JP2009210240A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2009210240A
JP2009210240A JP2008056685A JP2008056685A JP2009210240A JP 2009210240 A JP2009210240 A JP 2009210240A JP 2008056685 A JP2008056685 A JP 2008056685A JP 2008056685 A JP2008056685 A JP 2008056685A JP 2009210240 A JP2009210240 A JP 2009210240A
Authority
JP
Japan
Prior art keywords
temperature
cooling air
evaporator
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008056685A
Other languages
Japanese (ja)
Inventor
Kenji Izumi
憲司 泉
Tatsuaki Onishi
辰明 大西
Takaaki Kashiwagi
崇暁 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Spindle Manufacturing Co Ltd
Original Assignee
Nihon Spindle Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Spindle Manufacturing Co Ltd filed Critical Nihon Spindle Manufacturing Co Ltd
Priority to JP2008056685A priority Critical patent/JP2009210240A/en
Publication of JP2009210240A publication Critical patent/JP2009210240A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner smoothly changing the cooling capacity of an evaporator. <P>SOLUTION: The air conditioner is equipped with: a bypass passage 9 bypassing the evaporator 6 and circulating a coolant; an auxiliary evaporator 10 evaporating a condensed coolant in the coolant after passing through the bypass passage 9 and expanded by an expansion valve 5; and a flow control means 11 controlling a flow rate of the coolant to the evaporator 6 and a flow rate of the coolant to the auxiliary evaporator 10. In a control means 8, operation control of a compressor 2 and operation control of the flow control means 11 are carried out to bring the temperature of cooling air near a set cooling air temperature. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、直膨式の冷凍サイクルを利用した空調装置に関する。   The present invention relates to an air conditioner using a direct expansion refrigeration cycle.

直膨式の冷凍サイクルを利用した空調装置として、蒸発した冷媒を圧縮する圧縮機と、圧縮機にて圧縮された冷媒を凝縮させる凝縮器と、凝縮器にて凝縮された後の冷媒を膨張させる膨張弁と、膨張弁にて膨張された後の冷媒中の凝縮冷媒を蒸発させると共に、吸込空気と凝縮冷媒との熱交換により吸込空気を冷却する蒸発器と、蒸発器において冷却された冷却空気を加熱する加熱手段と、運転を制御する制御手段とを備えたものがある(例えば、特許文献1を参照)。   As an air conditioner using a direct expansion refrigeration cycle, a compressor that compresses the evaporated refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and the refrigerant that has been condensed by the condenser are expanded. An expansion valve that evaporates condensed refrigerant in the refrigerant that has been expanded by the expansion valve, and cools the intake air by heat exchange between the intake air and the condensed refrigerant, and cooling that is cooled in the evaporator Some have heating means for heating air and control means for controlling operation (see, for example, Patent Document 1).

特許文献1に記載の空調装置では、制御手段は、蒸発器において冷却されて排出される冷却空気の温度と、加熱手段において加熱されて排出される吹出空気の温度との両方を制御する。具体的には、制御手段は、冷却空気の制御目標温度(設定冷却空気温度)を、吹出空気の制御目標温度(設定吹出空気温度)よりも僅かに低く設定することで、加熱手段(例えば、電気ヒータ)での温度制御の精度を高めながら消費電力を抑えるようにしている。具体的には、特許文献1に記載の空調装置では、圧縮機の回転速度を制御して蒸発器への冷媒の流量が調節することで蒸発器の冷却能力を調節している。   In the air conditioner described in Patent Document 1, the control unit controls both the temperature of the cooling air cooled and discharged by the evaporator and the temperature of the blown air heated and discharged by the heating unit. Specifically, the control means sets the control target temperature of the cooling air (set cooling air temperature) slightly lower than the control target temperature of the blown air (set blown air temperature), so that the heating means (for example, The power consumption is suppressed while increasing the accuracy of temperature control in the electric heater. Specifically, in the air conditioner described in Patent Document 1, the cooling capacity of the evaporator is adjusted by adjusting the flow rate of the refrigerant to the evaporator by controlling the rotational speed of the compressor.

また、吸込空気の温度に応じて圧縮機の運転と停止とを切り換えることで、蒸発器の冷却能力を調節している空調装置もある(例えば、特許文献2を参照)。   There is also an air conditioner that adjusts the cooling capacity of the evaporator by switching between operation and stop of the compressor according to the temperature of the intake air (see, for example, Patent Document 2).

特開2004−353916号公報JP 2004-353916 A 特開2002−366233号公報JP 2002-366233 A

特許文献1に記載の空調装置では、圧縮機の回転速度を低下させることで蒸発器の冷却能力を低下させ、冷却空気の温度を上昇傾向にさせることができる。しかし、吸込空気の温度が低いと、蒸発器の冷却能力を低下させるべく圧縮機の回転速度を下限まで下げたとしても、冷却空気の温度を設定冷却空気温度まで上昇させることができない可能性もある。
また、特許文献2に記載の空調装置では、圧縮機の運転を停止させることで蒸発器の冷却能力を低下させ、冷却空気の温度を上昇傾向にさせることができる。しかし、冷却空気の温度を制御するために、圧縮機の発停を繰り返さねばならないという問題がある。
In the air conditioner described in Patent Document 1, it is possible to reduce the cooling capacity of the evaporator by lowering the rotational speed of the compressor, and to increase the temperature of the cooling air. However, if the temperature of the intake air is low, there is a possibility that the temperature of the cooling air cannot be raised to the set cooling air temperature even if the rotation speed of the compressor is lowered to the lower limit in order to reduce the cooling capacity of the evaporator. is there.
Moreover, in the air conditioner described in Patent Document 2, the cooling capacity of the evaporator can be reduced by stopping the operation of the compressor, and the temperature of the cooling air can be increased. However, in order to control the temperature of the cooling air, there is a problem that the start and stop of the compressor must be repeated.

また、特許文献1と特許文献2との組み合わせに基づく空調装置を想定することもでき、その場合、圧縮機の回転速度を低下させることで蒸発器の冷却能力を低下させ、圧縮機の回転速度が下限になると、圧縮機を停止させるような構成になると考えられる。この場合、圧縮機の回転速度を調節することで蒸発器の冷却能力を変化させることができ、加えて、圧縮機の回転速度を下限にしても蒸発器の冷却能力が過剰である場合には圧縮機を停止することで更に蒸発器の冷却能力を低下させることができる。   Moreover, the air-conditioning apparatus based on the combination of patent document 1 and patent document 2 can also be assumed, In that case, the cooling capability of an evaporator is reduced by reducing the rotational speed of a compressor, and the rotational speed of a compressor is reduced. When the value reaches the lower limit, it is considered that the compressor is stopped. In this case, the cooling capacity of the evaporator can be changed by adjusting the rotational speed of the compressor. In addition, if the cooling capacity of the evaporator is excessive even if the rotational speed of the compressor is the lower limit, The cooling capacity of the evaporator can be further reduced by stopping the compressor.

図5は、特許文献1と特許文献2との組み合わせに基づく空調装置を運転させた場合の吹出空気(冷却空気を加熱手段で加熱した後の空気)の温度の時間的変化を示すグラフである。この場合、吹出空気の制御目標温度(設定吹出空気温度)は23℃に設定されているので、ヒータなどを用いて構成される加熱手段は、冷却空気を加熱して吹出空気の温度が23℃になるように制御される。図5から明らかであるように、吹出空気の温度は圧縮機の運転を開始(オン)及び停止(オフ)すると、急激な変化を示す。これは、圧縮機の運転の開始及び停止に伴って、蒸発器の冷却能力が急激に変化するからである。
以上のように、従来の空調装置は、圧縮機の回転速度を下限まで低下させた後は蒸発器の冷却能力をスムーズに低下することができない。
FIG. 5 is a graph showing temporal changes in the temperature of the blown air (air after the cooling air is heated by the heating means) when the air conditioner based on the combination of Patent Document 1 and Patent Document 2 is operated. . In this case, since the control target temperature of the blown air (set blown air temperature) is set to 23 ° C., the heating means configured using a heater or the like heats the cooling air and the temperature of the blown air becomes 23 ° C. It is controlled to become. As is clear from FIG. 5, the temperature of the blown air changes rapidly when the operation of the compressor is started (on) and stopped (off). This is because the cooling capacity of the evaporator changes rapidly with the start and stop of the operation of the compressor.
As described above, the conventional air conditioner cannot smoothly reduce the cooling capacity of the evaporator after reducing the rotational speed of the compressor to the lower limit.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、蒸発器の冷却能力をスムーズに変化させることのできる空調装置を提供する点にある。   This invention is made | formed in view of said subject, The objective is to provide the air conditioner which can change the cooling capacity of an evaporator smoothly.

上記目的を達成するための本発明に係る空調装置の特徴構成は、冷媒が循環する循環経路と、蒸発した冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器にて凝縮された後の冷媒を膨張させる膨張弁と、前記膨張弁にて膨張された後の冷媒中の凝縮冷媒を蒸発させると共に、吸込空気と前記凝縮冷媒との熱交換により前記吸込空気を冷却する蒸発器と、前記蒸発器において冷却された冷却空気を加熱する加熱手段と、運転を制御する制御手段とを備え、前記制御手段は、前記加熱手段から吹き出される吹出空気温度が設定吹出空気温度となるように前記加熱手段の作動を制御する空調装置であって、前記蒸発器をバイパスして冷媒を循環させるバイパス路と、前記バイパス路を流通する、前記膨張弁にて膨張された後の冷媒中の凝縮冷媒を蒸発させる補助蒸発器と、前記蒸発器への冷媒の流量と前記補助蒸発器への冷媒の流量とを調節可能な流量調節手段とを備え、前記制御手段は、前記圧縮機の作動制御と前記流量調節手段の作動制御とを実施して、前記冷却空気の温度を設定冷却空気温度に近付けるように制御するように構成されている点にある。   The characteristic configuration of the air conditioner according to the present invention for achieving the above object includes a circulation path through which the refrigerant circulates, a compressor that compresses the evaporated refrigerant, and a condenser that condenses the refrigerant compressed by the compressor. And an expansion valve that expands the refrigerant that has been condensed by the condenser, evaporates the condensed refrigerant in the refrigerant that has been expanded by the expansion valve, and heat exchange between the intake air and the condensed refrigerant An evaporator for cooling the suction air, heating means for heating the cooling air cooled in the evaporator, and control means for controlling operation, wherein the control means is a blowout blown from the heating means An air conditioner for controlling the operation of the heating means so that the air temperature becomes a set blown air temperature, wherein the expansion valve bypasses the evaporator and circulates the refrigerant, and the expansion valve flows through the bypass path. An auxiliary evaporator that evaporates the condensed refrigerant in the expanded refrigerant, and a flow rate adjusting means capable of adjusting a flow rate of the refrigerant to the evaporator and a flow rate of the refrigerant to the auxiliary evaporator, The control means is configured to perform operation control of the compressor and operation control of the flow rate adjusting means to control the temperature of the cooling air so as to approach the set cooling air temperature.

上記特徴構成によれば、圧縮機の運転を調節して冷却空気の温度を制御することが可能であり、且つ、蒸発器への冷媒流量を調節することで冷却空気の温度を制御することが可能である。つまり、圧縮機の出力を下限まで小さくして蒸発器の冷却能力を低下させた後であっても、流量調節手段を用いて蒸発器への冷媒流量を減少させることで蒸発器の冷却能力を更に低下させることが可能となる。よって、圧縮機の作動制御と流量調節手段の作動制御とを併用することで、蒸発器の冷却能力をスムーズに変化させることのできる空調装置を提供できる。   According to the above characteristic configuration, the temperature of the cooling air can be controlled by adjusting the operation of the compressor, and the temperature of the cooling air can be controlled by adjusting the flow rate of the refrigerant to the evaporator. Is possible. That is, even after the compressor output is reduced to the lower limit and the cooling capacity of the evaporator is reduced, the cooling capacity of the evaporator is reduced by reducing the refrigerant flow rate to the evaporator using the flow rate adjusting means. Further reduction is possible. Therefore, the air conditioner which can change the cooling capacity of an evaporator smoothly can be provided by using together the operation control of a compressor, and the operation control of a flow volume adjustment means.

本発明に係る空調装置の別の特徴構成は、前記制御手段は、前記冷却空気の温度が前記設定冷却空気温度よりも低い下限冷却空気温度以上であるとき、運転中の前記圧縮機の回転速度を調節することで前記冷却空気の温度を制御し、前記冷却空気の温度が前記下限冷却空気温度よりも低いとき、前記蒸発器への冷媒の流量を調節することで前記冷却空気の温度を制御するように構成されている点にある。   Another characteristic configuration of the air conditioner according to the present invention is that, when the temperature of the cooling air is equal to or higher than a lower limit cooling air temperature lower than the set cooling air temperature, the rotation speed of the compressor during operation is controlled. The temperature of the cooling air is controlled by adjusting the temperature of the cooling air, and when the temperature of the cooling air is lower than the lower limit cooling air temperature, the temperature of the cooling air is controlled by adjusting the flow rate of the refrigerant to the evaporator. The point is that it is configured to do.

上記特徴構成によれば、制御手段は、冷却空気の温度が下限冷却空気温度以上であるときには、圧縮機の作動制御によって蒸発器の冷却能力をスムーズに変更させ、冷却空気の温度が下限冷却空気温度よりも低いときには、蒸発器への冷媒流量を調節することで蒸発器の冷却能力をスムーズに変更させる。つまり、冷却空気の温度が下限冷却空気温度よりも低い場合において、圧縮機の回転速度が下限値になるなどして、圧縮機の作動制御によって蒸発器の冷却能力をスムーズに変更させることができない状況でも、蒸発器への冷媒流量を調節することで蒸発器の冷却能力をスムーズに変更させることができる。   According to the above characteristic configuration, when the temperature of the cooling air is equal to or higher than the lower limit cooling air temperature, the control means smoothly changes the cooling capacity of the evaporator by controlling the operation of the compressor, and the temperature of the cooling air is lower than the lower limit cooling air temperature. When the temperature is lower than the temperature, the cooling capacity of the evaporator is smoothly changed by adjusting the refrigerant flow rate to the evaporator. That is, when the temperature of the cooling air is lower than the lower limit cooling air temperature, the cooling speed of the evaporator cannot be changed smoothly by controlling the operation of the compressor, for example, because the rotational speed of the compressor becomes the lower limit value. Even in the situation, the cooling capacity of the evaporator can be changed smoothly by adjusting the refrigerant flow rate to the evaporator.

本発明に係る空調装置の別の特徴構成は、前記制御手段は、前記蒸発器への冷媒の流量を最小にしても前記冷却空気の温度が前記下限冷却空気温度よりも低いとき前記圧縮機の運転を停止し、及び、前記圧縮機の運転を停止した後で前記冷却空気の温度が前記下限冷却空気温度以上になると、前記蒸発器への冷媒の流量を最小にした状態で前記圧縮機の運転を開始するように構成されている点にある。   Another characteristic configuration of the air conditioner according to the present invention is that, even if the flow rate of the refrigerant to the evaporator is minimized, the control means is configured such that the temperature of the cooling air is lower than the lower limit cooling air temperature. When the temperature of the cooling air becomes equal to or higher than the lower limit cooling air temperature after the operation is stopped and the operation of the compressor is stopped, the flow rate of the refrigerant to the evaporator is minimized. It is the point comprised so that a driving | operation may be started.

上記特徴構成によれば、蒸発器への冷媒流量を最小にした状態(即ち、圧縮機の出力を調節して冷却能力を調節しているときよりも蒸発器の冷却能力を小さくした状態)で圧縮機の運転が停止されるので、圧縮機の運転停止に伴って蒸発器の冷却能力が急激に低下しなくなる。また、蒸発器への冷媒流量を最小にした状態で圧縮機の運転が再開されるので、圧縮機の運転再開に伴って蒸発器の冷却能力が急激に増大しなくなる。   According to the above characteristic configuration, the refrigerant flow rate to the evaporator is minimized (that is, the cooling capacity of the evaporator is smaller than when the cooling capacity is adjusted by adjusting the output of the compressor). Since the operation of the compressor is stopped, the cooling capacity of the evaporator does not rapidly decrease with the stop of the operation of the compressor. Further, since the operation of the compressor is resumed with the refrigerant flow rate to the evaporator being minimized, the cooling capacity of the evaporator does not increase abruptly as the operation of the compressor is resumed.

本発明に係る空調装置の別の特徴構成は、前記制御手段は、前記冷却空気の温度が前記設定冷却空気温度よりも低い下限冷却空気温度以上であるとき、前記圧縮機を運転した状態で、前記蒸発器への冷媒の流量を調節することで前記冷却空気の温度を制御し、前記蒸発器への冷媒の流量を最小にしても前記冷却空気の温度が前記下限冷却空気温度よりも低いとき、前記圧縮機の運転を停止し、及び、前記圧縮機の運転を停止した後で前記冷却空気の温度が前記下限冷却空気温度以上になると、前記蒸発器への冷媒の流量を最小にした状態で前記圧縮機の運転を開始するように構成されている点にある。   Another characteristic configuration of the air conditioner according to the present invention is that, when the temperature of the cooling air is equal to or higher than a lower limit cooling air temperature lower than the set cooling air temperature, the control unit operates the compressor. The temperature of the cooling air is controlled by adjusting the flow rate of the refrigerant to the evaporator, and the temperature of the cooling air is lower than the lower limit cooling air temperature even if the flow rate of the refrigerant to the evaporator is minimized. The operation of the compressor is stopped, and when the temperature of the cooling air is equal to or higher than the lower limit cooling air temperature after the operation of the compressor is stopped, the refrigerant flow rate to the evaporator is minimized. The compressor is configured to start operation of the compressor.

上記特徴構成によれば、制御手段は、冷却空気の温度が下限冷却空気温度以上であるときには、蒸発器への冷媒流量を調節することで蒸発器の冷却能力をスムーズに変更させて冷却空気の温度を設定冷却空気温度に近づけることができる。
また、蒸発器への冷媒流量を最小にした状態(即ち、圧縮機の出力を調節して冷却能力を調節しているときよりも蒸発器の冷却能力を小さくした状態)で圧縮機の運転が停止されるので、圧縮機の運転停止に伴って蒸発器の冷却能力が急激に低下しなくなる。また、蒸発器への冷媒流量を最小にした状態で圧縮機の運転が再開されるので、圧縮機の運転再開に伴って蒸発器の冷却能力が急激に増大しなくなる。
According to the above characteristic configuration, when the temperature of the cooling air is equal to or higher than the lower limit cooling air temperature, the control means smoothly changes the cooling capacity of the evaporator by adjusting the flow rate of the refrigerant to the evaporator, thereby controlling the cooling air. The temperature can be brought close to the set cooling air temperature.
In addition, the compressor can be operated in a state where the refrigerant flow rate to the evaporator is minimized (that is, when the cooling capacity of the evaporator is smaller than when the cooling capacity is adjusted by adjusting the output of the compressor). Since the operation is stopped, the cooling capacity of the evaporator does not rapidly decrease as the compressor is stopped. Further, since the operation of the compressor is resumed with the refrigerant flow rate to the evaporator being minimized, the cooling capacity of the evaporator does not increase abruptly as the operation of the compressor is resumed.

<第1実施形態>
以下に第1実施形態の空調装置の構成について説明する。
図1は、空調装置の構成を示す図である。図示するように、空調装置は、冷媒が循環する循環経路1を備える。空調装置は、循環経路1の途中において、蒸発した冷媒を圧縮する圧縮機2及び当該圧縮機2を駆動する電動機3と、圧縮機2にて圧縮された冷媒を凝縮させる凝縮器4と、凝縮器4にて凝縮された後の冷媒を膨張させる膨張弁5と、膨張弁5にて膨張された後の冷媒中の凝縮冷媒を蒸発させると共に、吸込空気と凝縮冷媒との熱交換により吸込空気を冷却する蒸発器6と、蒸発器6において冷却された冷却空気を加熱する電気式のヒータ7(加熱手段の一例)と、運転を制御する制御手段8とを備える。また、吸込空気を吸い込んで、蒸発器6及びヒータ7を経由した後で空調装置から排出するための空気の流れを作り出すファン13を設けてある。凝縮器4にはファン12を用いて外気が導入されている。
<First Embodiment>
The structure of the air conditioner of 1st Embodiment is demonstrated below.
FIG. 1 is a diagram illustrating a configuration of an air conditioner. As shown in the figure, the air conditioner includes a circulation path 1 through which the refrigerant circulates. In the middle of the circulation path 1, the air conditioner includes a compressor 2 that compresses the evaporated refrigerant, an electric motor 3 that drives the compressor 2, a condenser 4 that condenses the refrigerant compressed by the compressor 2, The expansion valve 5 that expands the refrigerant that has been condensed in the vessel 4, the condensed refrigerant in the refrigerant that has been expanded by the expansion valve 5 is evaporated, and the intake air is exchanged by heat exchange between the intake air and the condensed refrigerant , An electric heater 7 for heating the cooling air cooled in the evaporator 6 (an example of a heating means), and a control means 8 for controlling the operation. In addition, a fan 13 is provided that sucks in the intake air and creates a flow of air to be discharged from the air conditioner after passing through the evaporator 6 and the heater 7. Outside air is introduced into the condenser 4 using a fan 12.

制御手段8は、蒸発器6において冷却されて排出される冷却空気の温度と、ヒータ7において加熱されて排出される吹出空気の温度との両方を制御する。具体的には、制御手段8は、冷却空気の制御目標温度(以下、「設定冷却空気温度」と記載する)を、吹出空気の制御目標温度(以下、「設定吹出空気温度」と記載する)よりも僅かに低く設定する。そして、制御手段8は、ヒータ7を用いて冷却空気を加熱して、吹出空気の温度が設定吹出空気温度と同じになるようにする。このように、設定冷却空気温度を設定吹出空気温度よりも僅かに低く設定することで、ヒータ7での加熱要求量を僅かにして温度制御の精度を高めながら消費電力を抑えるようにしている。制御手段8は、冷却空気の温度を制御するために、蒸発器6の冷却能力、即ち、蒸発器6を流通する冷媒量を調節する。つまり、制御手段8は、冷却空気の温度を上昇させるためには圧縮機2の回転速度を低下させて蒸発器6を流通する冷媒量を減少させ、冷却空気の温度を低下させるためには圧縮機2の回転速度を上昇させて蒸発器6を流通する冷媒量を増加させる。また、制御手段8は、吹出空気の温度を制御するためには電気式のヒータ7への通電量を調節する。本実施形態では、制御手段8は、温度センサ14を用いて検出された冷却空気の温度と、温度センサ15を用いて検出された吹出空気の温度を入手できるように構成されている。   The control means 8 controls both the temperature of the cooling air that is cooled and discharged by the evaporator 6 and the temperature of the blown air that is heated and discharged by the heater 7. Specifically, the control means 8 sets the control target temperature of the cooling air (hereinafter referred to as “set cooling air temperature”) to the control target temperature of the blown air (hereinafter referred to as “set blown air temperature”). Set slightly lower than. Then, the control means 8 heats the cooling air using the heater 7 so that the temperature of the blown air becomes the same as the set blown air temperature. In this way, by setting the set cooling air temperature slightly lower than the set blown air temperature, the amount of heating required by the heater 7 is reduced to reduce the power consumption while improving the accuracy of temperature control. The control means 8 adjusts the cooling capacity of the evaporator 6, that is, the amount of refrigerant flowing through the evaporator 6 in order to control the temperature of the cooling air. In other words, the control means 8 decreases the rotational speed of the compressor 2 to increase the temperature of the cooling air to decrease the amount of refrigerant flowing through the evaporator 6, and compresses it to decrease the temperature of the cooling air. The rotational speed of the machine 2 is increased to increase the amount of refrigerant flowing through the evaporator 6. Moreover, the control means 8 adjusts the energization amount to the electric heater 7 in order to control the temperature of the blown air. In the present embodiment, the control means 8 is configured to obtain the temperature of the cooling air detected using the temperature sensor 14 and the temperature of the blown air detected using the temperature sensor 15.

よって、制御手段8は、蒸発器6によって冷却された冷却空気の温度が設定冷却空気温度であれば又は設定冷却空気温度を含む温度範囲内にあれば、ヒータ7の通電量を調節することで、吹出空気の温度を設定吹出空気の温度へと調節できる。尚、この温度範囲は、設定冷却空気温度よりも低温側に設定される範囲である。冷却空気の温度は、蒸発器6の冷却能力(圧縮機の運転状態)を調節することで制御される。しかし、冷却空気の温度が上記設定冷却空気温度を含む上記温度範囲内になければ(即ち、冷却空気の温度が下限冷却空気温度よりも低ければ)、ヒータ7を用いて冷却空気を最大に加熱しても、吹出空気の温度を上記設定吹出空気温度と同じにできない。よって、従来の空調装置では、圧縮機2の回転速度が下限値であるときに冷却空気の温度が下限冷却空気温度よりも低くなると、圧縮機2の運転を即座に停止して蒸発器6の冷却能力を低下させなければならない。   Therefore, if the temperature of the cooling air cooled by the evaporator 6 is the set cooling air temperature or is within the temperature range including the set cooling air temperature, the control means 8 adjusts the energization amount of the heater 7. The temperature of the blown air can be adjusted to the set temperature of the blown air. In addition, this temperature range is a range set to the low temperature side rather than setting cooling air temperature. The temperature of the cooling air is controlled by adjusting the cooling capacity (operating state of the compressor) of the evaporator 6. However, if the temperature of the cooling air is not within the above temperature range including the set cooling air temperature (that is, if the temperature of the cooling air is lower than the lower limit cooling air temperature), the cooling air is heated to the maximum using the heater 7. Even so, the temperature of the blown air cannot be made the same as the set blown air temperature. Therefore, in the conventional air conditioner, when the temperature of the cooling air becomes lower than the lower limit cooling air temperature when the rotational speed of the compressor 2 is the lower limit value, the operation of the compressor 2 is stopped immediately and the evaporator 6 Cooling capacity must be reduced.

ところが、第1実施形態の空調装置では、蒸発器6をバイパスして冷媒を循環させるバイパス路9と、バイパス路9を流通する、膨張弁5にて膨張された後の冷媒中の凝縮冷媒を蒸発させる補助蒸発器10と、蒸発器6への冷媒の流量と補助蒸発器10への冷媒の流量とを調節可能な三方弁11(流量調節手段の一例)とを備える。補助蒸発器10は、凝縮器4から排出される凝縮排気の下流側に設けられている。つまり、制御手段8は、冷却空気の温度が設定冷却空気温度よりも低い下限冷却空気温度以上であるとき、運転中の圧縮機2の回転速度を調節することで冷却空気の温度を制御し、冷却空気の温度が下限冷却空気温度よりも低いとき、蒸発器6への冷媒の流量を調節することで冷却空気の温度を制御するように構成されている。よって、第1実施形態の空調装置では、圧縮機2の回転速度が下限値であるときに冷却空気の温度が下限冷却空気温度よりも低くなったとしても、圧縮機2の運転を即座に停止して蒸発器6の冷却能力を低下させなくてもよい。本発明において、流量調節手段は上記三方弁11に限定されない。例えば、循環経路1及びバイパス路9に設けた複数の弁によって構成される流量調節手段によって、蒸発器6への冷媒の流量と補助蒸発器10への冷媒の流量とを調節することもできる。   However, in the air conditioner of the first embodiment, the bypass refrigerant 9 that bypasses the evaporator 6 and circulates the refrigerant, and the condensed refrigerant in the refrigerant that has been expanded by the expansion valve 5 that circulates the bypass duct 9 are used. The auxiliary evaporator 10 to evaporate and the three-way valve 11 (an example of a flow control means) which can adjust the flow rate of the refrigerant to the evaporator 6 and the flow rate of the refrigerant to the auxiliary evaporator 10 are provided. The auxiliary evaporator 10 is provided on the downstream side of the condensed exhaust discharged from the condenser 4. That is, the control means 8 controls the temperature of the cooling air by adjusting the rotational speed of the compressor 2 during operation when the temperature of the cooling air is equal to or higher than the lower limit cooling air temperature lower than the set cooling air temperature, When the temperature of the cooling air is lower than the lower limit cooling air temperature, the temperature of the cooling air is controlled by adjusting the flow rate of the refrigerant to the evaporator 6. Therefore, in the air conditioner of the first embodiment, even if the temperature of the cooling air becomes lower than the lower limit cooling air temperature when the rotation speed of the compressor 2 is the lower limit value, the operation of the compressor 2 is immediately stopped. Thus, the cooling capacity of the evaporator 6 need not be reduced. In the present invention, the flow rate adjusting means is not limited to the three-way valve 11. For example, the flow rate of the refrigerant to the evaporator 6 and the flow rate of the refrigerant to the auxiliary evaporator 10 can be adjusted by flow rate adjusting means configured by a plurality of valves provided in the circulation path 1 and the bypass path 9.

図2及び図3は、制御手段8が行う圧縮機2の作動制御及び三方弁11の作動制御のフローチャートである。
制御手段8は、空調装置の運転が開始されると、工程10において、冷却空気の温度が設定冷却空気温度であるか否かを温度センサ14の検出結果に基づいて判定する。冷却空気の温度が設定冷却空気温度と等しい場合(工程10において、「Yes」である場合)、制御手段8は、現在の圧縮機2の作動制御及びヒータ7の作動制御を変更する必要はないので、再び工程10にリターンする。一方で、冷却空気の温度が設定冷却空気温度ではない場合(工程10において、「No」の場合)、制御手段8は工程20に移行する。工程20において制御手段8は、冷却空気の温度が設定冷却空気温度より高いか否かを判定する。制御手段8は、冷却空気の温度が設定冷却空気温度より高い場合には工程30に移行し、そうでない場合(即ち、冷却空気の温度が設定冷却空気温度よりも低い場合)には工程50に移行する。冷却空気の温度が設定冷却空気温度より高い場合には蒸発器6の冷却能力を増大させるような制御を行う必要があり、冷却空気の温度が設定冷却空気温度より低い場合には蒸発器6の冷却能力を低下させるような制御が必要である。
2 and 3 are flowcharts of the operation control of the compressor 2 and the operation control of the three-way valve 11 performed by the control means 8.
When the operation of the air conditioner is started, the control means 8 determines in step 10 whether or not the temperature of the cooling air is the set cooling air temperature based on the detection result of the temperature sensor 14. When the temperature of the cooling air is equal to the set cooling air temperature (“Yes” in step 10), the control unit 8 does not need to change the current operation control of the compressor 2 and the operation control of the heater 7. Therefore, the process returns to step 10 again. On the other hand, when the temperature of the cooling air is not the set cooling air temperature (in the case of “No” in Step 10), the control unit 8 proceeds to Step 20. In step 20, the control means 8 determines whether or not the temperature of the cooling air is higher than the set cooling air temperature. If the temperature of the cooling air is higher than the set cooling air temperature, the control means 8 proceeds to step 30; otherwise (ie, when the temperature of the cooling air is lower than the set cooling air temperature), the control means 8 moves to step 50. Transition. When the temperature of the cooling air is higher than the set cooling air temperature, it is necessary to perform control so as to increase the cooling capacity of the evaporator 6, and when the temperature of the cooling air is lower than the set cooling air temperature, Control that lowers the cooling capacity is necessary.

制御手段8は、冷却空気の温度が設定冷却空気温度より高い場合、工程30において、圧縮機2の回転速度が上限回転速度であるか否かを判定する。そして、制御手段8は、圧縮機2の回転速度が上限回転速度でないならば(即ち、回転速度を上昇させることができるならば)、工程40に移行して圧縮機2の回転速度を設定回転数だけ上昇させる。その結果、蒸発器6の冷却能力は増大し、冷却空気の温度は低下する方向になる。
一方で、制御手段8は、圧縮機2の回転速度が上限回転速度であれば(即ち、回転速度を上昇させることができない)、再び工程10にリターンする。
When the temperature of the cooling air is higher than the set cooling air temperature, the control means 8 determines in step 30 whether or not the rotational speed of the compressor 2 is the upper limit rotational speed. Then, if the rotational speed of the compressor 2 is not the upper limit rotational speed (that is, if the rotational speed can be increased), the control means 8 proceeds to step 40 and sets the rotational speed of the compressor 2 to the set rotational speed. Increase the number. As a result, the cooling capacity of the evaporator 6 increases and the temperature of the cooling air decreases.
On the other hand, if the rotational speed of the compressor 2 is the upper limit rotational speed (that is, the rotational speed cannot be increased), the control means 8 returns to step 10 again.

制御手段8は、工程20において冷却空気の温度が設定冷却空気温度より低いと判定した場合には、工程50において圧縮機2の回転速度が下限回転速度であるか否かを判定する。そして、圧縮機2の回転速度が下限回転速度でないならば(即ち、回転速度を低下させることができるならば)、工程60に移行して圧縮機2の回転速度を設定回転数だけ低下させる。その結果、蒸発器6の冷却能力は低下し、冷却空気の温度は上昇する方向になる。
一方で、制御手段8は、圧縮機2の回転速度が下限回転速度であれば(即ち、回転速度を低下させることができないならば)、工程70に移行する。
When it is determined in step 20 that the temperature of the cooling air is lower than the set cooling air temperature, the control unit 8 determines in step 50 whether or not the rotational speed of the compressor 2 is the lower limit rotational speed. If the rotational speed of the compressor 2 is not the lower limit rotational speed (that is, if the rotational speed can be reduced), the process proceeds to step 60 and the rotational speed of the compressor 2 is decreased by the set rotational speed. As a result, the cooling capacity of the evaporator 6 decreases and the temperature of the cooling air increases.
On the other hand, if the rotational speed of the compressor 2 is the lower limit rotational speed (that is, if the rotational speed cannot be reduced), the control means 8 proceeds to step 70.

工程70において制御手段8は、冷却空気の温度が下限冷却空気温度よりも低いか否かを判定する。本実施形態において、下限冷却空気温度は、冷却空気の制御目標温度である設定冷却空気温度よりも低い温度である。そして、制御手段8は、冷却空気の温度が下限冷却空気温度よりも低くなっている場合には工程80に移行し、冷却空気の温度が下限冷却空気温度より低くなっていない場合には、再び工程10にリターンする。   In step 70, the control means 8 determines whether or not the temperature of the cooling air is lower than the lower limit cooling air temperature. In the present embodiment, the lower limit cooling air temperature is a temperature lower than the set cooling air temperature that is the control target temperature of the cooling air. Then, the control means 8 proceeds to step 80 when the temperature of the cooling air is lower than the lower limit cooling air temperature, and again when the temperature of the cooling air is not lower than the lower limit cooling air temperature. Return to Step 10.

図3は、工程80で行われる圧縮機2の運転中断制御のフローチャートである。この運転中断制御では、制御手段8は、所定の条件に従って、三方弁11を用いて蒸発器6を流通する冷媒の流量を調節する制御と、圧縮機2の運転の停止及び開始制御とを行う。
具体的には、制御手段8は、蒸発器6への冷媒の流量を増加させることで冷却空気の温度を低下させ、及び、蒸発器6への冷媒の流量を減少させることで冷却空気の温度を上昇させるような制御を実施する。
また、制御手段8は、蒸発器6への冷媒の流量が最小になるように三方弁11を制御しても冷却空気の温度が下限冷却空気温度よりも低いとき、圧縮機2の運転を停止し、及び、圧縮機2の運転を停止した後で冷却空気の温度が下限冷却空気温度以上になると、蒸発器6への冷媒の流量が最小になるように三方弁11を制御した状態で圧縮機2の運転を開始する
詳細は図3を参照して以下に説明する。
FIG. 3 is a flowchart of the operation interruption control of the compressor 2 performed in step 80. In this operation interruption control, the control means 8 performs control for adjusting the flow rate of the refrigerant flowing through the evaporator 6 using the three-way valve 11 and control for stopping and starting the operation of the compressor 2 according to predetermined conditions. .
Specifically, the control means 8 decreases the temperature of the cooling air by increasing the flow rate of the refrigerant to the evaporator 6 and decreases the temperature of the cooling air by decreasing the flow rate of the refrigerant to the evaporator 6. Implement control that raises
Further, the control means 8 stops the operation of the compressor 2 when the temperature of the cooling air is lower than the lower limit cooling air temperature even if the three-way valve 11 is controlled so that the flow rate of the refrigerant to the evaporator 6 is minimized. When the temperature of the cooling air becomes equal to or higher than the lower limit cooling air temperature after the operation of the compressor 2 is stopped, the compression is performed while the three-way valve 11 is controlled so that the flow rate of the refrigerant to the evaporator 6 is minimized. Details of starting the operation of the machine 2 will be described below with reference to FIG.

図3の工程81において制御手段8は、冷却空気の温度が下限冷却空気温度よりも低いか否かを判定する。冷却空気の温度が下限冷却空気温度よりも低い場合、蒸発器6の冷却能力を低下させるべく蒸発器6への冷媒流量を減少させる必要がある。また、冷却空気の温度が下限冷却空気温度よりも低くない場合、蒸発器6の冷却能力を高めてもよいので蒸発器6への冷媒流量を増大させる。   In step 81 of FIG. 3, the control means 8 determines whether or not the temperature of the cooling air is lower than the lower limit cooling air temperature. When the temperature of the cooling air is lower than the lower limit cooling air temperature, it is necessary to reduce the refrigerant flow rate to the evaporator 6 in order to reduce the cooling capacity of the evaporator 6. Further, when the temperature of the cooling air is not lower than the lower limit cooling air temperature, the cooling capacity of the evaporator 6 may be increased, so that the refrigerant flow rate to the evaporator 6 is increased.

制御手段8は、工程81において冷却空気の温度が下限冷却空気温度よりも低い場合、工程82に移行して蒸発器6への冷媒流量が最小であるか否かを判定する。制御手段8は、蒸発器6への冷媒流量が最小ではない場合には、工程83に移行して、三方弁11を制御して蒸発器6への冷媒流量を減少させる(相対的に、補助蒸発器10への冷媒流量が増加する)。
一方で、制御手段8は、蒸発器6への冷媒流量が最小である場合、即ち、これ以上は蒸発器6への冷媒流量を減少させることができず、蒸発器6の冷却能力が最低レベルにまで低下させられている場合、工程84において圧縮機2の運転を停止させる(即ち、電動機3の運転を停止させる)。
When the temperature of the cooling air is lower than the lower limit cooling air temperature in step 81, the control means 8 moves to step 82 and determines whether or not the refrigerant flow rate to the evaporator 6 is minimum. If the refrigerant flow rate to the evaporator 6 is not the minimum, the control means 8 proceeds to step 83 and controls the three-way valve 11 to reduce the refrigerant flow rate to the evaporator 6 (relatively, the auxiliary flow rate). The refrigerant flow rate to the evaporator 10 increases).
On the other hand, the control means 8 cannot reduce the refrigerant flow rate to the evaporator 6 when the refrigerant flow rate to the evaporator 6 is the minimum, that is, the cooling capacity of the evaporator 6 is the lowest level. In the case where the pressure is lowered to, the operation of the compressor 2 is stopped in Step 84 (that is, the operation of the electric motor 3 is stopped).

以上のように、工程84において圧縮機2の運転を停止させることで、蒸発器6には冷媒が供給されなくなり、冷却空気の温度は上昇傾向になる。このように、蒸発器6への冷媒流量を最小にした状態(即ち、蒸発器6の冷却能力が最小にされた状態)で圧縮機2の運転が停止されるので、圧縮機2の運転停止に伴って蒸発器6の冷却能力が急激に低下しなくなる。   As described above, by stopping the operation of the compressor 2 in step 84, the refrigerant is not supplied to the evaporator 6, and the temperature of the cooling air tends to increase. Thus, since the operation of the compressor 2 is stopped in a state where the refrigerant flow rate to the evaporator 6 is minimized (that is, the cooling capacity of the evaporator 6 is minimized), the operation of the compressor 2 is stopped. As a result, the cooling capacity of the evaporator 6 does not rapidly decrease.

次に、工程85において制御手段8は、圧縮機2の運転を停止したことで冷却空気の温度が下限冷却空気温度以上にまで上昇したか否かを判定する。制御手段8は、冷却空気の温度が下限冷却空気温度以上にまで上昇した場合には、工程86に移行して蒸発器6への冷媒流量を最小にした状態で圧縮機2の運転を開始し、冷却空気の温度が下限冷却空気温度以上にまで上昇していない場合には工程85を繰り返して冷却空気の温度が下限冷却空気温度以上にまで上昇するのを待つ。このように、蒸発器6への冷媒流量を最小にした状態(即ち、蒸発器6の冷却能力が最小にされた状態)で圧縮機2の運転が再開されるので、圧縮機2の運転再開に伴って蒸発器6の冷却能力が急激に増大しなくなる。
また、制御手段8は、工程86において圧縮機2の運転を開始した後は、工程81に移行する。
Next, in step 85, the control means 8 determines whether or not the temperature of the cooling air has risen above the lower limit cooling air temperature due to the operation of the compressor 2 being stopped. When the temperature of the cooling air rises above the lower limit cooling air temperature, the control means 8 proceeds to step 86 and starts the operation of the compressor 2 with the refrigerant flow rate to the evaporator 6 minimized. If the cooling air temperature has not risen above the lower limit cooling air temperature, step 85 is repeated to wait for the cooling air temperature to rise above the lower limit cooling air temperature. Thus, since the operation of the compressor 2 is resumed in a state where the refrigerant flow rate to the evaporator 6 is minimized (that is, the cooling capacity of the evaporator 6 is minimized), the operation of the compressor 2 is resumed. As a result, the cooling capacity of the evaporator 6 does not increase rapidly.
Further, after starting the operation of the compressor 2 in Step 86, the control means 8 proceeds to Step 81.

制御手段8は、工程81において冷却空気の温度が下限冷却空気温度よりも低くない場合(即ち、冷却空気の温度が下限冷却空気温度以上である場合)、工程87に移行して蒸発器6への冷媒流量が最大であるか否かを判定する。制御手段8は、蒸発器6への流量が最大ではない場合には、工程88に移行して蒸発器6への冷媒流量を増大させる。その結果、蒸発器6の冷却能力が増大されて、冷却空気の温度が低下傾向になる。
一方で、制御手段8は、工程87において蒸発器6への冷媒流量が最大であると判定した場合、図2のフローチャートにリターンする。
When the temperature of the cooling air is not lower than the lower limit cooling air temperature in Step 81 (that is, when the temperature of the cooling air is equal to or higher than the lower limit cooling air temperature), the control means 8 proceeds to Step 87 and goes to the evaporator 6. It is determined whether the refrigerant flow rate is maximum. If the flow rate to the evaporator 6 is not the maximum, the control means 8 proceeds to step 88 and increases the refrigerant flow rate to the evaporator 6. As a result, the cooling capacity of the evaporator 6 is increased and the temperature of the cooling air tends to decrease.
On the other hand, if the control means 8 determines in step 87 that the refrigerant flow rate to the evaporator 6 is maximum, the control means 8 returns to the flowchart of FIG.

<第2実施形態>
第2実施形態の空調装置は、圧縮機の回転速度制御を行わない点で第1実施形態の空調装置と異なっている。以下に、第2実施形態の空調装置の構成について説明するが、第1実施形態と同様の構成については説明を省略する。
Second Embodiment
The air conditioner of the second embodiment is different from the air conditioner of the first embodiment in that the rotation speed control of the compressor is not performed. Although the structure of the air conditioner of 2nd Embodiment is demonstrated below, description is abbreviate | omitted about the structure similar to 1st Embodiment.

図4は、制御手段8が行う圧縮機2の作動制御及び三方弁11の作動制御のフローチャートである。尚、第2実施形態の空調装置の構成は、図1に示したものと同様である。但し、制御手段8は、圧縮機2の回転速度制御を行わず、圧縮機2の運転開始及び運転停止の制御のみを行う。つまり、制御手段8は、圧縮機2の作動制御と三方弁11の作動制御とを実施して、冷却空気の温度を設定冷却空気温度に近付けるように制御する。具体的には、制御手段8は、冷却空気の温度が設定冷却空気温度よりも低い下限冷却空気温度以上であるとき、圧縮機2を運転した状態で、蒸発器6への冷媒の流量を調節することで冷却空気の温度を制御し、冷却空気の温度が下限冷却空気温度よりも低いとき、圧縮機2の運転を停止させるように構成されている。   FIG. 4 is a flowchart of the operation control of the compressor 2 and the operation control of the three-way valve 11 performed by the control means 8. In addition, the structure of the air conditioner of 2nd Embodiment is the same as that of what was shown in FIG. However, the control means 8 does not perform the rotational speed control of the compressor 2 but only performs the operation start and operation stop control of the compressor 2. That is, the control means 8 performs the operation control of the compressor 2 and the operation control of the three-way valve 11 to control the temperature of the cooling air so as to approach the set cooling air temperature. Specifically, the control means 8 adjusts the flow rate of the refrigerant to the evaporator 6 while the compressor 2 is operated when the temperature of the cooling air is equal to or higher than the lower limit cooling air temperature lower than the set cooling air temperature. Thus, the temperature of the cooling air is controlled, and when the temperature of the cooling air is lower than the lower limit cooling air temperature, the operation of the compressor 2 is stopped.

図4の工程91において制御手段8は、冷却空気の温度が設定冷却空気温度よりも低いか否かを判定する。制御手段8は、冷却空気の温度が設定冷却空気温度よりも低い場合、工程92に移行する。また、制御手段8は、冷却空気の温度が設定冷却空気温度よりも低くない場合、工程97に移行する。   In step 91 of FIG. 4, the control means 8 determines whether or not the temperature of the cooling air is lower than the set cooling air temperature. When the temperature of the cooling air is lower than the set cooling air temperature, the control means 8 proceeds to step 92. If the temperature of the cooling air is not lower than the set cooling air temperature, the control means 8 proceeds to step 97.

制御手段8は、工程91において冷却空気の温度が設定冷却空気温度よりも低い場合、工程92に移行して蒸発器6への冷媒流量が最小であるか否かを判定する。制御手段8は、蒸発器6への冷媒流量が最小ではない場合には、工程100に移行して、三方弁11を制御して蒸発器6への冷媒流量を減少させ、その後、工程91にリターンする。
一方で、制御手段8は、蒸発器6への冷媒流量が最小である場合、即ち、これ以上は蒸発器6への冷媒流量を減少させることができず、蒸発器6の冷却能力が最低レベルにまで低下させられている場合、工程93において冷却空気の温度が下限冷却空気温度よりも低いか否かを判定する。そして、制御手段8は、冷却空気の温度が下限冷却空気温度よりも低い場合には、工程94において圧縮機2の運転を停止させる(即ち、電動機3の運転を停止させる)。このように、蒸発器6への冷媒流量を最小にした状態(即ち、蒸発器6の冷却能力が最小にされた状態)で圧縮機2の運転が停止されるので、圧縮機2の運転停止に伴って蒸発器6の冷却能力が急激に低下しなくなる。
また、制御手段8は、冷却空気の温度が下限冷却空気温度よりも低くない場合には工程91にリターンする。
When the temperature of the cooling air is lower than the set cooling air temperature in step 91, the control means 8 moves to step 92 and determines whether or not the refrigerant flow rate to the evaporator 6 is minimum. If the refrigerant flow rate to the evaporator 6 is not the minimum, the control means 8 proceeds to step 100 and controls the three-way valve 11 to reduce the refrigerant flow rate to the evaporator 6, and then goes to step 91. Return.
On the other hand, the control means 8 cannot reduce the refrigerant flow rate to the evaporator 6 when the refrigerant flow rate to the evaporator 6 is the minimum, that is, the cooling capacity of the evaporator 6 is the lowest level. In step 93, it is determined whether or not the temperature of the cooling air is lower than the lower limit cooling air temperature. Then, when the temperature of the cooling air is lower than the lower limit cooling air temperature, the control means 8 stops the operation of the compressor 2 in step 94 (that is, stops the operation of the electric motor 3). Thus, since the operation of the compressor 2 is stopped in a state where the refrigerant flow rate to the evaporator 6 is minimized (that is, the cooling capacity of the evaporator 6 is minimized), the operation of the compressor 2 is stopped. As a result, the cooling capacity of the evaporator 6 does not rapidly decrease.
The control means 8 returns to step 91 when the temperature of the cooling air is not lower than the lower limit cooling air temperature.

以上のように、工程94において圧縮機2の運転を停止させることで、蒸発器6には冷媒が供給されなくなり、冷却空気の温度は上昇傾向になる。
次に、工程95において制御手段8は、圧縮機2の運転を停止したことで冷却空気の温度が下限冷却空気温度以上にまで上昇したか否かを判定する。制御手段8は、冷却空気の温度が下限冷却空気温度以上にまで上昇した場合には、工程96に移行して蒸発器6への冷媒流量を最小にした状態で圧縮機2の運転を開始し、冷却空気の温度が下限冷却空気温度以上にまで上昇していない場合には工程95を繰り返して冷却空気の温度が下限冷却空気温度以上にまで上昇するのを待つ。このように、蒸発器6への冷媒流量を最小にした状態(即ち、蒸発器6の冷却能力が最小にされた状態)で圧縮機2の運転が再開されるので、圧縮機2の運転再開に伴って蒸発器6の冷却能力が急激に増大しなくなる。
また、制御手段8は、工程96において圧縮機2の運転を開始した後は、工程91に移行する。
As described above, by stopping the operation of the compressor 2 in step 94, the refrigerant is not supplied to the evaporator 6, and the temperature of the cooling air tends to increase.
Next, in step 95, the control means 8 determines whether or not the temperature of the cooling air has risen above the lower limit cooling air temperature due to the operation of the compressor 2 being stopped. When the temperature of the cooling air rises above the lower limit cooling air temperature, the control means 8 proceeds to step 96 and starts the operation of the compressor 2 with the refrigerant flow rate to the evaporator 6 minimized. If the cooling air temperature has not risen above the lower limit cooling air temperature, step 95 is repeated to wait for the cooling air temperature to rise above the lower limit cooling air temperature. Thus, since the operation of the compressor 2 is resumed in a state where the refrigerant flow rate to the evaporator 6 is minimized (that is, the cooling capacity of the evaporator 6 is minimized), the operation of the compressor 2 is resumed. As a result, the cooling capacity of the evaporator 6 does not increase rapidly.
Further, after starting the operation of the compressor 2 in Step 96, the control means 8 proceeds to Step 91.

制御手段8は、工程91において冷却空気の温度が設定冷却空気温度よりも低くない場合(即ち、冷却空気の温度が設定冷却空気温度以上である場合)、工程97に移行して冷却空気の温度が設定冷却空気温度より高いか否かを判定する。制御手段8は、工程97において冷却空気の温度が設定冷却空気温度よりも高くない場合、即ち、冷却空気の温度が設定冷却空気温度と等しい場合には工程91にリターンする。
一方で、制御手段8は、工程97において冷却空気の温度が設定冷却空気温度よりも高い場合には、工程98に移行して蒸発器6への冷媒流量が最大であるか否かを判定する。制御手段8は、蒸発器6への流量が最大ではない場合には、工程99に移行して蒸発器6への冷媒流量を増大させ、その後、工程91にリターンする。その結果、蒸発器6の冷却能力が増大されて、冷却空気の温度が低下傾向になる。制御手段8は、蒸発器6の流量が最大である場合には工程91にリターンする。
When the temperature of the cooling air is not lower than the set cooling air temperature in step 91 (that is, when the temperature of the cooling air is equal to or higher than the set cooling air temperature), the control means 8 proceeds to step 97 and moves to the cooling air temperature Is higher than the set cooling air temperature. If the temperature of the cooling air is not higher than the set cooling air temperature in step 97, that is, if the temperature of the cooling air is equal to the set cooling air temperature, the control means 8 returns to step 91.
On the other hand, if the temperature of the cooling air is higher than the set cooling air temperature in step 97, the control means 8 moves to step 98 and determines whether or not the refrigerant flow rate to the evaporator 6 is maximum. . If the flow rate to the evaporator 6 is not the maximum, the control means 8 proceeds to step 99 to increase the refrigerant flow rate to the evaporator 6, and then returns to step 91. As a result, the cooling capacity of the evaporator 6 is increased and the temperature of the cooling air tends to decrease. The control means 8 returns to step 91 when the flow rate of the evaporator 6 is maximum.

<別実施形態>
上記実施形態では、制御手段8が、温度センサ14で測定される冷却空気の温度に応じて圧縮機2の運転を制御する例について説明したが、他の温度センサで測定される温度に応じて圧縮機2の運転を制御するように改変してもよい。例えば、吸込空気の温度を測定する温度センサを設け、制御手段が、その温度センサで測定される冷却空気の温度に応じて圧縮機2の運転を制御してもよい。その場合、上記設定冷却空気温度と同様に、吸込空気の温度についての設定吸込空気温度等を設ければよい。
<Another embodiment>
In the above embodiment, the example in which the control unit 8 controls the operation of the compressor 2 according to the temperature of the cooling air measured by the temperature sensor 14 has been described. However, according to the temperature measured by another temperature sensor. You may modify | change so that the driving | operation of the compressor 2 may be controlled. For example, a temperature sensor that measures the temperature of the intake air may be provided, and the control unit may control the operation of the compressor 2 according to the temperature of the cooling air measured by the temperature sensor. In that case, a set intake air temperature or the like for the intake air temperature may be provided in the same manner as the set cooling air temperature.

空調装置の構成を示す図The figure which shows the composition of the air conditioner 圧縮機の作動制御及び流量調節手段の作動制御のフローチャートFlow chart of operation control of compressor and operation control of flow rate adjusting means 圧縮機の作動制御及び流量調節手段の作動制御のフローチャートFlow chart of operation control of compressor and operation control of flow rate adjusting means 圧縮機の作動制御及び流量調節手段の作動制御のフローチャートFlow chart of operation control of compressor and operation control of flow rate adjusting means 空調装置を運転させた場合の吹出空気の温度の時間的変化を示すグラフThe graph which shows the time change of the temperature of the blown air when the air conditioner is operated

符号の説明Explanation of symbols

1 循環経路
2 圧縮機
4 凝縮器
5 膨張弁
6 蒸発器
7 ヒータ(加熱手段)
8 制御手段
11 三方弁(流量調節手段)
DESCRIPTION OF SYMBOLS 1 Circulation path 2 Compressor 4 Condenser 5 Expansion valve 6 Evaporator 7 Heater (heating means)
8 Control means 11 Three-way valve (Flow rate adjustment means)

Claims (4)

冷媒が循環する循環経路と、蒸発した冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器にて凝縮された後の冷媒を膨張させる膨張弁と、前記膨張弁にて膨張された後の冷媒中の凝縮冷媒を蒸発させると共に、吸込空気と前記凝縮冷媒との熱交換により前記吸込空気を冷却する蒸発器と、前記蒸発器において冷却された冷却空気を加熱する加熱手段と、運転を制御する制御手段とを備え、
前記制御手段は、前記加熱手段から吹き出される吹出空気温度が設定吹出空気温度となるように前記加熱手段の作動を制御する空調装置であって、
前記蒸発器をバイパスして冷媒を循環させるバイパス路と、前記バイパス路を流通する、前記膨張弁にて膨張された後の冷媒中の凝縮冷媒を蒸発させる補助蒸発器と、前記蒸発器への冷媒の流量と前記補助蒸発器への冷媒の流量とを調節可能な流量調節手段とを備え、
前記制御手段は、前記圧縮機の作動制御と前記流量調節手段の作動制御とを実施して、前記冷却空気の温度を設定冷却空気温度に近付けるように制御するように構成されている空調装置。
A circulation path through which the refrigerant circulates, a compressor that compresses the evaporated refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and an expansion valve that expands the refrigerant that has been condensed by the condenser And an evaporator that evaporates the condensed refrigerant in the refrigerant expanded by the expansion valve and cools the intake air by heat exchange between the intake air and the condensed refrigerant, and is cooled in the evaporator A heating means for heating the cooling air and a control means for controlling the operation;
The control means is an air conditioner that controls the operation of the heating means such that the temperature of the blown air blown from the heating means becomes a set blown air temperature,
A bypass path that bypasses the evaporator and circulates the refrigerant; an auxiliary evaporator that circulates the bypass path and evaporates the condensed refrigerant in the refrigerant after being expanded by the expansion valve; and to the evaporator A flow rate adjusting means capable of adjusting the flow rate of the refrigerant and the flow rate of the refrigerant to the auxiliary evaporator,
The said control means is an air conditioner comprised so that the operation control of the said compressor and the operation control of the said flow volume adjustment means may be implemented, and the temperature of the said cooling air may be controlled to approach the setting cooling air temperature.
前記制御手段は、前記冷却空気の温度が前記設定冷却空気温度よりも低い下限冷却空気温度以上であるとき、運転中の前記圧縮機の回転速度を調節することで前記冷却空気の温度を制御し、前記冷却空気の温度が前記下限冷却空気温度よりも低いとき、前記蒸発器への冷媒の流量を調節することで前記冷却空気の温度を制御するように構成されている請求項1記載の空調装置。   The control means controls the temperature of the cooling air by adjusting the rotational speed of the compressor during operation when the temperature of the cooling air is equal to or higher than a lower limit cooling air temperature lower than the set cooling air temperature. The air conditioning according to claim 1, wherein when the temperature of the cooling air is lower than the lower limit cooling air temperature, the temperature of the cooling air is controlled by adjusting the flow rate of the refrigerant to the evaporator. apparatus. 前記制御手段は、前記蒸発器への冷媒の流量を最小にしても前記冷却空気の温度が前記下限冷却空気温度よりも低いとき前記圧縮機の運転を停止し、及び、前記圧縮機の運転を停止した後で前記冷却空気の温度が前記下限冷却空気温度以上になると、前記蒸発器への冷媒の流量を最小にした状態で前記圧縮機の運転を開始するように構成されている請求項2記載の空調装置。   The control means stops the operation of the compressor when the temperature of the cooling air is lower than the lower limit cooling air temperature even if the refrigerant flow rate to the evaporator is minimized, and the operation of the compressor is stopped. The operation of the compressor is started in a state in which the flow rate of the refrigerant to the evaporator is minimized when the temperature of the cooling air becomes equal to or higher than the lower limit cooling air temperature after stopping. The air conditioner described. 前記制御手段は、前記冷却空気の温度が前記設定冷却空気温度よりも低い下限冷却空気温度以上であるとき、前記圧縮機を運転した状態で、前記蒸発器への冷媒の流量を調節することで前記冷却空気の温度を制御し、
前記蒸発器への冷媒の流量を最小にしても前記冷却空気の温度が前記下限冷却空気温度よりも低いとき、前記圧縮機の運転を停止し、及び、前記圧縮機の運転を停止した後で前記冷却空気の温度が前記下限冷却空気温度以上になると、前記蒸発器への冷媒の流量を最小にした状態で前記圧縮機の運転を開始するように構成されている請求項1記載の空調装置。
When the temperature of the cooling air is equal to or higher than a lower limit cooling air temperature lower than the set cooling air temperature, the control means adjusts the flow rate of the refrigerant to the evaporator while operating the compressor. Controlling the temperature of the cooling air;
Even when the flow rate of the refrigerant to the evaporator is minimized, when the temperature of the cooling air is lower than the lower limit cooling air temperature, the operation of the compressor is stopped, and the operation of the compressor is stopped. 2. The air conditioner according to claim 1, wherein when the temperature of the cooling air becomes equal to or higher than the lower limit cooling air temperature, the operation of the compressor is started in a state where the flow rate of the refrigerant to the evaporator is minimized. .
JP2008056685A 2008-03-06 2008-03-06 Air conditioner Pending JP2009210240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056685A JP2009210240A (en) 2008-03-06 2008-03-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056685A JP2009210240A (en) 2008-03-06 2008-03-06 Air conditioner

Publications (1)

Publication Number Publication Date
JP2009210240A true JP2009210240A (en) 2009-09-17

Family

ID=41183576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056685A Pending JP2009210240A (en) 2008-03-06 2008-03-06 Air conditioner

Country Status (1)

Country Link
JP (1) JP2009210240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021214816A1 (en) * 2020-04-20 2021-10-28 三菱電機株式会社 Refrigeration cycle device, air conditioner, and cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021214816A1 (en) * 2020-04-20 2021-10-28 三菱電機株式会社 Refrigeration cycle device, air conditioner, and cooling device

Similar Documents

Publication Publication Date Title
JP5817803B2 (en) Air conditioner
JP6633303B2 (en) Vehicle air conditioner
US10625560B2 (en) Vehicle air conditioner
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
JP2010101570A (en) Air conditioner
JP6401015B2 (en) Air conditioner
JP6328004B2 (en) Compressor / pump switching type cooling device
JP2007106260A (en) Air conditioner for vehicle
JP2016085016A (en) Air conditioner
JP5481838B2 (en) Heat pump cycle equipment
JP2014058205A (en) Vehicle air-conditioning device
JP2010236816A (en) Heat pump type air conditioner and method of controlling heat pump type air conditioner
JP2017165142A (en) Air conditioner
JP5455338B2 (en) Cooling tower and heat source system
JP4827416B2 (en) Cooling system
JP2009210240A (en) Air conditioner
JP2701516B2 (en) Air conditioner equipped with refrigerant heating device
JP2010112682A (en) Heat pump cycle device
JP2009174829A (en) Temperature conditioning device
JP2007327717A (en) Air conditioner
JP2014159954A (en) Air conditioner
JP2009236452A (en) Temperature adjusting device
JP2009192197A (en) Heat pump cycle system
JP2005016802A (en) Air-conditioner control method