JP2009213196A - Device for adjusting capacity of battery pack - Google Patents

Device for adjusting capacity of battery pack Download PDF

Info

Publication number
JP2009213196A
JP2009213196A JP2008050846A JP2008050846A JP2009213196A JP 2009213196 A JP2009213196 A JP 2009213196A JP 2008050846 A JP2008050846 A JP 2008050846A JP 2008050846 A JP2008050846 A JP 2008050846A JP 2009213196 A JP2009213196 A JP 2009213196A
Authority
JP
Japan
Prior art keywords
capacity adjustment
capacity
switching circuit
circuit element
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008050846A
Other languages
Japanese (ja)
Inventor
Shinsuke Yoshida
伸輔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008050846A priority Critical patent/JP2009213196A/en
Publication of JP2009213196A publication Critical patent/JP2009213196A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for adjusting the capacity of a battery pack, which can accurately detect the temperature of a switching circuit element due to be protected. <P>SOLUTION: In the device for adjusting the capacity of the battery pack, which is equipped with a resistor 71 for capacity adjustment that is connected in parallel with one or more batteries 11 constituting the battery pack 1 and the switching circuit element 72 that is connected in series to the resistor 71 for capacity adjustment and controls a current for capacity adjustment flowing to the resistor for capacity adjustment, a thermosensitive resistor element 73 is provided between the drive terminal of the switching circuit element 72 and one terminal of the switching circuit element concerned where the current for capacity adjustment flows. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、組電池の容量調整装置に関するものである。   The present invention relates to an assembled battery capacity adjustment device.

複数の電池を接続してなる組電池では、充放電を繰り返したり放置したりすると、各電池の特性ばらつきにより容量差(残容量差)が生じることがある。容量差が生じた状態で組電池を使用すると電池によっては過充電や過放電となり、組電池全体の寿命が短くなる。このため、他より容量の大きい電池を放電させることにより各電池の容量を均一化することが行われている。   In an assembled battery in which a plurality of batteries are connected, if charge / discharge is repeated or left unattended, a capacity difference (remaining capacity difference) may occur due to variations in characteristics of each battery. When an assembled battery is used in a state where a capacity difference has occurred, depending on the battery, overcharging or overdischarging occurs, and the life of the entire assembled battery is shortened. For this reason, the capacity | capacitance of each battery is equalized by discharging the battery with a capacity | capacitance larger than others.

こうした容量調整は、各電池に並列に設けられた容量調整回路に含まれる容量調整用抵抗に、他より容量の大きい電池から電流を流すことにより行われるが、容量調整用抵抗の発熱により、容量調整回路に含まれるトランジスタなどのような容量調整用回路素子に悪影響を及ぼすおそれがある。 Such capacity adjustment is performed by flowing a current from a battery having a larger capacity than the others to a capacity adjustment resistor included in a capacity adjustment circuit provided in parallel with each battery. There is a possibility that a capacitance adjusting circuit element such as a transistor included in the adjusting circuit is adversely affected.

なお、電池の電源回路に感温抵抗素子を設けることにより二次電池の過充電を防止する保護回路が、特許文献1に開示されている。 Patent Document 1 discloses a protection circuit that prevents overcharging of a secondary battery by providing a temperature-sensitive resistor element in the battery power circuit.

実開平6−31345号公報Japanese Utility Model Publication No. 6-31345

上記特許文献1においては、温度が上昇すると抵抗が増大する感温抵抗素子を電源回路上に設け、この感温抵抗素子と容量調整用回路素子としてのトランジスタとを熱的に結合することにより、トランジスタの温度上昇時に感温抵抗素子の抵抗を増大させて、電源からトランジスタに流れる電流を抑制している。このような回路を適用すれば、保護対象であるトランジスタの温度上昇時に電源回路上に設けた感温抵抗素子の抵抗増大によりトランジスタに流れる電流を抑制して、トランジスタの更なる温度上昇を防止し、保護対象としてのトランジスタを保護することができる。 In Patent Document 1, a temperature-sensitive resistance element whose resistance increases as the temperature rises is provided on a power supply circuit, and by thermally coupling the temperature-sensitive resistance element and a transistor as a capacitance adjusting circuit element, When the temperature of the transistor rises, the resistance of the temperature sensitive resistance element is increased to suppress the current flowing from the power source to the transistor. If such a circuit is applied, the current flowing through the transistor is suppressed by increasing the resistance of the temperature-sensitive resistance element provided on the power supply circuit when the temperature of the transistor to be protected increases, thereby preventing further increase in the temperature of the transistor. The transistor as a protection target can be protected.

しかしながら、電池の電源回路に感温抵抗素子を設けた保護回路では、感温素子は電源回路上に設けられ、トランジスタは制御回路上に設けられているため、感温抵抗素子により検出される温度と、保護対象であるトランジスタの実温度とが異なり、トランジスタなどの保護対象素子を適切に保護することができないという問題がある。 However, in a protection circuit in which a temperature-sensitive resistor element is provided in a battery power supply circuit, the temperature-sensitive element is provided on the power supply circuit and the transistor is provided on the control circuit. Unlike the actual temperature of the transistor to be protected, there is a problem that the protection target element such as a transistor cannot be properly protected.

本発明が解決しようとする課題は、保護対象であるスイッチング回路素子の温度を正確に検出して、スイッチング回路素子を確実に保護することができる組電池の容量調整装置を提供することである。 The problem to be solved by the present invention is to provide an assembled battery capacity adjustment device capable of accurately detecting the temperature of a switching circuit element to be protected and reliably protecting the switching circuit element.

本発明は、スイッチング素子の駆動端子と容量調整用電流が流れる一方の端子との間に感温抵抗素子を設けることによって上記課題を解決する。 The present invention solves the above problem by providing a temperature-sensitive resistance element between the drive terminal of the switching element and one terminal through which the capacity adjustment current flows.

本発明によれば、保護対象であるスイッチング回路素子の温度を正確に検出することができる。   According to the present invention, it is possible to accurately detect the temperature of the switching circuit element to be protected.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態に係る容量調整装置7を備えた組電池システムを示すブロック図である。同図に示す組電池1は、複数の電池11を直列に接続し、その両極に電力供給線9を介してインバータ2を接続したものである。組電池1から供給される直流電流は、電力変換装置であるインバータ2により交流電流に変換されて交流モータ3に供給され、当該交流モータ3を駆動する。同図において符号4は電力供給線9を流れる電流を検出する電流検出センサであり、検出された電流値は組み電池全体の制御を司る統括制御装置6に送出される。また、符号5は組電池1の端子間電圧を検出する電圧検出センサであり、検出された電圧値は統括制御装置6に送出される。統括制御装置6は、電流センサ4で検出された組電池1の出力電流や電圧センサ5で検出された組電池1の電圧に基づいてインバータ2を制御し、組電池1が過放電の場合は組電池1の出力電力を制限したり過充電の場合は組電池1の入力電力を制限したりすると共に、容量調整制御回路75を制御して各電池11の容量調整を実行する。なお、詳細は後述する。 FIG. 1 is a block diagram showing an assembled battery system including a capacity adjustment device 7 according to this embodiment. The assembled battery 1 shown in the figure has a plurality of batteries 11 connected in series and an inverter 2 connected to both electrodes via a power supply line 9. The direct current supplied from the assembled battery 1 is converted into an alternating current by an inverter 2 that is a power converter and supplied to the alternating current motor 3 to drive the alternating current motor 3. In the figure, reference numeral 4 denotes a current detection sensor that detects a current flowing through the power supply line 9, and the detected current value is sent to the overall control device 6 that controls the entire assembled battery. Reference numeral 5 denotes a voltage detection sensor that detects a voltage across the terminals of the assembled battery 1, and the detected voltage value is sent to the overall control device 6. The overall control device 6 controls the inverter 2 based on the output current of the assembled battery 1 detected by the current sensor 4 and the voltage of the assembled battery 1 detected by the voltage sensor 5, and when the assembled battery 1 is overdischarged In the case of limiting the output power of the assembled battery 1 or overcharging, the input power of the assembled battery 1 is limited, and the capacity adjustment control circuit 75 is controlled to adjust the capacity of each battery 11. Details will be described later.

図5は本実施形態に係る制御回路基板8を示す斜視図であり、図1に示す容量調整用抵抗71と、容量調整制御回路75が造り込まれた集積回路チップ76と、統括制御装置6が造り込まれた集積回路チップ61とがプリント配線基板81に実装され、この制御回路基板8は、組電池1が収納された電池パック(不図示)の所定箇所に取り付けられる。なお、図5中の82はコネクタであり、このコネクタを介して制御回路基板8上の各チップが各電池11と接続される。 FIG. 5 is a perspective view showing the control circuit board 8 according to the present embodiment. The capacitance adjustment resistor 71 shown in FIG. 1, the integrated circuit chip 76 in which the capacitance adjustment control circuit 75 is built, and the overall control device 6 are shown. The integrated circuit chip 61 in which the battery pack is built is mounted on a printed wiring board 81, and the control circuit board 8 is attached to a predetermined location of a battery pack (not shown) in which the assembled battery 1 is housed. In addition, 82 in FIG. 5 is a connector, and each chip on the control circuit board 8 is connected to each battery 11 via this connector.

なお、図5においては集積回路チップ76が各容量調整用抵抗71毎に対応して設けられているが、これら複数の集積回路チップ76は機能上同一であることから一つのブロックとして扱って良く、従って図1においては容量調整制御回路75及び集積回路チップ76を一つのブロックで表わしている。 In FIG. 5, an integrated circuit chip 76 is provided corresponding to each capacitance adjusting resistor 71. However, since the plurality of integrated circuit chips 76 are functionally identical, they may be handled as one block. Therefore, in FIG. 1, the capacity adjustment control circuit 75 and the integrated circuit chip 76 are represented by one block.

また、図1に示す組電池システムは、本実施形態に係る容量調整装置7を説明するための一例であって、本例のように複数の電池11を直列に接続して組電池1を構成する以外にも、複数の電池11を直列及び/又は並列に接続して組電池1を構成することもできる。また、組電池1による電力の供給対象が直流モータの場合はインバータ2を省略することができ、さらに電力の供給対象はモータ3以外の負荷とすることもできる。 Moreover, the assembled battery system shown in FIG. 1 is an example for demonstrating the capacity | capacitance adjustment apparatus 7 which concerns on this embodiment, Comprising: The some battery 11 is connected in series like this example, and the assembled battery 1 is comprised. In addition to the above, the assembled battery 1 may be configured by connecting a plurality of batteries 11 in series and / or in parallel. Further, when the power supply target of the assembled battery 1 is a DC motor, the inverter 2 can be omitted, and the power supply target can be a load other than the motor 3.

図1に戻り、各電池11には、容量調整用抵抗71が並列に接続され、この容量調整用抵抗71にnpn型バイポーラトランジスタからなるスイッチング回路素子72が直列に接続され、この容量調整抵抗71とスイッチング回路素子72との直列回路で容量調整回路を形成し、容量調整回路は各電池11と並列に接続されている。そして、容量調整制御回路75により、スイッチング回路素子72を構成するnpn型バイポーラトランジスタのベースにON電流を所定時間tだけ流す(ベースとエミッタ間に所定電圧を印加する)と、トランジスタ72がONして電池11から容量調整用抵抗71に所定時間t(容量調整時間と称する)だけ電流が流れ、この放電により当該電池11の容量(即ち電池11の残容量であり、以下では単に容量と記載する)調整が行われる。 Returning to FIG. 1, each battery 11 is connected with a capacitance adjusting resistor 71 in parallel. A switching circuit element 72 made of an npn-type bipolar transistor is connected in series with the capacitance adjusting resistor 71. And a switching circuit element 72 form a capacity adjustment circuit, and the capacity adjustment circuit is connected in parallel with each battery 11. When the capacitance adjustment control circuit 75 causes an ON current to flow through the base of the npn-type bipolar transistor constituting the switching circuit element 72 for a predetermined time t (a predetermined voltage is applied between the base and the emitter), the transistor 72 is turned on. Thus, a current flows from the battery 11 to the capacity adjustment resistor 71 for a predetermined time t (referred to as capacity adjustment time), and this discharge causes the capacity of the battery 11 (that is, the remaining capacity of the battery 11, hereinafter simply referred to as capacity). ) Adjustments are made.

更に詳述すると、容量調整制御回路75は各電池11の開放電圧を検出して統括制御装置6へ送信し、統括制御装置6は各電池11の開放電圧のうちの最小の開放電圧と各電池11の開放電圧との差を算出する。電池の開放電圧は電池の容量とに相関があることから、統括制御装置6は各電池11の開放電圧と最小の開放電圧との差に基づいて、各電池11と開放電圧が最小の電池と容量差を算出し、算出した容量差を放電するために各電池11に並列接続された容量調整用抵抗71に電流を流す時間である容量調整時間を算出して容量調整制御回路75に送信する。容量調整制御回路75は統括制御装置6から送られた容量調整時間だけバイポーラトランジスタのベースにON電流を流し、各電池11の容量を容量が最低(即ち開放電圧が最小)の電池11の容量に合わせることにより、各電池11の容量を均一化する。このとき容量調整用抵抗71に流れる電流を容量調整用電流と称する。 More specifically, the capacity adjustment control circuit 75 detects the open voltage of each battery 11 and transmits it to the overall control device 6, and the overall control device 6 determines the minimum open voltage among the open voltages of each battery 11 and each battery. The difference with the open circuit voltage of 11 is calculated. Since the open voltage of the battery has a correlation with the capacity of the battery, the overall control device 6 determines whether each battery 11 and the battery with the minimum open voltage are based on the difference between the open voltage of each battery 11 and the minimum open voltage. A capacity difference is calculated, and a capacity adjustment time, which is a time for passing a current through the capacity adjustment resistor 71 connected in parallel to each battery 11 to discharge the calculated capacity difference, is calculated and transmitted to the capacity adjustment control circuit 75. . The capacity adjustment control circuit 75 supplies an ON current to the base of the bipolar transistor for the capacity adjustment time sent from the overall control device 6, and the capacity of each battery 11 is set to the capacity of the battery 11 having the lowest capacity (that is, the open circuit voltage is minimum). By matching, the capacity of each battery 11 is made uniform. At this time, the current flowing through the capacitance adjusting resistor 71 is referred to as a capacitance adjusting current.

なお、本実施形態に係るスイッチング回路素子72は、npn型バイポーラトランジスタ以外にも、電界効果型トランジスタ(FET)または絶縁ゲートバイポーラトランジスタ(IGBT)を用いることもできる。また、容量調整用抵抗71は、一つの電池11に対して一つ設ける以外にも、複数の電池11に対して一つの容量調整用抵抗71を設けて組電池1の容量調整を行うこともできる。 The switching circuit element 72 according to the present embodiment can use a field effect transistor (FET) or an insulated gate bipolar transistor (IGBT) in addition to an npn bipolar transistor. In addition to providing one capacity adjustment resistor 71 for one battery 11, the capacity adjustment of the assembled battery 1 may be performed by providing one capacity adjustment resistor 71 for a plurality of batteries 11. it can.

特に本例では、スイッチング回路素子72を構成するバイポーラトランジスタのベースとエミッタ間に、感温抵抗素子73を、分圧抵抗74とともに設けている。この感温抵抗素子73は、温度変化に反応する電気抵抗体であって、温度上昇にともない抵抗値が減少する負の温度特性、すなわち負の温度係数を有するNTC(Negative Temperature Coefficient)サーミスタである。負の温度特性を有する感温抵抗素子73は、たとえばニッケル、マンガン、コバルト、鉄などの酸化物を混合して焼結したものを例示することができる。 In particular, in this example, a temperature-sensitive resistance element 73 is provided together with a voltage dividing resistor 74 between the base and emitter of the bipolar transistor constituting the switching circuit element 72. The temperature-sensitive resistance element 73 is an electrical resistor that reacts to a temperature change, and is an NTC (Negative Temperature Coefficient) thermistor having a negative temperature characteristic in which a resistance value decreases as the temperature rises, that is, a negative temperature coefficient. . Examples of the temperature sensitive resistance element 73 having negative temperature characteristics include those obtained by mixing and sintering oxides such as nickel, manganese, cobalt, and iron.

なお、バイポーラトランジスタに代えて電界効果型トランジスタをスイッチング回路素子72として用いる場合は、FETのゲートとドレイン間に、分圧抵抗とともに感温抵抗素子73を接続する。 When a field effect transistor is used as the switching circuit element 72 instead of the bipolar transistor, a temperature sensitive resistance element 73 is connected between the gate and drain of the FET together with a voltage dividing resistor.

本例において、容量調整制御回路75によりスイッチング回路素子72のベースにON電流を流すと、感温抵抗素子73が所定温度以下の場合は当該感温抵抗素子73の抵抗値に相当する電圧がスイッチング回路素子72のベースとエミッタ間に生じるため、容量調整制御回路75から抵抗74を介してON電流がベースに流れ、これによりスイッチング回路素子72がONとなって容量調整用抵抗71に電池11からの容量調整用電流が流れる。 In this example, when an ON current is passed through the base of the switching circuit element 72 by the capacitance adjustment control circuit 75, when the temperature sensitive resistance element 73 is below a predetermined temperature, a voltage corresponding to the resistance value of the temperature sensitive resistance element 73 is switched. Since it occurs between the base and emitter of the circuit element 72, an ON current flows from the capacity adjustment control circuit 75 to the base via the resistor 74, whereby the switching circuit element 72 is turned ON and the capacity adjustment resistor 71 is transferred from the battery 11. Current for capacity adjustment flows.

これに対し、感温抵抗素子73が加熱されて所定温度より高くなると当該感温抵抗素子73の抵抗値が減少するため、スイッチング回路素子72のベースとエミッタ間の電圧がそのぶんだけ低下し、その結果、容量調整制御回路75からスイッチング回路素子72のベースにON電流が流れなくなる。 On the other hand, when the temperature-sensitive resistance element 73 is heated and becomes higher than a predetermined temperature, the resistance value of the temperature-sensitive resistance element 73 decreases, so that the voltage between the base and the emitter of the switching circuit element 72 decreases to that extent. As a result, the ON current does not flow from the capacitance adjustment control circuit 75 to the base of the switching circuit element 72.

本例では、感温抵抗素子73によるこうした機能を利用して、スイッチング回路素子72の温度を当該感温抵抗素子73で検知し、スイッチング回路素子72が所定温度以上になった場合は、ベースに流れるON電流を遮断し、これによりスイッチング回路素子72が過熱されることを防止する。   In this example, the function of the temperature-sensitive resistance element 73 is used to detect the temperature of the switching circuit element 72 with the temperature-sensitive resistance element 73, and when the switching circuit element 72 reaches a predetermined temperature or more, the base is used. The flowing ON current is cut off, thereby preventing the switching circuit element 72 from being overheated.

このため、感温抵抗素子73の温度特性は、スイッチング回路素子72の検出温度が、当該スイッチング回路素子72の許容限界温度とほぼ等しいか、それ以下になった場合に、スイッチング回路素子72のベースへのON電流が遮断される特性とすることが望ましい。   For this reason, the temperature characteristic of the temperature-sensitive resistance element 73 is such that when the detected temperature of the switching circuit element 72 is substantially equal to or lower than the allowable limit temperature of the switching circuit element 72, the base of the switching circuit element 72 is It is desirable that the ON current to be cut off.

さらに詳細にいうと、同図に示す容量調整装置7において、容量調整用抵抗71に容量調整電流が流れると、この容量調整用抵抗71が発熱し、図5に示すように容量調整用抵抗71に近接して実装された容量調整制御回路チップ76にこの熱が伝わる。そして、容量調整制御回路チップ76内のスイッチング回路素子72を構成するトランジスタは耐熱性に限界があることから、当該スイッチング回路素子72が所定温度に達した場合には、冷却されるまで容量調整用電流を一時的に遮断することが望ましい。   More specifically, in the capacitance adjusting device 7 shown in FIG. 5, when a capacitance adjusting current flows through the capacitance adjusting resistor 71, the capacitance adjusting resistor 71 generates heat, and as shown in FIG. This heat is transmitted to the capacity adjustment control circuit chip 76 mounted in the vicinity. Since the transistor constituting the switching circuit element 72 in the capacity adjustment control circuit chip 76 has a limit in heat resistance, when the switching circuit element 72 reaches a predetermined temperature, it is used for capacity adjustment until it is cooled. It is desirable to temporarily cut off the current.

ところが、従来の特許文献1に開示された感温抵抗素子を用いた技術は、感温抵抗素子が電源回路上(高電圧回路上)に設けられ、トランジスタが制御回路上(低電圧回路)に設けられているため、高電圧回路と低電圧回路との絶縁を確保するために充分な距離を確保する必要がある。このため、従来の特許文献1に開示された技術をトランジスタ(スイッチング回路素子)の保護回路として適用した場合には、トランジスタの温度が感温抵抗素子に伝わり難く、トランジスタの保護が難しいという問題があった。さらに、感温抵抗素子が電源回路上に設けられているため、感温抵抗素子に流れる電流が大きく、感温抵抗素子自体が発熱することからトランジスタの温度のみに応じて感温抵抗素子の抵抗を変化させることが困難であるという問題もあった。   However, in the technology using the temperature-sensitive resistor element disclosed in the conventional patent document 1, the temperature-sensitive resistor element is provided on the power supply circuit (on the high voltage circuit), and the transistor is on the control circuit (low voltage circuit). Therefore, it is necessary to secure a sufficient distance to ensure insulation between the high voltage circuit and the low voltage circuit. For this reason, when the technique disclosed in Patent Document 1 is applied as a protection circuit for a transistor (switching circuit element), the temperature of the transistor is difficult to be transmitted to the temperature-sensitive resistance element, and it is difficult to protect the transistor. there were. Furthermore, since the temperature sensitive resistance element is provided on the power supply circuit, the current flowing through the temperature sensitive resistance element is large and the temperature sensitive resistance element itself generates heat, so that the resistance of the temperature sensitive resistance element depends only on the temperature of the transistor. There was also a problem that it was difficult to change.

このため本例では、同図において符号76で示す電気回路要素を、一つの半導体集積回路部品としてチップ化している。すなわち、感温抵抗素子73をスイッチング回路素子72とともに半導体集積回路部品としてチップ化することにより、スイッチング回路素子72の実温度が直接感温抵抗素子73に伝わるので、スイッチング回路素子72の正確な温度を検出することができる。また、感温抵抗素子73に流れる電流はスイッチング回路素子72を駆動するための小さな制御電流だけであるので、感温抵抗素子73に電流が流れることによる発熱は小さい。これにより、感温抵抗素子73によりスイッチング回路素子72の実温度を正確に検出できるので、温度補正などの余分な処理を行う必要もない。   For this reason, in this example, the electric circuit element indicated by reference numeral 76 in FIG. That is, by forming the temperature-sensitive resistance element 73 as a semiconductor integrated circuit component together with the switching circuit element 72, the actual temperature of the switching circuit element 72 is directly transmitted to the temperature-sensitive resistance element 73. Can be detected. Further, since the current flowing through the temperature-sensitive resistance element 73 is only a small control current for driving the switching circuit element 72, heat generation due to the current flowing through the temperature-sensitive resistance element 73 is small. Thereby, since the actual temperature of the switching circuit element 72 can be accurately detected by the temperature-sensitive resistance element 73, it is not necessary to perform extra processing such as temperature correction.

なお、感温抵抗素子73をスイッチング回路素子72とともにチップ化しなくても、スイッチング回路素子72に接触または近接した位置に感温抵抗素子73を配置することによりスイッチング回路素子72の実温度をほぼ直接的に検出することができるので、チップ化した場合と同等の効果を得ることができる。   Even if the temperature-sensitive resistance element 73 is not chipped together with the switching circuit element 72, the actual temperature of the switching circuit element 72 is almost directly set by arranging the temperature-sensitive resistance element 73 at a position in contact with or close to the switching circuit element 72. Therefore, it is possible to obtain the same effect as that of a chip.

ところで、上述したように感温抵抗素子73を用いてスイッチング回路素子72のベース電流を遮断している間は、電池11の容量調整処理が中断され、目的とする電池11間の容量調整が達成されないこととなる。しかしながら本例では、スイッチング回路素子72を保護するために当該スイッチング回路素子72をOFFしたとしても、目的とする容量調整処理を継続できるように構成している。   By the way, as described above, while the base current of the switching circuit element 72 is cut off using the temperature sensitive resistance element 73, the capacity adjustment process of the battery 11 is interrupted, and the target capacity adjustment between the batteries 11 is achieved. Will not be. However, in this example, even if the switching circuit element 72 is turned off in order to protect the switching circuit element 72, the target capacity adjustment processing can be continued.

具体的には、図1に示すように容量調整用抵抗71の両端子間の電圧を検出する電圧検出回路77を接続し、この電圧検出回路77により検出された電圧値を容量調整制御回路75に送出することで、スイッチング回路素子72のON/OFF状態、換言すれば容量調整用電流が容量調整用抵抗71に流れる通電状態を検出する。   Specifically, as shown in FIG. 1, a voltage detection circuit 77 for detecting a voltage between both terminals of the capacitance adjustment resistor 71 is connected, and the voltage value detected by the voltage detection circuit 77 is used as a capacitance adjustment control circuit 75. To detect the ON / OFF state of the switching circuit element 72, in other words, the energization state in which the capacity adjustment current flows through the capacity adjustment resistor 71.

すなわち、容量調整制御回路75は、電圧検出回路77から送られてきた容量調整用抵抗71の端子間電圧値に基づいて、スイッチング回路素子72がON状態となっている時間Ton、換言すれば当該容量調整用抵抗71に容量調整用電流が流れている時間Tonを積算する。この時間Tonの積算時間が容量調整時間となった時点で容量調整を終了(スイッチング回路素子72をOFF)することにより、スイッチング回路素子72をOFFしたとしても、目的とする容量調整処理が実行可能となっている。   That is, the capacitance adjustment control circuit 75 is based on the voltage value across the terminals of the capacitance adjustment resistor 71 sent from the voltage detection circuit 77, in other words, the time Ton when the switching circuit element 72 is in the ON state, in other words, The time Ton during which the capacity adjustment current flows through the capacity adjustment resistor 71 is integrated. When the integration time of the time Ton becomes the capacity adjustment time, the capacity adjustment is completed (the switching circuit element 72 is turned off), so that the target capacity adjustment processing can be executed even when the switching circuit element 72 is turned off. It has become.

容量調整用抵抗71に電池11からの電流が流れると、電圧検出回路77により検出される電圧値は、流れていないときの電圧値(電池11の端子間電圧に等しい)に比べて低くなるので、容量調整用抵抗71に容量調整用電流が流れているか否かを判断することができ、クロック回路等を用いることで容量調整用電流が流れた時間を積算することができる。 When the current from the battery 11 flows through the capacity adjustment resistor 71, the voltage value detected by the voltage detection circuit 77 is lower than the voltage value when the current does not flow (equal to the voltage across the terminals of the battery 11). Thus, it can be determined whether or not the capacitance adjustment current is flowing through the capacitance adjustment resistor 71. By using a clock circuit or the like, the time during which the capacitance adjustment current flows can be integrated.

なお、図1に示す容量調整装置7においては、電圧検出回路77を容量調整用抵抗71の両端子間電圧を検出するように接続したが、この構成以外にも、たとえば図2及び図3に示すように電圧検出回路77を接続することもできる。   In the capacity adjusting device 7 shown in FIG. 1, the voltage detecting circuit 77 is connected so as to detect the voltage between both terminals of the capacity adjusting resistor 71. However, other than this configuration, for example, in FIGS. A voltage detection circuit 77 can also be connected as shown.

図2及び図3は、他の実施形態に係る電圧検出回路77の接続構造を示す要部回路図である。   2 and 3 are main circuit diagrams showing a connection structure of a voltage detection circuit 77 according to another embodiment.

図2に示す例では、スイッチング回路素子72のコレクタとエミッタ間の端子間電圧を電圧検出回路77で検出するように接続している。本例によれば、容量調整用抵抗71に電池11からの電流が流れると、電圧検出回路77により検出されるコレクタとエミッタ間の端子間電圧値は、流れていないときの電圧値(電池11の端子間電圧に等しい)に比べて低くなるので、容量調整用抵抗71に容量調整用電流が流れているか否かを判断することができる。なお、スイッチング回路素子72として電界効果型トランジスタFETを用いた場合には、FETのソースとドレイン間の端子間電圧を検出するように電圧検出回路77を接続する。 In the example shown in FIG. 2, the voltage detection circuit 77 is connected so that the voltage between the collector and emitter of the switching circuit element 72 is detected. According to this example, when the current from the battery 11 flows through the capacity adjustment resistor 71, the voltage value between the collector and the emitter detected by the voltage detection circuit 77 is the voltage value when the current does not flow (battery 11). Therefore, it is possible to determine whether or not a capacity adjustment current is flowing through the capacity adjustment resistor 71. When a field effect transistor FET is used as the switching circuit element 72, a voltage detection circuit 77 is connected so as to detect a voltage between terminals of the source and drain of the FET.

また、図3に示す例では、スイッチング回路素子72のベースとエミッタ間の端子間電圧を電圧検出回路77で検出するように接続している。本例によれば、容量調整用抵抗71に電池11からの電流が流れると、電圧検出回路77により検出されるベースとエミッタ間の端子間電圧値は、流れていないときの電圧値に比べて低くなるので、容量調整用抵抗71に容量調整用電流が流れているか否かを判断することができる。なお、スイッチング回路素子72として電界効果型トランジスタFETを用いた場合には、FETのゲートとドレイン間の端子間電圧を検出するように電圧検出回路77を接続する。 In the example shown in FIG. 3, the voltage detection circuit 77 is connected so that the voltage between the base and the emitter of the switching circuit element 72 is detected. According to this example, when the current from the battery 11 flows through the capacity adjustment resistor 71, the voltage value between the base and the emitter detected by the voltage detection circuit 77 is compared with the voltage value when not flowing. Therefore, it is possible to determine whether or not a capacity adjustment current is flowing through the capacity adjustment resistor 71. When a field effect transistor FET is used as the switching circuit element 72, a voltage detection circuit 77 is connected so as to detect a voltage between terminals of the gate and drain of the FET.

図4は、本実施形態に係る容量調整装置7の動作を示すフローチャートである。同図を参照しながら感温抵抗素子73により容量調整が中断された場合を含めた容量調整操作を説明する。   FIG. 4 is a flowchart showing the operation of the capacity adjustment device 7 according to the present embodiment. The capacity adjustment operation including the case where the capacity adjustment is interrupted by the temperature-sensitive resistance element 73 will be described with reference to FIG.

まず、ステップST10において組電池システムが容量調整モードであることを検出すると、ステップST20において、容量調整制御回路75は、図示しない電圧検出回路にて電池11の端子間電圧を検出し、これを統括制御回路6に送出する。統括制御回路6では、容量調整制御回路75から送られてきた各電池11の端子間電圧を比較し、各電池11に対する調整容量、具体的には容量調整電流を容量調整用抵抗71に流す目標容量調整時間Tを演算する。   First, when it is detected in step ST10 that the assembled battery system is in the capacity adjustment mode, in step ST20, the capacity adjustment control circuit 75 detects the inter-terminal voltage of the battery 11 with a voltage detection circuit (not shown), and controls this. It is sent to the control circuit 6. The overall control circuit 6 compares the voltage between the terminals of each battery 11 sent from the capacity adjustment control circuit 75, and targets the adjustment capacity for each battery 11, specifically, the capacity adjustment current to flow to the capacity adjustment resistor 71. The capacity adjustment time T is calculated.

次いで、ステップST30において、統括制御回路6は、演算された各電池11に対する目標容量調整時間Tを容量調整制御回路75に送出し、容量調整制御回路75は、各電池11に対応するスイッチング回路素子72のベースに目標容量調整時間TだけON電流を流すように制御することにより容量調整処理を開始する。   Next, in step ST30, the overall control circuit 6 sends the calculated target capacity adjustment time T for each battery 11 to the capacity adjustment control circuit 75, and the capacity adjustment control circuit 75 switches the switching circuit element corresponding to each battery 11. The capacity adjustment processing is started by controlling the ON current to flow through the base 72 for the target capacity adjustment time T.

ステップST40では、図1に示す電圧検出回路77により容量調整用抵抗71の両端子間電圧を検出し、これを容量調整制御回路75に送出する。容量調整制御回路75は、検出された電圧値に基づいてスイッチング回路素子72のON/OFF状態を検出する。続くステップST50では、スイッチング回路素子72のON時間Ton、すなわち容量調整用抵抗71に容量調整用電流が流れた時間Tonを順次積算する。   In step ST40, the voltage detection circuit 77 shown in FIG. 1 detects the voltage between both terminals of the capacitance adjustment resistor 71 and sends it to the capacitance adjustment control circuit 75. The capacity adjustment control circuit 75 detects the ON / OFF state of the switching circuit element 72 based on the detected voltage value. In the subsequent step ST50, the ON time Ton of the switching circuit element 72, that is, the time Ton when the capacitance adjustment current flows through the capacitance adjustment resistor 71 is sequentially integrated.

そして、ステップST60にて、積算された容量調整用電流が流れた時間Tonを所定時間間隔で目標容量調整時間Tと比較し、積算時間Tonが目標容量調整時間Tに達したか否かを判断する。積算時間Tonが目標容量調整時間Tに達していない場合は、容量調整処理を継続し、積算時間Tonが目標容量調整時間Tに達したらステップST60へ進む。   In step ST60, the time Ton when the accumulated capacity adjustment current flows is compared with the target capacity adjustment time T at predetermined time intervals, and it is determined whether or not the accumulation time Ton has reached the target capacity adjustment time T. To do. When the integration time Ton has not reached the target capacity adjustment time T, the capacity adjustment process is continued, and when the integration time Ton reaches the target capacity adjustment time T, the process proceeds to step ST60.

ステップST60では、全ての電池11について容量調整処理が終了したかどうかを判断し、終了していない電池11についてはステップST20〜ST60の処理を実行する。   In step ST60, it is determined whether or not the capacity adjustment process has been completed for all the batteries 11, and the processes of steps ST20 to ST60 are executed for the battery 11 that has not been completed.

以上のとおり、本実施形態の容量調整装置によれば、容量調整処理中に容量調整用抵抗71の発熱によってスイッチング回路素子72が所定温度になると、感温抵抗素子73が反応してスイッチング回路素子72をOFFし、容量調整用抵抗71の発熱を一時停止させる。これにより、スイッチング回路素子72の過熱が防止できる。   As described above, according to the capacity adjustment device of the present embodiment, when the switching circuit element 72 reaches a predetermined temperature due to the heat generated by the capacity adjustment resistor 71 during the capacity adjustment processing, the temperature-sensitive resistance element 73 reacts to switch the switching circuit element. 72 is turned OFF, and the heat generation of the capacitance adjusting resistor 71 is temporarily stopped. Thereby, overheating of the switching circuit element 72 can be prevented.

また、感温抵抗素子73はスイッチング回路素子72の温度を直接検出するので、保護対象であるスイッチング素子72が所定温度以上に過熱されることを精度良く防止できる。その結果、スイッチング回路素子72を耐熱限界温度まで動作させることができるので、容量調整処理を不用意に中断することなく、短時間で容量調整を行うことができる。   Further, since the temperature-sensitive resistance element 73 directly detects the temperature of the switching circuit element 72, it is possible to accurately prevent the switching element 72 to be protected from being overheated to a predetermined temperature or higher. As a result, since the switching circuit element 72 can be operated up to the heat resistant limit temperature, the capacity adjustment can be performed in a short time without inadvertently interrupting the capacity adjustment process.

また、電圧検出回路77によりスイッチング回路素子72のON状態や容量調整用抵抗71の通電状態を検出し、これらの積算時間Tonと目標容量調整時間Tとを比較するので、組電池1を構成する各電池11の容量を適切に調整することができる。   Further, since the voltage detection circuit 77 detects the ON state of the switching circuit element 72 and the energization state of the capacity adjustment resistor 71 and compares the integrated time Ton with the target capacity adjustment time T, the assembled battery 1 is configured. The capacity of each battery 11 can be adjusted appropriately.

本発明の実施形態に係る容量調整装置を備えた組電池システムを示すブロック図である。It is a block diagram which shows the assembled battery system provided with the capacity | capacitance adjustment apparatus which concerns on embodiment of this invention. 本発明の他の実施形態に係る容量調整装置の要部を示す電気回路図である。It is an electric circuit diagram which shows the principal part of the capacity | capacitance adjustment apparatus which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る容量調整装置の要部を示す電気回路図である。It is an electric circuit diagram which shows the principal part of the capacity | capacitance adjustment apparatus which concerns on further another embodiment of this invention. 本発明の実施形態に係る容量調整装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the capacity | capacitance adjustment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る制御回路基板を示す斜視図である。It is a perspective view which shows the control circuit board which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…組電池
11…電池
2…インバータ
3…モータ
6…統括制御装置
61…統括制御装置の集積回路チップ
7…容量調整装置
71…容量調整用抵抗
72…スイッチング回路素子
73…感温抵抗素子
74…抵抗
75…容量調整制御回路
76…容量調整制御回路の集積回路チップ
77…電圧検出回路
8…制御回路基板
9…電力供給線
DESCRIPTION OF SYMBOLS 1 ... Assembled battery 11 ... Battery 2 ... Inverter 3 ... Motor 6 ... Overall control device 61 ... Integrated circuit chip 7 of overall control device ... Capacity adjustment device 71 ... Capacity adjustment resistor 72 ... Switching circuit element 73 ... Temperature sensitive resistance element 74 ... Resistance 75 ... Capacity adjustment control circuit 76 ... Integrated circuit chip of capacitance adjustment control circuit 77 ... Voltage detection circuit 8 ... Control circuit board 9 ... Power supply line

Claims (7)

組電池を構成する一又は複数の電池のそれぞれに並列に接続された、容量調整用抵抗と該容量調整用抵抗に直列に接続されたスイッチング回路素子とで形成された容量調整回路を備えた組電池の容量調整装置において、
前記スイッチング回路素子の駆動端子と、当該スイッチング回路素子の前記電池の負極に接続された一方の端子との間に、感温抵抗素子を設けたことを特徴とする組電池の容量調整装置。
A set comprising a capacity adjustment circuit formed of a capacity adjustment resistor and a switching circuit element connected in series to the capacity adjustment resistor, connected in parallel to each of one or a plurality of batteries constituting the battery pack In the battery capacity adjustment device,
A battery pack capacity adjustment device, wherein a temperature-sensitive resistance element is provided between a drive terminal of the switching circuit element and one terminal connected to the negative electrode of the battery of the switching circuit element.
請求項1に記載の組電池の容量調整装置において、
前記感温抵抗素子は、温度の上昇にともない抵抗が減少する負の温度特性を有することを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus for an assembled battery according to claim 1,
The temperature adjusting resistor element has a negative temperature characteristic in which resistance decreases as the temperature rises.
請求項1又は2に記載の組電池の容量調整装置において、
前記スイッチング回路素子のON/OFF状態を検出する検出手段と、
前記検出手段により検出された前記ON/OFF状態に基づいて容量調整を制御する制御手段と、をさらに備えることを特徴とする組電池の容量調整装置。
In the capacity adjustment apparatus of the assembled battery according to claim 1 or 2,
Detecting means for detecting an ON / OFF state of the switching circuit element;
The battery pack capacity adjustment device further comprising: a control unit that controls the capacity adjustment based on the ON / OFF state detected by the detection unit.
請求項3に記載の組電池の容量調整装置において、
前記制御手段は、前記検出手段により検出された前記スイッチング回路素子のON状態の時間を積算するとともに、当該積算時間が容量調整時間に達するまで、前記容量調整の制御を実行することを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus of the assembled battery according to claim 3,
The control means integrates the ON state time of the switching circuit element detected by the detection means, and executes the capacity adjustment control until the integration time reaches a capacity adjustment time. Battery pack capacity adjustment device.
請求項1又は2に記載の組電池の容量調整装置において、
前記容量調整用電流が前記容量調整用抵抗に流れる通電状態を検出する検出手段と、
前記検出手段により検出された容量調整用抵抗の通電状態に基づいて容量調整を制御する制御手段と、をさらに備えることを特徴とする組電池の容量調整装置。
In the capacity adjustment apparatus of the assembled battery according to claim 1 or 2,
Detecting means for detecting an energization state in which the capacity adjusting current flows through the capacity adjusting resistor;
A battery pack capacity adjustment apparatus, further comprising: a control unit that controls the capacity adjustment based on an energization state of the capacity adjustment resistor detected by the detection unit.
請求項5に記載の組電池の容量調整装置において、
前記制御手段は、前記検出手段により検出された前記容量調整用抵抗の通電状態の時間を積算するとともに、当該積算時間が容量調整時間に達するまで、前記容量調整の制御を実行することを特徴とする組電池の容量調整装置。
In the capacity adjustment apparatus of the assembled battery according to claim 5,
The control means integrates the time of energization state of the capacity adjustment resistor detected by the detection means, and executes the capacity adjustment control until the integration time reaches the capacity adjustment time. The capacity adjustment device of the assembled battery.
請求項3〜6のいずれか一項に記載の組電池の容量調整装置において、
前記検出手段は、
前記容量調整用抵抗の電圧、
前記容量調整用電流が流れる当該スイッチング回路素子の端子間の電圧、または
前記スイッチング回路素子の駆動端子と、前記容量調整用電流が流れる当該スイッチング回路素子の一方の端子との間の電圧、の少なくともいずれかを検出することを特徴とする組電池の容量調整装置。
In the capacity adjustment apparatus of the assembled battery as described in any one of Claims 3-6,
The detection means includes
Voltage of the capacitance adjusting resistor,
At least a voltage between terminals of the switching circuit element through which the capacity adjustment current flows, or a voltage between a driving terminal of the switching circuit element and one terminal of the switching circuit element through which the capacity adjustment current flows. Any one of them is detected, and the battery pack capacity adjustment device.
JP2008050846A 2008-02-29 2008-02-29 Device for adjusting capacity of battery pack Pending JP2009213196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050846A JP2009213196A (en) 2008-02-29 2008-02-29 Device for adjusting capacity of battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050846A JP2009213196A (en) 2008-02-29 2008-02-29 Device for adjusting capacity of battery pack

Publications (1)

Publication Number Publication Date
JP2009213196A true JP2009213196A (en) 2009-09-17

Family

ID=41185815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050846A Pending JP2009213196A (en) 2008-02-29 2008-02-29 Device for adjusting capacity of battery pack

Country Status (1)

Country Link
JP (1) JP2009213196A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099823A1 (en) * 2011-01-20 2012-07-26 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
WO2012099820A1 (en) * 2011-01-20 2012-07-26 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
JP2015503310A (en) * 2011-12-13 2015-01-29 エルジー・ケム・リミテッド Novel structure switching board and battery module including the same
US8957624B2 (en) 2011-01-20 2015-02-17 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
US9160177B2 (en) 2011-09-21 2015-10-13 Lapis Semiconductor Co., Ltd. Semiconductor circuit, battery monitoring system, and control method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8957624B2 (en) 2011-01-20 2015-02-17 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
WO2012099820A1 (en) * 2011-01-20 2012-07-26 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
CN103329390A (en) * 2011-01-20 2013-09-25 威伦斯技术公司 Rechargeable battery systems and rechargeable battery system operational methods
US8773068B2 (en) 2011-01-20 2014-07-08 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
US8922167B2 (en) 2011-01-20 2014-12-30 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
WO2012099823A1 (en) * 2011-01-20 2012-07-26 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
CN103329390B (en) * 2011-01-20 2016-02-24 威伦斯技术公司 Chargeable cell system and rechargeable battery system operational
US9912178B2 (en) 2011-01-20 2018-03-06 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
US10056764B2 (en) 2011-01-20 2018-08-21 Lithium Werks B.V. Rechargeable battery systems and rechargeable battery system operational methods
US10903661B2 (en) 2011-01-20 2021-01-26 Lithium Werks Technology Bv Rechargeable battery systems and rechargeable battery system operational methods
US11616375B2 (en) 2011-01-20 2023-03-28 Lithion Battery Inc. Rechargeable battery systems and rechargeable battery system operational methods
US9160177B2 (en) 2011-09-21 2015-10-13 Lapis Semiconductor Co., Ltd. Semiconductor circuit, battery monitoring system, and control method
JP2015503310A (en) * 2011-12-13 2015-01-29 エルジー・ケム・リミテッド Novel structure switching board and battery module including the same

Similar Documents

Publication Publication Date Title
EP3758127B1 (en) Control system and method for battery pack heating system and battery pack heating management system
US10541542B2 (en) System and method for charging a battery pack
CN110062994B (en) Apparatus and method for preventing overcharge
US8299758B2 (en) Charging controller
EP1681753B1 (en) Overheat protection device and electrical system having the same
US20040042142A1 (en) Overheat protection circuit
JP5057928B2 (en) Power system
JP2004135400A (en) Secondary battery with protective circuit
JP2001178011A (en) Secondary cell device
JP2009117262A (en) Battery pack
JP2009213196A (en) Device for adjusting capacity of battery pack
US20090202889A1 (en) Protection Circuit And Battery Pack
JP2008245400A (en) Battery pack
JP4449885B2 (en) Secondary battery protection device
JP5064776B2 (en) Pack battery
JP4886212B2 (en) Protection circuit
JP2009239989A (en) Charger
CN112930633A (en) Battery cell with integrated control circuit
JP2000333469A (en) Power switching device
JP3634128B2 (en) Battery pack
JP2011036014A (en) Protection circuit and battery pack
JP2004357440A (en) Battery pack
JP2001057740A (en) Battery protecting device
JP2003070153A (en) Method for preventing overheat of secondary battery pack
JP2004355837A (en) Packed cell having overcurrent protection circuit