JP2017165142A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2017165142A
JP2017165142A JP2016049860A JP2016049860A JP2017165142A JP 2017165142 A JP2017165142 A JP 2017165142A JP 2016049860 A JP2016049860 A JP 2016049860A JP 2016049860 A JP2016049860 A JP 2016049860A JP 2017165142 A JP2017165142 A JP 2017165142A
Authority
JP
Japan
Prior art keywords
temperature
target
heat medium
heating
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016049860A
Other languages
Japanese (ja)
Inventor
康次郎 中村
Kojiro Nakamura
康次郎 中村
知広 前田
Tomohiro Maeda
知広 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2016049860A priority Critical patent/JP2017165142A/en
Publication of JP2017165142A publication Critical patent/JP2017165142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which quickly performs heating.SOLUTION: An air conditioner 1 comprises: a heating cycle 4 which circulates a heating medium to a heater core 42 for heating blown air; an auxiliary heater 43 which heats the heating medium by an electric heater; a refrigeration cycle 2 which circulates a coolant discharged from a compressor 21 to a capacitor 22 for heating the heating medium; refrigeration cycle control means which causes the refrigeration cycle 2 to operate so that a temperature Tw of the heating medium becomes a target heating medium temperature; and auxiliary heater control means which causes the auxiliary heater 43 to operate so that the temperature Tw of the heating medium becomes the target heating medium temperature Two. The auxiliary heater control means is configured to stop operation of the auxiliary heater 43 when such a heat quantity that the temperature Tw of the heating medium reaches the target heating medium temperature Two only by heating by the refrigeration cycle 2, is obtained.SELECTED DRAWING: Figure 1

Description

本発明は、送風空気の温度を調整する空調装置に関する。   The present invention relates to an air conditioner that adjusts the temperature of blown air.

特許文献1には、車室内に吹き出す送風空気を加熱する熱媒ヒータと、熱媒ヒータに循環する熱媒を加熱する電気ヒータと、熱媒を加熱する冷媒/熱媒熱交換器に冷媒を循環させるヒートポンプと、を備える空調装置が開示されている。   Patent Document 1 discloses that a heat medium heater that heats blown air blown into a vehicle interior, an electric heater that heats a heat medium circulating in the heat medium heater, and a refrigerant / heat medium heat exchanger that heats the heat medium. An air conditioner including a heat pump for circulation is disclosed.

上記空調装置では、外気温度が0℃近辺の暖房時に、電気ヒータとヒートポンプとの両方が作動することで、高出力で暖房が行われる。一方、外気温度が0℃以上の暖房時に、電気ヒータの作動が停止され、ヒートポンプのみが作動することで、低出力で暖房が行われる。   In the air conditioner, heating is performed at a high output by operating both the electric heater and the heat pump during heating when the outside air temperature is around 0 ° C. On the other hand, when the outside air temperature is 0 ° C. or higher, the operation of the electric heater is stopped, and only the heat pump is operated, so that heating is performed at a low output.

特開2009−280020号公報JP 2009-280020 A

しかしながら、特許文献1の空調装置では、外気温度が低いときのみに電気ヒータが作動するため、熱媒が十分に加熱されない状態で電気ヒータが停止することがある。そのため、暖房を急速に行うことができないおそれがある。   However, in the air conditioner of Patent Document 1, the electric heater operates only when the outside air temperature is low, so the electric heater may stop in a state where the heat medium is not sufficiently heated. Therefore, there is a possibility that heating cannot be performed rapidly.

本発明は、上記の問題点に鑑みてなされたものであり、暖房が急速に行われる空調装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide an air conditioner in which heating is performed rapidly.

本発明のある態様によれば、送風空気を加熱するヒータコアに熱媒を循環させる加熱サイクルと、電気ヒータによって熱媒を加熱する補助加熱器と、熱媒を加熱するコンデンサに圧縮機から吐出される冷媒を循環させる冷凍サイクルと、熱媒の温度が目標熱媒温度になるように冷凍サイクルを運転させる冷凍サイクル制御手段と、熱媒の温度が目標熱媒温度になるように補助加熱器を運転させる補助加熱器制御手段と、を備え、補助加熱器制御手段は、冷凍サイクルによる加熱のみで熱媒の温度が目標熱媒温度に達する熱量が得られる場合に補助加熱器の運転を停止させることを特徴とする空調装置が提供される。   According to an aspect of the present invention, a heating cycle in which a heating medium is circulated through a heater core that heats blown air, an auxiliary heater that heats the heating medium with an electric heater, and a condenser that heats the heating medium are discharged from the compressor. A refrigeration cycle for circulating the refrigerant, a refrigeration cycle control means for operating the refrigeration cycle so that the temperature of the heat medium becomes the target heat medium temperature, and an auxiliary heater so that the temperature of the heat medium becomes the target heat medium temperature. An auxiliary heater control means for operating the auxiliary heater, and the auxiliary heater control means stops the operation of the auxiliary heater when the amount of heat at which the temperature of the heat medium reaches the target heat medium temperature can be obtained only by heating by the refrigeration cycle. An air conditioner characterized by this is provided.

上記態様によれば、冷凍サイクルによる加熱のみで目標熱媒温度に達する熱量が不足する場合には、補助加熱器及び冷凍サイクルが運転される。熱媒の温度が上昇するのに伴って、冷凍サイクルによる加熱のみで目標熱媒温度に達する熱量が足りる場合には、補助加熱器の運転が停止されて冷凍サイクルのみが運転される。こうして、空調装置は、暖房が急速に行われる。   According to the above aspect, when the amount of heat reaching the target heat medium temperature is insufficient only by heating by the refrigeration cycle, the auxiliary heater and the refrigeration cycle are operated. When the amount of heat reaching the target heat medium temperature is sufficient only by heating by the refrigeration cycle as the temperature of the heat medium rises, the operation of the auxiliary heater is stopped and only the refrigeration cycle is operated. Thus, the air conditioner is rapidly heated.

図1は、本発明の実施形態に係る空調装置を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an air conditioner according to an embodiment of the present invention. 図2は、空調装置における電気回路のブロック図である。FIG. 2 is a block diagram of an electric circuit in the air conditioner. 図3は、空調装置の制御に用いられる目標値を示す図表である。FIG. 3 is a chart showing target values used for controlling the air conditioner. 図4は、空調装置における運転モードを切り換える制御処理を示すフローチャートである。FIG. 4 is a flowchart showing a control process for switching the operation mode in the air conditioner. 図5は、空調装置における補助加熱器の制御処理を示すフローチャートである。FIG. 5 is a flowchart showing the control process of the auxiliary heater in the air conditioner. 図6は、空調装置における冷凍サイクルの制御処理を示すフローチャートである。FIG. 6 is a flowchart showing control processing of the refrigeration cycle in the air conditioner. 図7は、空調装置の制御例を示すタイムチャートである。FIG. 7 is a time chart showing an example of control of the air conditioner.

以下、添付図面を参照しながら本発明の実施形態に係る空調装置1について説明する。図1は空調装置1を示す概略構成図である。   Hereinafter, an air conditioner 1 according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram showing an air conditioner 1.

空調装置1は、冷媒が循環する冷凍サイクル2と、熱媒が循環する加熱サイクル4と、空調に利用する空気が通過するHVAC(Heating Ventilation and Air Conditioning)ユニット5と、弁の動作などを制御するコントローラ10(図2参照)と、から構成される冷暖房可能なヒートポンプシステムである。冷凍サイクル2を循環する媒体には、例えばHFC−134aからなる冷媒が用いられる。加熱サイクル4を循環する液状の媒体には、例えば不凍液(冷却水)からなる熱媒が用いられる。なお、加熱サイクル4を循環する液状の媒体には、これに限らず、オイル等、他の液体を用いてもよい。   The air conditioner 1 controls a refrigeration cycle 2 in which a refrigerant circulates, a heating cycle 4 in which a heat medium circulates, an HVAC (Heating Ventilation and Air Conditioning) unit 5 through which air used for air conditioning passes, operation of valves, and the like. And a controller 10 (see FIG. 2) for cooling and heating. For the medium circulating in the refrigeration cycle 2, for example, a refrigerant made of HFC-134a is used. As the liquid medium circulating in the heating cycle 4, for example, a heat medium made of an antifreeze liquid (cooling water) is used. The liquid medium circulating in the heating cycle 4 is not limited to this, and other liquids such as oil may be used.

冷凍サイクル2は、圧縮機21(コンプレッサ)と、コンデンサ22と、第1膨張弁27と、室外熱交換器23と、リキッドタンク24と、内部熱交換器60と、第2膨張弁28と、エバポレータ25と、アキュムレータ26と、これらを冷媒が循環可能となるように接続する冷媒流路20と、から構成される。   The refrigeration cycle 2 includes a compressor 21 (compressor), a condenser 22, a first expansion valve 27, an outdoor heat exchanger 23, a liquid tank 24, an internal heat exchanger 60, a second expansion valve 28, It is comprised from the evaporator 25, the accumulator 26, and the refrigerant | coolant flow path 20 which connects these so that a refrigerant | coolant can circulate.

圧縮機21は、電動モータ(図示省略)によって駆動され、冷媒流路20を循環する冷媒を圧縮して吐出する。   The compressor 21 is driven by an electric motor (not shown), and compresses and discharges the refrigerant circulating in the refrigerant flow path 20.

コンデンサ22は、冷凍サイクル2を循環する冷媒と加熱サイクル4を循環する熱媒との間で熱交換をさせる熱交換器である。   The condenser 22 is a heat exchanger that exchanges heat between the refrigerant circulating in the refrigeration cycle 2 and the heat medium circulating in the heating cycle 4.

室外熱交換器23は、例えば車両のエンジンルーム(電気自動車においてはモータルーム)に設置され、冷媒と外気との間で熱交換を行わせる。室外熱交換器23は、車両走行風または室外ファン32によって送られる強制風が熱交換部を通過するように配置される。室外ファン32は、電動モータ(図示省略)によって駆動される。   The outdoor heat exchanger 23 is installed in, for example, an engine room (a motor room in an electric vehicle) of a vehicle, and performs heat exchange between the refrigerant and the outside air. The outdoor heat exchanger 23 is arranged so that the vehicle running wind or the forced wind sent by the outdoor fan 32 passes through the heat exchange section. The outdoor fan 32 is driven by an electric motor (not shown).

リキッドタンク24は、冷房時に、室外熱交換器23を通過して凝縮した冷媒を一時的に溜めるとともに、冷媒をガス状冷媒と液状冷媒とに気液分離する。   The liquid tank 24 temporarily stores the refrigerant that has passed through the outdoor heat exchanger 23 and condensed during cooling, and separates the refrigerant into a gaseous refrigerant and a liquid refrigerant.

内部熱交換器60では、冷媒流路20において第2膨張弁28の上流側と及びエバポレータ25の下流側を流れる冷媒どうしの間で熱交換が行われる。   In the internal heat exchanger 60, heat exchange is performed between the refrigerant flowing in the refrigerant flow path 20 on the upstream side of the second expansion valve 28 and the downstream side of the evaporator 25.

エバポレータ25は、HVACユニット5内に設置される。エバポレータ25は、冷媒とHVACユニット5内を流れる送風空気との間で熱交換をさせて送風空気を冷却する熱交換器である。   The evaporator 25 is installed in the HVAC unit 5. The evaporator 25 is a heat exchanger that cools the blown air by exchanging heat between the refrigerant and the blown air flowing through the HVAC unit 5.

アキュムレータ26では、冷媒流路20を流れる冷媒が一時的に溜められ、ガス状冷媒と液状冷媒とに気液分離される。   In the accumulator 26, the refrigerant flowing through the refrigerant flow path 20 is temporarily stored, and gas-liquid separation is performed into a gaseous refrigerant and a liquid refrigerant.

冷媒流路20には、コンデンサ22と室外熱交換器23との間に第1膨張弁27が介装される。第1膨張弁27では、コンデンサ22で凝縮した冷媒が減圧膨張する。第1膨張弁27には、例えば、固定絞り(オリフィス)や可変絞り(電磁弁)が用いられる。   A first expansion valve 27 is interposed in the refrigerant channel 20 between the condenser 22 and the outdoor heat exchanger 23. In the first expansion valve 27, the refrigerant condensed by the condenser 22 is expanded under reduced pressure. For the first expansion valve 27, for example, a fixed throttle (orifice) or a variable throttle (electromagnetic valve) is used.

冷媒流路20には、内部熱交換器60とエバポレータ25との間に第2膨張弁28が介装される。第2膨張弁28では、室外熱交換器23及び内部熱交換器60を通過して凝縮した冷媒が減圧膨張する。第2膨張弁28には、エバポレータ25を通過した冷媒の温度に応じて開度が調節される温度式膨張弁が用いられる。   A second expansion valve 28 is interposed in the refrigerant flow path 20 between the internal heat exchanger 60 and the evaporator 25. In the second expansion valve 28, the refrigerant that has passed through the outdoor heat exchanger 23 and the internal heat exchanger 60 and condensed is decompressed and expanded. As the second expansion valve 28, a temperature type expansion valve whose opening degree is adjusted according to the temperature of the refrigerant that has passed through the evaporator 25 is used.

冷媒流路20には、第1開閉弁29、第2開閉弁30、及び第3開閉弁31が設けられる。第1開閉弁29、第2開閉弁30、及び第3開閉弁31は、コントローラ10によって開閉されて冷媒の流れを切り換える。暖房時には、第1開閉弁29及び第3開閉弁31が閉じられ、第2開閉弁30が開かれる。冷房時には、第1開閉弁29及び第3開閉弁31が開かれるとともに、第2開閉弁30が閉じられる。   The refrigerant flow path 20 is provided with a first on-off valve 29, a second on-off valve 30, and a third on-off valve 31. The first on-off valve 29, the second on-off valve 30, and the third on-off valve 31 are opened and closed by the controller 10 to switch the refrigerant flow. During heating, the first on-off valve 29 and the third on-off valve 31 are closed, and the second on-off valve 30 is opened. During cooling, the first on-off valve 29 and the third on-off valve 31 are opened, and the second on-off valve 30 is closed.

加熱サイクル4は、ウォータポンプ41と、コンデンサ22と、補助加熱器43と、ヒータコア42と、これらを熱媒が循環可能となるように接続する熱媒流路40と、から構成される。熱媒流路40において、コンデンサ22の直下流側に補助加熱器43が設けられ、補助加熱器43の直下流側にヒータコア42が設けられる。   The heating cycle 4 includes a water pump 41, a condenser 22, an auxiliary heater 43, a heater core 42, and a heat medium flow path 40 that connects them so that the heat medium can be circulated. In the heat medium passage 40, an auxiliary heater 43 is provided immediately downstream of the condenser 22, and a heater core 42 is provided immediately downstream of the auxiliary heater 43.

ウォータポンプ41は、熱媒流路40内の熱媒を図1に実線の矢印で示すように循環させる。ウォータポンプ41は、電動モータ(図示省略)によって駆動される。   The water pump 41 circulates the heat medium in the heat medium flow path 40 as indicated by solid arrows in FIG. The water pump 41 is driven by an electric motor (not shown).

ヒータコア42は、HVACユニット5内に設置される。ヒータコア42は、熱媒とHVACユニット5流れる送風空気との間で熱交換をさせて送風空気を加熱する熱交換器である。   The heater core 42 is installed in the HVAC unit 5. The heater core 42 is a heat exchanger that heats the blown air by exchanging heat between the heat medium and the blown air flowing through the HVAC unit 5.

補助加熱器43は、熱媒流路40を循環する熱媒を電力によって加熱する。補助加熱器43は、その内部に電気ヒータ(図示省略)を有する。電気ヒータには、例えば、シーズヒータやPTC(Positive Temperature Coefficient)ヒータが用いられる。   The auxiliary heater 43 heats the heat medium circulating in the heat medium flow path 40 with electric power. The auxiliary heater 43 has an electric heater (not shown) therein. For example, a sheathed heater or a PTC (Positive Temperature Coefficient) heater is used as the electric heater.

HVACユニット5は、空調に利用される送風空気を冷却又は加熱する。HVACユニット5は、空気を送風するブロワ52と、エバポレータ25と、ヒータコア42と、ヒータコア42を通過する空気の量を調整するエアミックスドア53と、を備える。   The HVAC unit 5 cools or heats blown air used for air conditioning. The HVAC unit 5 includes a blower 52 that blows air, an evaporator 25, a heater core 42, and an air mix door 53 that adjusts the amount of air passing through the heater core 42.

ブロワ52は、HVACユニット5内に空気を送風する送風機である。ブロワ52は、電動モータ(図示省略)によって駆動される。   The blower 52 is a blower that blows air into the HVAC unit 5. The blower 52 is driven by an electric motor (not shown).

エアミックスドア53は、暖房時にヒータコア42側を開き、冷房時にヒータコア42側を閉じる。エアミックスドア53の開度により、送風空気とヒータコア42内の熱媒との間で行われる熱交換量が調節される。   The air mix door 53 opens the heater core 42 side during heating, and closes the heater core 42 side during cooling. The amount of heat exchange performed between the blown air and the heat medium in the heater core 42 is adjusted by the opening degree of the air mix door 53.

コントローラ10は、冷房時に冷房モードに切り換えられ、暖房時に暖房モードに切り換えられて、冷凍サイクル2、加熱サイクル4、及びHVACユニット5を制御する。   The controller 10 is switched to the cooling mode during cooling and is switched to the heating mode during heating to control the refrigeration cycle 2, the heating cycle 4, and the HVAC unit 5.

次に、暖房モード、冷房モードにおける空調装置1の作動について説明する。   Next, the operation of the air conditioner 1 in the heating mode and the cooling mode will be described.

<暖房モード>
冷凍サイクル2では、冷媒が図1に破線の矢印で示すように冷媒流路20を循環する。圧縮機21で圧縮されて高温になった冷媒は、コンデンサ22に送られる。コンデンサ22では、圧縮機21によって高温高圧となった冷媒の熱が熱媒に伝達される。コンデンサ22を通過して低温になった冷媒は、第1膨張弁27を通って減圧膨張することでさらに低温となって、室外熱交換器23に送られる。室外熱交換器23では、低温となった冷媒が外気の熱を吸収して加熱される。加熱された冷媒は、アキュムレータ26を介して圧縮機21に送られて循環する。こうして、冷凍サイクル2では、冷媒が外気の熱を吸収して加熱サイクル4を循環する熱媒に放熱するヒートポンプ運転が行われる。
<Heating mode>
In the refrigeration cycle 2, the refrigerant circulates through the refrigerant flow path 20 as indicated by the dashed arrows in FIG. 1. The refrigerant compressed to high temperature by the compressor 21 is sent to the condenser 22. In the condenser 22, the heat of the refrigerant that has become high temperature and pressure by the compressor 21 is transmitted to the heat medium. The low-temperature refrigerant that has passed through the condenser 22 is decompressed and expanded through the first expansion valve 27 to be further cooled, and is sent to the outdoor heat exchanger 23. In the outdoor heat exchanger 23, the refrigerant having a low temperature absorbs the heat of the outside air and is heated. The heated refrigerant is sent to the compressor 21 via the accumulator 26 and circulates. Thus, in the refrigeration cycle 2, a heat pump operation is performed in which the refrigerant absorbs heat of the outside air and dissipates heat to the heat medium circulating in the heating cycle 4.

一方、加熱サイクル4では、熱媒が図1に実線の矢印で示すように熱媒流路40を循環し、コンデンサ22、補助加熱器43によって加熱される。加熱された熱媒は、ヒータコア42の内部を流れて送風空気を加熱する。   On the other hand, in the heating cycle 4, the heat medium circulates through the heat medium flow path 40 as indicated by solid line arrows in FIG. 1 and is heated by the condenser 22 and the auxiliary heater 43. The heated heat medium flows through the heater core 42 to heat the blown air.

HVACユニット5では、ヒータコア42を通過して加熱された送風空気が図1に白抜き矢印で示すように車室内に送られ、暖房が行われる。   In the HVAC unit 5, the blown air heated through the heater core 42 is sent to the vehicle interior as shown by the white arrow in FIG. 1 to perform heating.

<冷房モード>
冷房モードでは、第1開閉弁29及び第3開閉弁31が開かれるとともに、第2開閉弁30が閉じられる。これにより、圧縮機21で圧縮されて高温になった冷媒は、室外熱交換器23へと送られる。室外熱交換器23では、冷媒の熱が外気に放熱される。室外熱交換器23を通過した冷媒は、第2膨張弁28を通って減圧膨張することでさらに低温となってエバポレータ25に送られる。エバポレータ25では、低温となった冷媒によって送風空気が冷却される。エバポレータ25を通過することで蒸発してガス状となった冷媒は、内部熱交換器60を通過することで加熱された後、アキュムレータ26を介して圧縮機21に送られて循環する。こうして、冷凍サイクル2では循環する冷媒が車室内に送られる送風空気の熱を吸収して外気に放熱するヒートポンプ運転が行われる。
<Cooling mode>
In the cooling mode, the first on-off valve 29 and the third on-off valve 31 are opened, and the second on-off valve 30 is closed. As a result, the refrigerant that has been compressed by the compressor 21 to a high temperature is sent to the outdoor heat exchanger 23. In the outdoor heat exchanger 23, the heat of the refrigerant is radiated to the outside air. The refrigerant that has passed through the outdoor heat exchanger 23 is expanded under reduced pressure through the second expansion valve 28, and is further cooled to be sent to the evaporator 25. In the evaporator 25, the blown air is cooled by the low-temperature refrigerant. The refrigerant evaporated and gasified by passing through the evaporator 25 is heated by passing through the internal heat exchanger 60 and then sent to the compressor 21 via the accumulator 26 and circulated. Thus, in the refrigeration cycle 2, a heat pump operation is performed in which the circulating refrigerant absorbs the heat of the blown air sent into the passenger compartment and dissipates heat to the outside air.

HVACユニット5では、エバポレータ25を通過して冷却された送風空気が車室内に送られ、冷房が行われる。   In the HVAC unit 5, the blown air cooled by passing through the evaporator 25 is sent into the passenger compartment, and cooling is performed.

なお、エバポレータ25で空気を冷却することによって空気中の水蒸気を凝縮させ取り除いた後、ヒータコア42で再加熱することによって、除湿風を得ることもできる(除湿暖房モード)。   It is also possible to obtain dehumidified air by cooling the air with the evaporator 25 to condense and remove water vapor in the air and then reheating with the heater core 42 (dehumidifying heating mode).

圧縮機21の吐出側の冷媒流路20には、吐出圧センサ11が設置される。吐出圧センサ11は、圧縮機21によって圧縮された冷媒の圧力Pを検出する。   A discharge pressure sensor 11 is installed in the refrigerant flow path 20 on the discharge side of the compressor 21. The discharge pressure sensor 11 detects the pressure P of the refrigerant compressed by the compressor 21.

室外熱交換器23の出口付近の冷媒流路20には、室外熱交換器出口温度センサ12が設置される。室外熱交換器出口温度センサ12は、室外熱交換器23を通過した冷媒の温度を検出する。なお、室外熱交換器出口温度センサ12は、室外熱交換器23の出口に設置されてもよい。   An outdoor heat exchanger outlet temperature sensor 12 is installed in the refrigerant flow path 20 near the outlet of the outdoor heat exchanger 23. The outdoor heat exchanger outlet temperature sensor 12 detects the temperature of the refrigerant that has passed through the outdoor heat exchanger 23. The outdoor heat exchanger outlet temperature sensor 12 may be installed at the outlet of the outdoor heat exchanger 23.

HVACユニット5内におけるエバポレータ25の下流側には、エバポレータ温度センサ13が設置される。エバポレータ温度センサ13は、エバポレータ25を通過した送風空気の温度Tを検出する。なお、エバポレータ温度センサ13は、エバポレータ25の内部に設置されてもよい。   An evaporator temperature sensor 13 is installed on the downstream side of the evaporator 25 in the HVAC unit 5. The evaporator temperature sensor 13 detects the temperature T of the blown air that has passed through the evaporator 25. Note that the evaporator temperature sensor 13 may be installed inside the evaporator 25.

水温センサ14は、補助加熱器43の出口付近の熱媒流路40に設置され、補助加熱器43を通過した熱媒の温度Twを検出する。   The water temperature sensor 14 is installed in the heat medium flow path 40 near the outlet of the auxiliary heater 43 and detects the temperature Tw of the heat medium that has passed through the auxiliary heater 43.

図2は、コントローラ10に係る電気回路の構成を示すブロック図である。コントローラ10は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などによって構成され、ROMに記憶されたプログラムをCPUによって読み出すことで、空調装置1に各種機能を発揮させる。コントローラ10には、各種センサ11〜17、及び温度設定器18からの信号が入力される。コントローラ10は、入力された信号に基づいて、補助加熱器43、圧縮機21、ウォータポンプ41、ブロワ52、第1開閉弁29、第2開閉弁30、第3開閉弁31、及びエアミックスドア53の作動をそれぞれ制御する。   FIG. 2 is a block diagram illustrating a configuration of an electric circuit according to the controller 10. The controller 10 is configured by a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and by the CPU reading out a program stored in the ROM, the air conditioner 1 performs various functions. Let Signals from various sensors 11 to 17 and the temperature setting device 18 are input to the controller 10. Based on the input signal, the controller 10 includes an auxiliary heater 43, a compressor 21, a water pump 41, a blower 52, a first on-off valve 29, a second on-off valve 30, a third on-off valve 31, and an air mix door. Each operation of 53 is controlled.

コントローラ10は、暖房モードにおいて、加熱サイクル4を循環する熱媒の温度Twを目標熱媒温度Twoに近づけるように補助加熱器43の出力をフィードバック制御し(図5参照)、かつ、熱媒の温度Twを目標熱媒温度Twoに近づけるように冷凍サイクル2(圧縮機21)の出力をフィードバック制御する(図6参照)。   In the heating mode, the controller 10 feedback-controls the output of the auxiliary heater 43 so that the temperature Tw of the heat medium circulating in the heating cycle 4 approaches the target heat medium temperature Two (see FIG. 5), and the heat medium The output of the refrigeration cycle 2 (compressor 21) is feedback controlled so that the temperature Tw approaches the target heat medium temperature Two (see FIG. 6).

図3の図表に示すように、コントローラ10では、補助加熱器43及び冷凍サイクル2の出力制御に用いられる目標値として、演算上の目標吹き出し温度Ttarget、制御上の目標吹き出し温度To、目標熱媒温度Two、及び目標冷媒圧力Poがそれぞれ設定される。   As shown in the chart of FIG. 3, in the controller 10, as a target value used for output control of the auxiliary heater 43 and the refrigeration cycle 2, a calculation target blow temperature Ttarget, a control target blow temperature To, a target heat medium A temperature Two and a target refrigerant pressure Po are set.

演算上の目標吹き出し温度Ttargetは、HVACユニット5から車室内に送風される空気の吹き出し温度Tの目標値である。目標吹き出し温度Ttargetは、外気温度センサ15により検出される外気温度、室内温度センサ16により検出される室内温度、及び日射センサ17により検出される日射量に応じて、車室内の温度を温度設定器18によって設定された温度に維持するように設定される。   The calculated target blowing temperature Ttarget is a target value of the blowing temperature T of air blown from the HVAC unit 5 into the vehicle interior. The target blowing temperature Ttarget is a temperature setting device that sets the temperature in the vehicle interior in accordance with the outside air temperature detected by the outside air temperature sensor 15, the room temperature detected by the room temperature sensor 16, and the amount of solar radiation detected by the solar radiation sensor 17. 18 is set to maintain the temperature set by.

制御上の目標吹き出し温度Toは、目標吹き出し温度Ttargetに所定の上限値(例えば60℃)が設定された値である。この上限値60℃は、後述するように、圧縮機21による冷媒の圧縮比が上限値を超えないように設定される。   The target blowout temperature To in control is a value in which a predetermined upper limit value (for example, 60 ° C.) is set to the target blowout temperature Ttarget. The upper limit 60 ° C. is set so that the refrigerant compression ratio by the compressor 21 does not exceed the upper limit, as will be described later.

目標熱媒温度Twoは、加熱サイクル4を循環する熱媒の温度の目標値である。目標熱媒温度Twoは、下記数式(1)に基づき、目標吹き出し温度Toに応じて算出される。
Two = To + Cw …(1)
The target heat medium temperature Two is a target value of the temperature of the heat medium circulating in the heating cycle 4. The target heat medium temperature Two is calculated according to the target blowing temperature To based on the following mathematical formula (1).
Two = To + Cw (1)

但し、Cwは定数であり、例えば2℃に設定される。目標吹き出し温度Toの上限値が60℃に設定されているため、目標熱媒温度Twoの上限値は62℃に設定される。   However, Cw is a constant and is set to 2 ° C., for example. Since the upper limit value of the target blowing temperature To is set to 60 ° C., the upper limit value of the target heat medium temperature Two is set to 62 ° C.

目標冷媒圧力Poは、圧縮機21から吐出される冷媒の圧力Pの目標値である。目標冷媒圧力Poは、コンデンサ22に流入する冷媒の飽和温度の目標値Trefoになる圧力である。目標冷媒温度Trefoは、下記数式(2)に基づき、目標熱媒温度Two(目標吹き出し温度To)に応じて算出される。
Trefo = Two + Cref …(2)
The target refrigerant pressure Po is a target value of the pressure P of the refrigerant discharged from the compressor 21. The target refrigerant pressure Po is a pressure at which the saturation value of the refrigerant flowing into the capacitor 22 becomes the target value Trefo. The target refrigerant temperature Trefo is calculated according to the target heat medium temperature Two (target blowing temperature To) based on the following mathematical formula (2).
Tref0 = Two + Cref (2)

但し、Crefは定数であり、例えば5℃に設定される。目標熱媒温度Twoは62℃に設定されているため、目標冷媒温度(目標冷媒圧力)の目標値Trefoの上限値は67℃に設定される。   However, Cref is a constant and is set to 5 ° C., for example. Since the target heat medium temperature Two is set to 62 ° C., the upper limit value of the target value Trefo for the target refrigerant temperature (target refrigerant pressure) is set to 67 ° C.

なお、吐出圧センサ11の検出値Pに応じて冷凍サイクル2の運転をフィードバック制御する構成に限らず、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ(図示省略)を設け、吐出温度センサの検出値に応じて冷凍サイクル2の運転をフィードバック制御する構成としてもよい。   In addition, not only the structure which feedback-controls the driving | operation of the refrigerating cycle 2 according to the detected value P of the discharge pressure sensor 11, but the discharge temperature sensor (illustration omitted) which detects the temperature of the refrigerant | coolant discharged from the compressor 21 is provided, It is good also as a structure which feedback-controls the driving | operation of the refrigerating cycle 2 according to the detected value of a discharge temperature sensor.

ところで、冷媒温度Trefが所定値(例えば67℃)を超えて高まる運転時には、圧縮機21による冷媒の圧縮比が上限値を超えて過度に高くなるため、冷凍サイクル2の効率(入力に対する暖房能力の比)が補助加熱器43の効率より低下する低効率状態になる。   By the way, at the time of the driving | running which the refrigerant | coolant temperature Tref rises exceeding predetermined value (for example, 67 degreeC), since the compression ratio of the refrigerant | coolant by the compressor 21 exceeds an upper limit and becomes high too much, efficiency of the refrigerating cycle 2 (heating capacity with respect to input) Ratio) is lower than the efficiency of the auxiliary heater 43.

そこで、コントローラ10では、圧縮機21による冷媒の圧縮比が上限値を超えないように、冷媒温度Tref(冷媒の圧力)の目標値Trefoの上限値が67℃に設定される。この目標値Trefoとの関係で、目標吹き出し温度Ttargetの上限値(60℃)、目標熱媒温度Twoの上限値(62℃)が設定される。これにより、空調装置1は、圧縮機21による冷媒の圧縮比が過度に高くなる低効率状態で運転されることが回避される。   Therefore, in the controller 10, the upper limit value of the target value Tref of the refrigerant temperature Tref (refrigerant pressure) is set to 67 ° C. so that the refrigerant compression ratio by the compressor 21 does not exceed the upper limit value. In relation to the target value Trefo, an upper limit value (60 ° C.) of the target blowing temperature Ttarget and an upper limit value (62 ° C.) of the target heat medium temperature Two are set. Thereby, the air conditioner 1 is avoided from being operated in a low efficiency state in which the refrigerant compression ratio by the compressor 21 becomes excessively high.

次に、コントローラ10が実行する空調装置1の運転モードを切り換えるルーチンについて、図4のフローチャートを用いて説明する。この制御ルーチンは、車両のイグニッションスイッチ(図示省略)がオンにされてコントローラ10に電源が供給されることでスタートし、所定周期毎に実行される。   Next, a routine for switching the operation mode of the air conditioner 1 executed by the controller 10 will be described with reference to the flowchart of FIG. This control routine starts when an ignition switch (not shown) of the vehicle is turned on and power is supplied to the controller 10, and is executed at predetermined intervals.

まず、ステップS101では、空調装置1を作動させる空調スイッチ(図示省略)がオンにされているか否かを判定する。ここで空調スイッチがオフであると判定された場合には、ステップS102に進み、補助加熱器43の運転を禁止する。続いて、ステップS103に進み、冷凍サイクル2の運転を禁止する。続いて、ステップS104に進み、空調OFFモードに切り換える。こうして、空調装置1の運転が停止された状態が保たれる。   First, in step S101, it is determined whether or not an air conditioning switch (not shown) for operating the air conditioner 1 is turned on. If it is determined that the air conditioning switch is off, the process proceeds to step S102 and the operation of the auxiliary heater 43 is prohibited. Then, it progresses to step S103 and the driving | operation of the refrigerating cycle 2 is prohibited. Then, it progresses to step S104 and switches to air-conditioning OFF mode. Thus, the state where the operation of the air conditioner 1 is stopped is maintained.

一方、ステップS101で空調スイッチがオンであると判定された場合には、ステップS105に進み、演算上の目標吹き出し温度Ttargetを、外気温度センサ15、室内温度センサ16、及び日射センサ17の検出値に応じて算出する。   On the other hand, if it is determined in step S101 that the air conditioning switch is on, the process proceeds to step S105, and the calculated target blowing temperature Ttarget is detected by the outside air temperature sensor 15, the indoor temperature sensor 16, and the solar radiation sensor 17. Calculate according to

続いて、ステップS106〜108に進み、目標吹き出し温度Ttargetに基づいて制御上の目標吹き出し温度Toを求める。ステップS106にて、目標吹き出し温度Ttargetが上限値60℃を超えていると判定された場合には、ステップS108に進んで、目標吹き出し温度Toを上限値60℃にする。一方、目標吹き出し温度Ttargetが上限値60℃以下と判定された場合には、ステップS107に進んで、目標吹き出し温度ToをTtargetにする。   Subsequently, the process proceeds to steps S106 to S108, and a target blowout temperature To for control is obtained based on the target blowout temperature Ttarget. If it is determined in step S106 that the target blowing temperature Ttarget exceeds the upper limit 60 ° C., the process proceeds to step S108, and the target blowing temperature To is set to the upper limit 60 ° C. On the other hand, when it is determined that the target blowing temperature Ttarget is the upper limit value of 60 ° C. or less, the process proceeds to step S107, and the target blowing temperature To is set to Ttarget.

続いて、ステップS109に進み、設定条件に応じて暖房モードか冷房モードかを判定する。ここで、冷房モードと判定された場合には、ステップS110に進み、空調装置1の運転を冷房モードに切り換える。冷房モードでは、別の制御ルーチン(図示省略)によって冷凍サイクル2が運転され、車室内の冷房が行われる。   Then, it progresses to step S109 and it determines whether it is heating mode or cooling mode according to setting conditions. If it is determined that the cooling mode is selected, the process proceeds to step S110, and the operation of the air conditioner 1 is switched to the cooling mode. In the cooling mode, the refrigeration cycle 2 is operated by another control routine (not shown), and the passenger compartment is cooled.

一方、ステップS109で暖房モードと判定された場合には、ステップS111以降に進み、暖房モードの処理が行われる。   On the other hand, when it determines with heating mode in step S109, it progresses to step S111 and after and the process of heating mode is performed.

暖房モードでは、まず、ステップS111に進み、空調装置1の運転を停止させる空調OFFモードから空調装置1を運転させる空調ONモードに切り換えられる暖房開始時か否かを判定する。ここで、暖房開始時と判定された場合には、ステップS112に進み、補助加熱器43の運転を許可する。続いて、ステップS113に進み、冷凍サイクル2の運転を許可する。   In the heating mode, first, the process proceeds to step S111, and it is determined whether or not the heating is started to be switched from the air conditioning OFF mode in which the operation of the air conditioning apparatus 1 is stopped to the air conditioning ON mode in which the air conditioning apparatus 1 is operated. Here, when it is determined that the heating is started, the process proceeds to step S112, and the operation of the auxiliary heater 43 is permitted. Then, it progresses to step S113 and the driving | operation of the refrigerating cycle 2 is permitted.

一方、ステップS111にて既に暖房が開始されている暖房時と判定された場合には、ステップS114に進み、補助加熱器43の運転が許可されていることを判定して、ステップS115に進んで補助加熱器43の運転を制御する(図5参照)。   On the other hand, if it is determined in step S111 that the heating has already started, the process proceeds to step S114, where it is determined that the operation of the auxiliary heater 43 is permitted, and the process proceeds to step S115. The operation of the auxiliary heater 43 is controlled (see FIG. 5).

続いて、ステップS116に進み、圧縮機21の運転が許可されていることを判定して、ステップS117に進んで冷凍サイクル2の運転を制御する(図6参照)。   Subsequently, the process proceeds to step S116, it is determined that the operation of the compressor 21 is permitted, and the process proceeds to step S117 to control the operation of the refrigeration cycle 2 (see FIG. 6).

上記制御ルーチンが実行されることにより、空調装置1は、作動条件に応じて運転モードが切り換えられる。   When the control routine is executed, the operation mode of the air conditioner 1 is switched according to the operating conditions.

次に、コントローラ10が実行する補助加熱器43の出力を制御するルーチンについて、図5のフローチャートを用いて説明する。この制御ルーチンが、熱媒の温度Twが目標熱媒温度Twoになるように補助加熱器43を運転させる補助加熱器制御手段に相当する。この制御ルーチンは、所定周期毎に実行される。   Next, a routine for controlling the output of the auxiliary heater 43 executed by the controller 10 will be described with reference to the flowchart of FIG. This control routine corresponds to auxiliary heater control means for operating the auxiliary heater 43 so that the temperature Tw of the heat medium becomes the target heat medium temperature Two. This control routine is executed every predetermined period.

まず、ステップS201では、制御上の目標吹き出し温度Toから目標熱媒温度Twoを前記数式(1)に基づいて算出する(図3参照)。   First, in step S201, the target heating medium temperature Two is calculated from the control target blowing temperature To based on the mathematical formula (1) (see FIG. 3).

続いて、ステップS202に進み、目標熱媒温度Twoと熱媒温度Twとの差ΔTを下記数式(3)に基づいて算出する。
ΔT = Two − Tw …(3)
Then, it progresses to step S202 and calculates difference (DELTA) T of target heat-medium temperature Two and heat-medium temperature Tw based on following Numerical formula (3).
ΔT = Two−Tw (3)

続いて、ステップS203に進み、演算上の目標出力Dtargetを下記数式(4)に基づいて算出する。
Dtarget = Kpw*ΔT + Kiw*ΔT + EEw …(4)
Subsequently, the process proceeds to step S203, and a calculation target output Dtarget is calculated based on the following mathematical formula (4).
Dtarget = Kpw * ΔT + Kiw * ΔT + EEw (4)

但し、Kpwは比例係数であり、Kiwは積分係数であり、EEwは前回までの積算積分項である。   Here, Kpw is a proportional coefficient, Kiw is an integral coefficient, and EEw is an integral integral term up to the previous time.

続いて、ステップS204に進み、今回の積算積分項EEwを下記数式(5)に基づいて、前回までの積算積分項に上書きする。
EEw = Kiw*ΔT + EEw …(5)
Subsequently, the process proceeds to step S204, where the current integral integral term EEw is overwritten on the previous integral integral term based on the following equation (5).
EEw = Kiw * ΔT + EEw (5)

上記制御ルーチンが実行されることにより、熱媒の温度Twが目標熱媒温度Twoに次第に近づくように、補助加熱器43の出力がフィードバック制御される。   By executing the control routine, the output of the auxiliary heater 43 is feedback-controlled so that the temperature Tw of the heat medium gradually approaches the target heat medium temperature Two.

次に、コントローラ10が実行する冷凍サイクル2(圧縮機21)の出力を制御するルーチンについて、図6のフローチャートを用いて説明する。この制御ルーチンが熱媒の温度Twが目標熱媒温度Twoになるように冷凍サイクル2を運転させる冷凍サイクル制御手段に相当する。この制御ルーチンは、所定周期毎に実行される。   Next, a routine for controlling the output of the refrigeration cycle 2 (compressor 21) executed by the controller 10 will be described with reference to the flowchart of FIG. This control routine corresponds to a refrigeration cycle control means for operating the refrigeration cycle 2 so that the temperature Tw of the heat medium becomes the target heat medium temperature Two. This control routine is executed every predetermined period.

まず、ステップS301では、制御上の目標吹き出し温度Toから目標熱媒温度Trefoを前記数式(2)に基づいて算出する(図3参照)。   First, in step S301, the target heat medium temperature Trefo is calculated from the control target blowing temperature To based on the mathematical formula (2) (see FIG. 3).

続いて、ステップS302に進み、目標冷媒温度Trefoから目標冷媒圧力Poを算出する。   Subsequently, the process proceeds to step S302, and the target refrigerant pressure Po is calculated from the target refrigerant temperature Trefo.

続いて、ステップS303に進み、目標冷媒圧力Poと吐出圧センサ11によって検出される吐出冷媒圧力Pdとの差ΔTを下記数式(6)に基づいて算出する。
ΔT = Po − Pd …(6)
Subsequently, the process proceeds to step S303, and a difference ΔT between the target refrigerant pressure Po and the discharge refrigerant pressure Pd detected by the discharge pressure sensor 11 is calculated based on the following formula (6).
ΔT = Po−Pd (6)

続いて、ステップS304に進み、演算上の目標回転速度Rtargetが下記数式(7)に基づいて算出する。
Rtarget = Kpp*ΔP + Kip*ΔP + EEp …(7)
Subsequently, the process proceeds to step S304, where the calculated target rotational speed Rtarget is calculated based on the following mathematical formula (7).
Rtarget = Kpp * ΔP + Kip * ΔP + EEp (7)

但し、Kppは比例係数であり、Kipは積分係数であり、EEpは前回までの積算積分項である。   However, Kpp is a proportional coefficient, Kip is an integral coefficient, and EEp is an integral integral term up to the previous time.

続いて、ステップS304に進み、今回の積算積分項EEwを下記数式(8)に基づいて、前回までの積算積分項に上書きする。
EEp = Kip*ΔP + EEp …(8)
Subsequently, the process proceeds to step S304, in which the current integral integral term EEw is overwritten on the previous integral integral term based on the following formula (8).
EEp = Kip * ΔP + EEp (8)

上記制御ルーチンが実行されることにより、熱媒の温度Twが目標熱媒温度Twoに近づくように、圧縮機21の回転速度(出力)が制御される。   By executing the control routine, the rotation speed (output) of the compressor 21 is controlled so that the temperature Tw of the heat medium approaches the target heat medium temperature Two.

次に、図7のタイムチャートを用いて、空調装置1が低外気温時に運転を開始する場合に行われる作動について説明する。   Next, an operation performed when the air conditioner 1 starts operation at a low outside air temperature will be described using the time chart of FIG.

タイムチャートの時刻t0において、暖房モードで空調装置1の運転が開始される。この運転開始時には、送風空気の吹き出し温度Tと熱媒温度Twとの両方が低いため、高い暖房能力が必要とされる。この状況に対応して、演算上の目標吹き出し温度Ttargetは上限値60℃を超えて高い値になるように設定されているが、制御上の目標吹き出し温度Toは上限値60℃になり、目標熱媒温度Twoは上限値62℃になる(図3参照)。   At time t0 in the time chart, the operation of the air conditioner 1 is started in the heating mode. At the start of this operation, since both the blown air blowing temperature T and the heat medium temperature Tw are low, a high heating capacity is required. Corresponding to this situation, the calculation target blowing temperature Ttarget is set to be higher than the upper limit 60 ° C., but the control target blowing temperature To becomes the upper limit 60 ° C., and the target The heating medium temperature Two becomes an upper limit 62 ° C. (see FIG. 3).

時刻t0以降の運転開始後の運転時では、熱媒の温度Twが目標値Twoより低く、冷媒温度Trefが目標値Trefoより低いため、補助加熱器43及び冷凍サイクル2が運転される高出力モードによる運転が行われる。この高出力モードでは、加熱サイクル4を循環する熱媒が補助加熱器43と冷凍サイクル2との両方によって加熱されることにより、熱媒に与える熱量が高められ、暖房が急速に行われる。   In the operation after the start of operation after time t0, since the temperature Tw of the heat medium is lower than the target value Two and the refrigerant temperature Tref is lower than the target value Trefo, the high output mode in which the auxiliary heater 43 and the refrigeration cycle 2 are operated. Driving is performed. In this high output mode, the heat medium circulating in the heating cycle 4 is heated by both the auxiliary heater 43 and the refrigeration cycle 2, whereby the amount of heat given to the heat medium is increased and heating is performed rapidly.

高出力モードでは、熱媒温度Twが所定値を超えて上昇するのに伴って、目標吹き出し温度To及び目標熱媒温度Twoが次第に低下する。このときに、補助加熱器43の出力が減少し、冷凍サイクル2の出力分担分が次第に増加する。   In the high output mode, the target blowing temperature To and the target heating medium temperature Two gradually decrease as the heating medium temperature Tw increases beyond a predetermined value. At this time, the output of the auxiliary heater 43 decreases and the output share of the refrigeration cycle 2 gradually increases.

時刻t1において、熱媒温度Twが目標熱媒温度Twoに達すると、補助加熱器43が停止され、冷凍サイクル2のみが運転される高効率モードに切り換えられる。この高効率モードでは、補助加熱器43に比べて効率が高い冷凍サイクル2のみが運転されることにより、消費電力を抑えて暖房が行われる。   When the heat medium temperature Tw reaches the target heat medium temperature Two at time t1, the auxiliary heater 43 is stopped and switched to the high efficiency mode in which only the refrigeration cycle 2 is operated. In this high efficiency mode, only the refrigeration cycle 2 having higher efficiency than the auxiliary heater 43 is operated, so that heating is performed while suppressing power consumption.

高効率モードでは、時刻t2において、熱媒温度Twが上限値(62℃)に達するが、その後、熱媒温度Twが上限値(62℃)を超えないように、冷凍サイクル2の運転がフィードバック制御される。   In the high efficiency mode, the heating medium temperature Tw reaches the upper limit value (62 ° C.) at time t2, but thereafter the operation of the refrigeration cycle 2 is fed back so that the heating medium temperature Tw does not exceed the upper limit value (62 ° C.). Be controlled.

以上にように、図7のタイムチャートでは、時刻t0からt1の間で高出力モードによる運転が行われ、時刻t1以降で高効率モードによる運転が行われる。   As described above, in the time chart of FIG. 7, the operation in the high output mode is performed between time t0 and t1, and the operation in the high efficiency mode is performed after time t1.

上記した実施形態に係る空調装置1によれば、以下の効果を得ることができる。   According to the air conditioner 1 according to the above-described embodiment, the following effects can be obtained.

空調装置1は、送風空気を加熱するヒータコア42に熱媒を循環させる加熱サイクル4と、電気ヒータによって熱媒を加熱する補助加熱器43と、熱媒を加熱するコンデンサ22に圧縮機21から吐出される冷媒を循環させる冷凍サイクル2と、冷凍サイクル2及び補助加熱器43の運転を制御するコントローラ10と、を備える。そして、コントローラ10は、熱媒の温度Twが目標熱媒温度Twoになるように冷凍サイクル2を運転させる冷凍サイクル制御手段と、熱媒の温度Twが目標熱媒温度Twoになるように補助加熱器43を運転させる補助加熱器制御手段と、を備える。そして、補助加熱器制御手段は、冷凍サイクル2による加熱のみで熱媒の温度Twが目標熱媒温度Twoに達する熱量が得られる場合に補助加熱器43の運転を停止させる構成とする。   The air conditioner 1 discharges from the compressor 21 to a heating cycle 4 that circulates a heating medium in a heater core 42 that heats blown air, an auxiliary heater 43 that heats the heating medium by an electric heater, and a capacitor 22 that heats the heating medium. The refrigeration cycle 2 for circulating the refrigerant to be circulated and the controller 10 for controlling the operation of the refrigeration cycle 2 and the auxiliary heater 43 are provided. The controller 10 includes a refrigeration cycle control means for operating the refrigeration cycle 2 so that the temperature Tw of the heat medium becomes the target heat medium temperature Two, and auxiliary heating so that the temperature Tw of the heat medium becomes the target heat medium temperature Two. Auxiliary heater control means for operating the heater 43. Then, the auxiliary heater control means is configured to stop the operation of the auxiliary heater 43 when the amount of heat at which the temperature Tw of the heat medium reaches the target heat medium temperature Two is obtained only by heating by the refrigeration cycle 2.

上記構成に基づき、空調装置1によれば、熱媒の温度Twが上昇する過程で、熱媒の温度Twが低いときに、冷凍サイクル2による加熱のみで熱媒の温度Twが所定時間内で目標熱媒温度Twoに達するのに必要な熱量が不足する場合には、補助加熱器43及び冷凍サイクル2が運転される。これにより、熱媒に与える熱量が高められ、暖房が急速に行われる。熱媒の温度Twが上昇するのに伴って、冷凍サイクル2による加熱のみで熱媒の温度Twが所定時間内で目標熱媒温度Twoに達するのに必要な熱量が足りる場合には、補助加熱器43の運転が停止されて冷凍サイクル2のみが運転され、消費電力が抑えられる。こうして、空調装置1は、暖房が急速に行われた後に、暖房が効率よく行われる。   Based on the above configuration, according to the air conditioner 1, in the process of increasing the temperature Tw of the heat medium, when the temperature Tw of the heat medium is low, the temperature Tw of the heat medium is within a predetermined time only by heating by the refrigeration cycle 2. When the amount of heat necessary to reach the target heat medium temperature Two is insufficient, the auxiliary heater 43 and the refrigeration cycle 2 are operated. Thereby, the amount of heat given to the heat medium is increased, and heating is performed rapidly. If the heat medium temperature Tw rises and the amount of heat necessary for the heat medium temperature Tw to reach the target heat medium temperature Two within a predetermined time is sufficient only by heating by the refrigeration cycle 2, auxiliary heating is performed. The operation of the vessel 43 is stopped and only the refrigeration cycle 2 is operated, so that power consumption is suppressed. Thus, the air conditioner 1 is efficiently heated after being heated rapidly.

また、コントローラ10は、送風空気の目標吹き出し温度Toに応じて目標熱媒温度Twoを算出する目標熱媒温度算出手段と、目標熱媒温度Twoに応じて目標冷媒温度Trefoを算出する目標冷媒温度算出手段と、を備える。そして、冷凍サイクル制御手段は、圧縮機21から吐出される冷媒の温度Tref(冷媒の圧力)を目標冷媒温度Trefoに近づけるように冷凍サイクル2の運転を制御し、補助加熱器制御手段は、熱媒の温度Twを目標熱媒温度Twoに近づけるように補助加熱器43の運転を制御する構成とする。   Further, the controller 10 calculates a target heat medium temperature calculating means for calculating the target heat medium temperature Two according to the target blowing temperature To of the blown air, and a target refrigerant temperature for calculating the target refrigerant temperature Trefo according to the target heat medium temperature Two. Calculating means. The refrigeration cycle control means controls the operation of the refrigeration cycle 2 so that the refrigerant temperature Tref (refrigerant pressure) discharged from the compressor 21 approaches the target refrigerant temperature Trefo, and the auxiliary heater control means The operation of the auxiliary heater 43 is controlled so that the medium temperature Tw approaches the target heat medium temperature Two.

上記構成に基づき、空調装置1は、冷媒温度Tref(冷媒の圧力)に応じて冷凍サイクル2が運転されるとともに、熱媒温度Twに応じて補助加熱器43が運転されることにより、作動条件に応じて暖房が効率よく行われる。   Based on the above configuration, the air conditioner 1 operates according to the operating condition by operating the refrigeration cycle 2 according to the refrigerant temperature Tref (refrigerant pressure) and operating the auxiliary heater 43 according to the heat medium temperature Tw. Depending on the situation, heating is performed efficiently.

また、目標熱媒温度Twoは、目標冷媒温度Trefoと比較して低い値に設定される。   In addition, the target heat medium temperature Two is set to a value lower than the target refrigerant temperature Trefo.

上記構成に基づき、高出力モードにて送風空気の温度Tが目標吹き出し温度Ttargetに近づくときに、熱媒の温度Twが目標熱媒温度Twoに到達して補助加熱器が停止した後にも冷媒の温度Trefが目標冷媒温度Trefoに到達せず、冷凍サイクル2のみが運転される高効率モードに切り換えられる。   Based on the above configuration, when the temperature T of the blown air approaches the target blowout temperature Ttarget in the high output mode, the refrigerant temperature is increased even after the temperature Tw of the heat medium reaches the target heat medium temperature Two and the auxiliary heater stops. The temperature Tref does not reach the target refrigerant temperature Trefo, and the mode is switched to the high efficiency mode in which only the refrigeration cycle 2 is operated.

また、目標熱媒温度Twoの上限値62℃は、圧縮機21による冷媒の圧縮比が上限値を超えないように設定される。   The upper limit 62 ° C. of the target heat medium temperature Two is set so that the refrigerant compression ratio by the compressor 21 does not exceed the upper limit.

上記構成に基づき、冷凍サイクル2は、圧縮機21による冷媒の圧縮比が上限値を超えないように運転される。これにより、空調装置1は、圧縮機21による冷媒の圧縮比が過度に高くなって冷凍サイクル2の効率が低下する低効率状態になることが回避され、低い消費電力で運転される。   Based on the above configuration, the refrigeration cycle 2 is operated so that the compression ratio of the refrigerant by the compressor 21 does not exceed the upper limit value. Thus, the air conditioner 1 is prevented from entering a low efficiency state in which the refrigerant compression ratio by the compressor 21 becomes excessively high and the efficiency of the refrigeration cycle 2 is reduced, and is operated with low power consumption.

また、コントローラ10は、熱媒の温度Twが上昇する過程で、補助加熱器43及び冷凍サイクル2が運転される高出力モードに切り換えられた後に、補助加熱器43の運転が停止されて冷凍サイクル2のみが運転される高効率モードに切り換えられる構成とする。   Further, the controller 10 is switched to the high output mode in which the auxiliary heater 43 and the refrigeration cycle 2 are operated in the process of increasing the temperature Tw of the heat medium, and then the operation of the auxiliary heater 43 is stopped and the refrigeration cycle. The high-efficiency mode in which only 2 is operated is switched.

上記構成に基づき、空調装置1によれば、急速暖房が要求される暖房初期に、高出力モードによって暖房が急速に行われる。これにより、熱媒の温度Twが十分に上昇した後に、高効率モードに切り換えられる。これにより、急速暖房が終了した通常暖房時における消費電力が抑えられる。   Based on the above configuration, according to the air conditioner 1, heating is rapidly performed in the high output mode in the early heating stage where rapid heating is required. Thereby, after the temperature Tw of the heat medium has sufficiently increased, the mode is switched to the high efficiency mode. Thereby, the power consumption at the time of the normal heating after the rapid heating is completed is suppressed.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。   The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.

本発明は、車両に搭載される空調装置として好適であるが、車両以外に使用される空調装置にも適用できる。   The present invention is suitable as an air conditioner mounted on a vehicle, but can also be applied to an air conditioner used other than a vehicle.

1 空調装置
2 冷凍サイクル
4 加熱サイクル
10 コントローラ
21 圧縮機
22 コンデンサ
42 ヒータコア
43 補助加熱器
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Refrigeration cycle 4 Heating cycle 10 Controller 21 Compressor 22 Condenser 42 Heater core 43 Auxiliary heater

Claims (5)

空調装置であって、
送風空気を加熱するヒータコアに熱媒を循環させる加熱サイクルと、
電気ヒータによって熱媒を加熱する補助加熱器と、
熱媒を加熱するコンデンサに圧縮機から吐出される冷媒を循環させる冷凍サイクルと、
熱媒の温度が目標熱媒温度になるように前記冷凍サイクルを運転させる冷凍サイクル制御手段と、
熱媒の温度が前記目標熱媒温度になるように前記補助加熱器を運転させる補助加熱器制御手段と、を備え、
前記補助加熱器制御手段は、前記冷凍サイクルによる加熱のみで熱媒の温度が前記目標熱媒温度に達する熱量が得られる場合に前記補助加熱器の運転を停止させることを特徴とする空調装置。
An air conditioner,
A heating cycle in which a heat medium is circulated in a heater core that heats blown air;
An auxiliary heater that heats the heating medium with an electric heater;
A refrigeration cycle in which a refrigerant discharged from the compressor is circulated through a condenser that heats the heat medium;
Refrigeration cycle control means for operating the refrigeration cycle so that the temperature of the heat medium becomes a target heat medium temperature;
An auxiliary heater control means for operating the auxiliary heater so that the temperature of the heat medium becomes the target heat medium temperature,
The auxiliary heater control means stops the operation of the auxiliary heater when the amount of heat at which the temperature of the heat medium reaches the target heat medium temperature is obtained only by heating by the refrigeration cycle.
請求項1に記載の空調装置であって、
作動条件に応じて設定される送風空気の目標吹き出し温度に応じて前記目標熱媒温度を算出する目標熱媒温度算出手段と、
前記目標熱媒温度に応じて目標冷媒温度を算出する目標冷媒温度算出手段と、を更に備え、
前記冷凍サイクル制御手段は、前記圧縮機から吐出される冷媒の温度を前記目標冷媒温度に近づけるように前記冷凍サイクルの運転を制御し、
前記補助加熱器制御手段は、熱媒の温度を前記目標熱媒温度に近づけるように前記補助加熱器の運転を制御することを特徴とする空調装置。
The air conditioner according to claim 1,
Target heat medium temperature calculating means for calculating the target heat medium temperature according to the target blowing temperature of the blown air set according to the operating condition;
A target refrigerant temperature calculation means for calculating a target refrigerant temperature according to the target heat medium temperature,
The refrigeration cycle control means controls the operation of the refrigeration cycle so that the temperature of the refrigerant discharged from the compressor approaches the target refrigerant temperature,
The auxiliary heater control means controls the operation of the auxiliary heater so that the temperature of the heating medium approaches the target heating medium temperature.
請求項2に記載の空調装置であって、
前記目標熱媒温度は、前記目標冷媒温度と比較して低い値に設定されることを特徴とする空調装置。
The air conditioner according to claim 2,
The target heat medium temperature is set to a value lower than the target refrigerant temperature.
請求項2又は3に記載の空調装置であって、
前記目標熱媒温度の上限値は、前記圧縮機による冷媒の圧縮比が上限値を超えないように設定されることを特徴とする空調装置。
The air conditioner according to claim 2 or 3,
The upper limit value of the target heat medium temperature is set so that the refrigerant compression ratio by the compressor does not exceed the upper limit value.
請求項1から4のいずれか一つに記載の空調装置であって、
熱媒の温度が上昇する過程で、前記補助加熱器及び前記冷凍サイクルが運転される高出力モードに切り換えられた後に、前記補助加熱器の運転が停止されて前記冷凍サイクルのみが運転される高効率モードに切り換えられることを特徴とする空調装置。
The air conditioner according to any one of claims 1 to 4,
In the process of increasing the temperature of the heating medium, after the auxiliary heater and the refrigeration cycle are switched to the high output mode in which the operation is performed, the operation of the auxiliary heater is stopped and only the refrigeration cycle is operated. An air conditioner that can be switched to an efficiency mode.
JP2016049860A 2016-03-14 2016-03-14 Air conditioner Pending JP2017165142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016049860A JP2017165142A (en) 2016-03-14 2016-03-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016049860A JP2017165142A (en) 2016-03-14 2016-03-14 Air conditioner

Publications (1)

Publication Number Publication Date
JP2017165142A true JP2017165142A (en) 2017-09-21

Family

ID=59909268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049860A Pending JP2017165142A (en) 2016-03-14 2016-03-14 Air conditioner

Country Status (1)

Country Link
JP (1) JP2017165142A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235412A1 (en) * 2018-06-08 2019-12-12 株式会社デンソー Air conditioner
JP2020152278A (en) * 2019-03-20 2020-09-24 トヨタ自動車株式会社 Thermal demand arbitration apparatus
JP2020157843A (en) * 2019-03-25 2020-10-01 トヨタ自動車株式会社 Calorie control device and calorie control method
CN112744051A (en) * 2020-04-02 2021-05-04 株式会社电装 Automobile heat pump air conditioning system
EP4431320A1 (en) * 2023-03-14 2024-09-18 Renault s.a.s Thermal system for a motor vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952508A (en) * 1995-06-07 1997-02-25 Denso Corp Vehicular air conditioner
JP2003285619A (en) * 2002-03-29 2003-10-07 Calsonic Kansei Corp Air conditioner for vehicle
JP2010013044A (en) * 2008-07-07 2010-01-21 Calsonic Kansei Corp Air-conditioning system for vehicle
JP2012176658A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning system for vehicle
US20150052913A1 (en) * 2013-08-26 2015-02-26 Ford Global Technologies, Llc Climate Control System
JP2015203394A (en) * 2014-04-16 2015-11-16 トヨタ自動車株式会社 Vehicle and control method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952508A (en) * 1995-06-07 1997-02-25 Denso Corp Vehicular air conditioner
JP2003285619A (en) * 2002-03-29 2003-10-07 Calsonic Kansei Corp Air conditioner for vehicle
JP2010013044A (en) * 2008-07-07 2010-01-21 Calsonic Kansei Corp Air-conditioning system for vehicle
JP2012176658A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning system for vehicle
US20150052913A1 (en) * 2013-08-26 2015-02-26 Ford Global Technologies, Llc Climate Control System
JP2015203394A (en) * 2014-04-16 2015-11-16 トヨタ自動車株式会社 Vehicle and control method of the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095419B2 (en) 2018-06-08 2022-07-05 株式会社デンソー Air conditioner
JP2019209937A (en) * 2018-06-08 2019-12-12 株式会社デンソー Air conditioner
WO2019235412A1 (en) * 2018-06-08 2019-12-12 株式会社デンソー Air conditioner
JP2020152278A (en) * 2019-03-20 2020-09-24 トヨタ自動車株式会社 Thermal demand arbitration apparatus
JP7176987B2 (en) 2019-03-20 2022-11-22 トヨタ自動車株式会社 Heat demand arbitrator
JP2020157843A (en) * 2019-03-25 2020-10-01 トヨタ自動車株式会社 Calorie control device and calorie control method
JP7152340B2 (en) 2019-03-25 2022-10-12 トヨタ自動車株式会社 Calorie control device and calorie control method
JP7056777B2 (en) 2020-04-02 2022-04-19 株式会社デンソー Vehicle heat pump air conditioning system
JP2021160711A (en) * 2020-04-02 2021-10-11 株式会社デンソー Vehicular heat pump air-conditioning system
US11472262B2 (en) 2020-04-02 2022-10-18 Denso Corporation Heat pump air-conditioning system for vehicle
CN112744051A (en) * 2020-04-02 2021-05-04 株式会社电装 Automobile heat pump air conditioning system
CN112744051B (en) * 2020-04-02 2024-05-10 株式会社电装 Automobile heat pump air conditioning system
EP4431320A1 (en) * 2023-03-14 2024-09-18 Renault s.a.s Thermal system for a motor vehicle
FR3146619A1 (en) * 2023-03-14 2024-09-20 Renault S.A.S. Thermal system for motor vehicle.

Similar Documents

Publication Publication Date Title
JP6554226B2 (en) Air conditioner
US10137758B2 (en) Vehicle air conditioner
US20190030992A1 (en) Heat pump system
JP6633303B2 (en) Vehicle air conditioner
US20080229768A1 (en) Air Conditioner for Vehicle
JP2005263200A (en) Air conditioner for vehicle
JP2001248881A (en) Air conditioner
JP2017165142A (en) Air conditioner
JP6723137B2 (en) Vehicle air conditioner
US9573439B2 (en) Air conditioner for vehicle
CN112606651B (en) Vehicle-mounted temperature adjusting device
JP2017035901A (en) Air conditioner for vehicle
JP2012250708A (en) Vehicle air conditioning apparatus
JP5316264B2 (en) Air conditioner for vehicles
JP2004131033A (en) Air-conditioner
US10933719B2 (en) Vehicle air-conditioning apparatus
JP2014172478A (en) Refrigeration cycle device
JP2018203069A (en) Air conditioner for vehicle
JP2010095229A (en) Air-conditioner for vehicle
JP2016185757A (en) Vehicular air conditioning device
JP2019010994A (en) Air conditioner
JP2019010997A (en) Air conditioner
WO2017014030A1 (en) Air-conditioning apparatus for vehicles
JP2019023034A (en) Air conditioner
JP2010105505A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200721