JPH021286A - Living body material - Google Patents

Living body material

Info

Publication number
JPH021286A
JPH021286A JP1048524A JP4852489A JPH021286A JP H021286 A JPH021286 A JP H021286A JP 1048524 A JP1048524 A JP 1048524A JP 4852489 A JP4852489 A JP 4852489A JP H021286 A JPH021286 A JP H021286A
Authority
JP
Japan
Prior art keywords
film
hydroxyapatite
substrate
amorphous
axis oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1048524A
Other languages
Japanese (ja)
Inventor
Kiminori Atsumi
公則 渥美
Muneteru Saitou
斉藤 宗輝
Tsutomu Ishizaki
勉 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENTARU KAGAKU KK
Dental Chemical Co Ltd
Original Assignee
DENTARU KAGAKU KK
Dental Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENTARU KAGAKU KK, Dental Chemical Co Ltd filed Critical DENTARU KAGAKU KK
Priority to JP1048524A priority Critical patent/JPH021286A/en
Publication of JPH021286A publication Critical patent/JPH021286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To obtain a living body material generating no release of hydroxyapatite from a substrate and having good bio-compatibility by coating the substrate with amorphous hydroxyapatite and C-axis oriented crystalline hydroxyapatite. CONSTITUTION:Since a film is formed to a substrate by discharging a coating material in a form of an atom or molecule in obtaining a living body material coated with amorphous hydroxyapatite by sputtering coating, a film forming speed is slow and a thin film is formed. When the temp. of the substrate and an operating time are controlled, a dense and hard amorphous film is formed to be strongly and closely adhered to the substrate. Thereafter, a mixing state of the amorphous film and a C-axis oriented crystal is obtained and, further, a film composed only of the C-axis oriented crystal is obtained. The C-axis oriented film is a dense and hard one wherein crystals are mutually bonded densely. As mentioned above, when the amorphous film is desired to be obtained, an operating time is controlled so as to bring the thickness of a coating film to 5mum or less. When the mixing film of the amorphous film and the C-axis oriented crystal as well as the C-axis oriented crystal film are desired to be obtained, the operating time is made further long.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は人工骨として使用される生体材料、詳しくは非
晶質、C軸配向結晶及びそれらの混在するハイドロキシ
アパタイトを基質にある膜厚でコーティングさせた生体
材料に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to biomaterials used as artificial bones, specifically amorphous, C-axis oriented crystals, and hydroxyapatite containing a mixture of these, in a film thickness of a substrate. It concerns coated biomaterials.

〔従来の技術〕[Conventional technology]

骨欠損部に使用するため種々の人工骨が開発されている
が、それらには生体親和性と適当な機械的強度が要求さ
れる。ハイドロキシアパタイトは骨の主構成要素で、骨
と直接結合して生体組織に同化するので、生体材料とし
て優れている。然しなから合成したハイドロキシアパタ
イトそのま\では、水に対する溶解度が高く、機械的強
度も弱いので、焼成することによりこれらの性質を矯正
し、生体材料として使用することが試みられている。し
かし十分な機械的強度をえるため高温で焼成すると生体
親和性が減少する。そこでハイドロキシアパタイトを生
体材料として使用するために種々の加工法が検討されて
おり、チタン、アルミナ、ステンレス、セラミック、そ
の他(以下基質と記す)にハイドロキシアパタイトをコ
ーティングさせる方法がある。基質にハイドロキシアパ
タイトをコーティングする方法として基質にハイドロキ
シアパタイトをコーティングして焼成する、或は基質に
焼成ハイドロキシアパタイトをコーティングするなどの
加工法は、比較的筒車な操作で、比較的機械強度の高い
生体材料かえられるが、ノ1イドロキシアパタイトを基
質に均一にコーティングしにくく、コーティング層が厚
くなり、基質との結合が弱いため、ハイドロキシアパタ
イトのコーティング層が剥がれ易く、精密な加工がむつ
かしい。又焼成されているため、ハイドロキシアパタイ
トの生体親和性も完全とは云えない。東方らは、プラズ
マ溶射法によりステンレスにハイドロキシアパタイトを
コーティングさせた生体材料を、用田はステンレスに骨
粉をスパッタリングでコーティングさせた生体材料を報
じている。しかしながら、−aにハイドロキシアパタイ
トのコーティングにはプラズマ溶射法が多く用いられて
いる。
Various artificial bones have been developed for use in bone defects, but they are required to have biocompatibility and appropriate mechanical strength. Hydroxyapatite is the main component of bone, and it is an excellent biomaterial because it directly binds to bone and assimilates into living tissue. However, synthesized hydroxyapatite as it is has high solubility in water and low mechanical strength, so attempts have been made to correct these properties by firing and use it as a biomaterial. However, if it is fired at a high temperature to obtain sufficient mechanical strength, its biocompatibility decreases. Therefore, various processing methods are being considered in order to use hydroxyapatite as a biomaterial, including methods of coating titanium, alumina, stainless steel, ceramics, and others (hereinafter referred to as substrates) with hydroxyapatite. Processing methods such as coating a substrate with hydroxyapatite and firing it, or coating a substrate with fired hydroxyapatite require relatively simple operations and have relatively high mechanical strength. Although it can be used as a biomaterial, it is difficult to uniformly coat the substrate with hydroxyapatite, the coating layer becomes thick, and the bond with the substrate is weak, so the hydroxyapatite coating layer easily peels off and precise processing is difficult. Furthermore, since it is fired, the biocompatibility of hydroxyapatite cannot be said to be perfect. Azuma et al. reported a biomaterial made by coating stainless steel with hydroxyapatite using plasma spraying, and Yoda reported a biomaterial made by coating stainless steel with bone powder by sputtering. However, plasma spraying is often used for coating -a with hydroxyapatite.

プラズマ溶射法による生体材料は、コーティング層のハ
イドロキシアパタイトの組成と結晶性が溶射条件により
大きく変動し、ハイドロキシアパタイトの結晶化と同時
に燐酸カルシウム、酸化カルシウム及びガラス相への分
解が促進され、均質なハイドロキシアパタイトのコーテ
ィング層かえられにくい。又非晶質と結晶質のハイドロ
キシアパタイトが混在していることは認められていたが
、非晶質だけの膜を成形することは勿論、結晶の均一に
配向した膜をえることはできなかった。その理由はプラ
ズマ溶射がセラミック粉末を熔融させ噴射することによ
り基質上に被膜を形成させるだけのものであるため、結
晶が配向することがなく、膜成形速度が速く、大きな粒
子が膜を形成するためであり、最小膜厚でも20μm程
度となり非晶質膜をえることは困難で、成形された膜は
ポーラス状で、緻密な膜とはならない。又骨粉コーティ
ング生体材料は、その生体親和性について考慮されてお
らず、骨粉の入手に問題がある。
In biomaterials produced by plasma spraying, the composition and crystallinity of the hydroxyapatite in the coating layer vary greatly depending on the spraying conditions, and at the same time as the crystallization of hydroxyapatite, the decomposition into calcium phosphate, calcium oxide, and glass phases is promoted, resulting in a homogeneous structure. The hydroxyapatite coating layer is difficult to change. Although it was recognized that amorphous and crystalline hydroxyapatite coexist, it was not possible to form a film made of only amorphous material, and it was not possible to obtain a film with uniformly oriented crystals. . The reason for this is that plasma spraying simply forms a film on the substrate by melting and spraying ceramic powder, so the crystals do not become oriented, the film formation speed is fast, and large particles form the film. This is because even the minimum film thickness is about 20 μm, making it difficult to obtain an amorphous film, and the formed film is porous and not dense. Furthermore, the biocompatibility of bone powder-coated biomaterials has not been considered, and there is a problem in obtaining bone powder.

〔発明が解決しようとるす課題〕[Problem that the invention seeks to solve]

ハイドロキシアパタイトを基質にコーティングさせた従
来の生体材料は、基質とハイドロキシアパタイトの結合
が弱かったり、コーティング層の組成が均質でなかった
りするため、生体との親和性に問題を含んでいる。本発
明の目的は、基質と強固に結合しているので、ハイドロ
キシアパタイトが基質から剥離することがなく、コーテ
ィング質のハイドロキシアパタイトが均質な非晶質、定
の配向を有する結晶及びそれらの混合物であり、生体親
和性が極めて良好な生体材料を提供することにある。
Conventional biomaterials in which a substrate is coated with hydroxyapatite have problems with their compatibility with living organisms because the bond between the substrate and hydroxyapatite is weak or the composition of the coating layer is not homogeneous. The object of the present invention is that the hydroxyapatite is firmly bonded to the substrate, so that the hydroxyapatite does not peel off from the substrate, and that the hydroxyapatite in the coating is a homogeneous amorphous, crystalline with a fixed orientation, or a mixture thereof. The objective is to provide a biomaterial with extremely good biocompatibility.

〔課題を解決するための手段〕[Means to solve the problem]

化合物が非晶質化すると結晶質とは異った性質を示す、
即ち非晶質物質は、結晶質物質に比し、物理的に活性で
、結晶質ではえられないような高強度、超耐蝕性などを
示す。又骨のハイドロキシアパタイトが非晶質物質であ
ることも知られているので、生体材料として非晶質ハイ
ドロキシアパタイトを使用すると摩耗しない、生体親和
性のよいものができると考えられる。従って非晶質ハイ
ドロキシアパタイトを基質にコーティングさせた生体材
料は、従来のものに比し機械的強度及び生体親和性のよ
りすくれたものになるであろう。かかる考えにもとすき
、非晶質性ハイドロキシアパタイトをコーティングさせ
た生体材料をえるため、種々検討を加えた。そして非晶
質物質をえる方法は種々存在しているが、本発明の目的
には、真空蒸着、スパッタリング、イオンブレーティン
グ、その他の蒸着法、特にスパッタリング、イオンブレ
ーティング法の条件を選択することにより容易に達成で
きることを知った。スパッタリングコーティングはコー
ティング材料を原子、分子の形で放出させ、基質に被膜
を形成させるため、膜形成速度が遅く、薄い被膜が形成
されるうえ、基質の温度及び操作時間を制御することに
より、まず始めに非晶質膜が形成され、該膜が緻密で硬
く、基質と強力に密着していること、その後C軸(CO
O2)面(6角形状〕)方向に配向した結晶の結晶膜か
現われ、初めに出来た非晶質膜とC軸配向の結晶が混在
するようになり、更にその後はC軸配向の結晶だけの膜
となる。このようにしてえられたC軸配向膜は、綺麗に
結晶が並んだ状態であり、結晶同志が緻密に接着してい
るので、緻密で硬い膜である。即ち本発明は非晶質、及
びC軸配向結晶のハイドロキシアパタイトをコーティン
グさせた生体材料を提供するものである。ハイドロキシ
アパタイトは、100°C以下の水溶液中カルシウムと
リン酸とを中性ないしアルカリ性で反応させることによ
り容易に合成できる。合成ハイドロキシアパタイトを空
気中で加熱すると、600℃付近から結晶化が起こり、
1000℃前後で焼結現象をみ、1600〜1700℃
で融解分解反応を生じる。従ってハイドロキシアパタイ
トを蒸着により基質にコーティングさせる場合、ハイド
ロキシアパタイトが熱により分解され、その分解物がハ
イドロキシアパタイトと共に基質に蒸着され、プラズマ
溶射法によるコーティング生体材料のように、コーティ
ング層の組成が蒸着条件により変動する可能性がある。
When a compound becomes amorphous, it exhibits properties different from those of a crystalline state.
That is, amorphous materials are more physically active than crystalline materials, and exhibit high strength, ultra-corrosion resistance, etc. that cannot be obtained from crystalline materials. It is also known that bone hydroxyapatite is an amorphous substance, so it is thought that if amorphous hydroxyapatite is used as a biomaterial, it will not wear out and has good biocompatibility. Therefore, a biomaterial whose substrate is coated with amorphous hydroxyapatite will have better mechanical strength and biocompatibility than conventional materials. Based on this idea, we conducted various studies in order to obtain a biomaterial coated with amorphous hydroxyapatite. There are various methods of obtaining an amorphous material, but for the purpose of the present invention, it is important to select the conditions for vacuum evaporation, sputtering, ion blating, and other vapor deposition methods, especially sputtering and ion blating methods. I learned that it can be easily achieved. Sputtering coating releases the coating material in the form of atoms and molecules to form a film on the substrate, so the film formation rate is slow and a thin film is formed. First, an amorphous film is formed, which is dense, hard, and strongly adheres to the substrate, and then the C axis (CO
A crystalline film of crystals oriented in the O2) plane (hexagonal shape) appears, and the initially formed amorphous film and C-axis oriented crystals come to coexist, and then only C-axis oriented crystals appear. It becomes a film of The C-axis oriented film thus obtained has crystals arranged neatly, and the crystals are tightly adhered to each other, so that it is a dense and hard film. That is, the present invention provides a biomaterial coated with amorphous and C-axis oriented crystal hydroxyapatite. Hydroxyapatite can be easily synthesized by reacting calcium and phosphoric acid in an aqueous solution at 100° C. or lower in neutral or alkaline conditions. When synthetic hydroxyapatite is heated in air, crystallization occurs around 600℃,
Sintering phenomenon was observed at around 1000℃, 1600-1700℃
A melting and decomposition reaction occurs. Therefore, when coating a substrate with hydroxyapatite by vapor deposition, the hydroxyapatite is decomposed by heat, and the decomposed product is vapor-deposited on the substrate together with hydroxyapatite. This may vary depending on the situation.

然しなから、スパッタリング、イオンブレーティング法
などの蒸着法を使用し、基質温度を出来るだけ低温に、
コーテイング膜形成速度を出来るだけ低いように操作条
件を選択することにより、ハイドロキシアパタイトの熱
分解物のコーティング層への混入が極めて僅かであり、
真質的に熱分解物を含まないハイドロキシアパタイトの
非晶質及びC軸配向結晶性コーティング層を有する生体
材料かえられることを知った。即ち800〜1300℃
で、好ましくは1000〜1300℃で、1時間以上焼
成したハイドロキシアパタイトをターゲットとし、スパ
ッタリング電圧を出来るだけさげ、Arのような不活性
ガス又はそ鋏れらと酸素との混合ガスの存在下、作動圧
104〜10−’トール、基質温度600℃以下、好ま
しくは300℃以下、膜形成速度2μ/時、好ましくは
1μ/時以下で操作する。必要に応じ操作時間を調整す
ることにより膜厚を任意に調製する。例えば非晶質膜を
えたい場合はコーティング膜厚が5μm前後になるよう
操作時間を調整する。非晶質とC軸配向結晶の混在膜、
及びC軸配向の結晶膜をえたい場合は、更に長時間操作
するか、スパッタリングの出力、成膜温度などの操業条
件をコントロールすることで可能である。ノ\イドロキ
シアパタイトの非晶質膜、及びC軸配向結晶はX線回折
、電子顕微鏡観察により確認できる。
However, by using vapor deposition methods such as sputtering and ion blating, the substrate temperature can be kept as low as possible.
By selecting operating conditions to keep the coating film formation rate as low as possible, the amount of pyrolyzed hydroxyapatite mixed into the coating layer is extremely small.
It has now been discovered that biomaterials having amorphous and C-axis oriented crystalline coating layers of hydroxyapatite that are essentially pyrolyzate-free can be obtained. i.e. 800-1300℃
Using hydroxyapatite as a target, preferably fired at 1000 to 1300°C for at least 1 hour, the sputtering voltage is lowered as much as possible, and in the presence of an inert gas such as Ar or a mixed gas of sputtering and oxygen. It is operated at an operating pressure of 104 to 10-' Torr, a substrate temperature of 600 DEG C. or less, preferably 300 DEG C. or less, and a film formation rate of 2 .mu./hour, preferably 1 .mu./hour or less. The film thickness can be arbitrarily adjusted by adjusting the operation time as necessary. For example, when it is desired to obtain an amorphous film, the operation time is adjusted so that the coating film thickness is approximately 5 μm. Mixed film of amorphous and C-axis oriented crystals,
If it is desired to obtain a crystal film with C-axis orientation, this can be achieved by operating for a longer time or by controlling operating conditions such as sputtering output and film-forming temperature. The amorphous film and C-axis oriented crystals of nohydroxyapatite can be confirmed by X-ray diffraction and electron microscopy.

このようにしてえられた生体材料は、コーティング層が
非晶質及びC軸配向性結晶のハイドロキシアパタイトで
あり、基質とコーティング層の結合が強固でハイドロキ
シアバタイト力< ff1lJ離することがなく、骨と
の親和性も極めて良好である。
In the biomaterial thus obtained, the coating layer is amorphous and C-axis oriented crystal hydroxyapatite, and the bond between the substrate and the coating layer is strong and the hydroxyapatite force < ff1lJ does not separate. It also has extremely good affinity with bones.

〔作用〕[Effect]

非晶質及びC軸配向結晶ハイドロキシアパタイトを基質
にコーティングさせた生体材料は、耐磨耗び機械的強度
が強く、ハイドロキシアパタイトと基質との結合が強い
のでハイドロキシアパタイトが剥離することがなく、生
体親和性もすぐれている。加えて均質に加工でき、膜厚
の調整も容易で、基質温度の選択によりコーティング層
を緻密にできる。
Biomaterials whose substrates are coated with amorphous or C-axis oriented crystalline hydroxyapatite have strong abrasion resistance and mechanical strength, and because the bond between the hydroxyapatite and the substrate is strong, the hydroxyapatite does not peel off, and the biomaterials It also has excellent compatibility. In addition, it can be processed homogeneously, the film thickness can be easily adjusted, and the coating layer can be made dense by selecting the substrate temperature.

以下に実施例をあげて本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

例1゜ ハイドロキシアパタイトは、湿式合成後、乾燥、粉砕、
圧縮成形し、1,000℃で5時間焼成した円盤を、基
質はφ1010X4の円板状に加工したチタニウムを研
磨後、アセトン、酸及び水で洗浄、乾燥したものを使用
した。
Example 1゜Hydroxyapatite is produced by drying, pulverizing, and
A disk was compression molded and fired at 1,000° C. for 5 hours, and the substrate was a titanium disk of φ1010×4, which was polished, washed with acetone, acid, and water, and dried.

RF−ダイオードスパッタ装置、スパッタガスArsス
パッタガス1×10−3トール、基質温度300℃、ス
パッタ電力300〜400 V (13,56MH2)
で3時間操作し、厚さ2.5μのハイドロキシアパタイ
トをコーティングさせたチタニウムをえた。
RF-diode sputtering equipment, sputtering gas Ars sputtering gas 1 x 10-3 Torr, substrate temperature 300°C, sputtering power 300-400 V (13,56MH2)
After 3 hours of operation, titanium coated with hydroxyapatite with a thickness of 2.5 μm was obtained.

X線回折で皮膜は分解物を含まず非晶質であることをみ
とめた。
X-ray diffraction revealed that the film contained no decomposition products and was amorphous.

例2゜ 例1と同じハイドロキシアパタイト焼成円盤、チタニウ
ム円板を使用し、RF−プレナマグネトロン装置で試験
した。スパッタリングガスAr、スパッタガス圧4X1
0−”トール、基質温度100〜500℃、スパッタ電
圧400■、3時間操作し2μの厚さのコーテイング膜
を有するチタニウムをえた。
Example 2 The same calcined hydroxyapatite disks and titanium disks as in Example 1 were used and tested in an RF-planar magnetron device. Sputtering gas Ar, sputtering gas pressure 4X1
After operating for 3 hours at 0-" Torr, substrate temperature of 100-500 DEG C., and sputtering voltage of 400 .ANG., a titanium coating having a thickness of 2.mu.m was obtained.

例3゜ 基質をチタニウム及び5US304を使用し操作時間を
1.5時間とした以外は例1と同様に処理。
Example 3° Processed as in Example 1 except that titanium and 5US304 were used as substrates and the operating time was 1.5 hours.

してハイドロキシアバタイトコーティングチタニラム及
び5US304をえ、この物質の膜厚及び基質との接着
力及び膜表面の状態を観察した。膜と基質との接着力は
ピン代引張試験により測定し表−1にその結果を示した
。接着剤自体の接着力は3kg/龍2程度であり、コー
ティングビンが完全のまま接着剤より破断されたので膜
と基質との接着力は8kg/**”以上であることを示
している。
Titanium and 5US304 coated with hydroxy abatite were prepared, and the film thickness, adhesion to the substrate, and surface condition of the film were observed. The adhesive strength between the membrane and the substrate was measured by a pin-to-metal tensile test, and the results are shown in Table 1. The adhesive force of the adhesive itself was approximately 3 kg/2, and since the coating bottle was broken intact by the adhesive, this indicates that the adhesive force between the membrane and the substrate was 8 kg/**'' or more.

第1図及び第2図に5US304、Ti基質の膜表面図
を示した。膜はそれぞれの基質表面形状に沿って形成さ
れており、Mi織のようなものは見られない。又、マイ
クロクラックのような膜の欠陥も観察されなかった。そ
れらの膜厚は約1.2μで表1.ビン代引張試験法によ
る膜の接着力kg/龍2 例4゜ 例1でえたチタニウム試料を雑種成人の4肢長管骨々幹
部にあけた穿孔に挿入し、挿入後2週、4週、8週経過
後試料を含む骨を取出し引き抜き試験により挿入試料の
引き抜き強さを測定し、2週間で平均30kg/cut
、4週間で平均49 kg / cJ、8週間で平均4
5kg/cnlの強度をえた。対照として参考例でえら
れたチタニウム試料を同様に試験し、2週間で平均20
 kg / crA、4週間で平均30kg / ci
、の強度をえた。これらの結果は非晶質性コーティング
層が新生骨発生の早いこと、即ち生体親和性がよいこと
を示している。
Figures 1 and 2 show the membrane surface diagrams of 5US304 and Ti substrate. The film was formed along the surface shape of each substrate, and no Mi texture was observed. Furthermore, no film defects such as microcracks were observed. Their film thickness is approximately 1.2μ, as shown in Table 1. Adhesive strength of the membrane according to the bottle age tensile test method kg/dragon 2 Example 4゜The titanium sample obtained in Example 1 was inserted into a hole made in the 4-limb long bone trunk of an adult mongrel, and 2 weeks, 4 weeks after insertion, After 8 weeks, the bone containing the sample was taken out and the pullout strength of the inserted sample was measured by a pullout test, and the pullout strength was 30kg/cut on average in 2 weeks.
, averaged 49 kg/cJ in 4 weeks, averaged 4 in 8 weeks
A strength of 5 kg/cnl was obtained. As a control, the titanium sample obtained in the reference example was similarly tested, and an average of 20
kg/crA, average 30 kg/ci in 4 weeks
, gained strength. These results indicate that the amorphous coating layer generates new bone quickly, that is, has good biocompatibility.

参考例 基質温度を700〜800゛Cにした以外は例1と同じ
操作をなし、厚さ2.7μのコーティング層のチタニウ
ムをえた。
Reference Example The same procedure as in Example 1 was carried out except that the substrate temperature was 700-800°C, and a titanium coating layer with a thickness of 2.7 μm was obtained.

例5゜ 例1と同じハイドロキシアパタイト焼成円板を使用して
基質に5US316およびチタンを用いて、例2と同様
のRF−ブレマグネトロン装置で試験した。スパッタリ
ングガスAr、スパッタ≠≠シガス圧4X10−”)−
ル、基質温度50〜300℃、スパッタ電圧200Vで
それぞれ2時間、6時間、100時間操して3種類のハ
イドロキシアパタイトコーテイング膜圧を有する5US
316およびチタンを得た。
Example 5 The same hydroxyapatite calcined disks as in Example 1 were used and the substrates were 5US316 and titanium, and tested in the same RF-bre magnetron apparatus as in Example 2. Sputtering gas Ar, sputter≠≠gas pressure 4X10-”)-
5US with three types of hydroxyapatite coating film thickness by operating at a substrate temperature of 50-300℃ and a sputtering voltage of 200V for 2 hours, 6 hours, and 100 hours, respectively.
316 and titanium were obtained.

例6゜ 例5と同様のハイドロキシアパタイト焼成円板、基質、
装置を用いてスパッタリングガスAr、スパッタガス圧
txio−3トールで基質温度100〜500℃、スパ
ッタ電圧400■で100時間操し、ハイドロキシアパ
タイトコーテイング膜を有する5US316およびチタ
ンを得た。
Example 6゜ Hydroxyapatite calcined disk similar to Example 5, substrate,
The apparatus was operated for 100 hours at a sputtering gas of Ar, a sputtering gas pressure of txio-3 Torr, a substrate temperature of 100 to 500 DEG C., and a sputtering voltage of 400 .ANG. to obtain 5US316 and titanium having a hydroxyapatite coating film.

例7゜ 例5、例6で得られた試料の膜厚、膜表面の状態の観察
、膜の硬度、基質との接着力を測定した。
Example 7 The film thickness of the samples obtained in Examples 5 and 6, the state of the film surface, the hardness of the film, and the adhesive strength with the substrate were measured.

電子顕微鏡により膜厚の測定及び表面状態の観察を行な
った結果、例5で2時間源作した試料の膜厚は約1μm
、6時間操作した試料の膜厚は約3μmで、これらの膜
の表面状態は非晶質であった。
As a result of measuring the film thickness and observing the surface condition using an electron microscope, the film thickness of the sample prepared for 2 hours in Example 5 was approximately 1 μm.
The film thickness of the samples operated for 6 hours was about 3 μm, and the surface state of these films was amorphous.

又、100時間操した試料の膜厚は約5μmで膜の表面
状態は非晶質とC軸配向の結晶が混在するハイドロキシ
アパタイト膜であった。例6の試料の膜厚は約15μm
でC軸配向のハイドロキシアパタイト膜であった。基質
にSUS 316及びチタンを用いた試料とも同様の結
果であった。
Further, the film thickness of the sample operated for 100 hours was about 5 μm, and the surface state of the film was a hydroxyapatite film in which amorphous and C-axis oriented crystals were mixed. The film thickness of the sample of Example 6 is approximately 15 μm
It was a C-axis oriented hydroxyapatite film. Similar results were obtained for samples using SUS 316 and titanium as substrates.

1゜ 2゜ 膜の硬度(マイクロビッカース 膜の接着力(ビン式接着試験法 kg/in2) kg/in”) 〔発明の効果〕 本発明によりえられたハイドロキシアパタイトコーティ
ング生体材料は、ハイドロキシアパタイトが非晶質及び
C軸配向結晶であるため、従来存在する結晶質ハイドロ
キシアパタイトコーティング生体材料に比し、基質とハ
イドロキシアパタイトの結合が強く、耐磨耗、耐磨擦性
にすぐれ、生体親和性がよい。加えてコーティング層の
厚さ、密度を任意に調整でき、精密な加工も容易である
1゜2゜Membrane hardness (adhesive force of micro-Vickers membrane (bottle type adhesion test method kg/in2) kg/in") [Effects of the invention] The hydroxyapatite-coated biomaterial obtained by the present invention has Because it is amorphous and has C-axis oriented crystals, the bond between the substrate and hydroxyapatite is stronger than that of conventional crystalline hydroxyapatite-coated biomaterials, and it has excellent wear and abrasion resistance and biocompatibility. Good. In addition, the thickness and density of the coating layer can be adjusted arbitrarily, and precision processing is also easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は5US304基質及びそのコーテイング膜部分
の表面を示すグラフ図である。 第2図はチタニウムの基質及びそのコーティングHり部
分の表面を示すグラフ図である。 接着剤の接着力が3kg/mm2であり、全てピンが接
着剤より破断した為、膜と基板の接着力は8kg/m2
以上である。 *:接着力が非常に弱く、測定不可能
FIG. 1 is a graph showing the surface of the 5US304 substrate and its coating film portion. FIG. 2 is a graph showing the surface of a titanium substrate and its coated portion. The adhesive strength of the adhesive was 3 kg/mm2, and since all the pins were broken by the adhesive, the adhesive strength between the film and the substrate was 8 kg/m2.
That's all. *: Adhesive strength is very weak and cannot be measured.

Claims (3)

【特許請求の範囲】[Claims] (1)5μm以下の膜厚を有するハイドロキシアパタイ
トを基質にコーティングさせ、該ハイドロキシアパタイ
トが非晶質であることを特徴とする生体材料。
(1) A biomaterial characterized in that a substrate is coated with hydroxyapatite having a thickness of 5 μm or less, and the hydroxyapatite is amorphous.
(2)5μm以上の膜厚を有するハイドロキシアパタイ
トを基質にコーティングさせ、該ハイドロキシアパタイ
トの表面がC軸配向(〔002〕)結晶であることを特
徴とする生体材料。
(2) A biomaterial characterized in that a substrate is coated with hydroxyapatite having a thickness of 5 μm or more, and the surface of the hydroxyapatite is a C-axis oriented ([002]) crystal.
(3)3μm〜10μmの膜厚を有するハイドロキシア
パタイトを基質にコーティングさせ、該ハイドロキシア
パタイトが非晶質中にC軸配向結晶が混在していること
を特徴とする生体材料。
(3) A biomaterial characterized in that a substrate is coated with hydroxyapatite having a thickness of 3 μm to 10 μm, and the hydroxyapatite is amorphous with C-axis oriented crystals mixed therein.
JP1048524A 1988-03-04 1989-03-02 Living body material Pending JPH021286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1048524A JPH021286A (en) 1988-03-04 1989-03-02 Living body material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-49656 1988-03-04
JP4965688 1988-03-04
JP1048524A JPH021286A (en) 1988-03-04 1989-03-02 Living body material

Publications (1)

Publication Number Publication Date
JPH021286A true JPH021286A (en) 1990-01-05

Family

ID=26388812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1048524A Pending JPH021286A (en) 1988-03-04 1989-03-02 Living body material

Country Status (1)

Country Link
JP (1) JPH021286A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369435A (en) * 1989-10-27 1994-11-29 Mitsubishi Denki Kabushiki Kaisha Contrast detecting apparatus for controlling an automatic focusing operation of an imaging apparatus
JP2006501887A (en) * 2002-09-13 2006-01-19 ザ ユニバーシティ オブ ブリティッシュ コロンビア Implantable medical device coated with calcium phosphate and method of manufacturing the same
JP2006131469A (en) * 2004-11-08 2006-05-25 National Institute Of Advanced Industrial & Technology Apatite composite material coated with apatite having crystal orientation
JP2009213723A (en) * 2008-03-11 2009-09-24 National Institute Of Advanced Industrial & Technology Apatite coated biological implant having biomolecule fixed on its surface, and cell culture carrier
JP2014148718A (en) * 2013-02-01 2014-08-21 Nippon Telegr & Teleph Corp <Ntt> Method for producing hydroxyapatite thin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109049A (en) * 1981-12-23 1983-06-29 旭光学工業株式会社 Appatite composite material and production thereof
JPS6346164A (en) * 1986-08-13 1988-02-27 株式会社明電舎 Production of implant material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109049A (en) * 1981-12-23 1983-06-29 旭光学工業株式会社 Appatite composite material and production thereof
JPS6346164A (en) * 1986-08-13 1988-02-27 株式会社明電舎 Production of implant material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369435A (en) * 1989-10-27 1994-11-29 Mitsubishi Denki Kabushiki Kaisha Contrast detecting apparatus for controlling an automatic focusing operation of an imaging apparatus
JP2006501887A (en) * 2002-09-13 2006-01-19 ザ ユニバーシティ オブ ブリティッシュ コロンビア Implantable medical device coated with calcium phosphate and method of manufacturing the same
JP2006131469A (en) * 2004-11-08 2006-05-25 National Institute Of Advanced Industrial & Technology Apatite composite material coated with apatite having crystal orientation
JP4595084B2 (en) * 2004-11-08 2010-12-08 独立行政法人産業技術総合研究所 Apatite composite coated with apatite with crystal orientation
JP2009213723A (en) * 2008-03-11 2009-09-24 National Institute Of Advanced Industrial & Technology Apatite coated biological implant having biomolecule fixed on its surface, and cell culture carrier
JP2014148718A (en) * 2013-02-01 2014-08-21 Nippon Telegr & Teleph Corp <Ntt> Method for producing hydroxyapatite thin film

Similar Documents

Publication Publication Date Title
Van Dijk et al. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings
Surmenev et al. Radio frequency magnetron sputter deposition as a tool for surface modification of medical implants
Arce et al. Calcium phosphate–calcium titanate composite coatings for orthopedic applications
Vladescu et al. Enhancement of the mechanical properties of hydroxyapatite by SiC addition
US20060121206A1 (en) Method to prevent low temperature degradation of zirconia
US6113993A (en) Method of coating a substrate with a calcium phosphate compound
Yamashita et al. Electrophoretic coating of multilayered apatite composite on alumina ceramics
US7074223B2 (en) Coating method and coated devices
Mardare et al. Deposition of bioactive glass-ceramic thin-films by RF magnetron sputtering
Ozeki et al. Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique
KR100583849B1 (en) Method for Producing Polymeric Sol of Calcium Phosphate Compound
Zhang et al. Artificial heart valves:: improved hemocompatibility by titanium oxide coatings prepared by ion beam assisted deposition
Yamashita et al. Bonelike coatings onto ceramics by reactive magnetron sputtering
JPH021286A (en) Living body material
Wang et al. Fabrication and characterization of bioactive glass coatings produced by the ion beam sputter deposition technique
Wang et al. Structural characterization of ion beam sputter deposited calcium phosphate coatings
Yonggang et al. The influence of discharge power and heat treatment on calcium phosphate coatings prepared by RF magnetron sputtering deposition
Wang et al. Fabrication and characterization of graded calcium phosphate coatings produced by ion beam sputtering/mixing deposition
Hamdi et al. Electron beam deposition of thin bioceramic film for biomedical implants
Ozeki et al. Influence of the crystallinity of a sputtered hydroxyapatite film on its osteocompatibility
Abdullah et al. Deposition of CeO2/TCP thin film on stainless steel 316 L by RF sputtering
Hamdi et al. Calcium phosphate coatings: A comparative study between simultaneous vapor deposition and electron beam deposition techniques
Thaveedeetrakul et al. Effect of sputtering power on in vitro bioactivity of zirconia thin films obtained by DC unbalanced magnetron sputtering
Thaveedeetrakul et al. Apatite deposition on ZrO2 thin films by DC unbalanced magnetron sputtering
Sato et al. Apatite formation behavior on bio-ceramic films prepared by MOCVD