JP2000333469A - Power switching device - Google Patents

Power switching device

Info

Publication number
JP2000333469A
JP2000333469A JP11140572A JP14057299A JP2000333469A JP 2000333469 A JP2000333469 A JP 2000333469A JP 11140572 A JP11140572 A JP 11140572A JP 14057299 A JP14057299 A JP 14057299A JP 2000333469 A JP2000333469 A JP 2000333469A
Authority
JP
Japan
Prior art keywords
temperature
chip
voltage
power switching
detecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11140572A
Other languages
Japanese (ja)
Other versions
JP4078754B2 (en
Inventor
Hiroshi Ishiyama
弘 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP14057299A priority Critical patent/JP4078754B2/en
Publication of JP2000333469A publication Critical patent/JP2000333469A/en
Application granted granted Critical
Publication of JP4078754B2 publication Critical patent/JP4078754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize highly accurate temperature keep control by selecting temperature information, related to detection temperature of an on-chip temperature detecting element preferentially, when the detection temperature exceeds a specified threshold level or when it is lower than the specified threshold level. SOLUTION: When a detected temperature is lower than a threshold level for deciding thermal overload, for example, the positive terminal input of an operational amplifier U1A has a voltage Vref, and a lowest voltage is selected from among thermistor output voltages VthU, VthV and VthW, i.e., the detection value of a thermistor detecting the highest temperature. It is then delivered externally from a buffer 600 as an analog voltage signal. When the threshold level for deciding thermal overload is exceeded, a constant voltage value VOLT indicative of that is inputted to the positive terminal input of the operational amplifier U1A, and the lowest voltage among the VOLTC, VthU, VthV and VthW is delivered externally as a detection temperature voltage. Consequently, an external controller can start lock protection control instantaneously.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パワースイッチン
グ装置に関し、特に半導体電力スイッチング素子の過熱
保護技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power switching device, and more particularly to a technique for protecting a semiconductor power switching element from overheating.

【0002】[0002]

【従来の技術】電力スイッチング素子が形成されたチッ
プに温度検出用のダイオ−ド(オンチップ温度検出素
子)を形成し、温度変化によるダイオ−ドの電圧降下量
の変化に基づいてチップ温度を検出するオンチップ温度
検出技術が提案されている。このオンチップ温度検出式
の電力スイッチング素子を電気自動車やハイブリッド車
の走行モータ駆動用のインバータ装置に採用する場合、
このインバータ装置の電力スイッチング素子が数百Vと
いった高電源電圧を給電されるため、チップ内の絶縁確
保や端子数低減のためオンチップ温度検出素子にもこの
高電源電圧に基づいて形成された電源電圧が印加される
ことが一般的である。
2. Description of the Related Art A diode for detecting temperature (on-chip temperature detecting element) is formed on a chip on which a power switching element is formed, and a chip temperature is determined based on a change in a voltage drop of the diode due to a temperature change. On-chip temperature detection technology for detecting has been proposed. When this on-chip temperature detection type power switching element is used in an inverter device for driving a traveling motor of an electric vehicle or a hybrid vehicle,
Since the power switching element of this inverter device is supplied with a high power supply voltage of several hundred volts, a power supply formed based on this high power supply voltage is also provided to the on-chip temperature detection element to ensure insulation within the chip and reduce the number of terminals. Generally, a voltage is applied.

【0003】一方、これら各温度検出回路からの出力信
号を処理する制御回路は、所定の制御用電源電圧で作動
するため、各電力スイッチング素子特にインバータ装置
のハイサイド側の電力スイッチング素子の温度を個別に
検出する各温度検出回路から制御回路への温度信号の伝
送には、フォトカプラなどの電気絶縁回路を介在させて
いた。
On the other hand, a control circuit which processes output signals from these temperature detecting circuits operates at a predetermined control power supply voltage, so that the temperature of each power switching element, particularly the power switching element on the high side of the inverter device, is controlled. The transmission of the temperature signal from each of the individually detected temperature detection circuits to the control circuit has involved an electrical insulation circuit such as a photocoupler.

【0004】また、特開平4−295278号公報は、
インバータ回路近傍に設けたサーミスタなどの温度セン
サ(オフチップ温度検出素子)によりインバータ回路の
素子温度を検出し、それが許容温度以上となる場合にイ
ンバータ回路の出力周波数を低下させ、その主要な発熱
素子(パワースィッチング素子)の電力損失すなわち発
熱量を減らすインバータ装置を提案している。この場合
には上記フォトカプラなどの電気絶縁回路は当然省略す
ることができる。
[0004] Also, Japanese Patent Application Laid-Open No. 4-295278 discloses that
The temperature of the inverter circuit is detected by a temperature sensor (off-chip temperature detection element) such as a thermistor near the inverter circuit. If the temperature of the inverter circuit exceeds the allowable temperature, the output frequency of the inverter circuit is reduced and the main heat is generated. An inverter device that reduces the power loss of a device (power switching device), that is, the amount of heat generation has been proposed. In this case, the electrical insulation circuit such as the photocoupler can be omitted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
たサーミスタ(オフチップ温度検出素子)は、電力スイ
ッチング素子に対して電気絶縁を確保して実装されるた
め、両者間の熱抵抗により電力素子発熱量によって双方
の温度関係が非線形に変化するという特性をもち、ま
た、熱応答性がオンチップ温度センサに比較して遅いた
め、モータロック時などの電力スイッチング素子の発熱
量が急増する状況下ではオフチップ温度検出素子の出力
信号により電力スイッチング素子を遮断保護することが
容易ではなかった。
However, since the above-mentioned thermistor (off-chip temperature detecting element) is mounted while ensuring electrical insulation with respect to the power switching element, the heat generated by the power element is determined by the thermal resistance between the two elements. And the temperature relationship between them changes non-linearly, and the thermal response is slower than that of the on-chip temperature sensor. It is not easy to cut off and protect the power switching element by the output signal of the chip temperature detecting element.

【0006】一方、上記したダイオード(オンチップ温
度検出素子)は、素子自体の温度検出感度(SN比)が
オフチップ温度検出素子より相対的に低く、かつ、前述
した高電圧動作インバータ回路に用いられる電力スイッ
チング素子、特にそのハイサイド側の電力スイッチング
素子のオンチップ温度検出素子では制御回路への温度信
号の伝送により更にSN比が低下して出力信号の精度が
十分でないため、電力スイッチング素子の高精度の温度
制御が容易でないという問題があった。
On the other hand, the above-mentioned diode (on-chip temperature detecting element) has a temperature detection sensitivity (SN ratio) of the element itself relatively lower than that of the off-chip temperature detecting element, and is used in the above-mentioned high voltage operation inverter circuit. In the power switching element, especially the on-chip temperature detection element of the power switching element on the high side, the transmission of the temperature signal to the control circuit further lowers the S / N ratio and the accuracy of the output signal is not sufficient. There is a problem that high-precision temperature control is not easy.

【0007】本発明は上記問題点に鑑みなされたもので
あり、電力スイッチング素子の発熱量急増状況における
電力スイッチング素子の保護機能を低下させることな
く、電力スイッチング素子の高精度の温度維持制御が可
能なパワースイッチング装置を提供することをその解決
すべき課題としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and enables high-precision temperature maintenance control of a power switching element without deteriorating a protection function of the power switching element in a situation where the heat generation amount of the power switching element is rapidly increased. The problem to be solved is to provide a simple power switching device.

【0008】[0008]

【課題を解決するための手段】請求項1記載のパワース
イッチング装置は、電力スイッチング素子の温度保護、
温度モニタのために、オンチップ温度検出素子の検出温
度が所定しきい値以上の場合にこのオンチップ温度検出
素子の検出温度に基づいて形成した温度情報を優先して
選択採用し、オンチップ温度検出素子の検出温度が所定
しきい値未満の場合にオフチップ温度検出素子の検出温
度に連動する温度情報を優先して選択採用するので、電
力スイッチング素子の高温領域で発熱量急増によりその
温度が急上昇する場合にはオンチップ温度検出素子から
の温度情報によりレスポンスに優れた素子の保護制御を
実現でき、それ以外の場合には電力スイッチング素子の
高精度の温度維持制御が可能となる。
According to a first aspect of the present invention, there is provided a power switching device, comprising:
For temperature monitoring, when the detected temperature of the on-chip temperature detecting element is equal to or higher than a predetermined threshold, the temperature information formed based on the detected temperature of the on-chip temperature detecting element is preferentially selected and adopted. When the detected temperature of the detecting element is lower than a predetermined threshold value, the temperature information linked to the detected temperature of the off-chip temperature detecting element is preferentially selected and adopted. When the temperature rises sharply, protection control of the device having excellent response can be realized by the temperature information from the on-chip temperature detection device. In other cases, the temperature control of the power switching device can be performed with high accuracy.

【0009】請求項2記載の構成によれば請求項1記載
のパワースイッチング装置において更に、オンチップ温
度検出素子の検出温度が所定しきい値未満の場合にオフ
チップ温度検出素子の検出温度に連動するアナログ信号
電圧を、オンチップ温度検出素子の検出温度が所定しき
い値以上の場合にオンチップ温度検出素子の検出温度が
しきい値に達したことを示す所定のアナログ電圧値を、
共通の信号線を通じて外部に出力するので、保護機能を
低下することなくモニタ部へ温度情報を出力する信号線
を簡素化することができる。更に説明すると、オンチッ
プ温度検出素子の温度情報としては、オンチップ温度検
出素子の検出温度が所定の警戒温度値に達したかどうか
の温度情報を、オフチップ温度検出素子のアナログ電圧
範囲とは異なるレベルのアナログ電圧値に変換するの
で、上記アナログ共通信号線によりこれら両温度検出素
子の出力情報を多重伝送することができる。
According to a second aspect of the present invention, in the power switching device according to the first aspect, when the detected temperature of the on-chip temperature detecting element is lower than a predetermined threshold, the power switching apparatus is linked to the detected temperature of the off-chip temperature detecting element. A predetermined analog voltage value indicating that the detected temperature of the on-chip temperature detecting element has reached the threshold value when the detected temperature of the on-chip temperature detecting element is equal to or higher than a predetermined threshold value.
Since the signal is output to the outside through the common signal line, the signal line for outputting the temperature information to the monitor unit can be simplified without lowering the protection function. More specifically, as the temperature information of the on-chip temperature detecting element, the temperature information on whether the detected temperature of the on-chip temperature detecting element has reached a predetermined alarm temperature value is referred to as the analog voltage range of the off-chip temperature detecting element. Since the analog voltage values are converted into analog voltage values of different levels, the output information of these two temperature detecting elements can be multiplexed and transmitted by the analog common signal line.

【0010】また、オンチップ温度検出素子からの温度
情報は二値信号に変換されるので、オンチップ温度検出
素子回路系とオフチップ温度検出素子回路系とが別の電
源電圧で作動する場合において、オンチップ温度検出素
子回路系からオフチップ温度検出素子回路系へ電気絶縁
しつつ信号伝送することが簡素な回路で実現することが
できる。
Further, since the temperature information from the on-chip temperature detecting element is converted into a binary signal, the temperature information may be reduced when the on-chip temperature detecting element circuit system and the off-chip temperature detecting element circuit operate at different power supply voltages. In addition, signal transmission from the on-chip temperature detecting element circuit system to the off-chip temperature detecting element circuit system while being electrically insulated can be realized by a simple circuit.

【0011】[0011]

【発明を実施するための態様】以下、本発明の好適な態
様を以下の実施例に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of the present invention will be described based on the following examples.

【0012】[0012]

【実施例1】本発明のパワースイッチング装置を、電気
自動車又はハイブリッド自動車の走行モータを駆動制御
するインバータ装置に適用した実施例について以下に説
明する。 (全体構成)実施例のインバータ装置の全体構成を図1
を参照して説明する。
[Embodiment 1] An embodiment in which the power switching device of the present invention is applied to an inverter device for driving and controlling a traveling motor of an electric vehicle or a hybrid vehicle will be described below. (Overall Configuration) FIG. 1 shows the overall configuration of the inverter device of the embodiment.
This will be described with reference to FIG.

【0013】このインバータ装置は、120度通電制御
を行う車載用三相インバータであって、51は走行に必
要な電力を供給する高電圧車載バッテリ(直流電源)、
53はインバータ装置に印加される直流電源電圧を安定
化するための平滑コンデンサ、54はインバータ装置の
負荷となるモータ、61〜66は電力スイッチング素子
で、本実施例ではIGBTを使用している。71〜76
はフライホイールダイオ−ド(FWD)、55は電力ス
イッチング素子駆動制御用の制御信号形成回路や電力ス
イッチング素子の保護回路などを含むコントローラ(制
御部)、81〜86は素子コントローラ、91〜96は
コントローラ55と各素子コントローラ81〜86とを
接続する信号線である。
This inverter device is a vehicle-mounted three-phase inverter that performs 120-degree conduction control, and 51 is a high-voltage vehicle-mounted battery (DC power supply) that supplies power required for traveling.
53 is a smoothing capacitor for stabilizing the DC power supply voltage applied to the inverter, 54 is a motor serving as a load of the inverter, and 61 to 66 are power switching elements. In this embodiment, IGBTs are used. 71-76
Is a flywheel diode (FWD), 55 is a controller (control unit) including a control signal forming circuit for power switching element drive control and a protection circuit for the power switching element, 81 to 86 are element controllers, and 91 to 96 are element controllers. This is a signal line for connecting the controller 55 and each of the element controllers 81 to 86.

【0014】素子コントローラ81〜86は、それらが
制御するIGBT61〜66と一対ずつモジュール化さ
れており、コントローラ55から受け取ったゲート制御
信号を電力増幅してIGBT61〜66のゲ−ト電極に
印加するとともに、各IGBT61〜66の電圧、電流
及び温度をモニタしてその異常発生時に異常信号をコン
トローラ55に出力し、更にある種類の異常状態を検出
した場合に自己が制御するIGBTを一定期間、遮断
(自己遮断)する。 (インバータ装置の基本動作)本実施例の120度通電
制御では、IGBT61〜66を断続制御することによ
り、ローサイドIGBT64〜66はそれぞれ120度
ずつずれてオンされ、ハイサイドIGBT61〜63を
DUTY制御して疑似三相交流電圧Vu、Vv、Vwを
形成してモータ54に印加している。 (素子コントローラ内の温度検出回路の説明)素子コン
トローラ81〜86の上記コントローラ55から受け取
ったゲート制御信号を電力増幅してIGBT61〜66
のゲ−ト電極に印加する構成及び動作並びに自己遮断の
ための回路及び動作は周知であるので、素子コントロー
ラ84内の温度検出を行う温度検出回路の部分について
図2を参照して以下に説明する。なお、他の素子コント
ローラは素子コントローラ84と同一機能を有してい
る。
The element controllers 81 to 86 are modularized as a pair with the IGBTs 61 to 66 controlled by them, and power-amplify the gate control signal received from the controller 55 and apply it to the gate electrodes of the IGBTs 61 to 66. At the same time, the voltage, current and temperature of each of the IGBTs 61 to 66 are monitored, and when an abnormality occurs, an abnormality signal is output to the controller 55. When a certain kind of abnormal state is detected, the IGBT controlled by itself is shut off for a certain period of time. (Self-cut off). (Basic Operation of Inverter Device) In the 120-degree conduction control of this embodiment, the low-side IGBTs 64 to 66 are turned on with a shift of 120 degrees each by intermittently controlling the IGBTs 61 to 66, and the high-side IGBTs 61 to 63 are duty-controlled. Thus, pseudo three-phase AC voltages Vu, Vv, Vw are formed and applied to the motor 54. (Description of Temperature Detection Circuit in Element Controller) The gate control signals received from the controller 55 of the element controllers 81 to 86 are amplified by power and the IGBTs 61 to 66 are amplified.
Since the configuration and operation applied to the gate electrode and the circuit and operation for self-interruption are well known, the temperature detection circuit for detecting the temperature in the element controller 84 will be described below with reference to FIG. I do. The other element controllers have the same function as the element controller 84.

【0015】100は、IGBT64が形成されたチッ
プの主面に形成されて本発明でいうオンチップ温度検出
素子を構成する接合ダイオ−ド(図示せず)を含むオン
チップ温度センサ(図示せず)の出力電圧Vdiode
(オンチップ温度信号Tjに相当)をしきい値電圧VO
VLと比較する比較回路である。なお、上記オンチップ
温度センサは、上記接合ダイオードの順方向電圧降下の
温度特性を利用したものであるが、本発明の要旨とは異
なるので説明は省略する。
Reference numeral 100 denotes an on-chip temperature sensor (not shown) including a junction diode (not shown) formed on the main surface of the chip on which the IGBT 64 is formed and constituting an on-chip temperature detecting element according to the present invention. ) Output voltage Vdiode
(Corresponding to the on-chip temperature signal Tj) with the threshold voltage VO
This is a comparison circuit for comparing with VL. Although the on-chip temperature sensor utilizes the temperature characteristic of the forward voltage drop of the junction diode, it is different from the gist of the present invention, and therefore, the description is omitted.

【0016】比較回路100は、しきい値電圧VOVL
を発生する定電圧源101、オペアンプOVCA、抵抗
R205、R206、R207からなるコンパレータ
と、トランジスタQ1、抵抗R208、R1、R2、R
30からなるフォトカプラ入力側の増幅回路と、フォト
カプラ102と、トランジスタQ2、抵抗R3、R5か
らなるフォトカプラ出力側の増幅回路とからなる。
The comparison circuit 100 has a threshold voltage VOVL
, A comparator including an operational amplifier OVCA, resistors R205, R206, and R207, a transistor Q1, resistors R208, R1, R2, and R
An amplifier circuit 30 on the input side of the photocoupler comprising the photocoupler 102, and an amplifier circuit on the output side of the photocoupler comprising the transistor Q2 and the resistors R3 and R5.

【0017】オンチップ温度センサの出力電圧Vdio
deが定電圧源101から抵抗R205を通じてコンパ
レータOVCAに入力されるしきい値電圧VOVL2よ
り大きい場合(低温時)にはコンパレータOVCAの出
力はローレベルとなり、トランジスタQ1はオフし、フ
ォトカプラ102には高電圧Vrefが入力され、フォ
トカプラ102はトランジスタQ2にローレベル電圧を
出力してそれをオンする。
The output voltage Vdio of the on-chip temperature sensor
When de is larger than the threshold voltage VOVL2 input from the constant voltage source 101 to the comparator OVCA through the resistor R205 (at low temperature), the output of the comparator OVCA becomes low level, the transistor Q1 turns off, and the photocoupler 102 The high voltage Vref is input, and the photocoupler 102 outputs a low level voltage to the transistor Q2 to turn it on.

【0018】オンチップ温度センサの出力電圧Vdio
deがしきい値電圧VOVL2より低い場合(低温時)
にはコンパレータOVCAの出力はハイレベルとなり、
トランジスタQ1はオンし、フォトカプラ102には低
電圧が入力され、フォトカプラ102はトランジスタQ
2にハイレベル電圧を出力してそれをオフする。200
は、IGBT64が熱的過負荷であることを示すための
定電圧VOLTCを発生する定電圧源である。
Output voltage Vdio of on-chip temperature sensor
When de is lower than the threshold voltage VOVL2 (low temperature)
The output of the comparator OVCA becomes high level,
The transistor Q1 turns on, a low voltage is input to the photocoupler 102, and the photocoupler 102
2 to output a high level voltage and turn it off. 200
Is a constant voltage source that generates a constant voltage VOLTC for indicating that the IGBT 64 is thermally overloaded.

【0019】300〜302はそれぞれ、IGBT64
のモジュール内にてIGBT61のチップに近接して設
けられたオフチップ温度検出センサであって、それぞれ
サーミスタRthU、RthV、RthWと、抵抗R2
4、R25、R26とを直列接続してなる抵抗分圧回路
からなる。401〜404は、オペアンプを利用した理
想ダイオ−ド回路である。理想ダイオ−ド回路401は
抵抗R9、R10、ダイオードD3、オペアンプU2A
からなり、理想ダイオ−ド回路402は抵抗R11、R
12、ダイオードD4、オペアンプU3Aからなる。理
想ダイオ−ド回路403は抵抗R13、R14、ダイオ
ードD5、オペアンプU4Aからなり、理想ダイオ−ド
回路404は抵抗R7、R6、ダイオードD1、オペア
ンプU1Aからなる。これら理想ダイオ−ド回路401
〜404の出力単には抵抗R8を通じて高電圧Vref
が印加されるので、それらの出力端の電位Voは、各オ
ペアンプU1A〜U4Aの入力電位のうち、最も低い電
位のものに等しくなる。
Reference numerals 300 to 302 denote IGBT 64, respectively.
Off-chip temperature detection sensors provided in proximity to the chip of the IGBT 61 in the module of the above, each comprising a thermistor RthU, RthV, RthW and a resistor R2
4, a resistor voltage dividing circuit in which R25 and R26 are connected in series. Reference numerals 401 to 404 denote ideal diode circuits using an operational amplifier. The ideal diode circuit 401 includes resistors R9 and R10, a diode D3, and an operational amplifier U2A.
And the ideal diode circuit 402 includes resistors R11 and R11.
12, a diode D4 and an operational amplifier U3A. The ideal diode circuit 403 includes resistors R13 and R14, a diode D5, and an operational amplifier U4A, and the ideal diode circuit 404 includes resistors R7 and R6, a diode D1, and an operational amplifier U1A. These ideal diode circuits 401
The output of .about.404 is simply the high voltage Vref through resistor R8.
Is applied, the potential Vo at those output terminals becomes equal to the lowest one of the input potentials of the operational amplifiers U1A to U4A.

【0020】500は、スイッチングノイズを除去する
ローパスフィルタであって、抵抗R19とコンデンサC
6により構成されている。600は、出力バッファとし
てのボルテージフォロア回路である。なお、コンパレー
タOCVAの電源電圧Vcc1はIGBT4の駆動にも
使われる制御電源電圧であって、IGBT61のエミッ
タ電位を基準として+15Vとされている。コンパレー
タ200の電源電圧VCC2は図示しない低電圧補機電
池のGNDを基準とする+15Vの電圧とされる。低位
電源電圧Vrefは、VCC2とGNDを共通にする電
圧であって、+6Vとされている。
Reference numeral 500 denotes a low-pass filter for removing switching noise, and includes a resistor R19 and a capacitor C.
6. Reference numeral 600 denotes a voltage follower circuit as an output buffer. The power supply voltage Vcc1 of the comparator OCVA is a control power supply voltage used for driving the IGBT 4 and is set to +15 V with reference to the emitter potential of the IGBT 61. The power supply voltage VCC2 of the comparator 200 is a voltage of +15 V with reference to the GND of a low-voltage auxiliary battery (not shown). The lower power supply voltage Vref is a voltage that makes VCC2 and GND common, and is set to + 6V.

【0021】図3に、オンチップ温度センサ、サーミス
タ、IGBT64、フライホイールダイオ−ド74が実
装されるモジュール内の配置状態を示す。10、11は
ダイオード領域であって、2個並列に接続されて上記フ
ライホイールダイオ−ド74を構成している。12はI
GBT64が形成される電力スイッチング素子領域、1
3は窒化アルミなどのセラミック絶縁基板、14は絶縁
基板13の表面に固着され、ダイオ−ド10、11のカ
ソードとIGBT64のコレクタ電極とを接続する電
極、15はサーミスタ(たとえばRthU)、16、1
7はサーミスタ15を半田固定し、外部接続用の電極を
接続する電極、18は電力スイッチング素子領域12内
の温度検出用ダイオ−ドで、高温になるほど順方向電圧
が下がる負の温度特性を持つ。19、20は同様に温度
検出用ダイオ−ドの信号を外部に出力するための接続を
仲介する電極である。なお、図3は、サーミスタ(オフ
チップ温度検出素子)が一個の例を示している。 (素子コントローラ内の温度検出回路の動作説明)温度
検出回路各部の電位変化を示す図4に示すタイミングチ
ャートを参照して、この温度検出回路の動作を説明す
る。
FIG. 3 shows an arrangement state in the module on which the on-chip temperature sensor, thermistor, IGBT 64 and flywheel diode 74 are mounted. Reference numerals 10 and 11 denote diode regions, two of which are connected in parallel to constitute the flywheel diode 74. 12 is I
Power switching element region where GBT 64 is formed, 1
3 is a ceramic insulating substrate such as aluminum nitride, 14 is fixed to the surface of the insulating substrate 13, and is an electrode connecting the cathodes of the diodes 10, 11 and the collector electrode of the IGBT 64, 15 is a thermistor (for example, RthU), 16, 1
Reference numeral 7 denotes an electrode for fixing the thermistor 15 by soldering and connecting an electrode for external connection. Reference numeral 18 denotes a temperature detecting diode in the power switching element region 12, which has a negative temperature characteristic in which the forward voltage decreases as the temperature increases. . Similarly, reference numerals 19 and 20 denote electrodes for mediating connection for outputting a signal from the temperature detecting diode to the outside. FIG. 3 shows an example in which the number of thermistors (off-chip temperature detecting elements) is one. (Description of Operation of Temperature Detection Circuit in Element Controller) The operation of this temperature detection circuit will be described with reference to a timing chart shown in FIG.

【0022】時刻t1 までは、素子温度Tjは許容動温
度範囲内にあるので、上記温度検出用ダイオ−ドの出力
電圧Vdiodeは熱的過負荷判定用しきい値VOVL
以上となっており、この時、Q1がオフ、Q3がオン、
Q2がオンとなり、オペアンプU1Aの正入力端にはV
ref相当の電圧が印加される。時刻t1 にて、インバ
ータ負荷としてのモータがロック(拘束)状態になった
とすると、IGBT61〜66には大きなロック電流が
流れ、チップ特にIGBTの接合領域温度Tjが急激に
上昇する。温度検出用ダイオ−ド18の検出温度はチッ
プ温度の急変に追従して高速に変化するが、サーミスタ
RthU,RthV,RthWの出力値VthU,Vt
hV,VthWはゆっくりと変化する。
Until time t1, the element temperature Tj is within the allowable operating temperature range, so that the output voltage Vdiode of the temperature detecting diode is equal to the thermal overload determination threshold VOVL.
At this time, Q1 is off, Q3 is on,
Q2 is turned on, and V is applied to the positive input terminal of the operational amplifier U1A.
A voltage corresponding to ref is applied. Assuming that the motor as the inverter load is locked (locked) at time t1, a large lock current flows through IGBTs 61 to 66, and the junction temperature Tj of the chip, especially the IGBT, rises sharply. The temperature detected by the temperature detecting diode 18 changes rapidly following a rapid change in the chip temperature, but the output values VthU, Vt of the thermistors RthU, RthV, RthW are changed.
hV and VthW change slowly.

【0023】接合領域温度Tj(電力素子温度)は上昇
し続け、時刻t2に出力電圧Vdiodeが熱的過負荷
判定レベルVOVL2を下回ると、Q1、Q2が反転
し、オペアンプU1Aの正入力端には、オンチップ温度
検出素子の検出温度が熱的過負荷判定レベルを超えたこ
とを外部に出力するための定電圧値VOLTCが印加さ
れる。
The junction region temperature Tj (power element temperature) continues to rise, and when the output voltage Vdiode falls below the thermal overload determination level VOVL2 at time t2, Q1 and Q2 are inverted, and the operational amplifier U1A has a positive input terminal. A constant voltage value VOLTC for outputting to the outside that the detected temperature of the on-chip temperature detecting element has exceeded the thermal overload determination level is applied.

【0024】理想ダイオ−ド回路401〜404はその
出力端を共通接続されているので、この共通出力端には
各オペアンプU1A〜U4Aの入力電圧のうちで最も低
い値が出力される。したがって、出力電圧Vdiode
が熱的過負荷判定しきい値電圧VOVL2より大きい場
合(検出温度が熱的過負荷判定しきい値温度よりも低い
場合)には、オペアンプU1Aの正端子入力がVref
となっており、必ず各サーミスタ出力電圧VthU,V
thV,VthWよりも高くなっているため、サーミス
タ出力電圧VthU,VthV,VthWのうちでもっ
とも低い電圧、すなわち各サーミスタ検出値の中で最も
高温を検出している電圧を選択して、フィルタ500を
経由した後、バッファ600により外部にアナログ電圧
信号として送出される。ECUはこの温度情報をもと
に、電力素子温度が高くなってくると最大出力電流を制
限するなどの出力制限制御を行う。
Since the output terminals of the ideal diode circuits 401 to 404 are connected in common, the lowest value among the input voltages of the operational amplifiers U1A to U4A is output to this common output terminal. Therefore, the output voltage Vdiode
Is higher than the thermal overload determination threshold voltage VOVL2 (when the detected temperature is lower than the thermal overload determination threshold temperature), the positive terminal input of the operational amplifier U1A is set to Vref.
And the thermistor output voltages VthU, Vth
thV and VthW, the lowest voltage among the thermistor output voltages VthU, VthV and VthW, that is, the voltage which detects the highest temperature among the thermistor detection values, is selected, and the filter 500 is selected. After passing through, the buffer 600 sends the analog voltage signal to the outside. Based on this temperature information, the ECU performs output limiting control such as limiting the maximum output current when the power element temperature increases.

【0025】また、IGBT温度が熱過負荷判定しきい
値温度を超えると、オペアンプU1Aの正端子入力にそ
れを示す定電圧値VOLTCが入力されるため、VOL
TC、VthU、VthV、VthWのうちのもっとも
低い電圧が検出温度電圧VTOUTとして外部に送られ
る。この検出温度電圧VTOUTは外部のモータ制御用
のコントローラにより受信され、受信したコントローラ
は、定電圧値VOLTCを受信すると、ただちに制御周
波数を低周波に切り換え、電力素子発熱を抑制するモー
タのロック保護制御を開始する。
When the IGBT temperature exceeds the thermal overload judgment threshold temperature, a constant voltage value VOLTC indicating this is input to the positive terminal input of the operational amplifier U1A.
The lowest voltage among TC, VthU, VthV, and VthW is sent to the outside as detected temperature voltage VTOUT. This detected temperature voltage VTOUT is received by an external controller for motor control, and upon receiving the constant voltage value VOLTC, the controller immediately switches the control frequency to a low frequency, and controls the motor lock protection to suppress heat generation of the power element. To start.

【0026】また、コントローラは、VthU、Vth
V、VthWを受信する場合でも、その値が定電圧値V
OLTCにほぼ等しい場合には上記ロック保護制御を開
始する。 (実施例効果)以上の動作により、外部のコントローラ
は、サーミスタからの信号電圧をモニタするだけで、瞬
時にロック保護制御を開始することが可能となり、アナ
ログ絶縁された信号をモニタすることなく精度の高いロ
ック保護制御が可能となる。
Further, the controller is provided with VthU, Vth
Even if V and VthW are received, the value is the constant voltage value V
When it is almost equal to OLTC, the lock protection control is started. (Effect of the Embodiment) By the above operation, the external controller can start the lock protection control instantaneously only by monitoring the signal voltage from the thermistor, and the accuracy can be improved without monitoring the analog-insulated signal. Lock protection control is possible.

【0027】また、温度変化が緩やかな定常動作時には
安価で高精度なサーミスタの信号を利用するため、高精
度の温度モニタが可能となる。
In addition, during steady-state operation in which the temperature changes gradually, a low-cost and high-precision thermistor signal is used, so that a high-precision temperature monitor can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のパワースイッチング装置を用いたイ
ンバータ装置を示す回路図である。
FIG. 1 is a circuit diagram showing an inverter device using a power switching device of the present invention.

【図2】 図1に示す素子コントローラの温度検出回路
の一例を示す回路図である。
FIG. 2 is a circuit diagram showing an example of a temperature detection circuit of the element controller shown in FIG.

【図3】 本発明のオンチップ温度検出素子及びオフチ
ップ温度検出素子の配置の一例を示すパワーモジュール
のセンサ配置図である。
FIG. 3 is a sensor arrangement diagram of a power module showing an example of an arrangement of an on-chip temperature detection element and an off-chip temperature detection element of the present invention.

【図4】 図2に示す回路各部の電位変化を示すタイミ
ングチャートである。
FIG. 4 is a timing chart showing a potential change of each section of the circuit shown in FIG. 2;

【符号の説明】[Explanation of symbols]

15はサーミスタ(オフチップ温度検出素子)、18は
ダイオード(オンチップ温度検出素子)、61〜66は
IGBT(電力スイッチング素子)、401〜404は
理想ダイオ−ド回路403(モニタ部)
15 is a thermistor (off-chip temperature detecting element), 18 is a diode (on-chip temperature detecting element), 61 to 66 are IGBTs (power switching elements), and 401 to 404 are ideal diode circuits 403 (monitor unit).

フロントページの続き Fターム(参考) 5H007 AA05 AA12 AA17 BB06 CA01 CB04 CB05 CC23 DB01 DC08 FA03 FA13 FA18 HA03 HA04 5H410 BB01 BB05 BB06 BB09 CC02 DD04 DD06 EA10 EA35 EA37 EB15 EB39 FF05 FF14 FF23 FF28 LL06 LL15 LL19 5H576 AA15 BB06 CC01 DD02 EE30 FF04 GG10 HA02 HB02 LL22 LL44 MM02 MM04 MM06 5H740 AA03 AA08 BA11 BB05 BB09 BB10 MM08 MM11 PP03 Continued on the front page F-term (reference) 5H007 AA05 AA12 AA17 BB06 CA01 CB04 CB05 CC23 DB01 DC08 FA03 FA13 FA18 HA03 HA04 5H410 BB01 BB05 BB06 BB09 CC02 DD04 DD06 EA10 EA35 EA37 EB15 EB39 FF05 FF15 FF19 FF23 FF23 FF23 FF23 FF23 FF23 FF23 FF19 EE30 FF04 GG10 HA02 HB02 LL22 LL44 MM02 MM04 MM06 5H740 AA03 AA08 BA11 BB05 BB09 BB10 MM08 MM11 PP03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電力スイッチング素子、 前記電力スイッチング素子と同一チップに集積されたオ
ンチップ温度検出素子、 前記チップに近接して設けられたオフチップ温度検出素
子、及び、 前記両温度検出素子の検出温度に基づいて前記電力スイ
ッチング素子の温度状態をモニタするモニタ部、 を備え、 前記モニタ部は、前記オンチップ温度検出素子の前記検
出温度が所定しきい値未満の場合に前記オフチップ温度
検出素子の前記検出温度に関連する温度情報を優先して
選択し、前記オンチップ温度検出素子の前記検出温度が
所定しきい値以上の場合に前記オンチップ温度検出素子
の前記検出温度に関連する温度情報を優先して選択する
ことを特徴とするパワースイッチング装置。
A power switching element, an on-chip temperature detection element integrated on the same chip as the power switching element, an off-chip temperature detection element provided in close proximity to the chip, and detection of the two temperature detection elements. A monitoring unit that monitors a temperature state of the power switching element based on a temperature, wherein the monitoring unit is configured to control the off-chip temperature detection element when the detected temperature of the on-chip temperature detection element is less than a predetermined threshold. Temperature information related to the detected temperature of the on-chip temperature detecting element is preferentially selected, and the temperature information related to the detected temperature of the on-chip temperature detecting element when the detected temperature of the on-chip temperature detecting element is equal to or higher than a predetermined threshold value A power switching device, wherein the power switching device is selected with priority.
【請求項2】請求項1記載のパワースイッチング装置に
おいて、 前記モニタ部は、前記オンチップ温度検出素子の前記検
出温度が所定しきい値未満の場合に前記オフチップ温度
検出素子の前記検出温度に連動するアナログ信号電圧
を、前記オンチップ温度検出素子の前記検出温度が所定
しきい値以上の場合に前記オンチップ温度検出素子の前
記検出温度が前記しきい値に達したことを示す所定のア
ナログ電圧値を、共通の信号線に重畳して外部に出力す
ることを特徴とするパワースイッチング装置。
2. The power switching device according to claim 1, wherein the monitor is configured to detect the detected temperature of the off-chip temperature detecting element when the detected temperature of the on-chip temperature detecting element is less than a predetermined threshold. An interlocking analog signal voltage is a predetermined analog signal indicating that the detected temperature of the on-chip temperature detecting element has reached the threshold value when the detected temperature of the on-chip temperature detecting element is equal to or higher than a predetermined threshold value. A power switching device wherein a voltage value is superimposed on a common signal line and output to the outside.
JP14057299A 1999-05-20 1999-05-20 Power switching device Expired - Fee Related JP4078754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14057299A JP4078754B2 (en) 1999-05-20 1999-05-20 Power switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14057299A JP4078754B2 (en) 1999-05-20 1999-05-20 Power switching device

Publications (2)

Publication Number Publication Date
JP2000333469A true JP2000333469A (en) 2000-11-30
JP4078754B2 JP4078754B2 (en) 2008-04-23

Family

ID=15271815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14057299A Expired - Fee Related JP4078754B2 (en) 1999-05-20 1999-05-20 Power switching device

Country Status (1)

Country Link
JP (1) JP4078754B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064456A (en) * 2004-08-25 2006-03-09 Nissan Motor Co Ltd Temperature detector for switching element
US7102903B2 (en) 2001-10-04 2006-09-05 Toyota Jidosha Kabushiki Kaisha Drive apparatus, control method for the drive apparatus, storage medium storing a program controlling the drive apparatus, and power output apparatus
US7120037B2 (en) 2001-02-14 2006-10-10 Toyota Jidosha Kabushiki Kaisha Power outputting device and vehicle mounting it, control method, storing medium and program for the power outputting device, drive device and vehicle mounting it, and, control method, storing medium and program for the drive device
JP2008206345A (en) * 2007-02-21 2008-09-04 Denso Corp Power converter
JP2009278825A (en) * 2008-05-16 2009-11-26 Chubu Electric Power Co Inc Inverter
JP2009283717A (en) * 2008-05-22 2009-12-03 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device
JP2012239275A (en) * 2011-05-11 2012-12-06 Toyota Motor Corp Inverter device
CN110828397A (en) * 2019-10-28 2020-02-21 科华恒盛股份有限公司 Chip heat dissipation auxiliary circuit and data processing chip
CN111788769A (en) * 2018-02-20 2020-10-16 三菱电机株式会社 Power semiconductor module and power conversion device using same
CN112004271A (en) * 2020-07-24 2020-11-27 西安爱生技术集团公司 Intelligent heater of small unmanned aerial vehicle airspeed head

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7120037B2 (en) 2001-02-14 2006-10-10 Toyota Jidosha Kabushiki Kaisha Power outputting device and vehicle mounting it, control method, storing medium and program for the power outputting device, drive device and vehicle mounting it, and, control method, storing medium and program for the drive device
US7102903B2 (en) 2001-10-04 2006-09-05 Toyota Jidosha Kabushiki Kaisha Drive apparatus, control method for the drive apparatus, storage medium storing a program controlling the drive apparatus, and power output apparatus
JP2006064456A (en) * 2004-08-25 2006-03-09 Nissan Motor Co Ltd Temperature detector for switching element
JP2008206345A (en) * 2007-02-21 2008-09-04 Denso Corp Power converter
JP2009278825A (en) * 2008-05-16 2009-11-26 Chubu Electric Power Co Inc Inverter
JP2009283717A (en) * 2008-05-22 2009-12-03 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device
JP2012239275A (en) * 2011-05-11 2012-12-06 Toyota Motor Corp Inverter device
CN111788769A (en) * 2018-02-20 2020-10-16 三菱电机株式会社 Power semiconductor module and power conversion device using same
CN111788769B (en) * 2018-02-20 2023-12-12 三菱电机株式会社 Power semiconductor module and power conversion device using same
CN110828397A (en) * 2019-10-28 2020-02-21 科华恒盛股份有限公司 Chip heat dissipation auxiliary circuit and data processing chip
CN112004271A (en) * 2020-07-24 2020-11-27 西安爱生技术集团公司 Intelligent heater of small unmanned aerial vehicle airspeed head

Also Published As

Publication number Publication date
JP4078754B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
US9166499B2 (en) Electronic circuit operating based on isolated switching power source
US9042069B2 (en) Power supply controller
CN101142737A (en) Superheating detection mode of electric motor control device
JP2004274911A (en) Motor driving device
US7859213B2 (en) Control device and control method
US20100134939A1 (en) Power supply contoller
US20100193266A1 (en) Power Supply Apparatus And Electric Vehicle
JP2006136086A (en) Current detection method, current detector, power converter using current detector and vehicle using power converter
WO2009091033A1 (en) Power supply device
GB2253709A (en) Overcurrent detection circuit
JP3566634B2 (en) DC / DC converter
US20020113617A1 (en) Circuit configuration with temperature protection and method for implementing the temperature protection
JP3701573B2 (en) Load drive circuit
WO2011074403A1 (en) Apparatus and method for protecting power semiconductor switch element
US20140091853A1 (en) Switching circuit
JP2000333469A (en) Power switching device
US7705554B2 (en) Circuit arrangement and method for adjusting the power consumption of a load that can be operated by a direct-voltage system
EP4203314A1 (en) Over current protection for negative load current of power device gate drivers
US20130229019A1 (en) Method and device for operating a starter of a vehicle
MXPA04005093A (en) Vehicle controller.
JP4263685B2 (en) Protection circuit
US20140117889A1 (en) Motor driving device, electronic appliance, and vehicle
JP2009213196A (en) Device for adjusting capacity of battery pack
JP2010035284A (en) Overcurrent protection circuit
KR101143577B1 (en) Device for preventing over current of inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees