 °, there is no significant difference compared to LO-HAC with a low degree of orientation, and in the case of a highly basic protein, the degree of orientation is affected. Strongly expressed.

比較例1
FITCラベルした牛血清アルブミン(FITC−BSA)を22μg/100μlでリン酸バッファー(PBS)に溶かした溶液を、各試料表面に室温で30分吸着させた。NaCl濃度を154、250、500、1000mMとしたリン酸バッファーで洗浄した後、蛍光顕微鏡で観察し、得られた像から蛍光強度を測定した。
Comparative Example 1
A solution of FITC-labeled bovine serum albumin (FITC-BSA) dissolved in phosphate buffer (PBS) at 22 μg / 100 μl was adsorbed on the surface of each sample at room temperature for 30 minutes. After washing with a phosphate buffer with a NaCl concentration of 154, 250, 500, or 1000 mM, the fluorescence intensity was measured from the obtained image by observing with a fluorescence microscope.

図5に、タンパク質を吸着した各試料表面を異なるNaCl濃度のリン酸バッファーで洗浄した後の蛍光強度を、洗浄液のNaCl濃度に対してプロットしたものを示す。いずれの場合においても、コントロールのS−HAでは、蛍光強度が低く、タンパク質の吸着量が低かった。   FIG. 5 shows a plot of the fluorescence intensity after washing each sample surface adsorbed with protein with a phosphate buffer having a different NaCl concentration against the NaCl concentration of the washing solution. In any case, the control S-HA had low fluorescence intensity and low protein adsorption.

等電点が約4.5の酸性タンパク質であるアルブミンの場合は、配向性の高いHO−HACに較べ、配向性の低いLO−HACの蛍光強度は、NaCl濃度を1000mMとして洗浄した場合には32%程度高く、配向性の低いHA皮膜の方がタンパク質の保持量が高いことが分かった。配向性の高いHO−HACにおいて、配向度の差による蛍光強度の差は殆どなく、タンパク質の吸着量に差は見られなかった。   In the case of albumin, which is an acidic protein having an isoelectric point of about 4.5, the fluorescence intensity of LO-HAC with low orientation is higher than that of HO-HAC with high orientation when the NaCl concentration is washed at 1000 mM. It was found that the amount of protein retained was higher in the HA film having a higher orientation of about 32% and lower orientation. In the highly oriented HO-HAC, there was almost no difference in fluorescence intensity due to the difference in orientation degree, and no difference was observed in the amount of protein adsorbed.

比較例2
FITCラベルした免疫グロブリンG(FITC−IgG)を22μg/100μlでリン酸バッファー(PBS)に溶かした溶液を、各試料表面に室温で30分吸着させた。NaCl濃度を154、250、500、1000mMとしたリン酸バッファーで洗浄した後、蛍光顕微鏡で観察し、得られた像から蛍光強度を測定した。
Comparative Example 2
A solution in which FITC-labeled immunoglobulin G (FITC-IgG) was dissolved in phosphate buffer (PBS) at 22 μg / 100 μl was adsorbed on the surface of each sample at room temperature for 30 minutes. After washing with a phosphate buffer with a NaCl concentration of 154, 250, 500, or 1000 mM, the fluorescence intensity was measured from the obtained image by observing with a fluorescence microscope.

図6に、各タンパク質を吸着した各試料表面を異なるNaCl濃度のリン酸バッファーで洗浄した後の蛍光強度を洗浄液のNaCl濃度に対してプロットしたものを示す。いずれの場合においても、コントロールのS−HAでは、蛍光強度が低く、タンパク質の吸着量が低かった。   FIG. 6 shows a plot of the fluorescence intensity after washing each sample surface adsorbing each protein with a phosphate buffer having a different NaCl concentration against the NaCl concentration of the washing solution. In any case, the control S-HA had low fluorescence intensity and low protein adsorption.

等電点が6.6の中性タンパク質である免疫グロブリンGの場合は、配向性の高いHO−HACに較べ、配向性の低いLO−HACの蛍光強度は、NaCl濃度を1000mMとして洗浄した場合には55%程度高く、配向性の低いHA皮膜の方がタンパク質の保持量が高いことが分かった。配向性の高いHO−HACにおいて、配向度の差による蛍光強度の差は殆どなく、タンパク質の吸着量に差は見られなかった。   In the case of immunoglobulin G, which is a neutral protein with an isoelectric point of 6.6, the fluorescence intensity of LO-HAC with low orientation is higher than that of HO-HAC with high orientation, when the NaCl concentration is washed at 1000 mM. It was found that the HA film having a higher orientation of 55% and lower orientation has a higher protein retention. In the highly oriented HO-HAC, there was almost no difference in fluorescence intensity due to the difference in orientation degree, and no difference was observed in the amount of protein adsorbed.

以上詳述したように、本発明は、生体分子を表面に固定したアパタイト被覆生体インプラント及び細胞培養担体に係るものであり、本発明により、表面近傍に塩基性タンパク質を選択的に固定した生体材料を提供することができる。本発明によれば、水酸アパタイト皮膜の表面に塩基性タンパク質を固定した生体インプラント材ならびに細胞培養担体を、タンパク質溶液に浸してタンパク質を吸着させるだけの簡便な方法で作製し、提供することができる。本発明は、BMPなどの塩基性タンパク質を表面に選択的に固定した人工関節、人工歯根などの生体インプラント材及び細胞培養担体を提供するものとして有用である。   As described above in detail, the present invention relates to an apatite-coated biological implant and a cell culture carrier in which a biomolecule is immobilized on the surface, and according to the present invention, a biomaterial in which a basic protein is selectively immobilized in the vicinity of the surface. Can be provided. According to the present invention, it is possible to produce and provide a living body implant material in which a basic protein is immobilized on the surface of a hydroxyapatite film and a cell culture carrier by a simple method of immersing the protein in a protein solution and adsorbing the protein. it can. INDUSTRIAL APPLICABILITY The present invention is useful for providing biological implant materials such as artificial joints and artificial dental roots and cell culture carriers in which basic proteins such as BMP are selectively fixed on the surface.

第1図は、実施例1のψ−回折強度曲線を示すものである。FIG. 1 shows the ψ-diffraction intensity curve of Example 1. 第2図は、実施例2のFITCラベルしたラクトフェリン(FITC−LAC)を吸着した各試料表面を異なるNaCl濃度のリン酸バッファーで洗浄した後の蛍光強度を、洗浄液のNaCl濃度に対してプロットしたものを示すものである。FIG. 2 plots the fluorescence intensity after washing each sample surface adsorbing FITC-labeled lactoferrin (FITC-LAC) of Example 2 with a phosphate buffer having a different NaCl concentration against the NaCl concentration of the washing solution. It shows things. 第3図は、実施例3のFITCラベルしたシトクロムC(FITC−CCC)を吸着した各試料表面を異なるNaCl濃度のリン酸バッファーで洗浄した後の蛍光強度を、洗浄液のNaCl濃度に対してプロットしたものを示すものである。FIG. 3 is a plot of fluorescence intensity after washing each sample surface adsorbing FITC-labeled cytochrome C (FITC-CCC) of Example 3 with a phosphate buffer having a different NaCl concentration against the NaCl concentration of the washing solution. It shows what was done. 第4図は、実施例4のFITCラベルしたリゾチーム(FITC−Lyz)を吸着した各試料表面を異なるNaCl濃度のリン酸バッファーで洗浄した後の蛍光強度を、洗浄液のNaCl濃度に対してプロットしたものを示すものである。FIG. 4 is a plot of the fluorescence intensity after washing each sample surface adsorbing FITC-labeled lysozyme (FITC-Lyz) of Example 4 with a phosphate buffer having a different NaCl concentration against the NaCl concentration of the washing solution. It shows things. 第5図は、比較例1のFITCラベルした牛血清アルブミン(FITC−BSA)を吸着した各試料表面を異なるNaCl濃度のリン酸バッファーで洗浄した後の蛍光強度を、洗浄液のNaCl濃度に対してプロットしたものを示すものである。FIG. 5 shows the fluorescence intensity after washing each sample surface adsorbing FITC-labeled bovine serum albumin (FITC-BSA) of Comparative Example 1 with a phosphate buffer having a different NaCl concentration with respect to the NaCl concentration of the washing solution. It shows what was plotted. 第6図は、比較例2のFITCラベル免疫グロブリンG(FITC−IgG)を吸着した各試料表面を異なるNaCl濃度のリン酸バッファーで洗浄した後の蛍光強度を、洗浄液のNaCl濃度に対してプロットしたものを示すものである。FIG. 6 is a plot of fluorescence intensity after washing each sample surface adsorbing FITC-labeled immunoglobulin G (FITC-IgG) of Comparative Example 2 with a phosphate buffer having a different NaCl concentration against the NaCl concentration of the washing solution. It shows what was done.

Claims (9)

水酸アパタイトを主成分とするセラミックスから成る生体材料であって、当該セラミックス中の水酸アパタイト(HA)の結晶の(001)面(c面)が表面に優先的に露出した面を有し、HA(004)面のXRDの薄膜配向度解析による配向度が少なくとも13.5°の高い結晶配向を示し、かつ、当該面の少なくとも表面近傍に塩基性タンパク質を選択的に固定したことを特徴とする生体材料。   A biomaterial composed of ceramics mainly composed of hydroxyapatite, wherein the (001) plane (c-plane) of hydroxyapatite (HA) crystals in the ceramics is preferentially exposed on the surface. Characterized by high crystal orientation of at least 13.5 ° orientation by XRD thin film orientation analysis of the HA (004) plane, and basic protein selectively immobilized at least near the surface of the surface A biomaterial. 上記生体材料が、セラミックス又は金属から成る基材上に形成された水酸アパタイトを主成分とするアパタイト皮膜を有し、当該皮膜がラメラ状に堆積した粒子から成り、当該皮膜中の水酸アパタイトの結晶のc軸方向が基材に対して垂直方向に優先的に配向することで、(001)面(c面)が表面に優先的に露出した面を有する、請求項1に記載の生体材料。   The biomaterial has an apatite film mainly composed of hydroxyapatite formed on a substrate made of ceramics or metal, and the film is composed of particles deposited in a lamellar shape, and the hydroxyapatite in the film 2. The living body according to claim 1, wherein the (001) plane (c plane) has a plane preferentially exposed on the surface by preferentially orienting the c-axis direction of the crystal of the crystal in a direction perpendicular to the substrate. material. 三リン酸カルシウムならびに基材に対して垂直方向に結晶のa軸方向が優先的に配向した四リン酸カルシウムを含有する、請求項2に記載の生体材料。   The biomaterial according to claim 2, comprising calcium triphosphate and calcium tetraphosphate in which the a-axis direction of the crystal is preferentially oriented in a direction perpendicular to the substrate. 請求項1から3のいずれか1項に記載の生体材料を構成要素として有することを特徴とする細胞培養担体。   A cell culture carrier comprising the biomaterial according to any one of claims 1 to 3 as a constituent element. 厚さが5〜1000μmのアパタイト皮膜を有する、請求項4に記載の細胞培養担体。   The cell culture carrier according to claim 4, which has an apatite film having a thickness of 5 to 1000 μm. 請求項1から3のいずれか1項に記載の生体材料を構成要素として有することを特徴とする生体インプラント材。   A biological implant material comprising the biomaterial according to any one of claims 1 to 3 as a constituent element. チタン又はチタン合金から成る基材上にアパタイト皮膜を有し、当該皮膜内にチタン又はチタン合金とそれらの窒化物の混合物を含有する層が形成されていて皮膜の基材に対する密着性が高められている、請求項6に記載の生体インプラント材。   It has an apatite film on a substrate made of titanium or a titanium alloy, and a layer containing a mixture of titanium or a titanium alloy and a nitride thereof is formed in the film, thereby improving the adhesion of the film to the substrate. The biological implant material according to claim 6. 厚さが5〜1000μmのアパタイト皮膜を有する、請求項6又は7に記載の生体インプラント材。   The biological implant material according to claim 6 or 7, which has an apatite film having a thickness of 5 to 1000 µm. 生体インプラント材の表面の限定された範囲に凹凸が形成されている、請求項6から7のいずれか1項に記載の生体インプラント材。   The living body implant material according to any one of claims 6 to 7, wherein irregularities are formed in a limited range of the surface of the living body implant material.
JP2008061886A 2008-03-11 2008-03-11 Apatite-coated bioimplants and cell culture carriers with biomolecules immobilized on the surface Expired - Fee Related JP5234743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061886A JP5234743B2 (en) 2008-03-11 2008-03-11 Apatite-coated bioimplants and cell culture carriers with biomolecules immobilized on the surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061886A JP5234743B2 (en) 2008-03-11 2008-03-11 Apatite-coated bioimplants and cell culture carriers with biomolecules immobilized on the surface

Publications (2)

Publication Number Publication Date
JP2009213723A true JP2009213723A (en) 2009-09-24
JP5234743B2 JP5234743B2 (en) 2013-07-10

Family

ID=41186249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061886A Expired - Fee Related JP5234743B2 (en) 2008-03-11 2008-03-11 Apatite-coated bioimplants and cell culture carriers with biomolecules immobilized on the surface

Country Status (1)

Country Link
JP (1) JP5234743B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101745146B (en) * 2009-12-31 2013-04-03 东南大学 Functional artificial joint on surface of cerium-loaded nanotube array and preparation method thereof
WO2017018149A1 (en) * 2015-07-30 2017-02-02 三井金属鉱業株式会社 Substrate/oriented apatite-type composite oxide film complex and method for producing same
JP2019042728A (en) * 2017-04-27 2019-03-22 国立研究開発法人産業技術総合研究所 Adsorbent for selectively adsorbing material having basic site

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126249A (en) * 1987-11-11 1989-05-18 Toa Nenryo Kogyo Kk Synthetic apatite molding and its production
JPH021286A (en) * 1988-03-04 1990-01-05 Dentaru Kagaku Kk Living body material
JPH1045405A (en) * 1996-07-31 1998-02-17 Agency Of Ind Science & Technol Production of plate like apatite hydroxide in which (a) face is grown
JPH10328292A (en) * 1997-05-28 1998-12-15 Japan Steel Works Ltd:The Biological material and manufacture for biological material
JP2003253424A (en) * 2002-03-01 2003-09-10 Shigeki Mototsu Hydroxyapatite film coating material and manufacturing method thereof
JP2004074068A (en) * 2002-08-20 2004-03-11 National Institute Of Advanced Industrial & Technology Apatite molded body and ceramic having specific adsorption characteristic to specified protein, and method for manufacturing the same
JP2006131469A (en) * 2004-11-08 2006-05-25 National Institute Of Advanced Industrial & Technology Apatite composite material coated with apatite having crystal orientation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126249A (en) * 1987-11-11 1989-05-18 Toa Nenryo Kogyo Kk Synthetic apatite molding and its production
JPH021286A (en) * 1988-03-04 1990-01-05 Dentaru Kagaku Kk Living body material
JPH1045405A (en) * 1996-07-31 1998-02-17 Agency Of Ind Science & Technol Production of plate like apatite hydroxide in which (a) face is grown
JPH10328292A (en) * 1997-05-28 1998-12-15 Japan Steel Works Ltd:The Biological material and manufacture for biological material
JP2003253424A (en) * 2002-03-01 2003-09-10 Shigeki Mototsu Hydroxyapatite film coating material and manufacturing method thereof
JP2004074068A (en) * 2002-08-20 2004-03-11 National Institute Of Advanced Industrial & Technology Apatite molded body and ceramic having specific adsorption characteristic to specified protein, and method for manufacturing the same
JP2006131469A (en) * 2004-11-08 2006-05-25 National Institute Of Advanced Industrial & Technology Apatite composite material coated with apatite having crystal orientation

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6012053652; 稲垣雅彦ら: 'プラズマ溶射法による結晶配向性アパタイトコーティング' 機能材料 Vol.27,No.11, 2007, p.7-15 *
JPN6012053653; 成島尚之: 'リン酸カリシウムコーティングを利用したチタン製生体機能再建用デバイスの開発' 東北大学金属材料研究所金属ガラス総合研究センター共同利用研究報告書 平成17年度, 2006, p.50-51 *
JPN6012053656; 宮崎玲充ら: 'a面を多く露出したアパタイトセラミックス上で培養した骨芽細胞の接着・増殖とその形態' 無機マテリアル学会第110回学術講演会 講演要旨集 , 2005, p.24-25 *
JPN6012053658; 稲垣雅彦: '高周波熱プラズマ溶射による傾斜組織アパタイト皮膜の形成' 表面技術 Vol.52, No.12, 2001, p.53-54 *
JPN6012053660; 横川善之: 'アパタイトコーティング複合材料の開発' セラミックス Vol.34, No.7, 1999, p.547-552 *
JPN6012053663; Ryuichi Fujiysawa et.al.: Biochimica et BiophysicaActa Vol.1075, 1991, p.56-60 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101745146B (en) * 2009-12-31 2013-04-03 东南大学 Functional artificial joint on surface of cerium-loaded nanotube array and preparation method thereof
WO2017018149A1 (en) * 2015-07-30 2017-02-02 三井金属鉱業株式会社 Substrate/oriented apatite-type composite oxide film complex and method for producing same
JP6088715B1 (en) * 2015-07-30 2017-03-01 三井金属鉱業株式会社 Substrate / orientated apatite-type composite oxide film composite and method for producing the same
CN107709603A (en) * 2015-07-30 2018-02-16 三井金属矿业株式会社 Substrate/orientation apatite-type composite oxides film composite and its manufacture method
US10774012B2 (en) 2015-07-30 2020-09-15 Mitsui Mining & Smelting Co., Ltd. Substrate/oriented apatite-type composite oxide film complex and method for producing same
JP2019042728A (en) * 2017-04-27 2019-03-22 国立研究開発法人産業技術総合研究所 Adsorbent for selectively adsorbing material having basic site
JP7137816B2 (en) 2017-04-27 2022-09-15 国立研究開発法人産業技術総合研究所 Adsorbent that selectively adsorbs substances with basic sites

Also Published As

Publication number Publication date
JP5234743B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
Chen et al. Osteogenic activity and antibacterial effect of porous titanium modified with metal‐organic framework films
Liu et al. Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate
Rouahi et al. Influence of hydroxyapatite microstructure on human bone cell response
Nanci et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules
CA2563299C (en) Coated implants and methods of coating
Miyazaki et al. Bioactive carbon–PEEK composites prepared by chemical surface treatment
Li et al. Optimized nanointerface engineering of micro/nanostructured titanium implants to enhance cell–nanotopography interactions and osseointegration
EP2251049A2 (en) Methods and devices for bone attachment
Kokubo et al. Ceramic–metal and ceramic–polymer composites prepared by a biomimetic process
Pisarek et al. Effect of two-step functionalization of Ti by chemical processes on protein adsorption
Uchida et al. Reduced platelet adhesion to titanium metal coated with apatite, albumin–apatite composite or laminin–apatite composite
Schickle et al. Biomimetic in situ nucleation of calcium phosphates by protein immobilization on high strength ceramic materials
Sogo et al. Fibronectin–calcium phosphate composite layer on hydroxyapatite to enhance adhesion, cell spread and osteogenic differentiation of human mesenchymal stem cells in vitro
JP5234743B2 (en) Apatite-coated bioimplants and cell culture carriers with biomolecules immobilized on the surface
Shu et al. Novel vaterite-containing tricalcium silicate bone cement by surface functionalization using 3-aminopropyltriethoxysilane: setting behavior, in vitro bioactivity and cytocompatibility
EP2606917A1 (en) Porous scaffold with carbon-based nanoparticles
EP2214732B1 (en) Multifunctional titanium surfaces for bone integration
JP2001187133A (en) Organism control method and material thereof, selective adsorption method for protein, etc., and material thereof, cement material, and organism material
WO2003020316A1 (en) Materials sustainedly releasing drug in vivo
JP5071932B2 (en) Scaffold for tissue regeneration and method for manufacturing the same
US7780975B2 (en) Biomaterial having apatite forming ability
Chakraborty et al. Biomolecular Template‐Induced Biomimetic Coating of Hydroxyapatite on an SS 316 L Substrate
Alasvand et al. Cellular response to alumina
Nasr-Esfahani et al. Bonding strength, hardness and bioactivity of nano bioglass-titania nano composite coating deposited on NiTi nails
Shankar et al. Thermal spray processes influencing surface chemistry and in-vitro hemocompatibility of hydroxyapatite-based orthopedic implants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees