JP2009213212A - Variable-speed driving device for synchronous motors - Google Patents

Variable-speed driving device for synchronous motors Download PDF

Info

Publication number
JP2009213212A
JP2009213212A JP2008051594A JP2008051594A JP2009213212A JP 2009213212 A JP2009213212 A JP 2009213212A JP 2008051594 A JP2008051594 A JP 2008051594A JP 2008051594 A JP2008051594 A JP 2008051594A JP 2009213212 A JP2009213212 A JP 2009213212A
Authority
JP
Japan
Prior art keywords
current command
axis
frequency
current
frequency current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008051594A
Other languages
Japanese (ja)
Other versions
JP5194886B2 (en
Inventor
Yasuhiro Yamamoto
康弘− 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008051594A priority Critical patent/JP5194886B2/en
Publication of JP2009213212A publication Critical patent/JP2009213212A/en
Application granted granted Critical
Publication of JP5194886B2 publication Critical patent/JP5194886B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem that arises when an alternating current signal is added to a q-axis current command to forcedly produce a high-frequency torque ripple in a variable-speed driving device for synchronous motors: when a voltage component becomes higher than the outputtable maximum voltage of an inverter, voltage saturation occurs and thus it is impossible to accurately generate a current command. <P>SOLUTION: An alternating current signal generator is caused to generate a d-axis high-frequency current command delayed by a phase of 90° from a q-axis high-frequency current command. This d-axis high-frequency current command is added to a d-axis current command and the result of this addition is input to a current control unit. When a synchronous motor is reversely rotated, this d-axis high-frequency current command is advanced by a phase of 90° from the q-axis high-frequency current command. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は同期電動機の可変速駆動装置に係り、特にトルクリップルを模擬したい制御装置に関するものである。   The present invention relates to a variable speed drive device for a synchronous motor, and more particularly to a control device for simulating torque ripple.

永久磁石型同期電動機(PMモータ)又は界磁巻線型同期電動機として知られる同期電動機の駆動は、一般にはモータに取り付けられた位置センサにより検出された信号に基づいてベクトル制御を実施している。このような制御装置は、位置サーボなどの速度や位置制御に使用されているが、これ以外に一定速度での回転中に、振動トルクを発生させたい場合がある。例えば、動力計測装置のエンジンのトルクリップルを模擬したい場合がこれに相当する。   For driving a synchronous motor known as a permanent magnet type synchronous motor (PM motor) or a field winding type synchronous motor, vector control is generally performed based on a signal detected by a position sensor attached to the motor. Such a control apparatus is used for speed and position control of a position servo or the like, but there are cases where it is desired to generate vibration torque during rotation at a constant speed. For example, this corresponds to the case where it is desired to simulate the torque ripple of the engine of the power measuring device.

図4は振動トルクの発生によりトルクリップルを模擬することができる可変速駆動装置の従来技術を示したもので、通常は磁極軸をd軸、その直交軸をq軸と定義しており、振動トルクを発生させるための高周波トルク成分に相当する電流指令(高周波電流指令)は交流信号発生器3から発生され、電流指令変換部2からのq軸電流指令に重畳される。重畳後のq軸電流指令と検出電流iqとの差分、及びd軸電流「0」指令と検出電流idとの差分がそれぞれ電流制御器(ACR制御)4に入力されて出力電圧指令vd*およびvq*が出力される。この出力電圧指令vd*、vq*はそれぞれ2相/3相座標変換器5に入力されて三相の交流電圧指令に変換され、この交流電圧指令に基づきPWM回路6を介してインバータ7のスイッチング素子を制御する。 FIG. 4 shows the prior art of a variable speed drive device that can simulate torque ripple by generating vibration torque. Usually, the magnetic pole axis is defined as d-axis and its orthogonal axis is defined as q-axis. A current command (high-frequency current command) corresponding to a high-frequency torque component for generating torque is generated from the AC signal generator 3 and superimposed on the q-axis current command from the current command converter 2. The difference between the q-axis current command and the detected current i q after superimposition and the difference between the d-axis current “0” command and the detected current i d are respectively input to the current controller (ACR control) 4 and output voltage command vd. * And vq * are output. The output voltage commands vd * and vq * are respectively input to the two-phase / three-phase coordinate converter 5 and converted into a three-phase AC voltage command, and the inverter 7 is switched via the PWM circuit 6 based on the AC voltage command. Control the element.

PMモータを例とした場合の可変速駆動装置における高周波電流とその発生電圧は次の通りである。
dq座標は一定の基本波角周波数ωで回転している直交二軸座標とすると、PMモータの電圧電流方程式は(1)式で示される。
The high-frequency current and the generated voltage in the variable speed driving device when the PM motor is taken as an example are as follows.
Assuming that the dq coordinates are orthogonal two-axis coordinates rotating at a constant fundamental wave angular frequency ω, the voltage-current equation of the PM motor is expressed by equation (1).

Figure 2009213212
Figure 2009213212

ただし、vd,vqはdq軸電圧、id,iqはdq軸電流、Rは抵抗、Ldはd軸インダクタンス、Lqはq軸インダクタンス、pは微分演算子、ωは基本波角周波数、φdは永久磁石の磁束(φq=0)
ここで、PMモータが一定の基本波角周波数ωで運転し、且つ定常電流成分id0がiq0となる状態において、振動トルクを発生させるために高周波電流Δid,Δiqを入力するとdq軸電流id,iqは(2)式のようになる。
Where v d and v q are dq axis voltages, i d and i q are dq axis currents, R is resistance, L d is d axis inductance, L q is q axis inductance, p is a differential operator, and ω is a fundamental wave. Angular frequency, φ d is permanent magnet magnetic flux (φ q = 0)
Here, when the PM motor is operated at a constant fundamental wave angular frequency ω and the steady current component i d0 is i q0 , the high frequency currents Δi d and Δi q are input to generate vibration torque, and the dq axis The currents i d and i q are as shown in equation (2).

Figure 2009213212
Figure 2009213212

この(2)式を(1)式の電圧電流方程式に代入すると、(3)の式のように定常電流による電圧成分と高周波電流による電圧成分に分離することができる。 If this equation (2) is substituted into the voltage-current equation of equation (1), it can be separated into a voltage component due to steady current and a voltage component due to high-frequency current as in equation (3).

Figure 2009213212
Figure 2009213212

ここで、基本波角周波数ωが高く、かつ高周波電流の周波数成分ωvも十分に高いものと仮定して、(3)式の右辺第3項のRによる電圧降下成分はその他のインダクタンスにより発生する電圧よりも十分に小さいので無視する。また、第1項の微分演算子pはid0,iq0が定常電流成分であるため省略する。従って、以上の近似により、(4)式のような定常電流によって発生する電圧成分と高周波電流によって発生する電圧成分に分離した場合には、それぞれの成分は(5)式と(6)式になる。 Here, assuming that the fundamental wave angular frequency ω is high and the frequency component ω v of the high-frequency current is also sufficiently high, the voltage drop component due to R in the third term on the right side of equation (3) is generated by other inductances. Ignore it because it is much smaller than the voltage to be applied. The differential operator p in the first term is omitted because i d0 and i q0 are steady current components. Therefore, when the voltage component generated by the steady current and the voltage component generated by the high-frequency current are separated by the above approximation, the respective components are expressed by the equations (5) and (6). Become.

Figure 2009213212
Figure 2009213212

Figure 2009213212
Figure 2009213212

Figure 2009213212
Figure 2009213212

次に、図4における高周波電流指令の発生について説明する。
d軸電流は零に固定したままq軸成分のみに交流信号発生器3から正弦波状の高周波電流指令を加えている。この場合には(7)式のような電流を加えることに相当している。この高周波電流指令に相当した高周波電流を発生するために電流制御器4が出力する高周波電圧成分は、(7)式を(6)式に代入して(8)式のようになる。
Next, generation of the high-frequency current command in FIG. 4 will be described.
A sinusoidal high frequency current command is applied from the AC signal generator 3 only to the q-axis component while the d-axis current is fixed at zero. In this case, this corresponds to applying a current as shown in equation (7). The high-frequency voltage component output from the current controller 4 to generate a high-frequency current corresponding to this high-frequency current command is obtained by substituting Equation (7) into Equation (6) as shown in Equation (8).

Figure 2009213212
Figure 2009213212

ただし、Δiqvは高周波電流の振幅電流、ωvは高周波電流の角周波数 Where Δi qv is the amplitude current of the high frequency current and ω v is the angular frequency of the high frequency current.

Figure 2009213212
Figure 2009213212

(7)式の高周波電流成分はq軸成分のみであるが、高周波電圧に関してはdqの両方の軸成分が発生する。(8)式より、d軸には基本波角周波数ω成分に比例した振幅電圧が、q軸電圧には高周波の角周波数ωvに比例した振幅電圧成分が発生することが分かる。これらは、同じ角周波数ωvによるsin関数とcos関数であるため、d−q軸座標上では楕円状の電圧軌跡を描くようになる。
図5に、このd−q軸座標上における定常電流成分(id0,iq0)と高周波電流成分(Δid,Δiq)を示す。ここで、図5の数式は(9)式のd,qの単位ベクトルを利用して表現している。また、同様に電圧成分の軌跡を現したものが図6である。
The high-frequency current component of equation (7) is only the q-axis component, but both high-frequency voltage dq axial components are generated. From equation (8), it can be seen that an amplitude voltage proportional to the fundamental angular frequency ω component is generated on the d-axis, and an amplitude voltage component proportional to the high-frequency angular frequency ω v is generated on the q-axis voltage. Since these are a sin function and a cos function with the same angular frequency ω v , an elliptical voltage locus is drawn on the dq axis coordinates.
FIG. 5 shows steady current components (i d0 , i q0 ) and high-frequency current components (Δi d , Δi q ) on the dq axis coordinates. Here, the mathematical expression in FIG. 5 is expressed by using d and q unit vectors of the expression (9). Similarly, FIG. 6 shows the locus of the voltage component.

Figure 2009213212
Figure 2009213212

なお、振動トルクを発生させるものとしては、特許文献1が公知となっている。
特開平8−137555
Patent Document 1 is known as a device that generates vibration torque.
JP-A-8-137555

従来における高周波成分は、(8)式のようにd軸成分は−ωLq・Δiqv・sin(ωvt),q軸成分がωvLq・Δiqv・cos(ωvt)となり、それらが描く軌跡は楕円状になる。もしも、図6の電圧成分がインバータの出力可能最大電圧(図中の破線)よりも大きくなると電圧飽和が発生するため、図5の電流指令を正確に発生することができなくなる問題を有している。 The conventional high-frequency component is -ωL q · Δi qv · sin (ω v t) and the q axis component is ω v L q · Δi qv · cos (ω v t) as shown in equation (8). The trajectory they draw becomes elliptical. If the voltage component in FIG. 6 becomes larger than the maximum output possible voltage of the inverter (broken line in the figure), voltage saturation occurs, so that the current command in FIG. 5 cannot be generated accurately. Yes.

そこで、本発明が目的とするところは、電圧飽和を防止しつつ、高周波電流指令の振幅および周波数を拡大できる同期電動機の可変速駆動装置を提供することにある。   Accordingly, an object of the present invention is to provide a variable speed drive device for a synchronous motor capable of expanding the amplitude and frequency of a high frequency current command while preventing voltage saturation.

本発明の請求項1は、q軸電流指令にq軸高周波電流指令を加算してトルクリップルを任意に発生させることができる同期電動機の可変速駆動装置において、
前記q軸高周波電流指令に対して90゜位相を遅らせたd軸高周波電流指令をd軸電流指令に加算したことを特徴としたものである。
Claim 1 of the present invention provides a variable speed drive device for a synchronous motor that can arbitrarily generate a torque ripple by adding a q-axis high-frequency current command to a q-axis current command.
The d-axis high-frequency current command having a phase delayed by 90 ° with respect to the q-axis high-frequency current command is added to the d-axis current command.

本発明の請求項2は、前記d軸高周波電流指令は、同期電動機の逆転時にはq軸高周波電流指令に対して90゜位相進みとすることを特徴としたものである。   The second aspect of the present invention is characterized in that the d-axis high-frequency current command has a phase advance of 90 ° with respect to the q-axis high-frequency current command when the synchronous motor is reversely rotated.

本発明の請求項3は、q軸電流指令にq軸高周波電流指令を加算してトルクリップルを任意に発生させることができる同期電動機の可変速駆動装置において、
前記q軸高周波電流指令を微分した電流指令をd軸電流指令に加算したことを特徴としたものである。
According to a third aspect of the present invention, there is provided a variable speed drive device for a synchronous motor capable of arbitrarily generating a torque ripple by adding a q-axis high-frequency current command to a q-axis current command.
The current command obtained by differentiating the q-axis high-frequency current command is added to the d-axis current command.

本発明の請求項4は、前記q軸高周波電流指令を微分した電流指令は、基本波周波数の正転と逆転との極性により正負を切り換えることを特徴としたものである。   A fourth aspect of the present invention is characterized in that the current command obtained by differentiating the q-axis high-frequency current command switches between positive and negative depending on the polarity of the fundamental wave frequency between normal rotation and reverse rotation.

以上のとおり、本発明によれば、トルクを発生するために必要なq軸の高周波電流指令と、この高周波電流指令に対して90゜位相を遅らせた交流電流指令成分をd軸電流指令に加算するようにしたものである。これにより、d軸成分による電機子反作用成分とd軸電流の変化による変圧器起電力成分が、q軸電流によって発生する高周波電圧を減少させるように作用し、その結果、楕円状となっている高周波電圧成分の振幅成分を減少させることができ、電圧飽和を防止することが可能となる。また、逆に、高周波電流指令によるトルクリップルの振幅限界や、周波数限界をより拡大することができる。   As described above, according to the present invention, the q-axis high-frequency current command necessary for generating torque and the AC current command component delayed by 90 ° with respect to the high-frequency current command are added to the d-axis current command. It is what you do. As a result, the armature reaction component due to the d-axis component and the transformer electromotive force component due to the change in the d-axis current act so as to reduce the high-frequency voltage generated by the q-axis current, resulting in an elliptical shape. The amplitude component of the high frequency voltage component can be reduced, and voltage saturation can be prevented. Conversely, the torque ripple amplitude limit and frequency limit due to the high-frequency current command can be further expanded.

図1は、本発明の実施例を示す構成図で、図4との同一分、若しくは相当部分に同一符号を付している。
1は速度制御部で、速度指令ωr *と速度検出部13からの速度検出信号ωrとの差分が入力されて、速度を制御するためのトルク指令Trq *を演算する。2は電流指令変換部で、求められたトルク指令Trq *はこの電流指令変換部2に入力されてq軸電流成分に変換される。30は交流信号発生器で、この信号発生器からは正弦波状の高周波電流指令iqv*とidv*が出力される。高周波電流指令iqv*は
電流指令変換部2の出力と加算され電流指令iq*となり、減算部において検出電流iqとの差分が求められ、この差分を電流制御部4Qに入力して電圧指令が演算される。
FIG. 1 is a block diagram showing an embodiment of the present invention, in which the same or corresponding parts as in FIG.
Reference numeral 1 denotes a speed control unit which receives a difference between the speed command ω r * and the speed detection signal ω r from the speed detection unit 13 and calculates a torque command T rq * for controlling the speed. Reference numeral 2 denotes a current command conversion unit, and the obtained torque command T rq * is input to the current command conversion unit 2 and converted into a q-axis current component. Reference numeral 30 denotes an AC signal generator from which sinusoidal high-frequency current commands i qv * and i dv * are output. The high-frequency current command i qv * is added to the output of the current command conversion unit 2 to become a current command i q *, and the difference from the detected current i q is obtained in the subtraction unit, and this difference is input to the current control unit 4Q to obtain the voltage Command is calculated.

一方、交流信号発生器30からの高周波電流指令idv*は零に固定されたd軸指令と加算されてd軸電流指令id*となって検出電流idとの差分が求められ、この差分を電流制御部4Dに入力して電圧指令が演算される。座標変換器5では、電流制御器4からの電圧指令と位置検出器11からの位置信号θを入力して回転座標変換と2相/3相座標変換により3相交流電圧指令を生成する。PWM回路6では、生成した電圧指令を入力してPWM方式の信号に等価変換する。変換されたPWM信号でインバータ7のスイッチング素子をオン・オフ制御し、電力増幅された電圧でPMモータ8を制御する。モータ8の回転位置はエンコーダ10を介して位置検出器11により検出される。検出された位置信号θは座標変換器12と速度検出器13に出力される。座標変換器12は、電流検出器9により検出された検出電流を3相/2相座標変換と座標変換器5の逆回転による座標変換により検出電流iq,idを出力する。 On the other hand, the high-frequency current command i dv * from the AC signal generator 30 is added to the d-axis command fixed to zero to obtain a d-axis current command i d *, and a difference from the detected current i d is obtained. The voltage command is calculated by inputting the difference to the current control unit 4D. The coordinate converter 5 receives the voltage command from the current controller 4 and the position signal θ from the position detector 11 and generates a three-phase AC voltage command by rotational coordinate conversion and two-phase / 3-phase coordinate conversion. The PWM circuit 6 receives the generated voltage command and performs equivalent conversion to a PWM signal. The switching element of the inverter 7 is on / off controlled by the converted PWM signal, and the PM motor 8 is controlled by the power amplified voltage. The rotational position of the motor 8 is detected by the position detector 11 via the encoder 10. The detected position signal θ is output to the coordinate converter 12 and the speed detector 13. Coordinate converter 12 outputs a detection current i q, i d by the coordinate conversion by the reverse rotation of the current detector 9 detects current detected by the 3-phase / 2-phase coordinate transformation and coordinate converter 5.

図1で示す本発明は、図6で示す定常成分と高周波成分を合成した電圧成分の最大値を小さくし電圧飽和に至るまでの余裕が大きくなること、また、発生できる高周波電流指令によるトルクリップルの振幅や周波数の限界値も拡大できることを見出し、d軸電流にも交流成分の電流指令を加算するものである。そこで、d軸電流に高周波成分を追加した場合について検討する。(7)式に対応して、(10)式のようにd軸とq軸の両方に高周波電流を発生させた場合を考える。   In the present invention shown in FIG. 1, the maximum value of the voltage component obtained by synthesizing the steady component and the high frequency component shown in FIG. 6 is reduced to increase the margin until voltage saturation occurs, and the torque ripple caused by the high frequency current command that can be generated. It is found that the limit value of the amplitude and frequency can be expanded, and the current command of the AC component is added to the d-axis current. Therefore, a case where a high-frequency component is added to the d-axis current is examined. Corresponding to equation (7), consider a case where high-frequency current is generated in both the d-axis and the q-axis as in equation (10).

Figure 2009213212
Figure 2009213212

ただし、Δidvはd軸電流の高周波電流の振幅成分、Δiqvはq軸電流の高周波電流の振幅成分、
ここで、図2に示すとおり、発生する高周波電流は時計回り(CW)に回転するようにd軸を設定している。この電流成分によって発生する高周波電圧は、(10)式を(6)式に代入すればよく、(11)式として得られる。
Where Δi dv is the amplitude component of the high-frequency current of the d-axis current, Δi qv is the amplitude component of the high-frequency current of the q-axis current,
Here, as shown in FIG. 2, the d-axis is set so that the generated high-frequency current rotates clockwise (CW). The high frequency voltage generated by this current component is obtained by substituting Equation (10) into Equation (6), and is obtained as Equation (11).

Figure 2009213212
Figure 2009213212

(11)式は、(8)式と同じようにΔvdとΔvqがsin(ωvt)と cos (ωvt)の関数であるので、図4の従来技術と同様に楕円形の電圧軌跡を描くが、その振幅成分が異なっている。
(8)式の電圧成分と比較して、図3のようにd軸高周波電流によって生じる電圧成分と、q軸電流による電圧成分は常にお互いに高周波電圧中心の対角方向に位置している。そのため、この2種類の電圧成分を合成すると、電圧成分の最大振幅が図6よりも小さくなる。この電圧低減量は基本波周波数に比例しており、周波数が高くなると電圧余裕が少なくなる現象を改善することができる。
ここで、(11)式のd軸電流はq軸電流に対して正転の場合は90゜遅れであるが、逆転の場合には対称性を維持するため90゜進みとすればよい。
Since Δv d and Δv q are functions of sin (ω v t) and cos (ω v t) in the same manner as in equation (8), the equation (11) is an elliptical shape as in the prior art of FIG. The voltage locus is drawn, but the amplitude component is different.
Compared with the voltage component of equation (8), as shown in FIG. 3, the voltage component generated by the d-axis high-frequency current and the voltage component generated by the q-axis current are always located in the diagonal direction of the high-frequency voltage center. Therefore, when these two types of voltage components are combined, the maximum amplitude of the voltage components becomes smaller than that in FIG. This voltage reduction amount is proportional to the fundamental frequency, and the phenomenon that the voltage margin decreases as the frequency increases can be improved.
Here, the d-axis current in the equation (11) is delayed by 90 ° in the case of normal rotation with respect to the q-axis current, but it may be advanced by 90 ° in order to maintain symmetry in the case of reverse rotation.

上記実施例の(11)式には2相発振器を使用したが、従来例のように(12)式の単相交流を発生させ、d軸電流は(13)式のように(12)式を微分して求めるようにしてもよい。ただし、基本波周波数により位相の進みと遅れを制御するため、基本波角周波数ωの正負の極性に対応してsign(ω)関数によりd軸高周波電流成分Δidの正負を切り換えておく。 Although the two-phase oscillator is used in the expression (11) of the above embodiment, a single-phase alternating current of the expression (12) is generated as in the conventional example, and the d-axis current is the expression (12) as in the expression (13). May be obtained by differentiating. However, in order to control the phase lead and lag by the fundamental frequency, keep switching the positive and negative d-axis high frequency current component .DELTA.i d by in response to positive and negative polarities of the fundamental wave angular frequency omega sign (omega) function.

Figure 2009213212
Figure 2009213212

Figure 2009213212
Figure 2009213212

なお、上記では、PMモータを例に挙げて説明をしたが、界磁巻線型同期電動機の場合も同様の作用効果を奏する。 In the above description, the PM motor has been described as an example, but the same effect can be obtained in the case of a field winding type synchronous motor.

以上の本発明によれば、高周波のトルクリップルを強制的に発生させる同期電動機の可変速駆動装置において、トルクを発生するために必要なq軸の高周波電流指令と、この高周波電流指令に対して90゜位相を遅らせた交流電流指令成分をd軸電流指令に加算する。加算されたd軸成分による電機子反作用成分とd軸電流の変化による変圧器起電力成分が、q軸電流によって発生する高周波電圧を減少させるように作用する。これにより、楕円状となっている高周波電圧成分の振幅成分を減少することができ、電圧飽和を防止することが可能となる。また、逆に、高周波電流指令によるトルクリップルの振幅限界や、周波数限界をより拡大することができる。   According to the present invention described above, in a variable speed drive device for a synchronous motor that forcibly generates a high-frequency torque ripple, a q-axis high-frequency current command necessary for generating torque and the high-frequency current command The AC current command component delayed by 90 ° phase is added to the d-axis current command. The armature reaction component due to the added d-axis component and the transformer electromotive force component due to the change in d-axis current act to reduce the high-frequency voltage generated by the q-axis current. Thereby, the amplitude component of the high frequency voltage component which is elliptical can be reduced, and voltage saturation can be prevented. Conversely, the torque ripple amplitude limit and frequency limit due to the high-frequency current command can be further expanded.

本発明の実施形態を示す可変速駆動装置の構成図。The block diagram of the variable speed drive device which shows embodiment of this invention. 高周波電流のq軸、d軸分離の説明図。Explanatory drawing of q-axis and d-axis separation of high-frequency current. 高周波電流による電圧成分とその合成電圧の軌跡説明図。The locus | trajectory explanatory drawing of the voltage component and its synthetic voltage by a high frequency current. 従来の振動トルク発生時の可変速駆動装置の構成図。The block diagram of the variable speed drive device at the time of the conventional vibration torque generation | occurrence | production. q軸高周波電流成分の説明図。Explanatory drawing of a q-axis high frequency current component. q軸高周波成分による電圧成分の軌跡説明図。Explanatory drawing of the locus | trajectory of the voltage component by a q-axis high frequency component.

符号の説明Explanation of symbols

1… 速度制御部
2… 電流指令変換部
3、30… 交流信号発生器
4… 電流制御器
5… 2相/3相座標変換器
6… PWM回路
7… インバータ
8… PMモータ
9… 電流検出器
10… エンコーダ
11… 位置検出器
12… 3相/2相座標変換器
13… 速度検出器
DESCRIPTION OF SYMBOLS 1 ... Speed control part 2 ... Current command conversion part 3, 30 ... AC signal generator 4 ... Current controller 5 ... 2-phase / 3-phase coordinate converter 6 ... PWM circuit 7 ... Inverter 8 ... PM motor 9 ... Current detector DESCRIPTION OF SYMBOLS 10 ... Encoder 11 ... Position detector 12 ... 3 phase / 2 phase coordinate converter 13 ... Speed detector

Claims (4)

q軸電流指令にq軸高周波電流指令を加算してトルクリップルを任意に発生させることができる同期電動機の可変速駆動装置において、
前記q軸高周波電流指令に対して90゜位相を遅らせたd軸高周波電流指令をd軸電流指令に加算したことを特徴とした同期電動機の可変速駆動装置。
In a variable speed drive device for a synchronous motor that can arbitrarily generate a torque ripple by adding a q-axis high-frequency current command to a q-axis current command,
A variable speed drive device for a synchronous motor, wherein a d-axis high-frequency current command delayed by 90 ° with respect to the q-axis high-frequency current command is added to the d-axis current command.
前記d軸高周波電流指令は、同期電動機の逆転時にはq軸高周波電流指令に対して90゜位相進みとすることを特徴とした請求項1記載の同期電動機の可変速駆動装置。 2. The variable speed drive device for a synchronous motor according to claim 1, wherein the d-axis high-frequency current command is advanced by 90 ° with respect to the q-axis high-frequency current command when the synchronous motor is reversely rotated. q軸電流指令にq軸高周波電流指令を加算してトルクリップルを任意に発生させることができる同期電動機の可変速駆動装置において、
前記q軸高周波電流指令を微分した電流指令をd軸電流指令に加算したことを特徴とした同期電動機の可変速駆動装置。
In a variable speed drive device for a synchronous motor that can arbitrarily generate a torque ripple by adding a q-axis high-frequency current command to a q-axis current command,
A variable speed drive device for a synchronous motor, wherein a current command obtained by differentiating the q-axis high-frequency current command is added to a d-axis current command.
前記q軸高周波電流指令を微分した電流指令は、基本波周波数の正転と逆性の極性に対応してd軸高周波電流成分の正負を切り換えることを特徴とした請求項3記載の同期電動機の可変速駆動装置。 4. The synchronous motor according to claim 3, wherein the current command obtained by differentiating the q-axis high-frequency current command switches between positive and negative of the d-axis high-frequency current component in accordance with forward and reverse polarities of the fundamental frequency. Variable speed drive.
JP2008051594A 2008-03-03 2008-03-03 Variable speed drive for synchronous motor Expired - Fee Related JP5194886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051594A JP5194886B2 (en) 2008-03-03 2008-03-03 Variable speed drive for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051594A JP5194886B2 (en) 2008-03-03 2008-03-03 Variable speed drive for synchronous motor

Publications (2)

Publication Number Publication Date
JP2009213212A true JP2009213212A (en) 2009-09-17
JP5194886B2 JP5194886B2 (en) 2013-05-08

Family

ID=41185828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051594A Expired - Fee Related JP5194886B2 (en) 2008-03-03 2008-03-03 Variable speed drive for synchronous motor

Country Status (1)

Country Link
JP (1) JP5194886B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186631A (en) * 1984-10-04 1986-05-02 Nishishiba Denki Kk Testing apparatus of power transmitting mechanism
JP2001095281A (en) * 1999-09-21 2001-04-06 Kiyoshi Oishi Method of controlling synchronous motor
JP2001339999A (en) * 2000-05-30 2001-12-07 Toshiba Corp Motor control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186631A (en) * 1984-10-04 1986-05-02 Nishishiba Denki Kk Testing apparatus of power transmitting mechanism
JP2001095281A (en) * 1999-09-21 2001-04-06 Kiyoshi Oishi Method of controlling synchronous motor
JP2001339999A (en) * 2000-05-30 2001-12-07 Toshiba Corp Motor control device

Also Published As

Publication number Publication date
JP5194886B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5321614B2 (en) Rotating machine control device
JP5281339B2 (en) Synchronous motor drive system and control device used therefor
KR102285041B1 (en) Inverter control unit and motor drive system
JP2001197800A (en) Motor controller
US9716454B2 (en) Driving circuit and driving method for permanent magnet synchronous motor
US9379655B2 (en) Method of field weakening control of permanent magnet motor drivers
JP2008086129A (en) Ac motor controller and constant measurement apparatus
US20130278200A1 (en) System for controlling controlled variable of rotary machine
JP2008271740A (en) Motor controller
JP2006054995A (en) Drive control device and method for ac motor
JP2011147287A (en) Estimation device of magnetic pole position of motor
WO2016121237A1 (en) Inverter control device and motor drive system
WO2018043502A1 (en) Inverter control device and electric motor driving system
JP2007151344A (en) Magnetic pole position estimating method, motor speed estimating method, and motor controller
JP2004289926A (en) Motor controller
JP4998693B2 (en) Motor simulation device and motor simulation method
JP2003284389A (en) Drive unit for stepping motor
JPH08275599A (en) Control method for permanent magnet synchronous motor
JPH0974800A (en) Control apparatus for ac motor
JP6113651B2 (en) Multi-phase motor drive
JP2004023843A (en) Motor controller
WO2017030055A1 (en) Device and method for controlling rotary machine
JP2014200147A (en) Controller for switched reluctance motor
JP2008295229A (en) Motor simulation apparatus and motor simulation method
JP5194886B2 (en) Variable speed drive for synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5194886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees