JP2009211202A - メモリシステム - Google Patents

メモリシステム Download PDF

Info

Publication number
JP2009211202A
JP2009211202A JP2008051378A JP2008051378A JP2009211202A JP 2009211202 A JP2009211202 A JP 2009211202A JP 2008051378 A JP2008051378 A JP 2008051378A JP 2008051378 A JP2008051378 A JP 2008051378A JP 2009211202 A JP2009211202 A JP 2009211202A
Authority
JP
Japan
Prior art keywords
management information
storage
pointer
stored
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008051378A
Other languages
English (en)
Inventor
Junji Yano
純二 矢野
Hidenori Matsuzaki
秀則 松崎
Kosuke Hatsuda
幸輔 初田
Shigehiro Asano
滋博 浅野
Shinichi Sugano
伸一 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008051378A priority Critical patent/JP2009211202A/ja
Priority to CN200980000132A priority patent/CN101681313A/zh
Priority to KR1020097017866A priority patent/KR101103110B1/ko
Priority to EP20100197364 priority patent/EP2309392A1/en
Priority to PCT/JP2009/052590 priority patent/WO2009107506A1/en
Priority to US12/529,227 priority patent/US8438343B2/en
Priority to EP20090709441 priority patent/EP2111583A4/en
Priority to TW98105523A priority patent/TWI418983B/zh
Publication of JP2009211202A publication Critical patent/JP2009211202A/ja
Priority to US13/855,394 priority patent/US8738867B2/en
Priority to US14/226,510 priority patent/US9043564B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/023Free address space management
    • G06F12/0238Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
    • G06F12/0246Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5628Programming or writing circuits; Data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/102External programming circuits, e.g. EPROM programmers; In-circuit programming or reprogramming; EPROM emulators
    • G11C16/105Circuits or methods for updating contents of nonvolatile memory, especially with 'security' features to ensure reliable replacement, i.e. preventing that old data is lost before new data is reliably written
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/20Memory cell initialisation circuits, e.g. when powering up or down, memory clear, latent image memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1471Saving, restoring, recovering or retrying involving logging of persistent data for recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7207Details relating to flash memory management management of metadata or control data

Abstract

【課題】管理情報の保存場所にアクセスするためのポインタの書換えによる多値メモリを使用したNAND型フラッシュメモリの低寿命化を抑制するメモリシステムを提供する。
【解決手段】揮発性の第1の記憶部と、不揮発性の第2の記憶部と、データ転送を行うとともに第2の記憶部内のデータの格納位置を含む管理情報を第1の記憶部に取込み、この管理情報を更新しながらデータ管理を行うコントローラと、を備え、第2の記憶部は、最新の状態の管理情報とその保存位置を示す保存位置情報とを含む管理情報保存情報を保存する管理情報保存領域を有し、保存位置情報は、起動時にコントローラで読み込まれ、管理情報保存領域内の最新の状態の管理情報の格納位置を示す第2のポインタと、この第2のポインタの格納位置を示す第1のポインタとを含み、第1のポインタは第2の記憶部中の固定領域に、第2のポインタは第2の記憶部中の固定領域を除いた領域に格納される。
【選択図】 図8

Description

本発明は、不揮発性半導体記憶装置を用いて構成されるメモリシステムに関する。
ハードディスク装置を2次記憶装置として用いたパーソナルコンピュータにおいては、ハードディスク装置に格納されるデータが何らかの障害によって無効なデータとなってしまうことを防ぐためにバックアップをとる技術が知られている。たとえば、ハードディスク装置中のデータの変更を検出すると、そのデータの変更前のバックアップコピーであるスナップショットをとり、そのデータに対する更新を記録したログをとる。その後、所定の時間ごとにスナップショットをとるとともに、スナップショットをとる前の過去のログを無効にし、新しいログを生成するという処理が繰り返し行われる(たとえば、特許文献1参照)。そして、データが無効になってしまった場合には、スナップショットとログを基にそのデータを復元するようにしている。
ところで、近年では、不揮発性半導体記憶装置であるNAND型フラッシュメモリの大容量化が進行し、このNAND型フラッシュメモリを有するメモリシステムを2次記憶装置とするパーソナルコンピュータが製品化されている。しかし、このようなNAND型フラッシュメモリを2次記憶装置とするパーソナルコンピュータに格納されるデータのバックアップに対して、ハードディスク装置を2次記憶装置として想定した上記特許文献1の技術を適用することはできない。それは、NAND型フラッシュメモリの大容量化には、1つのメモリセルに2ビット以上の複数のデータ(多値データ)を記憶することが可能な多値メモリ技術が使用されているからである(たとえば、特許文献2参照)。
多値メモリを構成するメモリセルは、チャネル領域上にゲート絶縁膜、浮遊ゲート電極、ゲート間絶縁膜および制御ゲート電極が順に積層された積層ゲート構造を有する電界効果型トランジスタ構造を有し、浮遊ゲート電極に蓄積される電子の数に応じて、複数の閾値電圧を設定可能な構成を有している。そして、この複数の閾値電圧によって多値記憶を可能とするために、1つのデータに対応する閾値電圧の分布を非常に狭く制御する必要がある。このような多値を記憶可能なメモリセルの書換可能回数には制約がある。
特許文献1に記載のスナップショットとログを保存する方法では、そのスナップショットとログの保存場所にアクセスするためのポインタが必要であり、このポインタは、スナップショットとログの更新のたびに書換えられる。この書換えは、書換可能回数が無制限のハードディスク装置の場合には問題とならないが、上記したように書換可能回数に制限のある多値メモリを用いたNAND型フラッシュメモリの場合には、NAND型フラッシュメモリの寿命を短くしてしまうという問題点があった。
米国特許出願公開第2006/0224636号明細書 特開2004−192789号公報
本発明は、多値メモリを使用したNAND型フラッシュメモリを有するメモリシステムで、スナップショットとログの保存場所にアクセスするためのポインタの書換えによるNAND型フラッシュメモリの低寿命化を抑制することができるメモリシステムを提供することを目的とする。
本発明の一態様によれば、揮発性の第1の記憶部と、不揮発性の第2の記憶部と、前記第1の記憶部を介してホスト装置と前記第2の記憶部との間のデータ転送を行うとともに、起動時に前記第2の記憶部に記憶された前記データの格納位置を含む管理情報を前記第1の記憶部に取込み、該取り込んだ管理情報を更新しながら管理情報に基づいて前記第1および第2の記憶部でのデータ管理を行うコントローラと、を備え、前記第2の記憶部は、前記第1の記憶部に取り込まれた最新の状態の管理情報、および該最新の状態の管理情報の保存位置を示す保存位置情報を含む管理情報保存情報を保存する管理情報保存領域を有し、前記保存位置情報は、当該メモリシステムの起動時に前記コントローラによって読み込まれ、前記管理情報保存領域内の前記最新の状態の管理情報の格納位置を示す第2のポインタと、この第2のポインタの格納位置を示す第1のポインタとを含み、前記第1のポインタは前記第2の記憶部中の固定領域に格納され、前記第2のポインタは前記第2の記憶部中の前記固定領域を除いた領域に格納されることを特徴とするメモリシステムが提供される。
本発明によれば、多値メモリを使用したNAND型フラッシュメモリを有するメモリシステムで、スナップショットとログの保存場所にアクセスするためのポインタの書換えによるNAND型フラッシュメモリの低寿命化を抑制することができるという効果を奏する。
以下に添付図面を参照して、本発明にかかるメモリシステムの最良な実施の形態を詳細に説明する。なお、これらの実施の形態により本発明が限定されるものではない。
(第1の実施の形態)
このメモリシステムは、不揮発性半導体記憶装置を含み、たとえば、パーソナルコンピュータなどのホスト装置の2次記憶装置(SSD:Solid State Drive)として使用され、ホスト装置から書込要求が出されたデータを記憶し、またホスト装置から読出要求のあったデータを読出してホスト装置に出力する機能を有する。図1は、本発明の第1の実施の形態にかかるメモリシステムの構成の一例を示すブロック図である。このメモリシステム10は、第1の記憶部としてのDRAM(Dynamic Random Access Memory)11と、第2の記憶部としてのNAND型フラッシュメモリ(以下、NANDメモリという)12と、電源回路13と、コントローラとしてのドライブ制御部14と、を備える。
DRAM11は、データ転送用、管理情報記録用または作業領域用の記憶部として使用される。具体的には、データ転送用の記憶部としては、ホスト装置から書込要求があったデータをNANDメモリ12に書込む前に一時的に保存したり、ホスト装置から読出要求があったデータをNANDメモリ12から読出して一時的に保存したりするために使用される。また、管理情報記録用の記憶部としては、DRAM11およびNANDメモリ12に記憶されるデータの格納位置を管理するための管理情報を格納するために使用される。さらに、作業領域用の記憶部としては、管理情報を復元する際に用いるログの展開時などに使用される。
NANDメモリ12は、データ保存用の記憶部として使用される。具体的には、ホスト装置側によって指定されたデータを記憶したり、DRAM11で管理される管理情報をバックアップ用に記憶したりする。この図1では、NANDメモリ12が4つのチャネル120A〜120Dによって構成されている場合が示されている。1つのチャネル120A〜120Dは、所定のサイズの記憶容量を有する8個のチップ122が1つにまとめられたパッケージ121を2つ含んでいる。また、各チャネル120A〜120Dは、ドライブ制御部14とバス15を介して接続されている。
電源回路13は、外部電源を受け、この外部電源を用いてメモリシステム10の各部に供給するための複数の内部電源を生成する。また、電源回路13は、外部電源の立ち上がりまたは立ち下りを検知して、パワーオンリセット信号を生成する。このパワーオンリセット信号は、ドライブ制御部14に送られる。
ドライブ制御部14は、DRAM11とNANDメモリ12を制御する。詳細は後述するが、たとえば、電源回路13からのパワーオンリセット信号に応じて、管理情報の復元処理や管理情報の保存処理を行う。また、ドライブ制御部14は、ATAインタフェース(図中では、ATA I/Fと表記)を介して、ホスト装置との間でデータを送受信し、RS232Cインタフェース(図中では、RS232C I/Fと表記)を介して、デバッグ用機器との間でデータを送受信する。さらに、ドライブ制御部14は、メモリシステム10の外部に設けられる状態表示用LEDを制御するための制御信号を出力する。
ここで、NANDメモリ12の構成について説明する。NANDメモリ12は、データ消去の単位であるブロックを基板上に複数配列して構成される。図2は、NANDメモリに含まれる1個のブロックの構成の一例を示す回路図である。なお、この図2において、紙面上の左右方向をX方向とし、紙面上のX方向に垂直な方向をY方向としている。
NANDメモリ12の各ブロックBLKは、X方向に沿って順に配列された(m+1)個(mは0以上の整数)のNANDストリングNSを備えている。各NANDストリングNSは、Y方向に隣接するメモリセルトランジスタMT間で拡散領域(ソース領域またはドレイン領域)を共有してY方向に直列に接続された(n+1)個(nは0以上の整数)のメモリセルトランジスタMT0〜MTnと、この(n+1)個のメモリセルトランジスタMT0〜MTnの列の両端に配置される選択トランジスタST1,ST2と、を有する。
各メモリセルトランジスタMT0〜MTnは、半導体基板上に形成された積層ゲート構造を有する電界効果型トランジスタから構成される。ここで、積層ゲート構造には、半導体基板上にゲート絶縁膜を介在して形成された電荷蓄積層(浮遊ゲート電極)と、この電荷蓄積層上にゲート間絶縁膜を介在して形成された制御ゲート電極と、が含まれる。メモリセルトランジスタMT0〜MTnは、浮遊ゲート電極に蓄えられる電子の数に応じて閾値電圧が変化し、この閾値電圧の違いに応じて2ビット以上のデータを記憶することができる多値メモリである。なお、以下に示す実施の形態では、メモリセルトランジスタMTはこの多値メモリである場合を例に挙げて説明するが、4値よりも大きな値を記憶することができる多値メモリであってもよい。
NANDストリングNSを構成するメモリセルトランジスタMT0〜MTnの制御ゲート電極には、それぞれワード線WL0〜WLnが接続されており、また各NANDストリングNS中のメモリセルトランジスタMTi(i=0〜n)間は、同一のワード線WLi(i=0〜n)によって共通接続されている。つまり、ブロックBLK内において同一行にあるメモリセルトランジスタMTiの制御ゲート電極は、同一のワード線WLiに接続される。この同一のワード線WLiに接続される(m+1)個のメモリセルトランジスタMTiは1ページとして取り扱われ、NANDメモリ12では、このページ単位でデータの書込みと読出しが行われる。
1つのブロックBLK内の(m+1)個の選択トランジスタST1のドレインにはそれぞれビット線BL0〜BLmが接続され、ゲートには選択ゲート線SGDが共通接続されている。また、選択トランジスタST1のソースはメモリセルトランジスタMT0のドレインと接続されている。同様に、1つのブロックBLK内の(m+1)個の選択トランジスタST2のソースにはソース線SLが共通接続され、ゲートには選択ゲート線SGSが共通接続されている。また、選択トランジスタST2のドレインはメモリセルトランジスタMTnのソースと接続されている。
なお、図示されていないが、1つのブロックBLK内のビット線BLj(j=0〜m)は、他のブロックBLKのビット線BLjとの間で、選択トランジスタST1のドレインを共通に接続している。つまり、複数のブロックBLK内において同一列にあるNANDストリングNS間は、同一のビット線BLjによって接続される。
つぎに、DRAM11とNANDメモリ12の機能構成について説明する。図3は、DRAMとNANDメモリの機能構成を模式的に示す図であり、(a)はDRAM11の機能構成を示し、(b)はNANDメモリ12の機能構成を示している。
図3(a)に示されるように、DRAM11は、ホスト装置から書込要求のあったデータが記憶されるライトキャッシュ領域WCと、ホスト装置から読出要求のあったデータが記憶されるリードキャッシュ領域RCと、DRAM11およびNANDメモリ12に記憶されるデータの格納位置を管理するための管理情報が記憶される一時記憶領域111と、管理情報を復元する際に使用される作業領域112と、を有する。
図3(b)に示されるように、NANDメモリ12は、ホスト装置から書込要求のあったデータが格納されるデータ格納領域125と、DRAM11の一時記憶領域111で管理される管理情報が保存される管理情報保存領域126と、を有する。この例では、NANDメモリ12でのデータの書込/読出単位をページサイズ単位とし、消去の単位をブロックサイズ単位(たとえば512KB単位)とするものとする。そのため、ブロックサイズ単位で管理されるNANDメモリ12の各ブロックを記憶するための領域を、さらにページサイズ単位の領域に分割する。
ここで、DRAM11の一時記憶領域111で管理される管理情報について説明する。図4は、メモリシステムで記憶されるデータを管理する層構造の一例を示す図である。なお、ここで、データとは、ホスト装置から書込要求/読出要求のあったデータのことをいうものとする。このメモリシステム10では、キャッシュの役割をするDRAM11でのデータ管理を行うDRAM管理層31と、NANDメモリ12での論理的なデータ管理を行う論理NAND管理層32と、NANDメモリ12での物理的なデータ管理やNANDメモリ12の延命処理などを行う物理NAND管理層33の3層構造でデータ管理が行われる。
DRAM11のライトキャッシュ領域WCとリードキャッシュ領域RCでは、ホスト装置のアドレス管理方法によって管理される論理アドレス(以下、LBA(Logical Block Address)という)で指定されたデータが、DRAM11上の所定の範囲の物理アドレス(以下、DRAM内物理アドレスという)に記憶される。また、DRAM管理層31内でのデータは、格納されるデータのLBAとDRAM内物理アドレスとの対応関係と、ページ中のセクタサイズ単位のデータの有無を示すセクタフラグと、を含むキャッシュ管理情報41によって管理される。
図5は、キャッシュ管理情報テーブルの一例を示す図である。ここでは、キャッシュ管理情報41は、DRAM11の1ページサイズの領域1つに対して1エントリとし、エントリ数はライトキャッシュ領域WCとリードキャッシュ領域RCに収まるページ数以下とする。各エントリには、ページサイズのデータのLBAと、DRAM内物理アドレスと、このページをセクタサイズで分割した各領域における有効データの位置を示すセクタフラグと、が関連付けられている。
NANDメモリ12では、DRAM11からのデータがNANDメモリ12上の所定の範囲の物理アドレス(以下、NAND内物理アドレスという)に格納される。多値メモリからなるNANDメモリ12では、書換可能回数に制約があるため、NANDメモリ12を構成する各ブロック間での書換回数が均等化するようにドライブ制御部14で制御されている。つまり、ドライブ制御部14は、NANDメモリ12内のあるNAND内物理アドレスに書込まれたデータの更新を行う場合に、そのデータが含まれるブロックのうち更新が必要な部分を反映させたデータを、元のブロックとは異なるブロックに書込み、元のブロックは無効化するようにして、NANDメモリ12を構成するブロック間での書換回数が均等化するように制御している。
このように、NANDメモリ12では、データの書込/読出処理と消去処理とでは処理単位が異なるとともに、データの更新処理においては、更新前のデータの位置(ブロック)と更新後のデータの位置(ブロック)とが異なるため、この実施の形態では、NAND内物理アドレスのほかにNANDメモリ12内で独自に使用されるNAND内論理アドレス(以下、NAND内論理アドレスという)を設けることにする。
そこで、論理NAND管理層32内でのデータは、DRAM11から受け取ったページサイズ単位のデータのLBAと、受け取ったデータを格納するNANDメモリ12の論理的なページ位置を示すNAND内論理アドレスとの間の関係と、NANDメモリ12における消去単位のブロック(以下、物理ブロックとする)とサイズが一致する論理的なブロック(以下、論理ブロックという)のアドレス範囲を示す関係と、を示す論理NAND管理情報42によって管理される。なお、物理ブロックを複数まとめたものを論理ブロックとしてもよい。また、物理NAND管理層33でのデータは、NANDメモリ12における論理ブロックのNAND内論理アドレスと、物理ブロックのNAND内物理アドレスとの対応関係を含むNAND内論理アドレス−物理アドレス変換情報(以下、論物変換情報という)43によって管理される。
図6は、論理NAND管理情報テーブルの一例を示す図であり、図7は、NAND内論物変換情報テーブルの一例を示す図である。図6に示されるように、論理NAND管理情報42は、論理ページ管理情報42aと論理ブロック管理情報42bとを含む。論理ページ管理情報42aは、1ページサイズの論理的な領域1つに対して1エントリとし、各エントリには、1ページサイズのデータのLBAと、NAND内論理アドレスと、このページが有効か否かを示すページフラグと、を含む。また、論理ブロック管理情報42bは、NANDメモリ12の1ブロックサイズの論理的な領域に対して設定されるNAND内論理アドレスを含む。また、図7に示されるように、NAND内論物変換情報43は、NANDメモリ12のNAND内物理アドレスとNAND内論理アドレスとが対応付けられている。
これらの管理情報によって、ホスト装置で使用されるLBAと、NANDメモリ12で使用されるNAND内論理アドレスと、NANDメモリ12で使用されるNAND内物理アドレスとの間を対応付けることができ、ホスト装置と当該メモリシステム10との間のデータのやり取りを行うことが可能となる。
なお、以下では、DRAM管理層31で管理される管理情報は、電源オフなどによって消失するので、揮発性テーブルともいい、論理NAND管理層32および物理NAND管理層33で管理される管理情報は、電源オフなどによって消失した際にメモリシステム10の次回起動時に支障を与え、保存しておくことが必要なので、不揮発性テーブルともいう。
この不揮発性テーブルは、NANDメモリ12に格納されているデータを管理するものであり、この不揮発性テーブルがなければNANDメモリ12に格納されている情報にアクセスできなかったり、既に記憶した領域内のデータを消してしまったりするので、不意の電源オフなどに備えて最新の情報に保存しておく必要がある。そのため、この実施の形態では、NANDメモリ12の管理情報保存領域126には、少なくとも不揮発性テーブルを含む管理情報を最新の状態で保存している。そこでつぎに、NANDメモリ12の管理情報保存領域126に保存される管理情報保存情報について説明する。なお、以下では、不揮発性テーブルのみを管理情報保存領域126に保存する場合を例に挙げる。
図8は、管理情報保存領域に記憶される管理情報保存情報の内容の一例を模式的に示す図である。この管理情報保存領域126には、ある時点における不揮発性テーブルの内容であるスナップショット210と、不揮発性テーブルの内容に変化があった場合に内容を変更した後の不揮発性テーブルとスナップショット210(またはスナップショット210と既に取られたログ)との差分情報であるログ220と、スナップショット210とこのスナップショット210に関する一番目に取得されたログ220の位置(ブロック)を示す第2のルートポインタ230と、第2のルートポインタ230が格納される位置(ブロック)を示す第1のルートポインタ240と、を含む管理情報保存情報が格納される。ここで、スナップショット210とは、DRAM11の一時記憶領域111に記憶される管理情報のうち、少なくとも不揮発性テーブルを含む管理情報を所定の時点で保存した情報のことをいう。
この図8において、スナップショット210、ログ220、第2のルートポインタ230および第1のルートポインタ240は、それぞれ異なるブロックに格納される。なお、これらのスナップショット210、ログ220、第2のルートポインタ230および第1のルートポインタ240がそれぞれ格納されるブロックの大きさは、消去単位である物理ブロックと同じ大きさであるものとする。スナップショット210は、スナップショット格納用ブロックに格納される。スナップショット210には、NANDメモリ12の管理情報保存領域126内の不揮発性テーブルである論理NAND管理情報42とNAND内論物変換情報43とが含まれる。新しいスナップショット210が保存されると、以前に保存されていたスナップショット210とは別のブロックに保存される。
ログ220は、ログ格納用ブロックに格納される。このログ220は、スナップショットの世代が変わっても、同じログ格納用ブロックに連続して書込まれる。図9は、ログの一例を示す図である。ログ220は、変更対象の管理情報となる対象情報と、その対象情報中の変更対象となるエントリである対象エントリと、その対象エントリ中の変更対象となる項目である対象項目と、その対象項目の変更の内容である変更内容と、を含む。
第2のルートポインタ230は、第2のルートポインタ格納用ブロックに格納される。第2のルートポインタ230は、スナップショット210とログ220の格納位置を示すブロックの先頭アドレスを示すものであればよい。ただし、第2のルートポインタ230のうちスナップショット210の格納位置を示す部分は、スナップショット210に含まれる各管理情報(不揮発性テーブル)の先頭アドレスを示すものであってもよい。また、第2のルートポインタ230は、スナップショット210が新たに保存された場合に更新される。なお、ログ220のポインタは、第2のルートポインタ格納用ブロック内ではなく、スナップショット210の中に格納されていてもよい。
図10は、第2のルートポインタの一例を示す図である。1ブロックのサイズを512KBとすると、4KBのサイズの1ページに第2のルートポインタ230が格納される。この第2のルートポインタ230は、スナップショットアクセス情報と、ログアクセス情報と、ネクストポインタと、を含む。ここで、スナップショットアクセス情報は、スナップショットが格納されているブロックへアクセスするための情報である。また、ログアクセス情報は、ログが格納されているブロックへアクセスするための情報であり、ブロックを指定する情報と、基準となるスナップショットに関係するログが格納されている上記ブロック内の先頭ページを指定する情報と、を含む。ネクストポインタは、つぎの第2のルートポインタ230が格納されるページを示すインデックスである。このネクストポインタによって、第2のルートポインタ230はリンクドリスト方式の情報となり、第1のルートポインタ240で指示された第2のルートポインタ格納用ブロックの先頭ページからネクストポインタをたどることによって、最新の第2のルートポインタ230へとたどり着くことが可能となる。なお、リンクドリスト方式ではなく、第2のルートポインタ格納領域の先頭ページから第2のルートポインタ230を順に追記的に格納してもよい。
第1のルートポインタ240は、第1のルートポインタ格納用ブロックに格納される。第1のルートポインタ240は、第2のルートポインタ230が格納されている第2のルートポインタ格納用ブロックのブロック(位置)へアクセスするための情報であり、メモリシステム10の起動時に、管理情報を復元するための処理の際に最初に読み込まれる情報である。この第1のルートポインタ240は、第2のルートポインタが格納されるブロックが変わった場合に変更される。第1のルートポインタ240は、第1のルートポインタ格納用ブロックに、たとえば、ブロックの先頭ページから順に追記的に格納される。このような場合には、第1のルートポインタ格納用ブロック内の未書込ページの1つ前のページが最新情報を有することになるので、未書込ページの最上位のページを検索することで、最新の第1のルートポインタ240を検索することができる。また、第2のルートポインタ230の場合のように、リンクドリストを用いることも可能である。
ここで、第1のルートポインタ240はNANDメモリ12内の固定領域1261に格納され、スナップショット210、ログ220および第2のルートポインタ230はNANDメモリ12内の可変領域1262に格納される。固定領域1261とは、NANDメモリ12において、論理NAND管理層32で管理される論理ブロックと、物理NAND管理層33で管理される物理ブロックとの関係が固定化している領域であり、書換えや書込みがほとんど発生しない更新頻度の低い、メモリシステム10を稼働させるのに必要な情報が格納される領域である。たとえば、現在書込み中のブロックがすべて満たされた場合には、管理情報保存領域126(NANDメモリ12)内の他のブロックに情報(第1のルートポインタ240)を書込むのではなく、ブロックの情報を消去した後に同じブロックの先頭ページから書込むように設定された領域である。また、この例では、NANDメモリ12は多値メモリで構成されるとしているが、第1のルートポインタ240のデータの信頼性を高めるために、2値モードで使用することが望ましい。
一方の可変領域1262とは、固定領域1261を除くNANDメモリ12の領域において、論理NAND管理層32で管理される論理ブロックと、物理NAND管理層33で管理される物理ブロックとの関係が変化する領域である。たとえば、現在書込み中のブロックがすべて満たされた場合には、管理情報保存領域126内の可変領域1262中の書込可能なフリーブロックとなっている他のブロックにつぎの情報を書込むように設定された領域である。なお、この可変領域1262は、上記したようにNANDメモリ12中の固定領域1261を除いた領域であり、管理情報保存領域126中のスナップショット210、ログ220および第2のルートポインタ230が格納される領域のほかに、データ格納領域125も含まれる。つまり、固定領域1261を除いたNANDメモリ12中の物理的な領域を可変領域1262とし、この中で、データ格納領域125と管理情報保存領域126中のスナップショット210、ログ220および第2のルートポインタ230が格納される領域とが機能的に分離されている。
つぎに、ドライブ制御部14の機能について説明する。図11は、ドライブ制御部の機能構成の一例を示すブロック図である。ドライブ制御部14は、DRAM11−NANDメモリ12間のデータ転送やNANDメモリ12に関する各種機能の制御を行うデータ管理部141と、ATAインタフェースから受けた指示に基づいてデータ管理部141と協働してデータ転送処理を行うATAコマンド処理部142と、データ管理部141およびATAコマンド処理部142と協動して各種のセキュリティ情報を管理するセキュリティ管理部143と、電源オン時に、各管理プログラム(ファームウェア)をNANDメモリ12から図示しないメモリ(たとえば、SRAM(Static RAM))にロードするブートローダ144と、ドライブ制御部14内の各コントローラや回路の初期化を行う初期化管理部145と、外部からRS232Cインタフェースを介して供給されたデバッグ用データを処理するデバッグサポート部146と、を備える。
図12は、データ管理部の機能構成の一例を示すブロック図である。データ管理部141は、DRAM11とNANDメモリ12との間でデータ転送を行うデータ転送処理部151と、DRAM11およびNANDメモリ12に記憶されるデータの変更に伴って管理情報の変更や保存を行う管理情報管理部152と、電源オン時などにNANDメモリ12に保存された管理情報に基づいて最新の管理情報を復元する管理情報復元部155と、データや管理情報保存情報を書込むブロックの書換回数をNANDメモリ全体で均等化する書換ブロック均等化処理部156と、をさらに備える。
また、管理情報管理部152は、管理情報書込部153と、管理情報保存部154と、をさらに備える。管理情報書込部153は、データ転送処理部151によるDRAM11またはNANDメモリ12で記憶されるデータの変更処理によって管理情報の更新が必要な場合に、DRAM11に記憶されている管理情報の更新を行う。
管理情報保存部154は、メモリシステム10が所定の条件を満たしたとき、管理情報をスナップショット210として、または管理情報中の更新された分の情報をログ220として、NANDメモリ12の管理情報保存領域126に保存する。また、このスナップショット210またはログ220の保存に伴って第2のルートポインタ230または第2のルートポインタ230と第1のルートポインタ240が書込まれる位置が変更される場合には、この第2のルートポインタ230または第2のルートポインタ230と第1のルートポインタ240に対する更新処理も行う。
管理情報保存部154によるスナップショット210は、NANDメモリ12の管理情報保存領域126中のログ220を記憶するために設けられたログ記憶領域が埋まってしまった(領域がデータで満杯になった)場合など、本メモリシステムの所定の条件に応じて実行される。
また、管理情報保存部154によるログ220の保存は、DRAM11に記憶されている管理情報(不揮発性テーブル)の更新を伴うNANDメモリ12上のデータ更新時(NANDメモリ12へのデータ書込みが必要な場合)に行われる。
管理情報復元部155は、メモリシステム10に電源がオンされると、NANDメモリ12の管理情報保存領域126に保存されている管理情報保存情報に基づいた管理情報の復元処理を行う。具体的には、固定領域1261中の第1のルートポインタ240、可変領域1262中の第2のルートポインタ230、およびログ220へと順にたどっていき、最新のスナップショット210に対するログ220が存在するか否かを判定する。ログ220が存在しない場合には、スナップショット格納用ブロックのスナップショット210を管理情報としてDRAM11に復元する。また、ログ220が存在する場合には、瞬断などの異常終了であった場合であるので、スナップショット格納用ブロックからスナップショット210を取得し、ログ格納用ブロックからログ220を取得して、DRAM11上でスナップショット210にログ220を反映させて管理情報(不揮発性テーブル)の復元を行う。
書換ブロック均等化処理部156は、NANDメモリ12中のデータ格納領域125中のブロックと、管理情報保存領域126中のスナップショット210、ログ220および第2のルートポインタ230が格納されるブロックとを、可変領域1262中の利用可能な他のブロックに書換えた場合に、可変領域1262中の各ブロックの書換可能回数が均等化するように、書換先のブロックを選択し、書換えを行うデータ転送処理部151や管理情報管理部152の管理情報保存部154に指示する。また、新たなブロックにデータやスナップショット210、ログ220および第2のルートポインタ230を書込む際にも、可変領域1262中の各ブロックの書換可能回数が均等化するように、書込先のブロックを選択し、書換えを行うデータ転送処理部151や管理情報管理部152の管理情報保存部154に指示する。この場合、可変領域1262中の利用可能なブロックであれば、そのブロックが過去にデータ格納領域125として使用されていたブロックであるか、管理情報保存領域126中のスナップショット210、ログ220および第2のルートポインタ230が格納されていたブロックであるか、を問わず、書込先のブロックを指定することができる。
ここで、管理情報管理部152によるメモリシステム10の管理情報の保存処理について説明する。図13は、メモリシステムの管理情報の保存処理手順の一例を示すフローチャートである。なお、ここでは、メモリシステム10がホスト装置と接続され、ホスト装置の2次記憶装置として動作しているとともに、ホスト装置(メモリシステム10)が起動状態にあり、また、この起動状態の前のメモリシステム10の停止前にスナップショット210が保存されているものとする。
まず、ホスト装置(メモリシステム10)の前回終了時に保存されたスナップショット210を基に、ホスト装置(メモリシステム10)が起動された状態にある(ステップS11)。ついで、管理情報管理部152は、上記所定のスナップショットの保存条件を満たすか否かを判定する(ステップS12)。スナップショット保存条件を満たさない場合(ステップS12でNoの場合)には、管理情報の更新を伴う指示(上記ログの保存条件を満たす指示)を受けたか否かを判定する(ステップS13)。管理情報の更新を伴う指示を受けなかった場合(ステップS13でNoの場合)には、ステップS12へと戻る。
また、管理情報の更新を伴う指示(NANDメモリ12へのデータ書込み指示)を受けた場合(ステップS13でYesの場合)には、その指示を実行することによって管理情報がどのように更新されるか更新計画を決定し(ステップS14)、その更新計画をNANDメモリ12の管理情報保存領域126のログ格納用ブロックにログ220として保存する(ステップS15)。この更新計画(ログ)は、ログ格納用ブロックにログ220が格納されていない場合には、現時点の不揮発性テーブルとスナップショット格納用ブロックに保存されているスナップショット210との間の差分情報であり、ログ格納用ブロックにログ220(以下、過去ログという)が既に格納されている場合には、現時点の不揮発性テーブルと、スナップショット210と過去ログとを合わせたものとの間の差分情報である。なお、このログ220は、たとえば、ログ220(更新計画)をDRAM11上に記録した後、NANDメモリ12の管理情報保存領域126に保存される。
ついで、論理NAND管理層は、ステップS13で受けた指示を実行する(ステップS16)。このような指示として、たとえばユーザデータのNANDメモリ12のデータ保存領域の所定のブロックへの書込処理が挙げられる。その後、再びステップS12へと戻る。
また、ステップS12でスナップショット保存条件を満たす場合(ステップS12でYesの場合)には、DRAM11の一時記憶領域111内の少なくとも不揮発性テーブルを含む管理情報をスナップショット210としてNANDメモリ12の管理情報保存領域126に保存する(ステップS17)。そして、メモリシステム10の終了指示があるか否かを判定し(ステップS18)、終了指示がない場合(ステップS18でNoの場合)には再びステップS12へと戻り、終了指示がある場合(ステップS18でYesの場合)には、そのまま処理が終了する。
つぎに、管理情報復元部155によるメモリシステム10の管理情報の復元処理について説明する。図14は、メモリシステムの管理情報の復元処理手順の一例を示すフローチャートである。なお、ここでも、メモリシステム10がホスト装置と接続され、ホスト装置の2次記憶装置として動作しているものとする。
まず、ホスト装置の電源がオンされ、メモリシステム10に対して起動指示が出されると(ステップS31)、管理情報復元部155は、NANDメモリ12の管理情報保存領域126中の最新の第1のルートポインタを読込み、第2のルートポインタ格納ブロックの位置を取得する(ステップS32)。ついで、スナップショット210とログ220が格納されているそれぞれのブロックのアドレスを取得し(ステップS33)、ステップS33で取得したNANDメモリ12中のアドレスからスナップショット210を読込み、DRAM11の一時記憶領域111に復元する(ステップ34)。
その後、管理情報復元部155は、NANDメモリ12中のログ220を参照して、瞬断が発生したか否かを判定する(ステップS35)。瞬断が発生していない場合(ステップS35でNoの場合)には、ステップS34でDRAM11の一時記憶領域111に復元したスナップショット210から管理情報を復元し(ステップS36)、復元処理が終了する。
一方、瞬断が発生した場合(ステップS35でYesの場合)には、ステップS33で取得したNANDメモリ12中のアドレスからログ220を取得してDRAM11の作業領域112に展開する(ステップS37)。そして、ステップS34でDRAM11の一時記憶領域111に復元したスナップショット210に対して、古いものから順にログ220を反映させて管理情報(不揮発性テーブル)を復元し(ステップS38)、管理情報の復元処理が終了する。
以上のように、本第1の実施の形態によれば、メモリシステム10の最新の管理情報であるスナップショット210とログ220の格納位置を示すポインタとして、スナップショット210とログ220の格納位置を示す第2のルートポインタ230を可変領域1262に設け、第2のルートポインタ230の格納位置を示す第1のルートポインタ240を固定領域1261に設けるように構成した。その結果、第1のルートポインタ240は、第2のルートポインタ格納用ブロックがすべて満たされるまで更新する必要がなく、第2のルートポインタ230の更新頻度に比べて著しく少なくすることができる。たとえば、第2のルートポインタ230を設けずに、第1のルートポインタ240をスナップショット210とログ220の格納位置を示すようにした場合には、スナップショット210が更新されるたびに第1のルートポインタ240が更新され、第1のルートポインタ格納用ブロックの消去回数が増えてしまう。これに対して、第2のルートポインタ230を設けることによって、スナップショット210が更新回数を、第2のルートポインタ230のページ数で割った数に抑えることができ、第1のルートポインタ格納用ブロックの消去回数を著しく減少させることができる。その結果、固定領域1261を構成するメモリセルトランジスタの寿命を延ばすことができるという効果を有する。また、第1のルートポインタ240の格納されている第1のルートポインタ格納用ブロックの書換回数を抑えることができるので、保存されているデータである第1のルートポインタ240の信頼性を高めることができるという効果も有する。
(第2の実施の形態)
第1の実施の形態において、第2のルートポインタおよび第1のルートポインタを多重化して保存することができる。
図15は、第1のルートポインタの多重化の一例を示す図である。ここでは、NANDメモリの管理情報保存領域の固定領域1261中の3つの異なるブロックに第1のルートポインタ240A〜240Cを保存している。この場合、第1のルートポインタの更新があった場合には、240A→240B→240Cの順にそれぞれのブロックへの書込みが行われる。また、第1のルートポインタ格納用ブロックが満杯になった場合には、このブロックを消去して新たな第2のルートポインタ格納用ブロックの位置を示す第1のルートポインタ240を、消去したブロックに書込む処理を行う。この場合にも、1つのブロックずつ順に消去と書込み処理を行う。このブロックの消去と書込み処理が行われる際に、第1のルートポインタ240A〜240Cを三重化することによって、第1のルートポインタ240が1つのブロックにしか格納されていない状態を短くすることができる。なお、ここでは、三重化する場合を示したが、二重化してもよいし、四重化以上の多重化を行ってもよい。四重化以上にすることで、第1のルートポインタ240を確実に二重化することができる。
図16は、第2のルートポインタの多重化の一例を示す図である。この図16では、NANDメモリ12の管理情報保存領域126の可変領域1262中の2つの異なるブロックに第2のルートポインタ230A,230Bを保存している。
ここで、たとえば、これら2つの第2のルートポインタ230A,230Bを保存するブロックには、同じページ位置に同じ情報を保存するものとする。また、保存するタイミングとして、第2のルートポインタ230Aはスナップショットを保存する直前に保存し、第2のルートポインタ230Bはスナップショットの保存を終了した後に保存するものとする。このような保存規則を定めることによって、第2のルートポインタ230A、230Bが保存されるページ数が異なる場合には、瞬断が発生したものと判定することができ、瞬断時の起動処理をNANDメモリ12内のログ220を確認することなく行うことができる。なお、ここでは、二重化する場合を示したが、三重化以上の多重化を行ってもよい。
また、第2のルートポインタ230を多重化する場合には、第1のルートポインタ240には、多重化したそれぞれの第2のルートポインタ230が格納されるブロックの位置を示す情報が格納される。
この第2の実施の形態によれば、第1のルートポインタ240および第2のルートポインタを多重化することによって、それぞれの情報が消失してしまうことを防ぐことができるという効果を有する。
なお、上述した説明では、電荷蓄積層は浮遊ゲート型に限らず、MONOS(Metal-Oxide-Nitride-Oxide-Semiconductor)構造のようなシリコン窒化膜を用いた電荷トラップ型やその他の方式であってもよい。
本発明の第1の実施の形態にかかるメモリシステムの構成の一例を示すブロック図である。 NANDメモリに含まれる1個のブロックの構成の一例を示す回路図である。 DRAMとNANDメモリの機能構成を模式的に示す図である。 メモリシステムで記憶されるデータを管理する層構造の一例を示す図である。 キャッシュ管理情報テーブルの一例を示す図である。 論理NAND管理情報テーブルの一例を示す図である。 NAND内論物変換情報テーブルの一例を示す図である。 管理情報保存領域に記憶される管理情報保存情報の内容の一例を模式的に示す図である。 ログの一例を示す図である。 第2のルートポインタの一例を示す図である。 ドライブ制御部の機能構成の一例を示すブロック図である。 データ管理部の機能構成の一例を示すブロック図である。 メモリシステムの管理情報の保存処理手順の一例を示すフローチャートである。 メモリシステムの管理情報の復元処理手順の一例を示すフローチャートである。 第1のルートポインタの多重化の一例を示す図である。 第2のルートポインタの多重化の一例を示す図である。
符号の説明
10…メモリシステム、11…DRAM、12…NANDメモリ、13…電源回路、14…ドライブ制御部、15…バス、31…DRAM管理層、32…論理NAND管理層、33…物理NAND管理層、41…キャッシュ管理情報、42…管理情報、42b…論理ブロック管理情報、42a…論理ページ管理情報、43…NAND内論物変換情報、111…一時記憶領域、112…作業領域、125…データ格納領域、126…管理情報保存領域、141…データ管理部、151…データ転送処理部、152…管理情報管理部、153…管理情報書込部、154…管理情報保存部、155…管理情報復元部、156…書換ブロック均等化処理部、210…スナップショット、220…ログ、230,230A,230B…第2のルートポインタ、240,240A〜240C…第1のルートポインタ、1261…固定領域、1262…可変領域。

Claims (3)

  1. 揮発性の第1の記憶部と、
    不揮発性の第2の記憶部と、
    前記第1の記憶部を介してホスト装置と前記第2の記憶部との間のデータ転送を行うとともに、起動時に前記第2の記憶部に記憶された前記データの格納位置を含む管理情報を前記第1の記憶部に取込み、該取り込んだ管理情報を更新しながら管理情報に基づいて前記第1および第2の記憶部でのデータ管理を行うコントローラと、
    を備え、
    前記第2の記憶部は、前記第1の記憶部に取り込まれた最新の状態の管理情報、および該最新の状態の管理情報の保存位置を示す保存位置情報を含む管理情報保存情報を保存する管理情報保存領域を有し、
    前記保存位置情報は、当該メモリシステムの起動時に前記コントローラによって読み込まれ、前記管理情報保存領域内の前記最新の状態の管理情報の格納位置を示す第2のポインタと、この第2のポインタの格納位置を示す第1のポインタとを含み、前記第1のポインタは前記第2の記憶部中の固定領域に格納され、前記第2のポインタは前記第2の記憶部中の前記固定領域を除いた領域に格納されることを特徴とするメモリシステム。
  2. 前記最新の状態の管理情報は、所定の条件が成立したときに前記第1の記憶部の前記管理情報を保存したスナップショットと、前記管理情報に変更が生じた場合の変更前後での前記管理情報の差分情報であるログとを含むことを特徴とする請求項1に記載のメモリシステム。
  3. 前記第1または第2のポインタは、多重化されて保存されることを特徴とする請求項1または2に記載のメモリシステム。
JP2008051378A 2008-02-29 2008-02-29 メモリシステム Abandoned JP2009211202A (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2008051378A JP2009211202A (ja) 2008-02-29 2008-02-29 メモリシステム
US12/529,227 US8438343B2 (en) 2008-02-29 2009-02-10 Memory system with fixed and variable pointers
KR1020097017866A KR101103110B1 (ko) 2008-02-29 2009-02-10 메모리 시스템
EP20100197364 EP2309392A1 (en) 2008-02-29 2009-02-10 Memory system
PCT/JP2009/052590 WO2009107506A1 (en) 2008-02-29 2009-02-10 Memory system
CN200980000132A CN101681313A (zh) 2008-02-29 2009-02-10 存储器系统
EP20090709441 EP2111583A4 (en) 2008-02-29 2009-02-10 MEMORY SYSTEM
TW98105523A TWI418983B (zh) 2008-02-29 2009-02-20 記憶體系統及控制記憶體系統之方法
US13/855,394 US8738867B2 (en) 2008-02-29 2013-04-02 Memory system
US14/226,510 US9043564B2 (en) 2008-02-29 2014-03-26 Memory system with fixed and variable pointers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051378A JP2009211202A (ja) 2008-02-29 2008-02-29 メモリシステム

Publications (1)

Publication Number Publication Date
JP2009211202A true JP2009211202A (ja) 2009-09-17

Family

ID=41115628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051378A Abandoned JP2009211202A (ja) 2008-02-29 2008-02-29 メモリシステム

Country Status (1)

Country Link
JP (1) JP2009211202A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527733B2 (en) 2010-12-15 2013-09-03 Kabushiki Kaisha Toshiba Memory system
JP2016105320A (ja) * 2010-09-28 2016-06-09 ピュア・ストレージ・インコーポレイテッド Ssd環境のための適応的raid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285600A (ja) * 2005-03-31 2006-10-19 Tokyo Electron Device Ltd 記憶装置、メモリ管理装置、メモリ管理方法及びプログラム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285600A (ja) * 2005-03-31 2006-10-19 Tokyo Electron Device Ltd 記憶装置、メモリ管理装置、メモリ管理方法及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105320A (ja) * 2010-09-28 2016-06-09 ピュア・ストレージ・インコーポレイテッド Ssd環境のための適応的raid
US8527733B2 (en) 2010-12-15 2013-09-03 Kabushiki Kaisha Toshiba Memory system

Similar Documents

Publication Publication Date Title
US11573712B2 (en) Memory system storing management information and method of controlling same
KR101103110B1 (ko) 메모리 시스템
US8285954B2 (en) Memory system managing a plurality of logs
JP4675984B2 (ja) メモリシステム
JP2009205555A (ja) メモリシステム
KR101102155B1 (ko) 메모리 시스템
JP2010152514A (ja) メモリシステム
JP2009211202A (ja) メモリシステム
JP4551938B2 (ja) メモリシステム
JP4558052B2 (ja) メモリシステム
JP2009211196A (ja) メモリシステム
JP4551939B2 (ja) メモリシステム
JP2009211188A (ja) メモリシステム
JP2009211213A (ja) メモリシステム
JP2009211218A (ja) メモリシステムおよび瞬断判定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20120607