JP2009212235A - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
JP2009212235A
JP2009212235A JP2008052505A JP2008052505A JP2009212235A JP 2009212235 A JP2009212235 A JP 2009212235A JP 2008052505 A JP2008052505 A JP 2008052505A JP 2008052505 A JP2008052505 A JP 2008052505A JP 2009212235 A JP2009212235 A JP 2009212235A
Authority
JP
Japan
Prior art keywords
light emitting
carbon atoms
group
concentration
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008052505A
Other languages
English (en)
Inventor
Yoshitaka Kitamura
吉隆 北村
Manabu Hise
学 飛世
Masaji Kinoshita
正兒 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008052505A priority Critical patent/JP2009212235A/ja
Publication of JP2009212235A publication Critical patent/JP2009212235A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】本発明の課題は、発光効率が高く耐久性に優れた有機EL素子有機EL素子を提供することである。
【解決手段】陽極および陰極の間に少なくとも発光層および該発光層と該陰極の間に電子輸送層を挟持してなる有機電界発光素子であって、
(1)前記発光層が電子輸送性発光材料および正孔輸送性ホスト材料を含有し、前記発光層における該電子輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸増していて、(2)前記電子輸送層が正孔輸送材料および電子輸送材料を含有し、前記電子輸送層における該正孔輸送材料の濃度が前記陽極側から前記陰極側に向かって漸減するか、もしくは該電子輸送材料の濃度が前記陽極側から前記陰極側に向かって漸増していることを特徴とする有機電界発光素子。
【選択図】なし

Description

本発明は有機電界発光素子に関する。特に、発光効率が高く耐久性に優れた有機電界発光素子に関する。
有機電界発光素子(以後、有機EL素子と略記する。)は、発光層もしくは発光層を含む複数の有機機能層と、これらの層を挟んだ対向電極とから構成されている。有機EL素子は、陰極から注入された電子と陽極から注入された正孔とが発光層において再結合し、生成した励起子からの発光及び他の分子の励起子からエネルギー移動して生成した励起子からの発光を利用した、発光を得るための素子である。
これまで有機EL素子は、機能を分離した積層構造を用いることにより、輝度及び素子効率が大きく改善され発展してきた。例えば、正孔輸送層と発光兼電子輸送層を積層した二層積層型素子や正孔輸送層と発光層と電子輸送層とを積層した三層積層型素子や、正孔輸送層と発光層と正孔阻止層と電子輸送層とを積層した四層積層型素子がよく用いられる(例えば、非特許文献1参照)。
しかしながら、有機EL素子の実用化には未だ多くの課題が残されている。第1に高い発光効率を達成すること、第2に高い駆動耐久性を達成することである。特に、連続駆動時の品質低下は最大の課題である。
発光層と電子輸送層との間に、発光層を構成する化合物と電子輸送層を構成する化合物とを含有する領域を設けることにより、電子輸送層より発光層に電子が流れる障壁を下げる試みが提案されている(例えば、特許文献1参照)。この領域の中で、発光層を構成する化合物の濃度が発光層の方向に向かって高くすることが障壁を低下するのにより好ましいことも開示されている。しかしながら、これらの手段は隣接層のキャリア移動抵抗を低下させることは出来るが、発光効率を高める手段、および高い駆動耐久性を共に満足する手段としては充分ではない。
また、有機EL素子を積層構造とした場合、各層間の障壁のためにキャリア注入性が低下し、駆動電圧の上昇かつ耐久性の低下の問題があった。このような各層間の障壁を低減する手段として各層が含有する正孔輸送(注入)材料、電子輸送(注入)材料の各層における濃度に傾斜を設けることが提案されている(例えば、特許文献2、3参照)。この構成においては、発光層における発光材料はバイポーラー性混合層から形成される発光層内の限定された領域に一定の濃度で配置されている。この構成においても発光材料の配置された領域のうち限られた領域のみで発光すると考えられ、高い発光効率の素子を得る手段としては十分ではない。
高い外部量子効率と高い駆動耐久性とを両立させることは、実用的に有用な有機EL素子を設計する上で極めて重要な課題であり、常に改良を求められている課題であった。
サイエンス(Science),267巻,3号,1995年,1332頁 特開2002−324680号公報 特開2002−313583号公報 特開2002−313584号公報
本発明は、発光効率が高く耐久性に優れた有機EL素子を提供することを目的とする。
本発明の上記課題は、下記の手段によって解決する事を見出された。
<1> 陽極および陰極の間に少なくとも発光層および該発光層と該陰極の間に電子輸送層を挟持してなる有機電界発光素子であって、
(1)前記発光層が電子輸送性発光材料および正孔輸送性ホスト材料を含有し、前記発光層における該電子輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸増していて、
(2)前記電子輸送層が正孔輸送材料および電子輸送材料を含有し、前記電子輸送層における該正孔輸送材料の濃度が前記陽極側から前記陰極側に向かって漸減していることを特徴とする有機電界発光素子。
<2> 前記発光層の前記陽極に近接する領域(前記発光層の前記陽極側の厚み10%の領域を意味する)の前記電子輸送性発光材料の濃度が、前記発光層の前記陰極に近接する領域(前記発光層の前記陰極側の厚み10%の領域を意味する)の前記電子輸送性発光材料の濃度の0%以上50%以下であり、且つ、前記電子輸送層の前記陰極に近接する領域(前記電子輸送層の前記陰極側の厚み10%の領域を意味する)の前記正孔輸送材料の濃度が、前記陽極に近接する領域(前記電子輸送層の前記陽極側の厚み10%の領域を意味する)の前記正孔輸送材料の濃度の0%以上50%以下であることを特徴とする<1>に記載の有機電界発光素子。
<3> 前記発光層の前記陽極に近接する領域の前記電子輸送性発光材料の濃度が、前記発光層の前記陰極に近接する領域の前記電子輸送性発光材料の濃度に対して0%以上20%以下であり、且つ、前記電子輸送層の前記陰極に近接する領域における前記正孔輸送材料の濃度が、前記電子輸送層の前記陽極に近接する領域における前記正孔輸送材料の濃度の0%以上20%以下であることを特徴とする<2>に記載の有機電界発光素子。
<4> 陽極および陰極の間に少なくとも発光層および該発光層と該陰極の間に電子輸送層を挟持してなる有機電界発光素子であって、
(1)前記発光層が電子輸送性発光材料および正孔輸送性ホスト材料を含有し、前記発光層における該電子輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸増していて、
(2)前記電子輸送層が正孔輸送材料および電子輸送材料を含有し、前記電子輸送層における該電子輸送材料の濃度が前記陽極側から前記陰極側に向かって漸増していることを特徴とする有機電界発光素子。
<5> 前記発光層の前記陽極に近接する領域の前記電子輸送性発光材料の濃度が、前記発光層の前記陰極に近接する領域の前記電子輸送性発光材料の濃度の0%以上50%以下であり、且つ、前記電子輸送層の前記陰極に近接する領域における前記電子輸送材料の濃度が、該領域の50質量%以上100質量%以下であることを特徴とする<4>に記載の有機電界発光素子。
<6> 前記発光層の前記陽極に近接する領域の前記電子輸送性発光材料の濃度が、前記発光層の前記陰極に近接する領域の前記電子輸送性発光材料の濃度の0%以上20%以下であり、且つ、前記電子輸送層の前記陰極に近接する領域における前記電子輸送材料の濃度が、該領域の80質量%以上100質量%以下であることを特徴とする<5>に記載の有機電界発光素子。
<7> 前記発光層における前記正孔輸送性ホスト材料の濃度が前記陽極側から前記陰極側に向かって漸減していることを特徴とする<1>〜<6>のいずれかに記載の有機電界発光素子。
<8> 前記発光層の前記陽極側に近接する領域における前記正孔輸送性ホスト材料の濃度が、該領域の50質量%以上100質量%以下であることを特徴とする<7>に記載の有機電界発光素子。
<9> 前記発光層の前記陽極側に近接する領域における前記正孔輸送性ホスト材料の濃度が、該領域の80質量%以上100質量%以下であることを特徴とする<8>に記載の有機電界発光素子。
<10> 前記電子輸送層における前記正孔輸送材料の濃度が前記陽極側から前記陰極側に向かって漸減し、且つ前記電子輸送層における前記電子輸送材料の濃度が前記陽極側から前記陰極側に向かって漸増していることを特徴とする<1>〜<9>のいずれかに記載の有機電界発光素子。
<11> 陽極および陰極の間に少なくとも発光層および該発光層と該陽極の間に正孔輸送層を挟持してなる有機電界発光素子であって、
(1)前記発光層が正孔輸送性発光材料および電子輸送性ホスト材料を含有し、前記発光層における該正孔輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸減していて、
(2)前記正孔輸送層が正孔輸送材料および電子輸送材料を含有し、前記正孔輸送層における該電子輸送材料の濃度が前記陽極側から前記陰極側に向かって漸増していることを特徴とする有機電界発光素子。
<12> 前記発光層の前記陰極に近接する領域(前記発光層の前記陽極側の厚み10%の領域を意味する)の前記正孔輸送性発光材料の濃度が、前記発光層の前記陽極に近接する領域(前記発光層の前記陰極側の厚み10%の領域を意味する)の前記正孔輸送性発光材料の濃度の0%以上50%以下であり、且つ、前記正孔輸送層の前記陽極に近接する領域における前記電子輸送材料の濃度が、前記正孔輸送層の前記陰極に近接する領域における前記電子輸送材料の濃度の0%以上20%以下であることを特徴とする<11>に記載の有機電界発光素子。
<13> 前記発光層の前記陰極に近接する領域の前記正孔輸送性発光材料の濃度が、前記発光層の前記陽極に近接する領域の前記正孔輸送性発光材料の濃度の0%以上20%以下であり、且つ、前記正孔輸送層の前記陽極に近接する領域における前記電子輸送材料の濃度が、前記正孔輸送層の前記陰極に近接する領域における前記電子輸送材料の濃度の0%以上20%以下であることを特徴とする<12>に記載の有機電界発光素子。
<14> 陽極および陰極の間に少なくとも発光層および該発光層と該陽極の間に正孔輸送層を挟持してなる有機電界発光素子であって、
(1)前記発光層が正孔輸送性発光材料および電子輸送性ホスト材料を含有し、前記発光層における該正孔輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸減していて、
(2)前記正孔輸送層が正孔輸送材料および電子輸送材料を含有し、前記正孔輸送層における該正孔輸送材料の濃度が前記陽極側から前記陰極側に向かって漸減することを特徴とする有機電界発光素子。
<15> 前記発光層の前記陰極に近接する領域における前記正孔輸送性発光材料の濃度が、前記発光層の前記陽極に近接する領域の前記正孔輸送性発光材料の濃度の0%以上50%以下であり、且つ、前記正孔輸送層の前記陽極に近接する領域における前記正孔輸送材料の濃度が、該領域の50質量%以上100質量%以下であることを特徴とする<14>に記載の有機電界発光素子。
<16> 前記発光層の前記陰極に近接する領域における前記正孔輸送性発光材料の濃度が、前記発光層の前記陽極に近接する領域の前記正孔輸送性発光材料の濃度の0%以上20%以下であり、且つ、前記正孔輸送層の前記陽極に近接する領域における前記正孔輸送材料の濃度が、該領域の80質量%以上100質量%以下であることを特徴とする<15>に記載の有機電界発光素子。
<17> 前記発光層における前記電子輸送性ホスト材料の濃度が前記陰極側から前記陽極側に向かって漸減していることを特徴とする<11>〜<16>のいずれかに記載の有機電界発光素子。
<18> 前記発光層の前記陽極に近接する領域の前記電子輸送性ホスト材料の濃度が、前記発光層の前記陰極に近接する領域の前記電子輸送性ホスト材料の濃度の0%以上50%以下であることを特徴とする<17>に記載の有機電界発光素子。
<19> 前記発光層の前記陽極に近接する領域の前記電子輸送性ホスト材料の濃度が、前記発光層の前記陰極に近接する領域の前記電子輸送性ホスト材料の濃度の0%以上20%以下であることを特徴とする<18>に記載の有機電界発光素子。
<20> 前記正孔輸送層における前記正孔輸送材料の濃度が前記陽極側から前記陰極側に向かって漸減し、且つ前記正孔輸送層における前記電子輸送材料の濃度が前記陽極側から前記陰極側に向かって漸増していることを特徴とする<11>〜<19>のいずれかに記載の有機電界発光素子。
<21> 前記発光材料が燐光発光材料であることを特徴とする<1>〜<20>のいずれかに記載の有機電界発光素子。
本発明により、発光効率が高く耐久性に優れた有機EL素子が提供される。
特に、燐光発光材料を用いて、発光効率が高く且つ高電流領域においても発光効率の低下がなく、低電流領域から高電流領域に渉って高い発光効率で優れた駆動耐久性を有する有機EL素子が提供される。
本発明の第1の態様は、陽極および陰極の間に少なくとも発光層および該発光層と該陰極の間に電子輸送層を挟持してなる有機電界発光素子であって、(1)前記発光層が電子輸送性発光材料および正孔輸送性ホスト材料を含有し、前記発光層における該電子輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸増していて、(2)前記電子輸送層が正孔輸送材料および電子輸送材料を含有し、前記電子輸送層における該正孔輸送材料の濃度が前記陽極側から前記陰極側に向かって漸減していることを特徴とする。
本発明の第2の態様は、陽極および陰極の間に少なくとも発光層および該発光層と該陰極の間に電子輸送層を挟持してなる有機電界発光素子であって、(1)前記発光層が電子輸送性発光材料および正孔輸送性ホスト材料を含有し、前記発光層における該電子輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸増していて、(2)前記電子輸送層が正孔輸送材料および電子輸送材料を含有し、前記電子輸送層における該電子輸送材料の濃度が前記陽極側から前記陰極側に向かって漸増していることを特徴とする。
本発明の第3の態様は、陽極および陰極の間に少なくとも発光層および該発光層と該陽極の間に正孔輸送層を挟持してなる有機電界発光素子であって、(1)前記発光層が正孔輸送性発光材料および電子輸送性ホスト材料を含有し、前記発光層における該正孔輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸減していて、(2)前記正孔輸送層が正孔輸送材料および電子輸送材料を含有し、前記正孔輸送層における該電子輸送材料の濃度が前記陽極側から前記陰極側に向かって漸増していることを特徴とする。
本発明の第4の態様は、陽極および陰極の間に少なくとも発光層および該発光層と該陽極の間に正孔輸送層を挟持してなる有機電界発光素子であって、(1)前記発光層が正孔輸送性発光材料および電子輸送性ホスト材料を含有し、前記発光層における該正孔輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸減していて、(2)前記正孔輸送層が正孔輸送材料および電子輸送材料を含有し、前記正孔輸送層における該正孔輸送材料の濃度が前記陽極側から前記陰極側に向かって漸減することを特徴とする。
本発明においては、「漸減」又は「漸増」が意味するところは、総体的に、陰極側から陽極側に向かって減少または増加していることが本発明の主旨であって、連続的に変化しても、階段状に変化しても良い。あるいは、一部で増加または減少している領域があっても総体的に減少または増加していれば本願の意図する範囲内である。
本発明に於ける物質Aが「漸減」するが意味するところは、好ましくは、一方の界面領域における物質Aの濃度に対して他方の「漸減」する界面領域の物質Aの濃度が、0%以上50%以下であり、より好ましくは、0%以上30%以下であり、更に好ましくは、0%以上20%以下である。
なお、本願明細書において、発光層、電子輸送層、あるいは正孔輸送層の「陰極側界面付近の領域」とは、該層の陰極側界面から該層全体の厚みの10%の厚みの領域を指すものと定義し、「陽極側界面付近の領域」とは、該層の陽極側界面から該層全体の厚みの10%の厚みの領域を指すものと定義する。また、その領域における濃度とは、その領域における平均濃度を指すものとして定義される。さらに、該層の「陰極側(陽極側)界面付近の領域」における各材料の濃度は、飛行時間型二次イオン質量分析(TOF−SIMS)、エッチングX線光電子分光分析(XPS/ESCA)などの方法によって測定することができる。
本発明者らが従来の構成における有機EL素子における発光層内の発光分布を解析した結果、発光層が均一に発光しているのではなく、発光層の隣接層との界面で集中して発光していることが判明した。従って、発光層全体が発光に寄与していないため、発光効率の低下、および局所に発光負荷が集中することによって耐久性の悪化をもたらしていたと本発明者らは考えた。そこで、発光層全体が均一に発光する構成を鋭意探索した結果、本発明の構成に到達した。
1つには、発光層における発光材濃度を濃度傾斜させることにより発光効率および耐久性の向上が観測された。発光層内におけるキャリアの移動が適性化され、発光層全体に渉って再結合が起こるようになったとものと推定される。
しかしながら、上記の構成としても発光層から隣接する層に電子もしくは正孔が漏れることがあり、電子輸送層に正孔が侵入し、あるいは正孔輸送層に電子が侵入して素子の劣化の原因となることがあった。本発明者らはさらなる改良手段を探索した結果、隣接する電子輸送層もしくは正孔輸送層あるいはその両層において、電子輸送材料および正孔輸送材料を濃度傾斜させて含有させることによって上記原因による劣化を防いで一段と耐久性を向上できることを見出した。
1.有機EL素子構造
本発明における有機化合物層の積層の形態としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と陽極との間に正孔注入層を有することが好ましく、陰極と電子輸送層との間に電子注入層を有するのが好ましい。発光層と電子輸送層との間に電子輸送性中間層を有してもよく、また、発光層と正孔輸送層との間に正孔輸送性中間層を有してもよい。
上記正孔輸送性中間層は、発光層への正孔注入を促進する機能及び電子をブロックする機能の少なくとも一方を有しても良い。
また、上記電子輸送性中間層は、発光層への電子注入を促進する機能及び正孔をブロックする機能の少なくとも一方を有しても良い。
更に、上記正孔輸送性中間層及び上記電子輸送性中間層を有する場合は、発光層で生成する励起子をブロックする機能を有することが好ましい。
上記の正孔注入促進、電子注入促進、正孔ブロック、電子ブロック、励起子ブロックといった機能を有効に発現させるためには、該正孔輸送性中間層および該電子輸送性中間層は、発光層に隣接していることが好ましい。
尚、各層は複数の二次層に分かれていてもよい。
本発明における有機EL素子は、共振器構造を有しても良い。例えば、透明基板上に、屈折率の異なる複数の積層膜よりなる多層膜ミラー、透明または半透明電極、発光層、および金属電極を重ね合わせて有する。発光層で生じた光は多層膜ミラーと金属電極を反射板としてその間で反射を繰り返し共振する。
別の好ましい態様では、透明基板上に、透明または半透明電極と金属電極がそれぞれ反射板として機能して、発光層で生じた光はその間で反射を繰り返し共振する。
共振構造を形成するためには、2つの反射板の有効屈折率、反射板間の各層の屈折率と厚みから決定される光路長を所望の共振波長を得るのに最適な値となるよう調整される。
共振器構造を有する場合の計算式は特開平9−180883号明細書に記載されている。別の好ましい態様の場合の計算式は特開2004−127795号明細書に記載されている。
有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、塗布法、インクジェット法、およびスプレー法等いずれによっても好適に形成することができる。
次に、本発明の有機EL素子を構成する要素について詳細に説明する。
2.発光層
発光層は、電界印加時に、陽極、正孔注入層、正孔輸送層または正孔輸送性中間層から正孔を受け取り、陰極、電子注入層、電子輸送層または電子輸送性中間層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明に於ける発光層の1つの態様は、電子輸送性発光材料と正孔輸送性ホスト材料を含有する。本発明に於ける発光層の別の態様は、正孔輸送性発光材料と電子輸送性ホスト材料を含有する。
なお、本発明における電子輸送性発光材料及び電子輸送性材料は、その材料の電子移動度とホール移動度を測定したときに電子移動度の方が値が大きいものと定義し、正孔輸送性発光材料及び正孔輸送性材料は、同様に測定したときにホール移動度の方が値が大きいものと定義する。
ただし、2種類以上の材料を同じ層に混合させる場合は、各材料を比較して電子移動度がより高いものを電子輸送性発光材料又は電子輸送性材料、ホール移動度がより高いものを正孔輸送性発光材料又は正孔輸送性材料と定義する。
電子移動度及びホール移動度はタイムオブフライト(TOF)法の光パルス法を用いて測定する。詳細には、堀江一之・谷口彬雄編集代表の光・電子機能有機材料ハンドブック(朝倉書店、1995年発行)の287頁〜288頁に書いてある方法を用いる。
(電子輸送性発光材料)
本発明における電子輸送性発光材料は、下記に詳細を示す金属錯体が好ましい。
金属錯体中の金属イオンは、特に限定されないが、発光効率向上、耐久性向上、駆動電圧低下の観点から、遷移金属イオン、希土類金属イオンであることが好ましく、より好ましくは、イリジウムイオン、白金イオン、金イオン、レニウムイオン、タングステンイオン、ロジウムイオン、ルテニウムイオン、オスミウムイオン、パラジウムイオン、銀イオン、銅イオン、コバルトイオン、亜鉛イオン、ニッケルイオン、鉛イオン、アルミニウムイオン、ガリウムイオン、希土類金属イオン(例えば、ユーロピウムイオン、ガドリニウムイオン、又はテルビウムイオンなど)が好ましく、更に好ましくは、イリジウムイオン、白金イオン、金イオン、レニウムイオン、タングステンイオン、パラジウムイオン、亜鉛イオン、アルミニウムイオン、ガリウムイオン、ユーロピウムイオン、カドリニウムイオン、又はテルビウムイオンであり、該金属錯体を発光材料として用いる場合には、イリジウムイオン、白金イオン、レニウムイオン、タングステンイオン、ユーロピウムイオン、ガドリニウムイオン、又はテルビウムイオンが特に好ましく、該金属錯体を電荷輸送材料や発光層中のホスト材料として用いる場合には、イリジウムイオン、白金イオン、パラジウムイオン、亜鉛イオン、アルミニウムイオン、又はガリウムイオンが特に好ましい。
該金属錯体において金属イオンに配位する原子は特に限定されないが、酸素原子、窒素原子、炭素原子、硫黄原子又はリン原子が好ましく、酸素原子、窒素原子又は炭素原子がより好ましく、窒素原子又は炭素原子が更に好ましい。
本発明における金属錯体の配位子は発光効率向上、耐久性向上の観点から、鎖状、又は、環状であることが好ましく、中心金属(例えば、後述する一般式(I)で表される化合物の場合であればM11を表す。)に窒素で配位する含窒素へテロ環(例えば、ピリジン環、キノリン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、又はトリアゾール環など)を少なくとも一つ有することが好ましい。該含窒素ヘテロ環としては、含窒素6員ヘテロ環、含窒素5員ヘテロ環であることがより好ましい。これらのヘテロ環は他の環と縮合環を形成してもよい。
本発明における金属錯体としては3座以上の配位子を有する金属錯体が好ましく、発光効率向上、耐久性向上の観点から、3座以上6座以下の配位子を有する金属錯体が好ましく、イリジウムイオンに代表される6配位型錯体を形成しやすい金属イオンの場合には、3座、4座、または6座の配位子を有する金属錯体がより好ましく、白金イオンに代表される4配位型錯体を形成しやすい金属イオンの場合には、3座または4座の配位子を有する金属錯体がより好ましく、4座の配位子を有する金属錯体が更に好ましい。
本発明における金属錯体としては、以下に詳述する一般式(I)、一般式(II)または一般式(III)で表される化合物であることが好ましい。
先ず、一般式(I)で表される化合物について説明する。
一般式(I)中、M11は金属イオンを表し、L11〜L15はそれぞれM11に配位する配位子を表す。L11とL14との間に原子群がさらに存在して環状配位子を形成してもよい。L15はL11及びL14の両方と結合して環状配位子を形成してもよい。Y11、Y12、Y13はそれぞれ連結基、単結合、または二重結合を表す。また、Y11、Y12、又はY13が連結基である場合、L11とY12、Y12とL12、L12とY11、Y11とL13、L13とY13、Y13とL14の間の結合は、それぞれ独立に、単結合又は二重結合を表す。n11は0〜4を表す。M11とL11〜L15との結合は、それぞれ配位結合、イオン結合、共有結合のいずれでもよい。
一般式(I)で表される化合物について詳細に説明する。
一般式(I)中、M11は金属イオンを表す。金属イオンとしては特に限定されないが、2価または3価の金属イオンが好ましい。2価または3価の金属イオンとしては、白金イオン、イリジウムイオン、レニウムイオン、パラジウムイオン、ロジウムイオン、ルテニウムイオン、銅イオン、ユーロピウムイオン、ガドリニウムイオン、又はテルビウムイオンが好ましく、白金イオン、イリジウムイオン、ユーロピウムイオンがより好ましく、白金イオン、又はイリジウムイオンがさらに好ましく、白金イオンが特に好ましい。
一般式(I)中、L11、L12、L13、及びL14は、それぞれ独立に、M11に配位する配位子を表す。L11、L12、L13、及びL14に含まれ、かつ、M11に配位する原子としては、窒素原子、酸素原子、硫黄原子、炭素原子、又はリン原子が好ましく、窒素原子、酸素原子、硫黄原子、又は炭素原子がより好ましく、窒素原子、酸素原子、又は炭素原子が更に好ましい。
11とL11、L12、L13、及びL14でそれぞれ形成される結合は、それぞれ独立に、共有結合であってもイオン結合であっても配位結合であってもよい。本発明における配位子とは、説明の便宜上、配位結合のみならず他のイオン結合、共有結合により形成された場合においても用いるものとする。
11、Y12、L12、Y11、L13、Y13、及びL14から成る配位子は、アニオン性配位子(少なくとも一つのアニオンが金属と結合する配位子)であることが好ましい。アニオン性配位子中のアニオンの数は、1〜3が好ましく、1、2がより好ましく、2がさらに好ましい。
11に炭素原子で配位するL11、L12、L13、及びL14としては、特に限定されないが、それぞれ独立にイミノ配位子、芳香族炭素環配位子(例えばベンゼン配位子、ナフタレン配位子、アントラセン配位子、フェナントラセン配位子など)、ヘテロ環配位子(例えばフラン配位子、チオフェン配位子、ピリジン配位子、ピラジン配位子、ピリミジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、及び、それらを含む縮環体(例えばキノリン配位子、ベンゾチアゾール配位子など)およびこれらの互変異性体)が挙げられる。
11に窒素原子で配位するL11、L12、L13、及びL14としては特に限定されないが、それぞれ独立に、含窒素へテロ環配位子(例えば、ピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子、オキサジアゾール配位子、チアジアゾール配位子、及び、それらを含む縮環体(例えば、キノリン配位子、ベンズオキサゾール配位子、ベンズイミダゾール配位子など)、及び、これらの互変異性体(なお、本発明では通常の異性体以外に次のような例も互変異性体と定義する。例えば、特開2007−103493化合物番号「化24」に記載の例示化合物(24)の5員ヘテロ環配位子、化合物番号「化28」に記載の例示化合物(64)の末端5員ヘテロ環配位子、化合物番号「化37」に記載の例示化合物(145)の5員ヘテロ環配位子もピロール互変異性体と定義する。)など、アミノ配位子(アルキルアミノ配位子(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばメチルアミノなどが挙げられる。)、アリールアミノ配位子(例えばフェニルアミノなどが挙げられる。)、アシルアミノ配位子(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ配位子(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ配位子(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、イミノ配位子など)が挙げられる。これらの配位子はさらに置換されていてもよい。
11に酸素原子で配位するL11、L12、L13、及びL14としては特に限定されないが、それぞれ独立に、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、及び2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、及び2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、及びキノリルオキシなどが挙げられる。)、アシルオキシ配位子(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、シリルオキシ配位子(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、カルボニル配位子(例えばケトン配位子、エステル配位子、又はアミド配位子など)、エーテル配位子(例えばジアルキルエーテル配位子、ジアリールエーテル配位子、フリル配位子など)などが挙げられる。これらの配位子は更に置換されていてもよい。
11に硫黄原子で配位するL11、L12、L13、及びL14としては特に限定されないが、それぞれ独立に、アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミダゾリルチオ、2−ベンズオキサゾリルチオ、及び2−ベンズチアゾリルチオなどが挙げられる。)、チオカルボニル配位子(例えばチオケトン配位子、チオエステル配位子など)、又はチオエーテル配位子(例えばジアルキルチオエーテル配位子、ジアリールチオエーテル配位子、チオフリル配位子など)などが挙げられる。これらの置換配位子は更に置換されてもよい。
11にリン原子で配位するL11、L12、L13、及びL14としては特に限定されないが、それぞれ独立に、ジアルキルホスフィノ配位子、ジアリールホスフィノ配位子、トリアルキルホスフィン配位子、トリアリールホスフィン配位子、及びホスフィニン配位子等が挙げられる。これらの配位子は更に置換されてもよい。
11及びL14は、それぞれ独立に、芳香族炭素環配位子、アルキルオキシ配位子、アリールオキシ配位子、エーテル配位子、アルキルチオ配位子、アリールチオ配位子、アルキルアミノ配位子、アリールアミノ配位子、アシルアミノ配位子、含窒素へテロ環配位子(例えばピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子、オキサジアゾール配位子、チアジアゾール配位子、又は、それらを含む縮環配位子体(例えば、キノリン配位子、キノキサリン配位子、フタラジン配位子、ベンズオキサゾール配位子、ベンズイミダゾール配位子など)、又は、これらの互変異性体など)が好ましく、芳香族炭素環配位子、アリールオキシ配位子、アリールチオ配位子、アリールアミノ配位子、並びにピリジン配位子、ピラジン配位子、ピラゾール配位子、イミダゾール配位子、又は、それらを含む縮環配位子体(例えば、キノリン配位子、キノキサリン配位子、フタラジン配位子、ベンズイミダゾール配位子など)、又は、これらの互変異性体がより好ましく、芳香族炭素環配位子、アリールオキシ配位子、アリールチオ配位子、アリールアミノ配位子、並びにピリジン配位子、ピラジン配位子、ピラゾール配位子、イミダゾール配位子、又は、それらを含む縮環配位子体がさらに好ましく、芳香族炭素環配位子、アリールオキシ配位子、並びにピリジン配位子、ピラジン配位子、ピラゾール配位子、イミダゾール配位子、又は、それらを含む縮環配位子体が特に好ましい。
12及びL13は、それぞれ独立に、M11と配位結合を形成する配位子が好ましく、M11と配位結合を形成する配位子としては、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、チアゾール環、オキサゾール環、ピロール環、トリアゾール環、及び、それらを含む縮環体(例えば、キノリン環、キノキサリン配位子、フタラジン配位子、ベンズオキサゾール環、ベンズイミダゾール環、インドレニン環など)及び、これらの互変異性体が好ましく、ピリジン環、ピラジン環、ピリミジン環、ピロール環、及び、それらを含む縮環体(例えば、キノリン環、キノキサリン環、フタラジン環、、インドール環など)、及び、これらの互変異性体がより好ましく、ピリジン環、ピラジン環、ピリミジン環、及び、それらを含む縮環体(例えば、キノリン環など)がさらに好ましく、ピリジン環、及び、ピリジン環を含む縮環体(例えば、キノリン環など)が特に好ましい。
一般式(I)中、L15はM11に配位する配位子を表す。L15は1〜4座の配位子が好ましく、1〜4座のアニオン性配位子がより好ましい。1〜4座のアニオン性配位子としては特に限定されないが、ハロゲン配位子、1,3−ジケトン配位子(例えば、アセチルアセトン配位子など)、ピリジン配位子を含有するモノアニオン性2座配位子(例えば、ピコリン酸配位子、2−(2−ヒドロキシフェニル)−ピリジン配位子など)、L11、Y12、L12、Y11、L13、Y13、及びL14で形成される4座配位子が好ましく、1,3−ジケトン配位子(例えば、アセチルアセトン配位子など)、ピリジン配位子を含有するモノアニオン性2座配位子(例えばピコリン酸配位子、2−(2−ヒドロキシフェニル)−ピリジン配位子など)、L11、Y12、L12、Y11、L13、Y13、及びL14で形成される4座配位子がより好ましく、1,3−ジケトン配位子(例えば、アセチルアセトン配位子など)、ピリジン配位子を含有するモノアニオン性2座配位子(例えば、ピコリン酸配位子、2−(2−ヒドロキシフェニル)−ピリジン配位子など)がさらに好ましく、1,3−ジケトン配位子(例えば、アセチルアセトン配位子など)が特に好ましい。配位座の数、及び配位子の数が、金属の配位数を上回ることはない。但し、L15はL11及びL14の両方と結合して環状配位子を形成することはない。
一般式(I)中、Y11、Y12、及びY13は、それぞれ独立に、連結基、単結合、または二重結合を表す。連結基としては、特に限定されないが、例えば、炭素原子、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子から選択される原子を含んで構成される連結基が好ましい。このような連結基の具体例としては、例えば下記のものが挙げられる。

また、Y11、Y12、又はY13が連結基である場合、L11とY12、Y12とL12、L12とY11、Y11とL13、L13とY13、Y13とL14の間の結合は、それぞれ独立に、単結合又は二重結合を表す。
11、Y12、及びY13は、それぞれ独立に、単結合、二重結合、カルボニル連結基、アルキレン連結基、アルケニレン基、又はアミノ連結基が好ましい。Y11は、単結合、アルキレン基、アミノ連結基がより好ましく、アルキレン基がさらに好ましい。Y12及びY13は、単結合、アルケニレン基がより好ましく、単結合がさらに好ましい。
12、L11、L12、及びM11で形成される環、Y11、L12、L13、及びM11で形成される環、Y13、L13、L14、及びM11で形成される環は、それぞれ環員数4〜10が好ましく、環員数5〜7がより好ましく、環員数5又は6がさらに好ましい。
一般式(I)中、n11は0〜4を表す。M11が配位数4の金属の場合、n11は0であり、M11が配位数6の金属の場合、n11は1、2が好ましく、1がより好ましい。M11が配位数6でn11が1の場合L15は2座配位子を表し、M11が配位数6でn11が2の場合L15は単座配位子を表す。M11が配位数8の金属の場合、n11は1〜4が好ましく、1、2がより好ましく、1がより好ましい。M11が配位数8でn11が1の場合L15は4座配位子を表し、M11が配位数8でn11が2の場合L15は2座配位子を表す。n11が複数のときは、複数のL15は同じであっても異なっていてもよい。
前記一般式(I)で表される化合物の好ましい形態は、以下に挙げる、一般式(1)、一般式(2)、一般式(3)、一般式(4)及び一般式(5)で表される各化合物である。
一般式(1)で表される化合物について説明する。
一般式(1)中、M21は金属イオンを表し、Y21は連結基、単結合、または二重結合を表す。Y22、Y23はそれぞれ単結合または連結基を表す。Q21、Q22はそれぞれ含窒素ヘテロ環を形成する原子群を表し、Q21で形成される環とY21の間の結合およびQ22で形成される環とY21の間の結合は、単結合または二重結合を表す。X21、X22は、それぞれ独立に、酸素原子、硫黄原子、置換または無置換の窒素原子を表す。R21、R22、R23、及びR24は、それぞれ独立に、水素原子又は置換基を表し、R21及びR22並びにR23及びR24は各々結合して環を形成してもよい。L25はM21に配位する配位子を表す。n21は0〜4の整数を表す。
一般式(1)について詳細に説明する。
一般式(1)中、M21は、前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
21、Q22は、それぞれ独立に、含窒素へテロ環(M21に配位する窒素を含む環)を形成する原子群を表す。Q21、Q22で形成される含窒素ヘテロ環としては特に限定されないが、例えば、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、ピラゾール環、イミダゾール環、チアゾール環、オキサゾール環、ピロール環、トリアゾール環、及び、それらを含む縮環体(例えば、キノリン環、キノキサリン環、フタラジン環、インドール環、ベンズオキサゾール環、ベンズイミダゾール環、インドレニン環など)及び、これらの互変異性体が挙げられる。
21、Q22で形成される含窒素ヘテロ環としては、好ましくは、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、ピラゾール環、イミダゾール環、オキサゾール環、ピロール環、及び、それらを含む縮環体(例えば、キノリン環、キノキサリン環、フタラジン環、インドール環、ベンズオキサゾール環、ベンズイミダゾール環など)及び、これらの互変異性体であり、より好ましくはピリジン環、ピラジン環、ピリミジン環、イミダゾール環、ピロール環、及び、それらを含む縮環体(例えば、キノリン環など)及び、これらの互変異性体であり、さらに好ましくは、ピリジン環、及び、その縮環体(例えば、キノリン環など)であり、特に好ましくはピリジン環である。
21、X22は、それぞれ独立に、酸素原子、硫黄原子、置換または無置換の窒素原子であり、酸素原子、硫黄原子、置換された窒素原子がより好ましく、酸素原子、硫黄原子がさらに好ましく、酸素原子が特に好ましい。
21は、前記一般式(I)におけるY11と同義であり、好ましい範囲も同じである。
22、Y23は、それぞれ独立に、単結合、連結基を表し、単結合が好ましい。連結基としては特に限定されないが、例えば、カルボニル連結基、チオカルボニル連結基、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、酸素原子連結基、窒素原子連結基、硫黄原子連結基、及び、これらの組み合わせからなる連結基などが挙げられる。
22又はY23として表される連結基としては、カルボニル連結基、アルキレン連結基、又はアルケニレン連結基が好ましく、カルボニル連結基、アルケニレン連結基がより好ましく、カルボニル連結基がさらに好ましい。
21、R22、R23、及びR24は、それぞれ独立に、水素原子または置換基を表す。置換基としては特に限定されないが、例えば、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、及びシクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、及びアントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、及びジトリルアミノなどが挙げられる。)、
アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、及び2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、及び2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、及びキノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、及びピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、
アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、及びフェニルスルファモイルなどが挙げられる。)、
カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、及びフェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミダゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、及びフェニルウレイドなどが挙げられる。)、
リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、及びアゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は更に置換されてもよい。
21、R22、R23、及びR24は、それぞれ独立に、アルキル基、アリール基、R21とR22またはR23とR24が結合して環構造(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基が好ましく、R21とR22又はR23とR24が結合して環構造(例えばベンゾ縮環、ピリジン縮環など)を形成する基がより好ましい。
25は前記一般式(I)におけるL15と同義であり、好ましい範囲も同じである。
21は前記一般式(I)におけるn11と同義であり、好ましい範囲も同じである。
一般式(1)において、Q21、Q22が形成する環がピリジン環のとき、Y21は連結基を表す金属錯体であること、Q21、Q22が形成する環がピリジン環で、Y21が単結合または二重結合で、X21、X22が硫黄原子、置換または無置換の窒素原子を表す金属錯体であること、或いは、Q21、Q22が形成する環が含窒素ヘテロ5員環、または、窒素原子を2つ以上含む含窒素6員環を表す金属錯体であることが好ましい。
前記一般式(1)で表される化合物の好ましい形態は、下記一般式(1−A)で表される化合物である。
一般式(1−A)について説明する。
一般式(1−A)中、M31は、前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
31、Z32、Z33、Z34、Z35、及びZ36は、それぞれ独立に、置換または無置換の炭素原子、窒素原子を表し、置換または無置換の炭素原子がより好ましい。炭素上の置換基としては、前記一般式(1)におけるR21で説明した基が挙げられ、また、Z31とZ32、Z32とZ33、Z33とZ34、Z34とZ35、Z35とZ36が連結基を介して結合し、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成してもよく、Z31とT31、Z36とT38が連結基を介して結合し、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成してもよい。
前記炭素上の置換基としては、アルキル基、アルコキシ基、アルキルアミノ基、アリール基、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基、ハロゲン原子が好ましく、アルキルアミノ基、アリール基、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基がより好ましく、アリール基、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基がさらに好ましく、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基が特に好ましい。
31、T32、T33、T34、T35、T36、T37、及びT38は、それぞれ独立に、置換または無置換の炭素原子、窒素原子を表し、置換または無置換の炭素原子がより好ましい。
炭素上の置換基としては、前記一般式(1)におけるR21で説明した基が挙げられ、また、T31とT32、T32とT33、T33とT34、T35とT36、T36とT37、T37とT38が連結基を介して結合し、縮環(例えばベンゾ縮環、ピリジン縮環など)を形成しても良い。
前記炭素上の置換基としては、アルキル基、アルコキシ基、アルキルアミノ基、アリール基、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基、ハロゲン原子が好ましく、アリール基、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基、ハロゲン原子がより好ましく、アリール基、ハロゲン原子がさらに好ましく、アリール基が特に好ましい。
31、X32は、それぞれ独立に、前記一般式(1)におけるX21、X22と同義であり、好ましい範囲も同じである。
一般式(2)で表される化合物について説明する。
一般式(2)中、M51は前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
51、Q52は、それぞれ独立に、前記一般式(1)におけるQ21、Q22と同義であり、好ましい範囲も同じである。
53、Q54は、それぞれ独立に、含窒素へテロ環(M51に配位する窒素を含む環)を形成する基を表す。Q53、Q54で形成される含窒素ヘテロ環としては特に限定されないが、ピロール誘導体の互変異性体(例えば、特開2007−103493化合物番号「化24」に記載の例示化合物(24)の5員ヘテロ環配位子、化合物番号「化28」に記載の例示化合物(64)の末端5員ヘテロ環配位子、化合物番号「化37」に記載の例示化合物(145)の5員ヘテロ環配位子など)、イミダゾール誘導体の互変異性体(例えば、特開2007−103493化合物番号「化24」に記載の例示化合物(29)のヘテロ5員環配位子など)、チアゾール誘導体の互変異性体(例えば、特開2007−103493化合物番号「化24」に記載の例示化合物(30)のヘテロ5員環配位子など)、オキサゾール誘導体の互変異性体(例えば、特開2007−103493化合物番号「化24」に記載の例示化合物(31)のヘテロ5員環配位子など)が好ましく、ピロール誘導体の互変異性体、イミダゾール誘導体の互変異性体、チアゾール誘導体の互変異性体がより好ましく、ピロール誘導体の互変異性体、イミダゾール誘導体の互変異性体がさらに好ましく、ピロール誘導体の互変異性体が特に好ましい。
51は前記一般式(I)におけるY11と同義であり、好ましい範囲も同じである。
55は前記一般式(I)におけるL15と同義であり、好ましい範囲も同じである。
51は前記n11と同義であり、好ましい範囲も同じである。
51、W52は、それぞれ独立に、置換または無置換の炭素原子、窒素原子を表し、無置換の炭素原子、窒素原子が好ましく、無置換の炭素原子がより好ましい。
一般式(3)で表される化合物について説明する。
一般式(3)中、MA1、QA1、QA2、YA1、YA2、YA3、RA1、RA2、RA3、RA4、LA5、及びnA1は、前記一般式(1)におけるM21、Q21、Q22、Y21、Y22、Y23、R21、R22、R23、R24、L25、及びn21とそれぞれ同義であり、好ましい範囲も同じである。
前記一般式(3)で表される化合物の好ましい形態は、下記一般式(3−B)で表される化合物である。
一般式(3−B)で表される化合物について説明する。
一般式(3−B)中、M71は前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
71、Y72、及びY73は、それぞれ一般式(1)におけるY21、Y22、Y23と同義であり、好ましい範囲も同じである。
75は前記一般式(I)におけるL15と同義であり、好ましい範囲も同じである。
71は前記一般式(I)におけるn11と同義であり、好ましい範囲も同じである。
71、Z72、Z73、Z74、Z75、及びZ76は、それぞれ独立に、置換または無置換の炭素原子、窒素原子を表し、置換または無置換の炭素原子が好ましい。炭素上の置換基としては、前記一般式(1)におけるR21で説明した基が挙げられる。また、R71とR72、R73とR74が連結基を介して結合し、環(例えばベンゼン環、ピリジン環)を形成してもよい。R71〜R74は前記一般式(1)におけるR21〜R24の置換基と同義であり、好ましい範囲も同じである。
前記一般式(3−B)で表される化合物の好ましい形態は、下記一般式(3−C)で表される化合物である。
一般式(3−C)で表される化合物について説明する。
一般式(3−C)中、RC1、RC2は、それぞれ独立に、水素原子または置換基を表し、置換基としては、前記一般式(1)におけるR21ないしR24の置換基として説明したアルキル基、アリール基、ヘテロ環基(これら基は更に置換されても良い。その場合の置換基としては例えば前記一般式(1)におけるR21で表される置換基として挙げた基が適用できる。)、ハロゲン原子を表す。RC3、RC4、RC5、及びRC6が表す置換基も前記一般式(1)におけるR21ないしR24の置換基と同義である。nC3、nC6は0〜3の整数、nC4、nC5は0〜4の整数を表し、RC3、RC4、RC5、及びRC6をそれぞれ複数個有する場合、複数個のRC3、RC4、RC5、RC6は同じであっても異なってもよく、連結して環を形成してもよい。RC3、RC4、RC5、及びRC6は、好ましくはアルキル基、アリール基、ヘテロアリール基、シアノ基、又はハロゲン原子である。
一般式(4)で表される化合物について説明する。
一般式(4)中、MB1、YB2、YB3、RB1、RB2、RB3、RB4、LB5、nB3、XB1、及びXB2は、前記一般式(1)におけるM21、Y22、Y23、R21、R22、R23、R24、L25、n21、X21、及びX22とそれぞれ同義であり好ましい範囲も同様である。
B1は連結基を表し、前記一般式(1)におけるY21と同様であり、好ましくは1,2位で置換したビニル基、フェニレン環、ピリジン環、ピラジン環、ピリミジン環または炭素数2〜8のアルキレン基を表す。
B5、RB6は、それぞれ独立に、水素原子または置換基を表し、置換基としては前記一般式(1)におけるR21ないしR24の置換基として説明したアルキル基、アリール基、ヘテロ環基を表す。ただし、YB1はRB5またはRB6と連結することはない。nB1、nB2は、それぞれ独立に、0ないし1の整数を表す。
前記一般式(4)で表される化合物の好ましい形態は、下記一般式(4−A)で表される化合物である。
一般式(4−A)で表される化合物について説明する。
一般式(4−A)中、RD3、RD4は、それぞれ独立に、水素原子または置換基を表し、RD1、RD2はそれぞれ置換基を表す。RD1、RD2、RD3、及びRD4が表す置換基としては、前記一般式(4)におけるRB5、RB6が表す置換基と同義であり、好ましい範囲も同様である。nD1、nD2は0〜4の整数を表し、RD1、RD2をそれぞれ複数個有する場合、複数個のRD1、RD2は同じであっても異なってもよく、連結して環を形成してもよい。YD1は1,2位で置換したビニル基、フェニレン環、ピリジン環、ピラジン環、ピリミジン環または炭素数1〜8のアルキレン基を表す。
一般式(5)で表される化合物について説明する
一般式(5)中、M61は、前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
61、Q62は、それぞれ独立に、環を形成する基を表す。Q61、Q62で形成される環としては特に限定されないが、例えば、ベンゼン環、ピリジン環、ピリダジン環、ピリミジン環、チオフェン環、イソチアゾール環、フラン環、イソオキサゾ−ル環、及び、その縮環体が挙げられる。
61、Q62で形成される環は、好ましくは、ベンゼン環、ピリジン環、チオフェン環、チアゾール環、及び、その縮環体であり、ベンゼン環、ピリジン環、及び、その縮環体がより好ましく、ベンゼン環、及び、その縮環体がさらに好ましい。
61は前記一般式(I)におけるY11と同義であり、好ましい範囲も同じである。
62、Y63は、それぞれ独立に、連結基または単結合を表す。連結基としては特に限定されないが、例えば、カルボニル連結基、チオカルボニル連結基、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、酸素原子連結基、窒素原子連結基、及び、これらの組み合わせからなる連結基などが挙げられる。
62、Y63は、それぞれ独立に、単結合、カルボニル連結基、アルキレン連結基、アルケニレン基が好ましく、単結合、アルケニレン基がより好ましく、単結合がさらに好ましい。
65は前記一般式(I)におけるL15と同義であり、好ましい範囲も同じである。
61は前記一般式(I)におけるn11と同義であり、好ましい範囲も同じである。
61、Z62、Z63、Z64、Z65、Z66、Z67、及びZ68は、それぞれ独立に、置換または無置換の炭素原子、窒素原子を表し、置換または無置換の炭素原子が好ましい。炭素上の置換基としては、前記一般式(1)におけるR21で説明した基が挙げられ、また、Z61とZ62、Z62とZ63、Z63とZ64、Z65とZ66、Z66とZ67、Z67とZ68が連結基を介して結合し、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成しても良い。Q61、Q62で形成される環がそれぞれZ61、Z68と連結基を介して結合し、環を形成してもよい。
前記炭素上の置換基としては、アルキル基、アルコキシ基、アルキルアミノ基、アリール基、縮環(例えばベンゾ縮環、ピリジン縮環など)を形成する基、ハロゲン原子が好ましく、アルキルアミノ基、アリール基、縮環(例えばベンゾ縮環、ピリジン縮環など)を形成する基がより好ましく、アリール基、縮環(例えばベンゾ縮環、ピリジン縮環など)を形成する基がさらに好ましく、縮環(例えばベンゾ縮環、ピリジン縮環など)を形成する基が特に好ましい。
本発明における3座配位子を有する金属錯体の好ましい形態は、下記一般式(II)で表される化合物である。
一般式(II)で表される化合物について説明する。
一般式(II)中、M81は前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
81、L82、及びL83は、それぞれ独立に、前記一般式(I)におけるL11、L12、L14と同義であり、好ましい範囲も同じである。
81、Y82は、それぞれ独立に、前記一般式(I)におけるY12、Y13と同義であり、好ましい範囲も同じである。
85はM81に配位する配位子を表す。L85は1〜3座の配位子が好ましく、1〜3座のアニオン性配位子がより好ましい。1〜3座のアニオン性配位子としては特に限定されないが、ハロゲン配位子、L81、Y81、L82、Y82、及びL83で形成される3座配位子が好ましく、L81、Y81、L82、Y82、及びL83で形成される3座配位子がより好ましい。L85が金属を介さずにL81、L83と連結することはない。配位座の数、及び配位子の数が、金属の配位数を上回ることはない。
81は0〜5を表す。M81が配位数4の金属の場合、n81は1であり、L85は単座配位子を表す。M81が配位数6の金属の場合、n81は1〜3が好ましく、1、3がより好ましく、1がさらに好ましい。M81が配位数6でn81が1の場合L85は3座配位子を表し、M81が配位数6でn81が2の場合L85は単座配位子1つと2座配位子1つを表し、M81が配位数6でn81が3の場合L85は単座配位子を表す。M81が配位数8の金属の場合、n81は1〜5が好ましく、1、2がより好ましく、1がより好ましい。M81が配位数8でn81が1の場合L85は5座配位子を表し、n81が2の場合L85は3座配位子1つと2座配位子1つを表し、n81が3の場合L85は3座配位子1つと単座配位子2つ、または、2座配位子2つと単座配位子1つを表し、n81が4の場合L85は2座配位子1つと単座配位子3つを表し、n81が5の場合L85は単座配位子5つを表す。n81が複数のときは、複数のL85は同じであっても異なっていてもよい。
前記一般式(II)の好ましい形態は、前記一般式(II)のL81、L82、及びL83が炭素原子でM81に配位する芳香族炭素環またはヘテロ環、または窒素原子でM81に配位する含窒素ヘテロ環を表し、L81、L82、及びL83のうち少なくとも一つが含窒素ヘテロ環である。これら炭素原子で配位する芳香族炭素環、ヘテロ環および窒素原子で配位する含窒素ヘテロ環は前記一般式(I)で説明したM11に炭素原子で配位する配位子および窒素原子で配位する例が挙げられ、好ましい範囲も同様である。Y81、Y82は好ましくは単結合ないしはメチレン基を表す。
前記一般式(II)で表される化合物の他の好ましい形態は、下記一般式(II−A)で表される化合物、及び下記一般式(II−B)で表される化合物である。
先ず、一般式(II−A)で表される化合物について説明する。
一般式(II−A)中、M91は前記一般式(II)におけるM81と同義であり、好ましい範囲も同じである。
91、Q92は含窒素へテロ環(M91に配位する窒素を含む環)を形成する基を表す。Q91、Q92で形成される含窒素ヘテロ環としては特に限定されないが、例えば、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、チアゾール環、オキサゾール環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、及び、それらを含む縮環体(例えば、キノリン環、ベンズオキサゾール環、ベンズイミダゾール環、インドレニン環など)及び、これらの互変異性体が挙げられる。
91、Q92で形成される含窒素ヘテロ環は、好ましくは、ピリジン環、ピラゾール環、チアゾール環、イミダゾール環、ピロール環、及び、それらを含む縮環体(例えば、キノリン環、ベンズチアゾール環、ベンズイミダゾール環、インドレニン環など)、及び、これらの互変異性体であり、より好ましくはピリジン環、ピロール環、及び、それらを含む縮環体(例えば、キノリン環など)、及び、これらの互変異性体、さらに好ましくは、ピリジン環、及び、それらを含む縮環体(例えば、キノリン環など)であり、特に好ましくはピリジン環である。
93は含窒素へテロ環(M91に配位する窒素を含む環)を形成する基を表す。Q93で形成される含窒素ヘテロ環としては特に限定されないが、ピロール環、イミダゾール環、トリアゾール環の互変異性体、及び、それらを含む縮環体(例えばベンズピロールなど)が好ましく、ピロール環の互変異性体及びピロール環を含む縮環体(例えばベンズピロールなど)の互変異性体がより好ましい。
91、W92は、それぞれ独立に、前記一般式(2)におけるW51、W52と同義であり、好ましい範囲も同じである。
95は前記一般式(II)におけるL85と同義であり、好ましい範囲も同じである。
91は前記一般式(II)におけるn81と同義であり、好ましい範囲も同じである。
一般式(II−B)で表される化合物について説明する。
一般式(II−B)中、M101は、前記一般式(II)におけるM81と同義であり、好まし範囲も同じである。
102は、前記一般式(1)におけるQ21と同義であり、好ましい範囲も同じである。
101は前記一般式(II−A)におけるQ91と同義であり、好ましい範囲も同じである。
103は芳香環を形成する基を表す。Q103で形成される芳香環としては特に限定されないが、ベンゼン環、フラン環、チオフェン環、ピロール環、及び、それらを含む縮環体(例えば、ナフタレン環、ベンゾフラン環、ベンゾチオフェン環、インドール環など)が好ましく、ベンゼン環及びベンゼン環を含む縮環体(例えば、ナフタレン環など)がより好ましく、ベンゼン環が特に好ましい。
101、Y102は、それぞれ独立に、前記一般式(1)におけるY22と同義であり、好ましい範囲も同じである。
105は前記一般式(II)におけるL85と同義であり、好ましい範囲も同じである。
101は前記一般式(II)におけるn81と同義であり、好ましい範囲も同じである。
101は前記一般式(1)におけるX21と同義であり、好ましい範囲も同じである。
本発明における三座配位子を有する金属錯体の他の好ましい態様は、下記一般式(II−C)で表される化合物である。
一般式(II−C)中、MX1は金属イオンを表す。QX11〜QX16はMX1に配位する原子またはMX1に配位する原子を含んだ原子群を表す。LX11〜LX14は単結合、二重結合または連結基を表す。すなわち、QX11−LX11−QX12−LX12−QX13からなる原子群およびQX14−LX13−QX15−LX14−QX16からなる原子群はそれぞれ三座の配位子である。MX1とQX11〜QX16との結合は、それぞれ配位結合、イオン結合、共有結合のいずれでもよい。
一般式(II−C)で表される化合物について詳細に説明する。
一般式(II−C)中、MX1は金属イオンを表す。金属イオンとしては特に限定されないが、1価〜3価の金属イオンが好ましく、2価又は3価の金属イオンがより好ましく、3価の金属イオンがさらに好ましい。具体的には、白金イオン、イリジウムイオン、レニウムイオン、パラジウムイオン、ロジウムイオン、ルテニウムイオン、銅イオン、ユーロピウムイオン、ガドリニウムイオン、又はテルビウムイオンが好ましく、イリジウムイオン、ユーロピウムイオンがより好ましく、イリジウムイオンがさらに好ましい。
X11〜QX16は、MX1に配位する原子又はMX1に配位する原子を含んだ原子群を表す。
X11〜QX16がMX1に配位する原子を表す場合、その具体的な原子としては、炭素原子、窒素原子、酸素原子、珪素原子、リン原子、及び硫黄原子などが挙げられ、好ましくは窒素原子、酸素原子、硫黄原子、又はリン原子であり、より好ましくは窒素原子、酸素原子である。
X11〜QX16がMX1に配位する原子を含んだ原子群を表す場合、MX1に炭素原子で配位するものとしては、例えば、イミノ基、芳香族炭化水素環基(ベンゼン、ナフタレンなど)、ヘテロ環基(チオフェン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、チアゾール、オキサゾール、ピロール、イミダゾール、ピラゾール、トリアゾールなど)およびこれらを含む縮合環、およびこれらの互変異性体が挙げられる。
X1に窒素原子で配位するものとしては、例えば、含窒素ヘテロ環基(ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、チアゾール、オキサゾール、ピロール、イミダゾール、ピラゾール、トリアゾールなど)、アミノ基(アルキルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばメチルアミノ)、アリールアミノ基(例えばフェニルアミノ)などが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、イミノ基などが挙げられる。これらの基はさらに置換されていてもよい。
X1に酸素原子で配位するものとしては、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、及びキノリルオキシなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、カルボニル基(例えばケトン基、エステル基、アミド基など)、エーテル基(例えばジアルキルエーテル基、ジアリールエーテル基、フリル基など)などが挙げられる。
X1に珪素原子で配位するものとしては、アルキルシリル基(好ましくは炭素数3〜30であり、たとえば、トリメチルシリル基などが挙げられる。)、アリールシリル基(好ましくは炭素数18〜30であり、例えば、トリフェニルシリル基などが挙げられる。)等があげられる。これらの基はさらに置換されてもよい。
X1に硫黄原子で配位するものとしては、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミダゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、チオカルボニル基(例えばチオケトン基、チオエステル基など)、チオエーテル基(例えばジアルキルチオエーテル基、ジアリールチオエーテル基、及びチオフリル基など)などが挙げられる。
X1にリン原子で配位するものとしては、ジアルキルホスフィノ基、ジアリールホスフィノ基、トリアルキルホスフィン基、トリアリールホスフィン基、又はホスフィニン基等があげられる。これらの基はさらに置換されてもよい。
X11〜QX16で表される原子群として好ましくは、MX1に、炭素原子で配位する芳香族炭化水素環基、炭素原子で配位する芳香族ヘテロ環基、窒素原子で配位する含窒素芳香族ヘテロ環基、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、又はジアルキルホスフィノ基であり、より好ましくは炭素原子で配位する芳香族炭化水素環基、炭素原子で配位する芳香族ヘテロ環基、窒素原子で配位する含窒素芳香族ヘテロ環基である。
X1とQX11〜QX16との結合は、それぞれ配位結合、イオン結合、共有結合のいずれでもよい。
一般式(II−C)中、LX11〜LX14は、単結合、二重結合、又は連結基を表す。連結基としては特に限定されないが、炭素原子、窒素原子、酸素原子、硫黄原子、ケイ素原子から選択される原子を含んで構成される連結基が好ましい。該連結基の具体例を下記に示すが、これらに限定されることはない。
これらの連結基はさらに置換されてもよく、置換基としては前記一般式(2)におけるR21〜R24で表される置換基として挙げたものが適用でき、好ましい範囲も同様である。LX11〜LX14として好ましくは、単結合、ジメチルメチレン基、又はジメチルシリレン基である。
一般式(II−C)で表される化合物のうち、より好ましくは下記一般式(X2)で表される化合物であり、更に好ましくは下記一般式(X3)で表される化合物である。
先ず、一般式(X2)で表される化合物について説明する。
一般式(X2)中、MX2は金属イオンを表す。YX21〜YX26はMX2に配位する原子を表し、QX21〜QX26は、それぞれYX21〜YX26と共に芳香環もしくは芳香族ヘテロ環を形成する原子群を表す。LX21〜LX24は単結合、二重結合または連結基を表す。MX2とYX21〜YX26との結合は、それぞれ配位結合でも共有結合でもよい。
一般式(X2)で表される化合物について詳細に説明する。
一般式(X2)中、MX2は、前記一般式(II−C)におけるMX1と同義であり、また好ましい範囲も同様である。YX21〜YX26はMX2に配位する原子を表す。YX21〜YX26とMX2との結合は配位結合、イオン結合、共有結合のいずれでもよい。YX21〜YX26としては、炭素原子、窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子が挙げられ、好ましくは炭素原子、窒素原子である。QX21〜QX26は、それぞれYX21〜YX26を含んで芳香族炭化水素環または芳香族ヘテロ環を形成する原子群を表す。この場合に形成する芳香族炭化水素環、芳香族ヘテロ環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、チオフェン環、及びフラン環が挙げられ、好ましくはベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピラゾール環、イミダゾール環、又はトリアゾール環であり、さらに好ましくはベンゼン環、ピリジン環、ピラジン環、ピラゾール環、又はトリアゾール環であり、特に好ましくはベンゼン環、ピリジン環である。これらはさらに縮環を有していても置換基を有していても良い。
X21〜LX24は前記一般式(II−C)におけるLX11〜LX14と同義であり好ましい範囲も同様である。
前記一般式(II−C)で表される化合物は、さらに好ましくは下記一般式(X3)で表される化合物である。
一般式(X3)について説明する。
一般式(X3)中、MX3は金属イオンを表す。YX31〜YX36は、炭素原子、窒素原子、リン原子を表す。LX31〜LX34は単結合、二重結合または連結基を表す。MX3とYX31〜YX36との結合は、それぞれ配位結合、イオン結合共有結合のいずれでもよい。
X3は前記一般式(II−C)におけるMX1と同義であり、また好ましい範囲も同様である。YX31〜YX36はMX3に配位する原子を表す。YX31〜YX36としては、炭素原子、窒素原子、リン原子が挙げられ、好ましくは炭素原子、窒素原子である。LX31〜LX34は前記一般式(II−C)におけるLX11〜LX14と同義であり好ましい範囲も同様である。
前記一般式(I)、及び一般式(II)で表される化合物の具体例としては、例えば特開2007−103493号明細書に記載の化合物(1)〜化合物(247)が挙げられるが、これらに限定されるものではない。
上記化合物例で代表される化合物のうち、ビピリジル又はフェナントロリンを部分構造に含む4座配位子、シッフ塩基型4座配位子、フェニルビピリジル3座配位子、ジフェニルピリジン3座配位子、ターピリジン3座配位子から選ばれる配位子を有する化合物を除いた化合物がより好ましい。
(本発明における金属錯体の合成方法)
本発明における金属錯体〔前記一般式(I)、(1)、(1−A)、(2)、(3)、(3−B)、(3−C)、(4)、(4−A)、(5)、(II)、(II−A)、(II−B)、(II−C)、(X2)、及び(X3)で表される化合物は、種々の手法で合成できる。
例えば、配位子、またはその解離体と金属化合物を溶媒(例えば、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ニトリル系溶媒、アミド系溶媒、スルホン系溶媒、スルホキサイド系溶媒、及び水などが挙げられる)の存在下、もしくは、溶媒非存在下、塩基の存在下(無機、有機の種々の塩基、例えば、ナトリウムメトキサイド、t−ブトキシカリウム、トリエチルアミン、及び炭酸カリウムなどが挙げられる)、もしくは、塩基非存在下、室温以下、もしくは加熱し(通常の加熱以外にもマイクロウェーブで加熱する手法も有効である)得ることができる。
本発明の金属錯体を合成する際の反応時間は反応原料の活性により異なり、特に限定されないが、1分以上5日以下が好ましく、5分以上3日以下がより好ましく、10分以上1日以下がさらに好ましい。
本発明の金属錯体合成の反応温度は反応の活性により異なり、特に限定されないが、0℃以上300℃以下が好ましく、5℃以上250℃以下がより好ましく、10℃以上200℃以下がさらに好ましい。
本発明の金属錯体は、目的とする錯体の部分構造を形成している配位子を適宜選択することで、前記一般式(I)、(1)、(1−A)、(2)、(3)、(3−B)、(3−C)、(4)、(4−A)、(5)、(II)、(II−A)、(II−B)、(II−C)、(X2)、及び(X3)で表される化合物は合成できる。
例えば、一般式(1−A)で表される化合物を合成する際は、6,6’−ビス(2−ヒ
ドロキシフェニル)−2,2’−ビピリジル配位子またはその誘導体(例えば、2,9−
ビス(2−ヒドロキシフェニル)−1,10−フェナントロリン配位子、2,9−ビス(2−ヒドロキシフェニル)−4,7−ジフェニル−1,10−フェナントロリン配位子、6,6’−ビス(2−ヒドロキシ−5−tert−ブチルフェニル)−2,2’−ビピリジル配位子など)などを、金属化合物に対し、好ましくは0.1当量〜10当量、より好ましくは0.3当量〜6当量、さらに好ましくは0.5当量〜4当量加えて合成できる。一般式(1−A)で表される化合物の合成方法において、反応溶媒、反応時間、反応温度の各々は、上記本発明の金属錯体の合成方法で述べた事項と同様である。
6,6’−ビス(2−ヒドロキシフェニル)−2,2’−ビピリジル配位子の誘導体は種々の公知の方法を用いて合成することができる。
例えば、2,2’−ビピリジル誘導体(例えば、1,10−フェナントロリンなど)と
アニソール誘導体(例えば、4−フルオロアニソールなど)をJournal of Organic Chemistry,741,11,(1946)に記載の方法で反応させることにより合成することができる。また、ハロゲン化された2,2’−ビピリジ
ル誘導体(例えば、2,9−ジブロモ−1,10−フェナントロリンなど)と2−メトキシフェニルボロン酸誘導体など(例えば、2−メトキシ−5−フルオロフェニルボロン酸など)を出発物質として鈴木カップリング反応を行った後、メチル基を脱保護する(Journal of Organic Chemistry,741,11,(1946)に記載の方法、ピリジン塩酸塩中で加熱するなどの方法を用いる)ことにより合成することができる。また、2,2’−ビピリジルボロン酸誘導体(例えば6,6’−ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロリル)−2,2’−ビピリジル
など)とハロゲン化されたアニソール誘導体(例えば2−ブロモアニソールなど)を出発物質として鈴木カップリング反応を行った後、メチル基を脱保護する(Journal of Organic Chemistry,741,11,(1946)に記載の方法、または、ピリジン塩酸塩中で加熱するなどの方法を用いる)ことによっても合成することができる。
以下、下記一般式(III)で表される化合物について説明する。
一般式(III)中、Q11は含窒素へテロ環を形成する原子群を表し、Z11、Z12、及びZ13はそれぞれ置換又は無置換の、炭素原子又は窒素原子を表し、MY1は更に配位子を有しても良い金属イオンを表す。
一般式(III)中、Q11は、Q11が結合する炭素原子2つとこれらの炭素原子に直接結合している窒素原子とを含んで、含窒素へテロ環を形成する原子群を表す。Q11で形成される含窒素へテロ環の環員数としては特に限定されないが、環員数12〜20が好ましく、環員数14〜16がより好ましく、環員数16がさらに好ましい。
11、Z12、及びZ13はそれぞれ独立に、置換又は無置換の、炭素原子又は窒素原子を表す。Z11、Z12、及びZ13の組合せとしては、Z11、Z12、及びZ13の少なくとも1つが窒素原子であることが好ましい。
炭素原子上の置換基としては、例えば、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、及びシクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、及び3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、
アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、及びアントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、及びジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、及び2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、及び2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、及びキノリルオキシなどが挙げられる。)、
アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、及びピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、
アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、及びフェニルスルファモイルなどが挙げられる。)、
カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミダゾリルチオ、2−ベンズオキサゾリルチオ、及び2−ベンズチアゾリルチオなどが挙げられる。)、
スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、
シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、及びアゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は更に置換されてもよい。
これらの置換基の中でも、炭素原子上の置換基としては、アルキル基、アリール基、ヘテロ環基、又はハロゲン原子が好ましく、より好ましくはアリール基、ハロゲン原子であり、さらに好ましくはフェニル基、フッ素原子である。
窒素原子上の置換基としては、前記炭素原子上の置換基として例示した置換基が挙げられ、好ましい範囲も同じである。
一般式(III)中、MY1は配位子を更に有してもよい金属イオンを表し、他に配位子を有さない金属イオンがより好ましい。
Y1で表される金属イオンとしては特に限定されないが、2価または3価の金属イオンが好ましい。2価または3価の金属イオンとしては、コバルトイオン、マグネシウムイオン、亜鉛イオン、パラジウムイオン、ニッケルイオン、銅イオン、白金イオン、鉛イオン、アルミニウムイオン、イリジウムイオン、又はユーロピウムイオンが好ましく、コバルトイオン、マグネシウムイオン、亜鉛イオン、パラジウムイオン、ニッケルイオン、銅イオン、白金イオン、又は鉛イオンがより好ましく、銅イオン、白金イオンがさらに好ましく、白金イオンが特に好ましい。MY1は、Q11に含まれる原子と結合していても結合していなくてもよく、結合している方が好ましい。
Y1が、さらに有していてもよい配位子としては、特に限定されないが、単座、もしくは、2座の配位子が好ましく、2座の配位子がより好ましい。配位する原子としては、特に限定されないが、酸素原子、硫黄原子、窒素原子、炭素原子、又はリン原子が好ましく、酸素原子、窒素原子、又は炭素原子がより好ましく、酸素原子、窒素原子がさらに好ましい。
前記一般式(III)で表される化合物の好ましい例は、下記一般式(a)〜(j)で表される化合物、又はそれらの互変異性体である。
一般式(III)で表される化合物はとしては、一般式(a)及び一般式(b)で表される化合物またはその互変異性体がより好ましく、一般式(b)で表される化合物またはその互変異性体がより好ましい。
また、一般式(III)で表される化合物としては、一般式(c)または一般式(g)で表される化合物も好ましい。
一般式(c)で表される化合物としては、一般式(d)で表される化合物またはその互変異性体、一般式(e)で表される化合物またはその互変異性体、一般式(f)で表される化合物またはその互変異性体が好ましく、一般式(d)で表される化合物またはその互変異性体、一般式(e)で表される化合物またはその互変異性体がより好ましく、一般式(d)で表される化合物またはその互変異性体がさらに好ましい。
一般式(g)で表される化合物としては、一般式(h)で表される化合物またはその互変異性体、一般式(i)で表される化合物またはその互変異性体、一般式(j)で表される化合物またはその互変異性体が好ましく、一般式(h)で表される化合物またはその互変異性体、一般式(i)で表される化合物またはその互変異性体がより好ましく、一般式(h)表される化合物またはその互変異性体がさらに好ましい。
以下、一般式(a)〜(j)で表される化合物について詳細に説明する。
一般式(a)で表される化合物について説明する。
一般式(a)中、Z21、Z22、Z23、Z24、Z25、Z26、及びM21はそれぞれ対応する前記一般式(III)におけるZ11、Z12、Z13、Z11、Z12、Z13、及びMY1と同義であり、好ましい範囲も同じである。
21、Q22はそれぞれ含窒素へテロ環を形成する基を表す。Q21、Q22で形成される含窒素ヘテロ環としては特に限定されないが、ピロール環、イミダゾール環、トリアゾール環、及び、それらを含む縮環体(例えばベンズピロール)、及び、これらの互変異性体(例えば、後述の一般式(b)において、R43、R44、R45、及びR46が置換している含窒素5員環はピロールの互変異性体と定義する)が好ましく、ピロール環及びピロール環を含む縮環体(例えば、ベンズピロール)がより好ましい。
21、X22、X23、及びX24は、それぞれ独立に、置換または無置換の、炭素原子又は窒素原子を表し、無置換の、炭素原子、窒素原子が好ましく、窒素原子がより好ましい。
一般式(b)で表される化合物について説明する。
一般式(b)中、Z41、Z42、Z43、Z44、Z45、Z46、X41、X42、X43、X44、及びM41は前記一般式(a)におけるZ21、Z22、Z23、Z24、Z25、Z26、X21、X22、X23、X24、及びM21と同義であり、好ましい範囲も同じである。
43、R44、R45、R46はそれぞれ独立に水素原子、または前記一般式()におけるZ11又はZ12上の置換基として例示したアルキル基、アリール基、R43とR44またはR45とR46が結合して環構造(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基が好ましく、アルキル基、アリール基、R43とR44またはR45とR46が結合して環構造(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基がより好ましく、R43とR44またはR45とR46が結合して環構造(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基がさらに好ましい。
43、R44、R45、及びR46はそれぞれ独立に水素原子または置換基を表す。置換基としては前記一般式(III)におけるZ11又はZ12について炭素原子上の置換基で説明した基が挙げられる。
一般式(c)で表される化合物について説明する。
一般式(c)中、Z101、Z102、及びZ103はそれぞれ独立に置換又は無置換の、炭素原子又は窒素原子を表す。Z101、Z102、及びZ103の少なくとも一つが窒素原子であることが好ましい。
101、L102、L103、及びL104はそれぞれ独立に単結合または連結基を表す。連結としては特に限定されないが、例えば、カルボニル連結基、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、含窒素ヘテロ環連結基、酸素原子連結基、アミノ連結基、イミノ連結基、カルボニル連結基、及び、これらの組み合わせからなる連結基などが挙げられる。
101、L102、L103、及びL104はそれぞれ独立に単結合、アルキレン基、アルケニレン基、アミノ連結基、又はイミノ連結基が好ましく、単結合、アルキレン連結基、アルケニレン連結基、又はイミノ連結基がより好ましく、単結合、アルキレン連結基がさらに好ましい。
101、Q103はそれぞれ独立にM101に炭素原子で配位する基、窒素原子で配位する基、リン原子で配位する基、酸素原子で配位する基、または、硫黄原子で配位する基を表す。
101に炭素原子で配位する基としては、炭素原子で配位するアリール基、炭素原子で配位する5員環へテロアリール基、炭素原子で配位する6員環へテロアリール基が好ましく、炭素原子で配位するアリール基、炭素原子で配位する含窒素5員環へテロアリール基、炭素原子で配位する含窒素6員環へテロアリール基がより好ましく、炭素原子で配位するアリール基がさらに好ましい。
101に窒素原子で配位する基としては、窒素原子で配位する含窒素5員環へテロアリール基、窒素原子で配位する含窒素6員環へテロアリール基が好ましく、窒素原子で配位する含窒素6員環へテロアリール基がより好ましい。
101にリン原子で配位する基としては、リン原子で配位するアルキルホスフィン基、リン原子で配位するアリールホスフィン基、リン原子で配位するアルコキシホスフィン基、リン原子で配位するアリールオキシホスフィン基、リン原子で配位するヘテロアリールオキシホスフィン基、リン原子で配位するホスフィニン基、リン原子で配位するホスホール基が好ましく、リン原子で配位するアルキルホスフィン基、リン原子で配位するアリールホスフィン基がより好ましい。
101に酸素原子で配位する基としては、オキシ基、酸素原子で配位するカルボニル基が好ましく、オキシ基がさらに好ましい。
101に硫黄原子で配位する基としては、スルフィド基、チオフェン基、又はチアゾール基が好ましく、チオフェン基がより好ましい。
101、Q103はM101に炭素原子で配位する基、窒素原子で配位する基、酸素原子で配位する基が好ましく、炭素原子で配位する基、窒素原子で配位する基がより好ましく、炭素原子で配位する基がさらに好ましい。
102はM101に窒素原子で配位する基、リン原子で配位する基、酸素原子で配位する基、または、硫黄原子で配位する基を表し、窒素原子で配位する基がより好ましい。
101は前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
一般式(d)で表される化合物について説明する。
一般式(d)中、Z201、Z202、Z203、Z207、Z208、Z209、L201、L202、L203、L204、及びM201はそれぞれ対応する前記一般式(c)におけるZ101、Z102、Z103、Z101、Z102、Z103、L101、L102、L103、L104、及びM101と同義であり、好ましい範囲も同じである。Z204、Z205、Z206、Z210、Z211、及びZ212はそれぞれ置換または無置換の炭素原子又は窒素原子を表し、置換または無置換の炭素原子が好ましい。
一般式(e)で表される化合物について説明する。
一般式(e)中、Z301、Z302、Z303、Z304、Z305、Z306、Z307、Z308、Z309、Z310、L301、L302、L303、L304、及びM301は、それぞれ対応する前記一般式(d)、(c)におけるZ201、Z202、Z203、Z204、Z206、Z207、Z208、Z209、Z210、Z212、L101、L102、L103、L104、及びM101と同義であり、好ましい範囲も同じである。
一般式(f)で表される化合物について説明する。
一般式(f)中、Z401、Z402、Z403、Z404、Z405、Z406、Z407、Z408、Z409、Z410、Z411、Z412、L401、L402、L403、L404、及びM401は、それぞれ対応する前記一般式(d)、(c)におけるZ201、Z202、Z203、Z204、Z205、Z206、Z207、Z208、Z209、Z210、Z211、Z212、L101、L102、L103、L104、及びM101と同義であり、好ましい範囲も同じである。
401、X402はそれぞれ独立に酸素原子、置換又は無置換の窒素原子、硫黄原子を表し、酸素原子、置換窒素原子が好ましく、酸素原子がより好ましい。
一般式(g)で表される化合物について説明する
一般式(g)中、Z501、Z502、Z503、L501、L502、L503、L504、Q501、Q502、Q503、及びM501は、それぞれ対応する前記一般式(c)におけるZ101、Z102、Z103、L101、L102、L103、L104、Q101、Q103、Q102、及びM101と同義であり、好ましい範囲も同じである。
一般式(h)で表される化合物について説明する。
一般式(h)中、Z601、Z602、Z603、Z604、Z605、Z606、Z607、Z608、Z609、Z610、Z611、Z612、L601、L602、L603、L604、及びM601は、それぞれ対応する前記一般式(d)、(c)におけるZ201、Z202、Z203、Z207、Z208、Z209、Z204、Z205、Z206、Z210、Z211、Z212、L101、L102、L103、L104、及びM101と同義であり、好ましい範囲も同じである。
一般式(i)で表される化合物について説明する。
一般式(i)中、Z701、Z702、Z703、Z704、Z705、Z706、Z707、Z708、Z709、Z710、L701、L702、L703、L704、及びM701はそれぞれ対応する前記一般式(d)、(c)におけるZ201、Z202、Z203、Z207、Z208、Z209、Z204、Z206、Z210、Z212、L101、L102、L103、L104、及びM101と同義であり、好ましい範囲も同じである。
一般式(j)で表される化合物について説明する。
一般式(j)中、Z801、Z802、Z803、Z804、Z805、Z806、Z807、Z808、Z809、Z810、Z811、Z812、L801、L802、L803、L804、M801、X801、及びX802は、それぞれ対応する前記一般式(d)、(c)、(f)におけるZ201、Z202、Z203、Z207、Z208、Z209、Z204、Z205、Z206、Z210、Z211、Z212、L101、L102、L103、L104、M101、X401、及びX402と同義であり、好ましい範囲も同じである。
一般式(III)で表される化合物の具体例としては、特表2006−526278号公報に記載の化合物(2)〜化合物(8)、化合物(15)〜化合物(20)、化合物(27)〜化合物(32)、化合物(36)〜化合物(38)、化合物(42)〜化合物(44)、化合物(50)〜化合物(52)、及び、化合物(57)〜化合物(154)が挙げられるが、これらに限定されるものではない。
さらに、本発明における金属錯体の好ましい例としては、下記一般式(A−1)、下記一般式(B−1)、下記一般式(C−1)、下記一般式(D−1)、下記一般式(E−1)、及び下記一般式(F−1)で表される各化合物が挙げられる。
一般式(A−1)について説明する。
一般式(A−1)中、MA1は金属イオンを表す。YA11、YA14、YA15およびYA18は、それぞれ独立に炭素原子または窒素原子を表す。YA12、YA13、YA16およびYA17はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LA11、LA12、LA13、及びLA14は連結基を表し、これらの連結基は、同一構造であっても異なる構造であっても良い。QA11、QA12はMA1に配位結合、イオン結合、又は共有結合で結合する原子を含有する部分構造を表す。
一般式(A−1)で表される化合物について、詳細に説明する。
A1は金属イオンを表す。金属イオンとしては特に限定されることはないが、2価の金属イオンが好ましく、Pt2+、Pd2+、Cu2+、Ni2+、Co2+、Zn2+、Mg2+、又はPb2+が好ましく、Pt2+、Cu2+がより好ましく、Pt2+が特に好ましい。
A11、YA14、YA15およびYA18は、それぞれ独立に炭素原子または窒素原子を表す。YA11、YA14、YA15およびYA18として好ましくは、炭素原子である。
A12、YA13、YA16およびYA17はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。YA12、YA13、YA16およびYA17として好ましくは、置換または無置換の炭素原子、置換または無置換の窒素原子である。
A11、LA12、LA13、及びLA14は二価の連結基を表す。LA11、LA12、LA13、及びLA14で表される二価の連結基としては、それぞれ独立に単結合のほか、炭素、窒素、珪素、硫黄、酸素、ゲルマニウム、リン等で構成される連結基であり、より好ましくは、単結合、置換または無置換の炭素原子、置換または無置換の窒素原子、置換珪素原子、酸素原子、硫黄原子、二価の芳香族炭化水素環基、二価の芳香族ヘテロ環基であり、さらに好ましくは単結合、置換または無置換の炭素原子、置換または無置換の窒素原子、置換珪素原子、二価の芳香族炭化水素環基、二価の芳香族ヘテロ環基であり、特に好ましくは、単結合、置換または無置換のメチレン基である、LA11、LA12、LA13、及びLA14で表される二価の連結基としては、例えば以下のものが挙げられる。
A11、LA12、LA13、及びLA14で表される二価の連結基は、さらに置換基を有していてもよい。導入可能な置換基としては、例えばアルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、及びシクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、及び3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、
アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、及びアントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、及びジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、及び2−ナフチルオキシなどが挙げられる。)、
ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、及びキノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、
アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、
スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、及びフェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、及びフェニルカルバモイルなどが挙げられる。)、
アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、及び2−ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、
ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、
ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子であり、具体的にはイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、及びアゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。
これらの置換基は更に置換されてもよい。置換基として好ましくは、アルキル基、アリール基、ヘテロ環基、ハロゲン原子、又はシリル基であり、より好ましくはアルキル基、アリール基、ヘテロ環基、又はハロゲン原子であり、さらに好ましくはアルキル基、アリール基、芳香族ヘテロ環基、又はフッ素原子である。
A11、QA12はMA1に配位結合、イオン結合、又は共有結合で結合する原子を含有する部分構造を表す。QA11、QA12はそれぞれ独立にMA1に炭素原子で結合する基、窒素原子で結合する基、珪素原子で結合する基、リン原子で結合する基、酸素原子で結合する基、硫黄原子で結合する基が好ましく、炭素原子、窒素原子、酸素原子、硫黄原子で結合する基がより好ましく、炭素原子、窒素原子で結合する基がさらに好ましく、炭素原子で結合する基が特に好ましい。
炭素原子で結合する基としては、炭素原子で結合するアリール基、炭素原子で結合する五員環へテロアリール基、炭素原子で結合する六員環へテロアリール基が好ましく、炭素原子で結合するアリール基、炭素原子で結合する含窒素五員環へテロアリール基、炭素原子で結合する含窒素六員環へテロアリール基がより好ましく、炭素原子で結合するアリール基が特に好ましい。
窒素原子で結合する基としては、置換アミノ基、窒素原子で結合する含窒素へテロ五員環へテロアリール基が好ましく、窒素原子で結合する含窒素ヘテロ五員環へテロアリール基が特に好ましい。
リン原子で結合する基としては、置換ホスフィノ基が好ましい。珪素原子で結合する基としては、置換シリル基が好ましい。酸素原子で結合する基としてはオキシ基、硫黄原子で結合する基としてはスルフィド基が好ましい。
前記一般式(A−1)で表される化合物は、より好ましくは一般式(A−2)、一般式(A−3)、又は一般式(A−4)で表される化合物である。
一般式(A−2)中、MA2は金属イオンを表す。YA21、YA24、YA25およびYA28は、それぞれ独立に炭素原子または窒素原子を表す。YA22、YA23、YA26およびYA27はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LA21、LA22、LA23、及びLA24は連結基を表す。ZA21、ZA22、ZA23、ZA24、ZA25およびZA26はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。
一般式(A−3)中、MA3は金属イオンを表す。YA31、YA34、YA35およびYA38は、それぞれ独立に炭素原子または窒素原子を表す。YA32、YA33、YA36およびYA37はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LA31、LA32、LA33、LA34は連結基を表す。ZA31、ZA32、ZA33およびZA34はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。
一般式(A−4)中、MA4は金属イオンを表す。YA41、YA44、YA45およびYA48は、それぞれ独立に炭素原子または窒素原子を表す。YA42、YA43、YA46およびYA47はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LA41、LA42、LA43、及びLA44は連結基を表す。ZA41、ZA42、ZA43、ZA44、ZA45およびZA46はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。XA41、XA42はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。
一般式(A−2)で表される化合物について詳細に説明する。
A2、YA21、YA24、YA25、YA28、YA22、YA23、YA26、YA27、LA21、LA22、LA23、及びLA24はそれぞれ対応する、一般式(A−1)中のMA1、YA11、YA14、YA15、YA18、YA12、YA13、YA16、YA17、LA11、LA12、LA13、及びLA14と同義であり、また好ましい範囲も同様である。
A21、ZA22、ZA23、ZA24、ZA25およびZA26はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZA21、ZA22、ZA23、ZA24、ZA25およびZA26として好ましくはそれぞれ独立に置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、及びLA14で表される二価の連結基の置換基としてあげたものが適用できる。
一般式(A−3)で表される化合物について詳細に説明する。
A3、YA31、YA34、YA35、YA38、YA32、YA33、YA36、YA37、LA31、LA32、LA33、及びLA34はそれぞれ対応する、一般式(A−1)中のMA1、YA11、YA14、YA15、YA18、YA12、YA13、YA16、YA17、LA11、LA12、LA13、及びLA14と同義であり、また好ましい範囲も同様である。
A31、ZA32、ZA33、およびZA34はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZA31、ZA32、ZA33、およびZA34として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、及びLA14で表される二価の連結基の置換基としてあげたものが適用できる。
一般式(A−4)で表される化合物について詳細に説明する。
A4、YA41、YA44、YA45、YA48、YA42、YA43、YA46、YA47、LA41、LA42、LA43、及びLA44はそれぞれ対応する、一般式(A−1)中のMA1、YA11、YA14、YA15、YA18、YA12、YA13、YA16、YA17、LA11、LA12、LA13、及びLA14と同義であり、また好ましい範囲も同様である。
A41、ZA42、ZA43、ZA44、ZA45およびZA46はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZA41、ZA42、ZA43、ZA44、ZA45およびZA46として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、及びLA14で表される二価の連結基の置換基としてあげたものが適用できる。
A41、XA42はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。XA41、XA42として好ましくはそれぞれ独立に酸素原子、硫黄原子であり、より好ましくは酸素原子である。
一般式(A−1)で表される化合物の具体例として特開2007−103493号に記載の化合物(A1)〜(A80)の化合物が挙げられるが、本発明はこれらの化合物に限定されることはない。
本発明における金属錯体の内、好ましい化合物の一つは、下記一般式(B−1)で表される化合物である。
一般式(B−1)中、MB1は金属イオンを表す。YB11、YB14、YB15およびYB18は、それぞれ独立に炭素原子または窒素原子を表す。YB12、YB13、YB16およびYB17はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LB11、LB12、LB13、LB14は連結基を表す。QB11、QB12はMB1に共有結合で結合する原子を含有する部分構造を表す。
一般式(B−1)について詳細に説明する。
一般式(B−1)中、MB1、YB11、YB14、YB15、YB18、YB12、YB13、YB16、YB17、LB11、LB12、LB13、LB14、QB11、及びQB12は、それぞれ対応する、一般式(A−1)中における、MA1、YA11、YA14、YA15、YA18、YA12、YA13、YA16、YA17、LA11、LA12、LA13、LA14、QA11、及びQA12と同義であり、また好ましい範囲も同様である。
一般式(B−1)で表される化合物は、より好ましくは、下記一般式(B−2)、一般式(B−3)、又は一般式(B−4)で表される化合物である。
一般式(B−2)中、MB2は金属イオンを表す。YB21、YB24、YB25およびYB28は、それぞれ独立に炭素原子または窒素原子を表す。YB22、YB23、YB26およびYB27はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LB21、LB22、LB23、及びLB24は連結基を表す。ZB21、ZB22、ZB23、ZB24、ZB25およびZB26はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。
一般式(B−3)中、MB3は金属イオンを表す。YB31、YB34、YB35およびYB38は、それぞれ独立に炭素原子または窒素原子を表す。YB32、YB33、YB36およびYB37は、それぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LB31、LB32、LB33、及びLB34は連結基を表す。ZB31、ZB32、ZB33およびZB34は、それぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。
一般式(B−4)中、MB4は金属イオンを表す。YB41、YB44、YB45およびYB48は、それぞれ独立に炭素原子または窒素原子を表す。YB42、YB43、YB46およびYB47はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LB41、LB42、LB43、及びLB44は連結基を表す。ZB41、ZB42、ZB43、ZB44、ZB45およびZB46はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。XB41、XB42はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。
一般式(B−2)で表される化合物について詳細に説明する。
一般式(B−2)中、MB2、YB21、YB24、YB25、YB28、YB22、YB23、YB26、YB27、LB21、LB22、LB23、及びLB24はそれぞれ対応する、一般式(B−1)中のMB1、YB11、YB14、YB15、YB18、YB12、YB13、YB16、YB17、LB11、LB12、LB13、及びLB14と同義であり、また好ましい範囲も同様である。
B21、ZB22、ZB23、ZB24、ZB25およびZB26は、それぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZB21、ZB22、ZB23、ZB24、ZB25およびZB26として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、LA14で表される二価の連結基の置換基としてあげたものが適用できる。
一般式(B−3)で表される化合物について詳細に説明する。
一般式(B−3)中、MB3、YB31、YB34、YB35、YB38、YB32、YB33、YB36、YB37、LB31、LB32、LB33、及びLB34はそれぞれ対応する、一般式(B−1)中のMB1、YB11、YB14、YB15、YB18、YB12、YB13、YB16、YB17、LB11、LB12、LB13、及びLB14と同義であり、また好ましい範囲も同様である。
B31、ZB32、ZB33、およびZB34はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZB31、ZB32、ZB33、およびZB34として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、及びLA14で表される二価の連結基の置換基としてあげたものが適用できる。
一般式(B−4)で表される化合物について詳細に説明する。
一般式(B−4)中、MB4、YB41、YB44、YB45、YB48、YB42、YB43、YB46、YB47、LB41、LB42、LB43、及びLB44はそれぞれ対応する、一般式(B−1)中のMB1、YB11、YB14、YB15、YB18、YB12、YB13、YB16、YB17、LB11、LB12、LB13、及びLB14と同義であり、また好ましい範囲も同様である。
B41、ZB42、ZB43、ZB44、ZB45およびZB46はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZB41、ZB42、ZB43、ZB44、ZB45およびZB46として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、及びLA14で表される二価の連結基の置換基としてあげたものが適用できる。
B41、XB42はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。XB41、XB42として好ましくは酸素原子、硫黄原子であり、より好ましくは酸素原子である。
一般式(B−1)で表される化合物として、特開2007−103493号に記載の化合物(B1)〜(B55)の化合物が挙げられるが、本発明はこれらの化合物に限定されることはない。
本発明における金属錯体の内、好ましい化合物の一つは、一般式(C−1)で表される化合物である。
一般式(C−1)中、MC1は金属イオンを表す。RC11、RC12は、それぞれ独立に、水素原子、互いに連結して五員環を形成する置換基、または互いに連結することの無い置換基を表す。RC13、RC14は、それぞれ独立に、水素原子、互いに連結して五員環を形成する置換基、または互いに連結することの無い置換基を表す。GC11、GC12は、それぞれ独立に、窒素原子、置換または無置換の炭素原子を表す。LC11、LC12は連結基を表す。QC11、QC12はMC1に配位結合、イオン結合、又は共有結合で結合する原子を含有する部分構造を表す。
一般式(C−1)について詳細に説明する。
一般式(C−1)中、MC1、LC11、LC12、QC11、及びQC12はそれぞれ対応する一般式(A−1)中における、MA1、LA11、LA12、QA11、及びQA12と同義であり、また好ましい範囲も同様である。
C11、GC12は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表し、好ましくは窒素原子、無置換の炭素原子であり、より好ましくは窒素原子である。
C11、RC12はそれぞれ独立に水素原子または置換基を表す。RC11、RC12は互いに連結して五員環を形成してもよい。RC13、RC14はそれぞれ独立に水素原子または置換基を表す。RC13、RC14は互いに連結して五員環を形成してもよい。
C11、RC12、RC13およびRC14で表される置換基としては、例えばアルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、及びシクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、及び3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、
アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、及びジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、及び2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、及び2−ナフチルオキシなどが挙げられる。)、
ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、及びキノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、及びピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、
アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、
アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、及び2−ベンズチアゾリルチオなどが挙げられる。)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、
ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子であり、具体的にはイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、及びアゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。
C11、RC12、RC13およびRC14で表される置換基として好ましくは、アルキル基、アリール基、RC11とRC12、RC13とRC14が互いに結合して五員環を形成する基であり、特に好ましくはRC11とRC12、RC13とRC14が互いに結合して五員環を形成する基である。
一般式(C−1)で表される化合物は、より好ましくは一般式(C−2)で表される化合物である。
一般式(C−2)中、MC2は金属イオンを表す。
C21、YC22、YC23およびYC24は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。GC21、GC22は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。LC21、LC22は連結基を表す。QC21、QC22はMC2に配位結合、イオン結合、又は共有結合で結合する原子を含有する部分構造を表す。
一般式(C−2)について詳細に説明する。
一般式(C−2)中、MC2、LC21、LC22、QC21、QC22、GC21、及びGC22はそれぞれ対応する、一般式(C−1)におけるMC1、LC11、LC12、QC11、QC12、GC11、及びGC12と同義であり、好ましい範囲も同様である。
C21、YC22、YC23およびYC24は、それぞれ独立に、窒素原子、置換もしくは無置換の炭素原子を表し、好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。
一般式(C−2)で表される化合物は、より好ましくは下記一般式(C−3)、一般式(C−4)又は一般式(C−5)で表される化合物である。
一般式(C−3)中、MC3は金属イオンを表す。
C31、YC32、YC33およびYC34は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。GC31、GC32は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。LC31、LC32は連結基を表す。ZC31、ZC32、ZC33、ZC34、ZC35およびZC36はそれぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。
一般式(C−4)中、MC4は金属イオンを表す。YC41、YC42、YC43およびYC44は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。GC41、GC42は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。LC41、LC42は連結基を表す。ZC41、ZC42、ZC43およびZC44はそれぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。
一般式(C−5)中、MC5は金属イオンを表す。
C51、YC52、YC53およびYC54は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。GC51、GC52は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。LC51、LC52は連結基を表す。ZC51、ZC52、ZC53、ZC54、ZC55およびZC56はそれぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。XC51、XC52はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。
一般式(C−3)で表される化合物について詳細に説明する。
一般式(C−3)中、MC3、LC31、LC32、GC31、及びGC32はそれぞれ対応する、一般式(C−1)における、MC1、LC11、LC12、GC11、及びGC12と同義であり、また好ましい範囲も同様である。
C31、ZC32、ZC33、ZC34、ZC35およびZC36はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZC31、ZC32、ZC33、ZC34、ZC35およびZC36として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。
一般式(C−4)で表される化合物について詳細に説明する。
一般式(C−4)中、MC4、LC41、LC42、GC41、及びGC42は、それぞれ対応する一般式(C−1)における、MC1、LC11、LC12、GC11、及びGC12と同義であり、また好ましい範囲も同様である。
C41、ZC42、ZC43、およびZC44はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZC41、ZC42、ZC43、およびZC44として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。
一般式(C−5)で表される化合物について詳細に説明する。
C5、LC51、LC52、GC51、及びGC52は、それぞれ対応する一般式(C−1)における、MC1、LC11、LC12、GC11、及びGC12と同義であり、また好ましい範囲も同様である。
C51、ZC52、ZC53、ZC54、ZC55およびZC56はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZC51、ZC52、ZC53、ZC54、ZC55およびZC56として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。
C51、XC52はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。XC51、XC52として好ましくは酸素原子、硫黄原子であり、より好ましくは酸素原子である。
一般式(C−1)で表される化合物の具体例として、特開2007−103493号に記載の化合物(C1)〜(C63)の化合物が挙げられるが、本発明はこれらの化合物に限定されることはない。
本発明における金属錯体の内、好ましい化合物の一つは、下記一般式(D−1)で表される化合物である。
一般式(D−1)中、MD1は金属イオンを表す。
D11、GD12は、それぞれ独立に窒素原子、置換または無置換の炭素原子を表す。JD11、JD12、JD13およびJD14は五員環を形成するのに必要な原子群を表す。LD11、LD12は連結基を表す。
一般式(D−1)について詳細に説明する。
一般式(D−1)中、MD1、LD11、及びLD12はそれぞれ対応する一般式(A−1)中における、MA1、LA11、及びLA12と同義であり、また好ましい範囲も同様である。
D11、GD12は、それぞれ対応する一般式(C−1)におけるGC11、GC12と同義であり、また好ましい範囲も同様である。
D11、JD12、JD13およびJD14は、これらが結合している原子群と共に、含窒素へテロ五員環を形成するのに必要な原子群を表す。
一般式(D−1)で表される化合物は、より好ましくは下記一般式(D−2)、一般式(D−3)、又は一般式(D−4)で表される化合物である。
一般式(D−2)中、MD2は金属イオンを表す。
D21、GD22は、それぞれ独立に窒素原子、置換または無置換の炭素原子を表す。
D21、YD22、YD23およびYD24は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。
D21、XD22、XD23およびXD24は、それぞれ独立に酸素原子、硫黄原子、−NRD21−、−C(RD22)RD23−を表す。
D21、RD22およびRD23は、それぞれ独立に水素原子または置換基を表す。LD21、LD22は連結基を表す。
一般式(D−3)中、MD3は金属イオンを表す。
D31、GD32は、それぞれ独立に窒素原子、置換または無置換の炭素原子を表す。
D31、YD32、YD33およびYD34は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。
D31、XD32、XD33およびXD34は、それぞれ独立に酸素原子、硫黄原子、−NRD31−、−C(RD32)RD33−を表す。
D31、RD32およびRD33は、それぞれ独立に水素原子または置換基を表す。LD31、LD32は連結基を表す。
一般式(D−4)中、MD4は金属イオンを表す。
D41、GD42は、それぞれ独立に窒素原子、置換または無置換の炭素原子を表す。
D41、YD42、YD43およびYD44は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。
D41、XD42、XD43およびXD44は、それぞれ独立に酸素原子、硫黄原子、−NRD41−、−C(RD42)RD43−を表す。RD41、RD42およびRD43は、それぞれ独立に水素原子または置換基を表す。LD41、LD42は連結基を表す。
一般式(D−2)について詳細に説明する。
D2、LD21、LD22、GD21、及びGD22は、一般式(D−1)におけるMD1、LD11、LD12、GD11、GD12と同義であり、また好ましい範囲も同様である。
D21、YD22、YD23およびYD24は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表し、好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。
D21、XD22、XD23およびXD24は、それぞれ独立に酸素原子、硫黄原子、−NRD21−、−C(RD22)RD23−を表し、好ましくは硫黄原子、−NRD21−、−C(RD22)RD23−であり、より好ましくは−NRD21−、−C(RD22)RD23−であり、さらに好ましくは−NRD21−である。
D21、RD22およびRD23は、それぞれ独立に水素原子または置換基を表す。RD21、RD22およびRD23で表される置換基としては、例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、及びシクロヘキシル等が挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、及び3−ペンテニル等が挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニル等が挙げられる。)、
アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、及びナフチル等が挙げられる。)、置換カルボニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、メトキシカルボニル、フェニルオキシカルボニル、ジメチルアミノカルボニル、及びフェニルアミノカルボニル、等が挙げられる。)、置換スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシル等が挙げられる。)、
ヘテロ環基(脂肪族ヘテロ環基、芳香族ヘテロ環基がある。好ましくは、酸素原子、硫黄原子、窒素原子のいずれかを含み、好ましくは炭素数1〜50、より好ましくは炭素数1〜30、特に好ましくは炭素数2〜12であり、例えばイミダゾリル、ピリジル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、及びトリアゾリル基等が挙げられる。)等が挙げられる。RD21、RD22およびRD23は好ましくはアルキル基、アリール基、芳香族ヘテロ環基であり、より好ましくは、アルキル基、アリール基であり、さらに好ましくはアリール基である。
一般式(D−3)について詳細に説明する。
一般式(D−3)中、MD3、LD31、LD32、GD31、及びGD32は、それぞれ対応する一般式(D−1)におけるMD1、LD11、LD12、GD11、及びGD12と同義であり、また好ましい範囲も同様である。
D31、XD32、XD33およびXD34はそれぞれ対応する、一般式(D−2)におけるXD21、XD22、XD23およびXD24と同義であり、また好ましい範囲も同様である。
D31、YD32、YD33およびYD34はそれぞれ対応する、一般式(D−2)におけるYD21、YD22、YD23およびYD24と同義であり、また好ましい範囲も同様である。
一般式(D−4)について詳細に説明する。
一般式(D−4)中、MD4、LD41、LD42、GD41、及びGD42は、それぞれ対応する、一般式(D−1)におけるMD1、LD11、LD12、GD11、及びGD12と同義であり、また好ましい範囲も同様である。
D41、XD42、XD43およびXD44は、それぞれ対応する一般式(D−2)におけるXD21、XD22、XD23およびXD24と同義であり、また好ましい範囲も同様である。YD41、YD42、YD43およびYD44は、それぞれ対応する、一般式(D−2)におけるYD21、YD22、YD23およびYD24と同義であり、また好ましい範囲も同様である。
一般式(D−1)で表される化合物の具体例として、特開2007−103493号に記載の化合物(D1)〜(D24)の化合物が挙げられるが、本発明はこれらの化合物に限定されることはない。
本発明における金属錯体の内、好ましい化合物の一つは、下記一般式(E−1)で表される化合物である。
一般式(E−1)中、ME1は金属イオンを表す。JE11、JE12は五員環を形成するのに必要な原子群を表す。GE11、GE12、GE13およびGE14は、それぞれ独立に、窒素原子、置換もしくは無置換の炭素原子を表す。YE11、YE12、YE13およびYE14はそれぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。
一般式(E−1)について詳細に説明する。
一般式(E−1)中、ME1は一般式(A−1)におけるMA1と同義であり、また好ましい範囲も同様である。GE11、GE12、GE13およびGE14は一般式(C−1)におけるGC11、GC12と同義であり、また好ましい範囲も同様である。
E11、JE12は、一般式(D−1)におけるJD12〜JD14と同義であり、また好ましい範囲も同様である。YE11、YE12、YE13およびYE14はそれぞれ対応する、一般式(C−2)におけるYC21〜YC24と同義であり、また好ましい範囲も同様である。
一般式(E−1)で表される化合物は、より好ましくは下記一般式(E−2)、又は一般式(E−3)で表される化合物である。
一般式(E−2)中、ME2は金属イオンを表す。GE21、GE22、GE23およびGE24はそれぞれ独立に、窒素原子、置換もしくは無置換の炭素原子を表す。YE21、YE22、YE23、YE24、YE25およびYE26はそれぞれ独立に、窒素原子、置換もしくは無置換の炭素原子を表す。
E21およびXE22は、それぞれ独立に酸素原子、硫黄原子、−NRE21−、−C(RE22)RE23−を表す。RE21、RE22およびRE23は、それぞれ独立に水素原子または置換基を表す。
一般式(E−3)中、ME3は金属イオンを表す。GE31、GE32、GE33およびGE34はそれぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。YE31、YE32、YE33、YE34、YE35およびYE36はそれぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。XE31およびXE32は、それぞれ独立に酸素原子、硫黄原子、−NRE31−、−C(RE32)RE33−を表す。RE31、RE32およびRE33は、それぞれ独立に水素原子または置換基を表す。
一般式(E−2)について詳細に説明する。
一般式(E−2)中、ME2、GE21、GE22、GE23、GE24、YE21、YE22、YE23、及びYE24は、それぞれ対応する一般式(E−1)におけるME1、GE11、GE12、GE13、GE14、YE11、YE12、YE13、及びYE14と同義であり、また好ましい範囲も同様である。XE21、XE22は一般式(D−2)におけるXD21、XD22と同義であり、また好ましい範囲も同様である。
一般式(E−3)について詳細に説明する。
一般式(E−3)中、ME3、GE31、GE32、GE33、GE34、YE31、YE32、YE33、及びYE34は、それぞれ対応する、一般式(E−1)におけるME1、GE11、GE12、GE13、GE14、YE11、YE12、YE13、及びYE14と同義であり、また好ましい範囲も同様である。XE31、XE32は対応する、一般式(E−2)におけるXE21、XE22と同義であり、また好ましい範囲も同様である。
一般式(E−1)で表される化合物の具体例として、特開2007−103493号に記載の化合物(E1)〜(E15)の化合物が挙げられるが、本発明はこれらの化合物に限定されることはない。
本発明における金属錯体の内、好ましい化合物の一つは、下記一般式(F−1)で表される化合物である。
一般式(F−1)中、MF1は金属イオンを表す。LF11、LF12およびLF13は連結基を表す。RF11、RF12、RF13およびRF14は、それぞれ独立に、水素原子または置換基を表し、RF11とRF12、RF12とRF13、RF13とRF14は可能であれば互いに連結して環を形成してもよいが、RF11とRF12、RF13とRF14が形成する環は五員環である。QF11、QF12はMF1に配位結合、イオン結合、又は共有結合で結合する原子を含有する部分構造を表す。
一般式(F−1)で表される化合物について詳細に説明する。
一般式(F−1)中、MF1、LF11、LF12、LF13、QF11、及びQF12はそれぞれ対応する、一般式(A−1)におけるMA1、LA11、LA12、LA13、QA11、及びQA12と同義であり、また好ましい範囲も同様である。RF11、RF12、RF13およびRF14は、それぞれ独立に水素原子または置換基を表し、RF11とRF12、RF12とRF13、RF13とRF14は可能であれば互いに連結して環を形成してもよいが、RF11とRF12、RF13とRF14が形成する環は五員環である。RF11、RF12、RF13およびRF14で表される置換基としては、それぞれ対応する一般式(C−1)におけるRC11〜RC14で表される置換基として挙げたものが適用できる。RF11、RF12、RF13およびRF14として好ましくは、RF11とRF12、RF13とRF14が互いに結合して五員環を形成する基もしくは、RF12とRF13が互いに結合して芳香環を形成する基である。
一般式(F−1)で表される化合物は、より好ましくは下記一般式(F−2)、一般式(F−3)、又は一般式(F−4)で表される化合物である。
一般式(F−2)中、MF2は金属イオンを表す。LF21、LF22およびLF23は連結基を表す。RF21、RF22、RF23およびRF24は置換基を表し、RF21とRF22、RF22とRF23、RF23とRF24は可能であれば互いに連結して環を形成してもよいが、RF21とRF22、RF23とRF24が形成する環は五員環である。ZF21、ZF22、ZF23、ZF24、ZF25およびZF26はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。
一般式(F−3)中、MF3は金属イオンを表す。LF31、LF32およびLF33は連結基を表す。RF31、RF32、RF33およびRF34は置換基を表し、RF31とRF32、RF32とRF33、RF33とRF34は可能であれば互いに連結して環を形成してもよいが、RF31とRF32、RF33とRF34が形成する環は五員環である。ZF31、ZF32、ZF33およびZF34はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。
一般式(F−4)中、MF4は金属イオンを表す。LF41、LF42およびLF43は連結基を表す。RF41、RF42、RF43およびRF44は置換基を表し、RF41とRF42、RF42とRF43、RF43とRF44は可能であれば互いに連結して環を形成してもよいが、RF41とRF42、RF43とRF44が形成する環は五員環である。ZF41、ZF42、ZF43、ZF44、ZF45、およびZF46はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。XF41、XF42はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。
一般式(F−2)で表される化合物について詳細に説明する。
F2、LF21、LF22、LF23、RF21、RF22、RF23およびRF24はそれぞれ対応する一般式(F−1)におけるMF1、LF11、LF12、LF13、RF11、RF12、RF13およびRF14と同義であり、また好ましい範囲も同様である。
F21、ZF22、ZF23、ZF24、ZF25およびZF26はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZF21、ZF22、ZF23、ZF24、ZF25およびZF26として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、LA14で表される二価の連結基の置換基としてあげたものが適用できる。
一般式(F−3)で表される化合物について詳細に説明する。
一般式(F−3)中、MF3、LF31、LF32、LF33、RF31、RF32、RF33およびRF34はそれぞれ対応する、一般式(F−1)におけるMF1、LF11、LF12、LF13、RF11、RF12、RF13およびRF14と同義であり、また好ましい範囲も同様である。ZF31、ZF32、ZF33およびZF34はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZF31、ZF32、ZF33およびZF34として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、及びLA14で表される二価の連結基の置換基としてあげたものが適用できる。
一般式(F−4)で表される化合物について詳細に説明する。
一般式(F−4)中、MF4、LF41、LF42、LF43、RF41、RF42、RF43およびRF44は一般式(F−1)におけるMF1、LF11、LF12、LF13、RF11、RF12、RF13およびRF14と同義であり、また好ましい範囲も同様である。
F41、ZF42、ZF43、ZF44、ZF45およびZF46はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZF41、ZF42、ZF43、ZF44、ZF45およびZF46として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、及びLA14で表される二価の連結基の置換基としてあげたものが適用できる。
F41、XF42はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。XF41、XF42として好ましくは酸素原子、硫黄原子であり、より好ましくは酸素原子である。
一般式(F−1)で表される化合物の具体例として、特開2007−103493号に記載の化合物(F1)〜(F52)の化合物が挙げられるが、本発明はこれらの化合物に限定されることはない。
前記一般式(A−1)〜(F−1)で表される化合物は公知の方法により合成することができる。
(正孔輸送性発光材料)
本発明の発光層に用いられる正孔輸送性発光材料としては、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャル(Ip)が5.1eV以上6.4eV以下であることが好ましく、5.4eV以上6.2eV以下であることがより好ましく、5.6eV以上6.0eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、電子親和力(Ea)が1.2eV以上3.1eV以下であることが好ましく、1.4eV以上3.0eV以下であることがより好ましく、1.8eV以上2.8eV以下であることが更に好ましい。
このような正孔輸送性発光材料としては、具体的には、例えば、以下の材料を挙げることができる。
ピロール系化合物、インドール系化合物、カルバゾール系化合物、イミダゾール系化合物、ポリアリールアルカン系化合物、アリールアミン系化合物、スチリル系化合物、スチリルアミン系化合物、チオフェン系化合物、芳香族多環縮合系化合物などのほか、金属錯体などが挙げられる。
前記金属錯体中の金属イオンは、特に限定されないが、発光効率向上、耐久性向上、駆動電圧低下の観点から、遷移金属イオン、希土類金属イオンであることが好ましく、より好ましくは、イリジウムイオン、白金イオン、金イオン、レニウムイオン、タングステンイオン、ロジウムイオン、ルテニウムイオン、オスミウムイオン、パラジウムイオン、銀イオン、銅イオン、コバルトイオン、ニッケルイオン、鉛イオン、希土類金属イオン(例えば、ユーロピウムイオン、ガドリニウムイオン、テルビウムイオンなど)が好ましく、更に好ましくは、イリジウムイオン、白金イオン、金イオン、レニウムイオン、タングステンイオン、ユーロピウムイオン、カドリニウムイオン、テルビウムイオンであり、特に好ましくは、イリジウムイオン、白金イオン、レニウムイオン、ユーロピウムイオン、ガドリニウムイオン、テルビウムイオンであり、最も好ましくは、イリジウムイオンである。イリジウムイオンを有する金属錯体の中でも特に好ましくは、炭素−Ir結合、窒素−Ir結合(この場合の結合は、配位結合、イオン結合、共有結合のいずれであってもよい)を有する金属錯体である。
このような正孔輸送性発光材料の例としては、具体的には、例えば、以下の材料を挙げることができるが、これらに限定されるものではない。
(電子輸送性ホスト材料)
本発明に用いられる電子輸送性ホスト材料としては、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが2.5eV以上3.5eV以下であることが好ましく、2.6eV以上3.4eV以下であることがより好ましく、2.8eV以上3.3eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.7eV以上7.5eV以下であることが好ましく、5.8eV以上7.0eV以下であることがより好ましく、5.9eV以上6.5eV以下であることが更に好ましい。
このような電子輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
電子輸送性ホストとして好ましくは、金属錯体、アゾール誘導体(ベンズイミダゾール誘導体、イミダゾピリジン誘導体等)、アジン誘導体(ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体等)であり、中でも、本発明においては耐久性の点から金属錯体化合物が好ましい。金属錯体化合物は金属に配位する少なくとも1つの窒素原子または酸素原子または硫黄原子を有する配位子をもつ金属錯体がより好ましい。
金属錯体中の金属イオンは特に限定されないが、好ましくはベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、錫イオン、白金イオン、またはパラジウムイオンであり、より好ましくはベリリウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、白金イオン、またはパラジウムイオンであり、更に好ましくはアルミニウムイオン、亜鉛イオン、またはパラジウムイオンである。
前記金属錯体中に含まれる配位子としては種々の公知の配位子が有るが、例えば、「Photochemistry and Photophysics of Coordination Compounds」、Springer−Verlag社、H.Yersin著、1987年発行、「有機金属化学−基礎と応用−」、裳華房社、山本明夫著、1982年発行等に記載の配位子が挙げられる。
前記配位子として、好ましくは含窒素ヘテロ環配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数3〜15であり、単座配位子であっても2座以上の配位子であっても良い。好ましくは2座以上6座以下の配位子である。また、2座以上6座以下の配位子と単座の混合配位子も好ましい。
配位子としては、例えばアジン配位子(例えば、ピリジン配位子、ビピリジル配位子、ターピリジン配位子などが挙げられる。)、ヒドロキシフェニルアゾール配位子(例えば、ヒドロキシフェニルベンズイミダゾール配位子、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子、ヒドロキシフェニルイミダゾピリジン配位子などが挙げられる。)、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2及び−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ、2,4,6−トリメチルフェニルオキシ、及び4−ビフェニルオキシなどが挙げられる。)、
ヘテロアリールオキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、およびキノリルオキシなどが挙げられる。)、アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロアリールチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、および2−ベンズチアゾリルチオなどが挙げられる。)、シロキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数3〜25、特に好ましくは炭素数6〜20であり、例えば、トリフェニルシロキシ基、トリエトキシシロキシ基、およびトリイソプロピルシロキシ基などが挙げられる。)、芳香族炭化水素アニオン配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜25、特に好ましくは炭素数6〜20であり、例えばフェニルアニオン、ナフチルアニオン、およびアントラニルアニオンなどが挙げられる。)、芳香族ヘテロ環アニオン配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜25、特に好ましくは炭素数2〜20であり、例えばピロールアニオン、ピラゾールアニオン、ピラゾールアニオン、トリアゾールアニオン、オキサゾールアニオン、ベンゾオキサゾールアニオン、チアゾールアニオン、ベンゾチアゾールアニオン、チオフェンアニオン、およびベンゾチオフェンアニオンなどが挙げられる。)、インドレニンアニオン配位子などが挙げられ、好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、ヘテロアリールオキシ基、またはシロキシ配位子であり、更に好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、シロキシ配位子、芳香族炭化水素アニオン配位子、または芳香族ヘテロ環アニオン配位子である。
金属錯体電子輸送性ホストの例としては、例えば特開2002−235076、特開2004−214179、特開2004−221062、特開2004−221065、特開2004−221068、特開2004−327313等に記載の化合物が挙げられる。
このような電子輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができるが、これらに限定されるものではない。
電子輸送層ホストとしては、E−1〜E−6、E−8、E−9、E−10、E−21、またはE−22が好ましく、E−3、E−4、E−6、E−8、E−9、E−10、E−21、またはE−22がより好ましく、E−3、E−4、E−21、またはE−22が更に好ましい。
本発明における発光層において、発光性ドーパントとして燐光発光性ドーパントを用いたとき、該燐光発光性ドーパントの最低三重項励起エネルギーT1(D)と前記複数のホスト化合物の最低励起三重項エネルギーのうち最小のもの前記T1(H)minとが、T1(H)min>T1(D)の関係を満たすことが色純度、外部量子効率、駆動耐久性の点で好ましい。
(正孔輸送性ホスト材料)
本発明の発光層に用いられる正孔輸送性ホスト材料としては、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.1eV以上6.4eV以下であることが好ましく、5.4eV以上6.2eV以下であることがより好ましく、5.6eV以上6.0eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが1.2eV以上3.1eV以下であることが好ましく、1.4eV以上3.0eV以下であることがより好ましく、1.8eV以上2.8eV以下であることが更に好ましい。
このような正孔輸送性ホスト材料としては、具体的には、例えば、以下の材料を挙げることができる。
ピロール、カルバゾール、アザカルバゾール、インドール、アザインドール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマチオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、及びそれらの誘導体等が挙げられる。
中でも、カルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体が好ましく、特に分子内にカルバゾール骨格、インドール骨格および/または芳香族第三級アミン骨格を複数個有するものが好ましい。
このような正孔輸送性ホスト材料としての具体的化合物としては、例えば下記のものが挙げられるが、これらに限定されるものではない。
<発光材料とホスト材料の混合比>
−正孔輸送性ホスト材料および電子輸送性発光材料の混合比−
発光層の陰極に近接する領域の前記電子輸送性発光材料の濃度は、前記領域において、70質量%以下が好ましく、60質量%以下が更に好ましく、50質量%以下が特に好ましい。特に燐光材料においては濃度が高くなると会合発光による色度悪化、電荷輸送能力の低下による高電圧化のため上記範囲外では好ましくない。
発光層の陽極に近接する領域の前記電子輸送性発光材料の濃度は、前記領域において0質量%以上35質量%以下が好ましく、より好ましくは0質量%以上20質量%以下である。本発明においては、「発光層の陰極に近接する領域」とは発光層の陰極に近接する側で、発光層厚みの10%の厚み領域を指し、「発光層の陽極に近接する領域」とは発光層の陽極に近接する側で、発光層厚みの10%の厚み領域を指すものとし、その領域における平均濃度を上記好ましい範囲に設定するものとする。
また、上記の条件に加えて、発光層内で電子輸送性発光材料の最も濃度が低い領域の濃度は、最も高い領域の濃度の50%以下が更に好ましく、30%以下が更に好ましく、20%以下が最も好ましい。
更に正孔輸送性ホストの濃度も発光層内で傾斜していることが好ましい。また、正孔輸送性ホストに加えて、電気的に不活性な希釈剤を含んでいても良い。
−電子輸送性ホスト材料および正孔輸送性発光材料の混合比−
発光層の陽極に近接する領域の前記正孔輸送性発光材料の濃度は、前記領域において、70質量%以下が好ましく、60質量%以下が更に好ましく、50質量%以下が特に好ましい。特に燐光材料においては濃度が高くなると会合発光による色度悪化、電荷輸送能力の低下による高電圧化のため上記範囲外では好ましくない。
発光層の陰極に近接する領域の前記正孔輸送性発光材料の濃度は、前記領域において0質量%以上30質量%以下が好ましく、より好ましくは0質量%以上10質量%以下である。本発明においては、「発光層の〜に近接する領域」とは発光層の〜に近接する側で、発光層厚みの10%の厚み領域を指すものとし、その領域における平均濃度を上記好ましい範囲に設定するものとする。
また、上記の条件に加えて、発光層内で正孔輸送性発光材料の最も濃度が低い領域の濃度は、最も高い領域の濃度の50%以下が更に好ましく、30%以下が更に好ましく、20%以下が最も好ましい。
更に電子輸送性ホストの濃度も発光層内で傾斜していることが好ましい。また、電子輸送性ホストに加えて電気的に不活性な希釈剤を含んでいても良い。
<膜厚>
発光層の膜厚としては、輝度ムラ、駆動電圧、輝度の観点から、1nm以上500nm以下であることが好ましく、5nm以上300nm以下であることが更に好ましく、15nm以上100nm以下であることが特に好ましい。発光層の膜厚が薄いと、発光領域が発光層外まで広がったり、効率が下がったりするため好ましくない。発光層の膜厚が厚いと、駆動電圧が高くなり、用途を限定する原因となってしまう。
<層構成>
発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。また、発光層が積層構造である場合については、積層構造を構成する各層の膜厚は特に限定されないが、各発光層の合計膜厚が前述の範囲になるようにすることが好ましい。
3.正孔輸送層
正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層であり、例えば下記に示す正孔輸送材料を有する。陽極からの正孔の注入を良くするために、正孔輸送層を2層以上に分け、分けた層のうち一つに正孔注入の役割を持たせても良い。
本発明の第3又は第4の態様に於ける正孔輸送層のうち、少なくとも1層は、正孔輸送材料と電子輸送材料を含有する。
正孔輸送材料としては、具体的には、カルバゾール誘導体、アザカルバゾール誘導体、インドール誘導体、アザインドール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、有機シラン誘導体、カーボン、等が好ましい。あるいは、前述の発光層の正孔輸送性ホスト材料として説明された材料も好ましく用いることができる。
本発明の第2の態様に於ける正孔輸送層に用いられる電子輸送材料としては、具体的には、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、有機シラン誘導体、等が好ましい。あるいは、前述の発光層の電子輸送性ホスト材料として説明された材料も好ましく用いることができる。
正孔輸送層中で正孔輸送材料と電子輸送材料を含有する層においては、電子輸送材料の濃度は、陽極に近接する領域で陰極に近接する領域の濃度の0%以上50%以下であることが好ましく、0%以上20%以下であることが更に好ましい。更には、電子輸送材料の陰極に近接する領域の濃度は0質量%以上50質量%以下が好ましく、0質量%以上30質量%以下が更に好ましい。
また、正孔輸送材料の濃度は、陽極に近接する領域で50質量%以上100質量%以下であることが好ましく、80質量%以上100質量%以下であることが更に好ましい。
また、本発明の有機EL素子の正孔輸送層は低電圧化、駆動耐久性の観点から、電子受容性ドーパントを含有してもよい。
特に前述の正孔注入の役割を持たせた層(正孔注入層)を有する場合、その層に含有させることが好ましい。
正孔注入層に導入する電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用できる。
具体的には、無機化合物は塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモンなどのハロゲン化金属、五酸化バナジウム、および三酸化モリブデンなどの金属酸化物などが挙げられる。
有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、フラーレンなどを好適に用いることができる。あるいは、前述の発光層の電子輸送性ホスト材料として説明された材料も好ましく用いることができる。
この他にも、特開平6−212153、特開平11−111463、特開平11−251067、特開2000−196140、特開2000−286054、特開2000−315580、特開2001−102175、特開2001−160493、特開2002−252085、特開2002−56985、特開2003−157981、特開2003−217862、特開2003−229278、特開2004−342614、特開2005−72012、特開2005−166637、特開2005−209643等に記載の化合物を好適に用いることが出来る。
このうちヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、1,2,4,5−テトラシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、またはフラーレンC60が好ましく、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、2,3−ジクロロナフトキノン、1,2,4,5−テトラシアノベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、または2,3,5,6−テトラシアノピリジンがより好ましく、テトラフルオロテトラシアノキノジメタンが特に好ましい。
これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。電子輸送性材料の使用量は、材料の種類によって異なるが、正孔輸送層材料に対して0.01質量%〜50質量%であることが好ましく、0.05質量%〜20質量%であることが更に好ましく、0.1質量%〜10質量%であることが特に好ましい。
正孔輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
正孔輸送層の厚さとしては、1nm〜200nmであるのが好ましく、5nm〜100nmであるのがより好ましく、10nm〜60nmであるのが更に好ましい。
また、正孔輸送層も、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
4.電子輸送層
電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層であり、例えば下記に示す電子輸送材料を有する。陰極からの電子の注入を良くするために、電子輸送層を2層以上に分け、分けた層のうち一つに電子注入の役割を持たせても良い。
本発明の第1又は第2の態様に於ける電子輸送層のうち、少なくとも1層は、電子輸送材料と正孔輸送材料とを含有する。
電子輸送材料としては、具体的には、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、有機シラン誘導体、等が好ましい。あるいは、前述の発光層の電子輸送性ホスト材料として説明された材料も好ましく用いることができる。
正孔輸送材料としては、具体的には、カルバゾール誘導体、アザカルバゾール誘導体、インドール誘導体、アザインドール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、有機シラン誘導体、カーボン、等が好ましい。あるいは、前述の発光層の正孔輸送性ホスト材料として説明された材料も好ましく用いることができる。
電子輸送層中で正孔輸送材料と電子輸送材料を含有する電子輸送層においては、正孔輸送材料の濃度は、陽極側から陰極側に向かって暫減し、陰極に近接する領域では陽極に近接する領域の濃度の0%以上50%以下であることが好ましく、0%以上20%以下であることが更に好ましい。更には、正孔輸送材料の陽極に近接する領域における濃度は0質量%以上50質量%以下が好ましく、0質量%以上30質量%以下が更に好ましい。
また、電子輸送材料の濃度は、陰極に近接する領域で50質量%以上100質量%以下であることが好ましく、80質量%以上100質量%以下であることが更に好ましい。
本発明の有機EL素子の電子輸送層は、低電圧化、駆動耐久性向上の観点から電子供与性ドーパントを含有してもよい。
特に前述の電子注入の役割を持たせた層(電子注入層)を有する場合、その層に含有させることが好ましい。
電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属や還元性有機化合物などが好適に用いられる。
金属としては、特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、およびYbなどが挙げられる。また、還元性有機化合物としては、例えば、含窒素化合物、含硫黄化合物、含リン化合物などが挙げられる。あるいは、前述の発光層の正孔輸送性ホスト材料として説明された材料も好ましく用いることができる。
この他にも、特開平6−212153、特開2000−196140、特開2003−68468、特開2003−229278、特開2004−342614等に記載の材料を用いることが出来る。
これらの電子供与性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%であることが好ましく、1.0質量%〜80質量%であることが更に好ましく、2.0質量%〜70質量%であることが特に好ましい。
電子輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
電子輸送層の厚さとしては、5nm〜200nmであることが好ましく、10nm〜50nmであることが更に好ましい。
電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
5.基板
本発明で使用する基板としては、有機化合物層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。
基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。
基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
6.電極
(陽極)
陽極は、通常、有機化合物層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられ、仕事関数が4.0eV以上の材料が好ましい。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。
陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。
本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができる。が、前記基板上に形成されるのが好ましい。この場合、陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。
なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。
陽極の抵抗値としては、10Ω/□以下が好ましく、10Ω/□以下がより好ましい。陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を取り出すためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。
なお、透明陽極については、沢田豊監修「透明電極膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。
(陰極)
陰極は、通常、有機化合物層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられ、仕事関数が4.5eV以下のものが好ましい。具体例としてはアルカリ金属(たとえば、Li、Na、K、Cs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、イッテルビウム等の希土類金属、などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。
これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの広報に記載の材料は、本発明においても適用することができる。
陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。
陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
本発明において、陰極形成位置は特に制限はなく、有機化合物層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1nm〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。
陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1nm〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
7.保護層
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni等の金属、MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、TiO等の金属酸化物、SiN、SiN等の金属窒化物、MgF、LiF、AlF、CaF等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、転写法を適用できる。
8.封止
さらに、本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。
水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、及び酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、及びシリコーンオイル類が挙げられる。
9.駆動
本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。
10.用途
本発明の有機EL素子の用途は特に限定されないが、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、あるいは一般照明等広い分野に適用できる。
以下に、本発明の有機EL素子の実施例について説明するが、本発明はこれら実施例により限定されるものではない。
実施例1
1.有機EL素子の作製
1)本発明の素子1の作製
0.5mm厚み、2.5cm角の酸化インジウム錫(ITOと略記)を蒸着したガラス基板(ジオマテック(株)製、表面抵抗10Ω/□)を洗浄容器に入れ、2−プロパノール中で超音波洗浄した後、30分間UV−オゾン処理を行った。この透明陽極上に真空蒸着法にて以下の層を蒸着した。本発明の実施例における蒸着速度は特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。以下に記載の膜厚も水晶振動子を用いて測定したものである。
正孔注入層:4,4’,4”−トリス(2−ナフチルフェニルアミノ)トリフェニルアミン(2−TNATAと略記する)および2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノキノジメタン(F4−TCNQと略記する)を2−TNATAに対してF4−TCNQが1.0質量%となるように共蒸着した。厚み160nmであった。
正孔輸送層1:正孔輸送材料N,N’−ジナフチル−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(α−NPDと略記する)を厚み10nmに蒸着した。
正孔輸送層2(濃度勾配を有する正孔輸送層):正孔輸送層1の上に、正孔輸送材料N,N’−ジナフチル−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(α−NPDと略記する)と電子輸送材料Aluminum(III)bis(2−methyl−8−quinolinato)4−phenylphenolate(BAlqと略記する)を共蒸着し、これらの共蒸着比を蒸着進行と共に増加させた。蒸着初期の正孔注入層に近接した領域ではBAlqの混合比率が0質量%、蒸着終了段階の発光層と近接する領域ではBAlqの混合比率が30質量%となるように各成分の蒸着速度を調整した。これらの領域の間では連続的に各成分の混合比率を変化させた。正孔輸送層2の膜厚は30nmであった。
発光層:電子輸送性ホスト4,4’−di−(N−carbazole)−biphenyl(CBPと略称)と正孔輸送性発光材料Ir(ppy)を共蒸着し、これらの共蒸着比を蒸着進行と共に増加させた。蒸着初期の正孔輸送層に近接した領域ではIr(ppy)の混合比率が30質量%、蒸着終了段階の電子輸送層と近接する領域ではIr(ppy)の混合比率が0質量%となるように各成分の蒸着速度を調整した。これらの領域の間では連続的に各成分の混合比率を変化させた。発光層の膜厚は50nmであった。
電子輸送層:Aluminum(III)bis(2−methyl−8−quinolinato)4−phenylphenolate(BAlqと略記する)を蒸着した、厚みは40nmであった。
さらに電子注入層LiFを蒸着した。厚みは1nmであった。
さらに、シャドウマスクによりパターニングして陰極として厚み100nmのAlを設けた。
各層はいずれも抵抗加熱真空蒸着により設けた。
作製した積層体を、窒素ガスで置換したグロ−ブボックス内に入れ、乾燥剤を貼り付けたステンレス製の封止缶および紫外線硬化型の接着剤(XNR5516HV、長瀬チバ製)を用いて封止した。
2)本発明の素子2の作製
本発明の素子1の作製において、正孔輸送層1の膜厚を40nmに変更し、正孔輸送層2を除き、発光層及び電子輸送層を下記に変更し、その他は同様にして本発明の素子2を作製した。
発光層:正孔輸送性ホストCBPと電子輸送性発光材料Pt−1を共蒸着し、これらの共蒸着比を蒸着進行と共に増加させた。蒸着初期の正孔輸送層に近接した領域ではPt−1の混合比率が0質量%、蒸着終了段階の電子輸送層と近接する領域ではPt−1の混合比率が30質量%となるように各成分の蒸着速度を調整した。これらの領域の間では連続的に各成分の混合比率を変化させた。発光層の膜厚は50nmであった。
電子輸送層1(濃度勾配を有する電子輸送層):電子輸送性材料ETM1と正孔輸送性材料α−NPDを共蒸着し、これらの共蒸着比を蒸着進行と共に減少させた。蒸着初期の発光層に近接した領域ではα−NPDの混合比率が30質量%、蒸着終了段階の電子注入層と近接する領域ではα−NPDの混合比率が0質量%となるように各成分の蒸着速度を調整した。これらの領域の間では連続的に各成分の混合比率を変化させた。発光層の膜厚は30nmであった。
電子輸送層2:電子輸送層1の上にBAlqを厚みは10nm蒸着した。
3)本発明の素子3の作製
本発明の素子2の作製において、電子輸送層1を以下のように変更し、その他は同様にして本発明の素子3を作製した。
電子輸送層1:電子輸送性材料バソクプロイン(BCPと略称する)と正孔輸送性材料α−NPDを共蒸着し、これらの共蒸着比を蒸着進行と共に減少させた。蒸着初期の発光層に近接した領域ではα−NPDの混合比率が30質量%、蒸着終了段階の電子注入層と近接する領域ではα−NPDの混合比率が0質量%となるように各成分の蒸着速度を調整した。これらの領域の間では連続的に各成分の混合比率を変化させた。発光層の膜厚は30nmであった。
4)比較の素子A1、A2、A3の作製
本発明の素子1〜3の作製において、発光層および正孔輸送層、電子輸送層を全て均一濃度となるように変更し、その他は本発明の素子1〜3と同様にして比較例A1,A2、A3の素子を作製した。
比較の素子A1:本発明の素子1で発光層をCBPとIr(ppy)をCBPに対してIr(ppy)の混合比率が15質量%となるように均一に共蒸着した。また、正孔輸送層は、α−NPDとBAqをα−NPDに対してBAlqの混合比率が15質量%となるように均一に共蒸着した。
比較の素子A2:本発明の素子2で発光層をCBPとPt−1をCBPに対してPt−1の混合比率が15質量%となるように均一に共蒸着した。また、電子輸送層は、ETM1とα−NPDをETM1に対してα−NPDの混合比率が15質量%となるように均一に共蒸着した。
比較の素子A3:本発明の素子3で発光層をCBPとPt−1をCBPに対してPt−1の混合比率が15質量%となるように均一に共蒸着した。また、電子輸送層は、BCPとα−NPDをBCPに対してα−NPDの混合比率が15質量%となるように均一に共蒸着した。
5)比較の素子B1、B2、B3の作製
本発明の素子1〜3の作製において、発光層を全て均一濃度となるように変更し、その他は本発明の素子1〜3と同様にして比較例B1,B2、B3の素子を作製した。
比較の素子B1:本発明の素子1で発光層をCBPとIr(ppy)をCBPに対してIr(ppy)の混合比率が15質量%となるように均一に共蒸着した。
比較の素子B2:本発明の素子2で発光層をCBPとPt−1をCBPに対してPt−1の混合比率が15質量%となるように均一に共蒸着した。
比較の素子B3:本発明の素子3で発光層をCBPとPt−1をCBPに対してPt−1の混合比率が15質量%となるように均一に共蒸着した
実施例に用いた化合物の構造を下記に示す。
2.性能評価
得られた比較の有機EL素子および本発明の有機EL素子を同一条件で下記の手段によって外部量子効率および駆動耐久性を測定した。
《駆動電圧》
輝度360cd/mに達する直流電圧を駆動電圧とした。
《外部量子効率の測定方法》
作製した発光素子をKEITHLEY製ソ−スメジャ−ユニット2400型を用いて、直流電圧を発光素子に印加し発光させた。電圧を調整して、輝度100cd/mになるように発光させ、その発光スペクトルと光量をトプコン社製輝度計SR−3を用いて測定し、発光スペクトル、光量と測定時の電流から外部量子効率を計算した。
《駆動耐久性率の測定方法》
各素子を輝度360cd/mになるように直流電圧を印加し、一定電流で連続駆動して輝度が180cd/mになるまでの輝度半減時間を測定した。この輝度半減時間をもってして駆動耐久性の指標とした。本発明の素子1の輝度半減時間を1としたときの比較の素子A1B1の輝度半減時間を相対比で示した。
また、同様に、本発明の素子2の輝度半減時間を1としたときの比較の素子A2、B2の輝度半減時間を相対比で示し、本発明の素子3と比較の素子A3、B3も同様に比較した。
本発明の素子と比較の素子を比較して得られた結果を表1に示した。
その結果、本発明の素子は外部量子効率が高くかつ駆動耐久性に優れていた。これは、発光層及び電荷輸送層に電子輸送性材料及び正孔輸送性材料を混合させ、さらに濃度勾配をつけることによって、比較例の素子に比較して、本発明の素子の励起子の分布及び電荷密度の分布の局在化が改善され、非効率が解消された結果だと考えられる。

Claims (21)

  1. 陽極および陰極の間に少なくとも発光層および該発光層と該陰極の間に電子輸送層を挟持してなる有機電界発光素子であって、
    (1)前記発光層が電子輸送性発光材料および正孔輸送性ホスト材料を含有し、前記発光層における該電子輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸増していて、
    (2)前記電子輸送層が正孔輸送材料および電子輸送材料を含有し、前記電子輸送層における該正孔輸送材料の濃度が前記陽極側から前記陰極側に向かって漸減していることを特徴とする有機電界発光素子。
  2. 前記発光層の前記陽極に近接する領域(前記発光層の前記陽極側の厚み10%の領域を意味する)の前記電子輸送性発光材料の濃度が、前記発光層の前記陰極に近接する領域(前記発光層の前記陰極側の厚み10%の領域を意味する)の前記電子輸送性発光材料の濃度の0%以上50%以下であり、且つ、前記電子輸送層の前記陰極に近接する領域(前記電子輸送層の前記陰極側の厚み10%の領域を意味する)の前記正孔輸送材料の濃度が、前記陽極に近接する領域(前記電子輸送層の前記陽極側の厚み10%の領域を意味する)の前記正孔輸送材料の濃度の0%以上50%以下であることを特徴とする請求項1に記載の有機電界発光素子。
  3. 前記発光層の前記陽極に近接する領域の前記電子輸送性発光材料の濃度が、前記発光層の前記陰極に近接する領域の前記電子輸送性発光材料の濃度に対して0%以上20%以下であり、且つ、前記電子輸送層の前記陰極に近接する領域における前記正孔輸送材料の濃度が、前記電子輸送層の前記陽極に近接する領域における前記正孔輸送材料の濃度の0%以上20%以下であることを特徴とする請求項2に記載の有機電界発光素子。
  4. 陽極および陰極の間に少なくとも発光層および該発光層と該陰極の間に電子輸送層を挟持してなる有機電界発光素子であって、
    (1)前記発光層が電子輸送性発光材料および正孔輸送性ホスト材料を含有し、前記発光層における該電子輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸増していて、
    (2)前記電子輸送層が正孔輸送材料および電子輸送材料を含有し、前記電子輸送層における該電子輸送材料の濃度が前記陽極側から前記陰極側に向かって漸増していることを特徴とする有機電界発光素子。
  5. 前記発光層の前記陽極に近接する領域の前記電子輸送性発光材料の濃度が、前記発光層の前記陰極に近接する領域の前記電子輸送性発光材料の濃度の0%以上50%以下であり、且つ、前記電子輸送層の前記陰極に近接する領域における前記電子輸送材料の濃度が、該領域の50質量%以上100質量%以下であることを特徴とする請求項4に記載の有機電界発光素子。
  6. 前記発光層の前記陽極に近接する領域の前記電子輸送性発光材料の濃度が、前記発光層の前記陰極に近接する領域の前記電子輸送性発光材料の濃度の0%以上20%以下であり、且つ、前記電子輸送層の前記陰極に近接する領域における前記電子輸送材料の濃度が、該領域の80質量%以上100質量%以下であることを特徴とする請求項5に記載の有機電界発光素子。
  7. 前記発光層における前記正孔輸送性ホスト材料の濃度が前記陽極側から前記陰極側に向かって漸減していることを特徴とする請求項1〜請求項6のいずれか1項に記載の有機電界発光素子。
  8. 前記発光層の前記陽極側に近接する領域における前記正孔輸送性ホスト材料の濃度が、該領域の50質量%以上100質量%以下であることを特徴とする請求項7に記載の有機電界発光素子。
  9. 前記発光層の前記陽極側に近接する領域における前記正孔輸送性ホスト材料の濃度が、該領域の80質量%以上100質量%以下であることを特徴とする請求項8に記載の有機電界発光素子。
  10. 前記電子輸送層における前記正孔輸送材料の濃度が前記陽極側から前記陰極側に向かって漸減し、且つ前記電子輸送層における前記電子輸送材料の濃度が前記陽極側から前記陰極側に向かって漸増していることを特徴とする請求項1〜請求項9のいずれか1項に記載の有機電界発光素子。
  11. 陽極および陰極の間に少なくとも発光層および該発光層と該陽極の間に正孔輸送層を挟持してなる有機電界発光素子であって、
    (1)前記発光層が正孔輸送性発光材料および電子輸送性ホスト材料を含有し、前記発光層における該正孔輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸減していて、
    (2)前記正孔輸送層が正孔輸送材料および電子輸送材料を含有し、前記正孔輸送層における該電子輸送材料の濃度が前記陽極側から前記陰極側に向かって漸増していることを特徴とする有機電界発光素子。
  12. 前記発光層の前記陰極に近接する領域(前記発光層の前記陽極側の厚み10%の領域を意味する)の前記正孔輸送性発光材料の濃度が、前記発光層の前記陽極に近接する領域(前記発光層の前記陰極側の厚み10%の領域を意味する)の前記正孔輸送性発光材料の濃度の0%以上50%以下であり、且つ、前記正孔輸送層の前記陽極に近接する領域における前記電子輸送材料の濃度が、前記正孔輸送層の前記陰極に近接する領域における前記電子輸送材料の濃度の0%以上20%以下であることを特徴とする請求項11に記載の有機電界発光素子。
  13. 前記発光層の前記陰極に近接する領域の前記正孔輸送性発光材料の濃度が、前記発光層の前記陽極に近接する領域の前記正孔輸送性発光材料の濃度の0%以上20%以下であり、且つ、前記正孔輸送層の前記陽極に近接する領域における前記電子輸送材料の濃度が、前記正孔輸送層の前記陰極に近接する領域における前記電子輸送材料の濃度の0%以上20%以下であることを特徴とする請求項12に記載の有機電界発光素子。
  14. 陽極および陰極の間に少なくとも発光層および該発光層と該陽極の間に正孔輸送層を挟持してなる有機電界発光素子であって、
    (1)前記発光層が正孔輸送性発光材料および電子輸送性ホスト材料を含有し、前記発光層における該正孔輸送性発光材料の濃度が前記陽極側から前記陰極側に向かって漸減していて、
    (2)前記正孔輸送層が正孔輸送材料および電子輸送材料を含有し、前記正孔輸送層における該正孔輸送材料の濃度が前記陽極側から前記陰極側に向かって漸減することを特徴とする有機電界発光素子。
  15. 前記発光層の前記陰極に近接する領域における前記正孔輸送性発光材料の濃度が、前記発光層の前記陽極に近接する領域の前記正孔輸送性発光材料の濃度の0%以上50%以下であり、且つ、前記正孔輸送層の前記陽極に近接する領域における前記正孔輸送材料の濃度が、該領域の50質量%以上100質量%以下であることを特徴とする請求項14に記載の有機電界発光素子。
  16. 前記発光層の前記陰極に近接する領域における前記正孔輸送性発光材料の濃度が、前記発光層の前記陽極に近接する領域の前記正孔輸送性発光材料の濃度の0%以上20%以下であり、且つ、前記正孔輸送層の前記陽極に近接する領域における前記正孔輸送材料の濃度が、該領域の80質量%以上100質量%以下であることを特徴とする請求項15に記載の有機電界発光素子。
  17. 前記発光層における前記電子輸送性ホスト材料の濃度が前記陰極側から前記陽極側に向かって漸減していることを特徴とする請求項11〜請求項16のいずれか1項に記載の有機電界発光素子。
  18. 前記発光層の前記陰極に近接する領域における前記電子輸送性ホスト材料の濃度が、50質量%以上100質量%以下であることを特徴とする請求項17に記載の有機電界発光素子。
  19. 前記発光層の前記陰極に近接する領域における前記電子輸送性ホスト材料の濃度が、80質量%以上100質量%以下であることを特徴とする請求項18に記載の有機電界発光素子。
  20. 前記正孔輸送層における前記正孔輸送材料の濃度が前記陽極側から前記陰極側に向かって漸減し、且つ前記正孔輸送層における前記電子輸送材料の濃度が前記陽極側から前記陰極側に向かって漸増していることを特徴とする請求項11〜請求項19のいずれか1項に記載の有機電界発光素子。
  21. 前記発光材料が燐光発光材料であることを特徴とする請求項1〜請求項20のいずれか1項に記載の有機電界発光素子。
JP2008052505A 2008-03-03 2008-03-03 有機電界発光素子 Pending JP2009212235A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008052505A JP2009212235A (ja) 2008-03-03 2008-03-03 有機電界発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008052505A JP2009212235A (ja) 2008-03-03 2008-03-03 有機電界発光素子

Publications (1)

Publication Number Publication Date
JP2009212235A true JP2009212235A (ja) 2009-09-17

Family

ID=41185113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008052505A Pending JP2009212235A (ja) 2008-03-03 2008-03-03 有機電界発光素子

Country Status (1)

Country Link
JP (1) JP2009212235A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227284A (ja) * 2011-04-18 2012-11-15 Seiko Epson Corp 発光素子、発光装置、表示装置および電子機器
WO2022226718A1 (zh) * 2021-04-26 2022-11-03 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227284A (ja) * 2011-04-18 2012-11-15 Seiko Epson Corp 発光素子、発光装置、表示装置および電子機器
WO2022226718A1 (zh) * 2021-04-26 2022-11-03 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置
CN115529845A (zh) * 2021-04-26 2022-12-27 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置

Similar Documents

Publication Publication Date Title
JP5014036B2 (ja) 有機電界発光素子
JP5497259B2 (ja) 有機電界発光素子
JP2009211892A (ja) 有機電界発光素子
JP2009032989A (ja) 有機電界発光素子
JP5187493B2 (ja) 有機電界発光素子および新規なインドール誘導体
JP5484690B2 (ja) 有機電界発光素子
JP2009016184A (ja) 有機電界発光素子
JP4969086B2 (ja) 有機電界発光素子
JP2009266943A (ja) 有機電界発光素子
JP2009267244A (ja) 有機電界発光素子
JP2008270737A (ja) 有機電界発光素子
JP2010135689A (ja) 白色有機電界発光素子
JP2008160087A (ja) 有機電界発光素子
JP2009267176A (ja) 有機電界発光素子
JP5740075B2 (ja) 有機電界発光素子
JP5211282B2 (ja) 有機電界発光素子
JP2009076508A (ja) 有機電界発光素子
JP5478818B2 (ja) 有機電界発光素子
JP4903416B2 (ja) 有機電界発光素子
JP5722291B2 (ja) 有機電界発光素子
JP4959270B2 (ja) 有機電界発光素子
JP5946929B2 (ja) 有機電界発光素子
JP2009212235A (ja) 有機電界発光素子
JP2009081409A (ja) 有機電界発光素子
JP5898241B2 (ja) 有機電界発光素子