JP2009209410A - Mixed powder for powder metallurgy, and iron powder sintered compact - Google Patents

Mixed powder for powder metallurgy, and iron powder sintered compact Download PDF

Info

Publication number
JP2009209410A
JP2009209410A JP2008053725A JP2008053725A JP2009209410A JP 2009209410 A JP2009209410 A JP 2009209410A JP 2008053725 A JP2008053725 A JP 2008053725A JP 2008053725 A JP2008053725 A JP 2008053725A JP 2009209410 A JP2009209410 A JP 2009209410A
Authority
JP
Japan
Prior art keywords
powder
mass
mixed
iron
mother
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008053725A
Other languages
Japanese (ja)
Other versions
JP5119006B2 (en
Inventor
Takehiro Tsuchida
武広 土田
Takahiro Kudo
高裕 工藤
Masaaki Sato
正昭 佐藤
Tomoyuki Furuta
智之 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008053725A priority Critical patent/JP5119006B2/en
Publication of JP2009209410A publication Critical patent/JP2009209410A/en
Application granted granted Critical
Publication of JP5119006B2 publication Critical patent/JP5119006B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide mixed powder for powder metallurgy which solves the conventional problems, and can obtain an iron powder sintered compact having excellent strength and toughness, and to provide the iron powder sintered compact. <P>SOLUTION: Disclosed is mixed powder for powder metallurgy obtained by mixing mother powder composed of prealloy type steel powder and powder for alloying. The mother powder is composed of iron powder comprising W and/or V by 0.05 to 1.0 mass% in total, and the balance inevitable impurities, and, in the powder for alloying, regarding the blending mass% in the total mixed powder together with the mother powder, graphite is 0.4 to 1.5 mass%, and Cu powder and/or Ni powder is 1.0 to 8.0 mass% in total. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車用の高強度焼結部材等として好適に用いることができる鉄粉焼結体を得ることができる粉末冶金用混合粉末と、その粉末冶金用混合粉末を圧粉成形し、その後、焼結することにより得られる鉄粉焼結体に関するものである。   The present invention compacts a mixed powder for powder metallurgy capable of obtaining an iron powder sintered body that can be suitably used as a high-strength sintered member for automobiles, and the powder mixed for powder metallurgy. The present invention relates to an iron powder sintered body obtained by sintering.

従来から、鉄粉を主成分とした粉末を圧粉成形し、焼結することにより得られる鉄粉焼結体は、成形しやすいという特徴があるために、自動車をはじめとする様々な機械部品に用いられていたが、鍛造や圧延で製造される鋼材と比較すると強度、耐候性、耐摩耗性等が必ずしも優れていないという実情があった。また、これら強度、耐候性、耐摩耗性等を向上した鉄粉焼結体を得るために、鉄粉に黒鉛(C)やCu等の粉末を混合したり、更には、NiやMoを合金化して強度を向上させたりすることも従来から行われていた。   Conventionally, the iron powder sintered body obtained by compacting and sintering a powder mainly composed of iron powder has a feature that it is easy to mold. However, the strength, weather resistance, wear resistance, and the like are not necessarily superior to steel materials manufactured by forging or rolling. In addition, in order to obtain an iron powder sintered body having improved strength, weather resistance, wear resistance, etc., a powder such as graphite (C) or Cu is mixed with the iron powder, and further, Ni or Mo is alloyed. Conventionally, the strength has been improved.

例えば、特許文献1,2には、合金成分を1.5〜4.5重量%の範囲で含むプレアロイ型鋼粉を母粉とし、この母粉に合金化微粉末や、更にはニッケル粉末を混合した粉末冶金用混合粉末、並びに、この粉末冶金用混合粉末と黒鉛粉末との圧粉成形焼結体よりなる鉄系焼結体が開示されている。   For example, in Patent Documents 1 and 2, prealloy-type steel powder containing an alloy component in the range of 1.5 to 4.5% by weight is used as a mother powder, and alloyed fine powder and further nickel powder are mixed with this mother powder. An iron-based sintered body made of a powdered metallurgical mixed powder and a powder compacted sintered body of the powdered metallurgical mixed powder and graphite powder is disclosed.

また、特許文献3には、NiおよびMoを部分合金化した合金鋼粉に、Ni粉、Cu粉および黒鉛粉を混合した混合粉であって、該混合粉は、部分合金化したNi:0.5〜4wt%、Ni粉:1〜5wt%、Cu粉:0.5〜4wt%および黒鉛粉:0.2〜0.9wt%並びに残部Feおよび不可避的不純物からなるという高強度焼結部品用混合粉が開示されている。   Patent Document 3 discloses a mixed powder in which Ni powder, Cu powder and graphite powder are mixed with alloy steel powder in which Ni and Mo are partially alloyed, and the mixed powder is partially alloyed Ni: 0. .5-4 wt%, Ni powder: 1-5 wt%, Cu powder: 0.5-4 wt%, and graphite powder: 0.2-0.9 wt%, and the balance of Fe and inevitable impurities A mixed powder is disclosed.

更には、特許文献4には、重量比で、Ni:3〜5%、Mo:0.4〜0.7%、残部Feからなる組成の合金粉末に、銅粉を1〜2%、Ni粉を1〜3%、黒鉛を焼結後のC量が0.2〜0.7%になるように配合した混合粉末を、圧縮成形して得た圧粉体を、焼結して鉄系焼結合金を得る鉄系焼結合金の製造方法が開示されている。   Furthermore, Patent Document 4 discloses that, by weight ratio, Ni: 3 to 5%, Mo: 0.4 to 0.7%, and an alloy powder composed of the remaining Fe, copper powder 1 to 2%, Ni The green compact obtained by compression-molding a mixed powder containing 1 to 3% of powder and 0.2 to 0.7% of C after sintering is sintered to iron. A method for producing an iron-based sintered alloy for obtaining an iron-based sintered alloy is disclosed.

しかしながら、これら従来の粉末冶金用混合粉末や鉄粉焼結体の何れもが、得られる鉄粉焼結体の高強度化に主眼をおいて開発されたものであり、鉄粉焼結体の耐衝撃特性(靭性)が低下しやすいという問題を有していた。また、多量の合金成分を含有する母粉を用いることによって、プレス成形での成形体強度が上がりにくくなり、結果的に強度や靭性が向上しないという問題も有していた。更には、高価な金属であるMoやNiを多量に使用するため、コスト高になるという問題もあった。   However, both of these conventional powder metallurgy mixed powders and iron powder sintered bodies have been developed with a focus on increasing the strength of the obtained iron powder sintered bodies. There was a problem that the impact resistance (toughness) was likely to deteriorate. Further, by using a mother powder containing a large amount of alloy components, it has been difficult to increase the strength of the compact in press molding, resulting in a problem that strength and toughness are not improved. Furthermore, since a large amount of expensive metals such as Mo and Ni are used, there is a problem that the cost is increased.

特開平9−59740号公報Japanese Patent Laid-Open No. 9-59740 特開2001−81501号公報JP 2001-81501 A 特開2000−64001号公報JP 2000-640001 A 特開平9−87794号公報JP-A-9-87794

本発明は、上記従来の問題を解決せんとしてなされたもので、強度に優れると共に、耐衝撃特性(靭性)にも優れる鉄粉焼結体を得ることができる粉末冶金用混合粉末と、その鉄粉焼結体を提供することを課題とするものである。   The present invention has been made as a solution to the above-described conventional problems, and is a mixed powder for powder metallurgy capable of obtaining an iron powder sintered body having excellent strength and impact resistance (toughness), and its iron An object of the present invention is to provide a powder sintered body.

請求項1記載の発明は、プレアロイ型鋼粉でなる母粉と合金用粉末を混合した粉末冶金用混合粉末であって、前記母粉は、Wおよび/またはVを合わせて0.05〜1.0質量%含有した鉄粉で、残部は不可避的不純物であると共に、前記合金用粉末は、前記母粉を合わせた全混合粉末中の配合質量%が、グラファイト:0.4〜1.5質量%、Cu粉末および/またはNi粉末を合わせて1.0〜8.0質量%であることを特徴とする粉末冶金用混合粉末である。   The invention according to claim 1 is a mixed powder for powder metallurgy in which a mother powder made of pre-alloyed steel powder and an alloy powder are mixed, and the mother powder is 0.05 to 1. The iron powder containing 0% by mass, the balance being inevitable impurities, and the alloying powder, the compounding mass% in the total mixed powder combined with the mother powder is graphite: 0.4-1.5 mass %, Cu powder and / or Ni powder is 1.0 to 8.0% by mass, and is a mixed powder for powder metallurgy.

請求項2記載の発明は、前記合金用粉末として、更に、全混合粉末中の配合質量%が、0.3〜3.5質量%のMo粉末を含むことを特徴とする請求項1記載の粉末冶金用混合粉末である。   The invention according to claim 2 is characterized in that, as the alloy powder, the blending mass% in the total mixed powder further includes 0.3 to 3.5 mass% of Mo powder. It is a mixed powder for powder metallurgy.

請求項3記載の発明は、請求項1または2記載の粉末冶金用混合粉末を圧縮成形して得た圧粉体を焼結することにより得られることを特徴とする鉄粉焼結体である。   The invention described in claim 3 is an iron powder sintered body obtained by sintering a green compact obtained by compression molding the powder mixture for powder metallurgy described in claim 1 or 2. .

本発明の請求項1記載の粉末冶金用混合粉末によると、プレアロイ型鋼粉中に、Wおよび/またはVを所定量含有することで、そのWやVが、プレアロイ型鋼粉中の不可避的不純物であるCやNと結合して炭化物や窒化物を生成することで圧縮性が向上する。更には、これらの炭化物や窒化物は、焼結する際に結晶粒径の粗大化を抑制して組織を微細化することができ、得られる鉄粉焼結体の強度と耐衝撃特性(靭性)が向上する。また、Cu粉末および/またはNi粉末が配合されるため、強度と靭性のバランスを改善することができる。更には、Cu粉末を所定量含有する場合は、鉄粉焼結体の焼入れ焼戻しといった熱処理を行わずとも強度と靭性を向上させることができる。即ち、本発明の請求項1記載の粉末冶金用混合粉末によれば、強度に優れると共に、耐衝撃特性(靭性)にも優れる鉄粉焼結体を得ることができる。   According to the mixed powder for powder metallurgy according to claim 1 of the present invention, by containing a predetermined amount of W and / or V in the prealloy type steel powder, the W and V are inevitable impurities in the prealloy type steel powder. By combining with certain C or N to produce carbide or nitride, compressibility is improved. Furthermore, these carbides and nitrides can suppress the coarsening of the crystal grain size during sintering and refine the structure, and the strength and impact resistance (toughness) of the resulting iron powder sintered body. ) Will improve. Moreover, since Cu powder and / or Ni powder are mix | blended, the balance of intensity | strength and toughness can be improved. Furthermore, when a predetermined amount of Cu powder is contained, the strength and toughness can be improved without performing heat treatment such as quenching and tempering of the iron powder sintered body. That is, according to the mixed powder for powder metallurgy according to claim 1 of the present invention, an iron powder sintered body having excellent strength and impact resistance (toughness) can be obtained.

本発明の請求項2記載の粉末冶金用混合粉末によると、焼入れ性が向上して得られる鉄粉焼結体の強度が更に向上する。   According to the mixed powder for powder metallurgy according to claim 2 of the present invention, the strength of the iron powder sintered body obtained by improving the hardenability is further improved.

本発明の請求項3記載の鉄粉焼結体によると、強度と靭性に優れた鉄粉焼結体を得ることができる。   According to the iron powder sintered body of claim 3 of the present invention, an iron powder sintered body having excellent strength and toughness can be obtained.

以下、本発明を実施形態に基づいて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments.

本発明の粉末冶金用混合粉末は、プレアロイ型鋼粉でなる母粉と、合金用粉末とを混合したものである。以下、母粉と合金用粉末の組成等その詳細構成について説明する。   The mixed powder for powder metallurgy of the present invention is a mixture of a mother powder made of prealloyed steel powder and an alloy powder. Hereinafter, the detailed configuration such as the composition of the mother powder and the alloy powder will be described.

母粉は、Wおよび/またはVを合わせて0.05〜1.0質量%含有した鉄粉であり、残部は不可避的不純物である。本発明では、母粉として、圧縮性を低下しない程度の微量のWやV等の合金成分を予め合金化したプレアロイ型鋼粉を用いる。WやV等の合金成分が所定量を超えると、圧縮性が低下して、十分な焼結密度を得ることができず、強度や靭性といった機械的特性が低下する。尚、プレアロイ型鋼粉とは、合金成分を予め鉄中に固溶(合金化)させた鉄粉内部の合金化鋼粉のことをいう。このプレアロイ型鋼粉を用いることにより、鉄粉焼結体中の合金成分をより均一に高めることができ、鉄粉の内部まで高強度化が可能である。   The mother powder is an iron powder containing 0.05 to 1.0% by mass of W and / or V, and the balance is inevitable impurities. In the present invention, prealloyed steel powder obtained by pre-alloying a small amount of alloy components such as W and V that do not deteriorate compressibility is used as the mother powder. When the alloy component such as W or V exceeds a predetermined amount, the compressibility is lowered, a sufficient sintered density cannot be obtained, and mechanical properties such as strength and toughness are lowered. The pre-alloyed steel powder refers to alloyed steel powder inside the iron powder in which the alloy components are previously dissolved (alloyed) in iron. By using this pre-alloy type steel powder, the alloy components in the iron powder sintered body can be increased more uniformly, and the strength of the iron powder can be increased.

鉄粉焼結体の強度や靭性といった機械的特性を向上させるためには、母粉の基地を強くする必要があるが、そのために、微量とはいえ合金成分を所定量以上は含有させる必要がある。合金成分が所定量未満であれば、母粉中に合金成分を予め添加しておくことによって鉄粉焼結体中の鉄粉内部の合金成分を高めることができるという前記した効果を奏することができなくなる。尚、合金成分を全く含有しない場合には強度が低下する。そのため、プレアロイ型鋼粉に含まれる合金成分の割合は、所定量の範囲に規定する必要がある。   In order to improve the mechanical properties such as strength and toughness of the iron powder sintered body, it is necessary to strengthen the base of the mother powder. For this reason, it is necessary to contain an alloy component in a predetermined amount or more although it is a trace amount. is there. If the alloy component is less than a predetermined amount, the above-described effect that the alloy component in the iron powder in the iron powder sintered body can be increased by adding the alloy component in the mother powder in advance can be achieved. become unable. In the case where no alloy component is contained, the strength is lowered. Therefore, the ratio of the alloy component contained in the pre-alloy type steel powder needs to be specified in a predetermined amount range.

本発明において、母粉として用いるプレアロイ型鋼粉に含まれる合金成分は、WとVである。WとVは、鉄中に固溶して強度を向上させると共に、不可避的不純物のCやNと反応して炭化物や窒化物を生成することで、結晶粒サイズを微細化させ、強度と靭性を向上させる効果を発現させる元素である。但し、それらの含有量が多すぎると、鉄粉の圧縮性を低下させて成形体密度が上がりにくくなり、強度と靭性が低下する。また、それらの含有量が少なすぎると、高強度化、高靭性化といった効果を奏することができない。従って、Wおよび/またはVの含有量は、合わせて0.05〜1.0質量%の範囲とする。より好ましくは、0.1〜0.7質量%の範囲である。   In the present invention, the alloy components contained in the pre-alloyed steel powder used as the mother powder are W and V. W and V are dissolved in iron to improve strength, and by reacting with unavoidable impurities C and N to generate carbides and nitrides, the grain size is refined, and strength and toughness It is an element that expresses the effect of improving. However, when there is too much content of them, the compressibility of iron powder will fall and it will become difficult to raise a density of a forming object, and intensity and toughness will fall. Moreover, when there is too little content of them, the effect of high strength and high toughness cannot be produced. Therefore, the content of W and / or V is set in the range of 0.05 to 1.0% by mass. More preferably, it is the range of 0.1-0.7 mass%.

母粉として用いるプレアロイ型鋼粉に含まれる不可避的不純物には、O、C、Si等がある。O、C、Siについては、以下の含有量以下に抑制することが望ましい。   Inevitable impurities contained in the pre-alloyed steel powder used as the mother powder include O, C, Si and the like. About O, C, and Si, it is desirable to suppress below the following content.

Oの含有量が多くなると、圧縮性を低下させるので好ましくない。また、Oの含有量が多くなると、焼結時にグラファイトと反応してCの歩留りを悪化させ、鉄粉焼結体中のC量のバラツキが大きくなり、更には、添加するグラファイトの量を多くする必要があってコスト高となる。従って、Oの含有量は0.3質量%以下に抑制することが好ましい。より好ましくは、0.15質量%以下である。   An increase in the O content is not preferable because the compressibility is lowered. Further, when the content of O increases, the yield of C reacts with graphite during sintering, and the variation in the amount of C in the iron powder sintered body increases. Further, the amount of graphite added increases. It is necessary to do this, and the cost becomes high. Therefore, the O content is preferably suppressed to 0.3% by mass or less. More preferably, it is 0.15 mass% or less.

Cは、固溶して圧縮性を低下させる元素である。また、母粉として用いるプレアロイ型鋼粉に含まれる合金成分のWやVと結合して微細な炭化物を形成するが、その炭化物も圧縮性を低下させる。よって、Cの含有量はできるだけ低い方が良い。従って、Cの含有量は0.02質量%以下に抑制することが好ましい。   C is an element that dissolves and lowers compressibility. Moreover, although it combines with W and V of the alloy component contained in the prealloy type | mold steel powder used as mother powder, a fine carbide | carbonized_material is formed, The carbide | carbonized_material also reduces compressibility. Therefore, the C content is preferably as low as possible. Therefore, the C content is preferably suppressed to 0.02% by mass or less.

Siは、酸素と結合しやすい元素で、その含有量が多くなると鉄粉の表面に酸化皮膜を形成し、除去することが非常に困難となる。よって、Siの含有量はできるだけ低い方が良い。従って、Siの含有量は0.1質量%以下に抑制することが好ましい。   Si is an element that easily binds to oxygen, and when its content increases, an oxide film is formed on the surface of the iron powder, and it becomes very difficult to remove. Therefore, the content of Si should be as low as possible. Therefore, the Si content is preferably suppressed to 0.1% by mass or less.

次に、合金用粉末について説明する。合金用粉末は、グラファイト(黒鉛粉)と、Cu粉末、Ni粉末よりなる。母粉を合わせた全混合粉末中の配合質量%が、グラファイトは0.4〜1.5質量%、Cu粉末および/またはNi粉末は合わせて1.0〜8.0質量%である。尚、以下に示す合金用粉末、並びに潤滑剤の質量%は特に断りはしないが、全て母粉を合わせた全混合粉末中の配合質量%を示す。   Next, the alloy powder will be described. The alloy powder is composed of graphite (graphite powder), Cu powder, and Ni powder. The blending mass% in the total mixed powder including the mother powder is 0.4 to 1.5 mass% for graphite, and 1.0 to 8.0 mass% for Cu powder and / or Ni powder in total. In addition, although the powder for alloys shown below and the mass% of the lubricant are not particularly specified, they are all the mixed mass% in the total mixed powder including the mother powder.

グラファイト(黒鉛粉)は、焼結時に鉄粉中に拡散してパーライトやベイナイト、マルテンサイトなどの高硬度の組織を形成して鉄粉焼結体の強度を向上させる必須の粉末である。また、本発明においては、WやVと結合して炭化物を生成することで、高強度化に寄与するため、WやVの含有量に応じてその配合量の範囲を規定する必要がある。その配合量が0.4質量%未満では十分な強度を得ることができず、逆に1.5質量%を超えると焼結中に粗大なセメンタイトを析出して靭性の低下を招く。従って、グラファイトの配合量は、0.4〜1.5質量%の範囲とする。   Graphite (graphite powder) is an essential powder that diffuses into the iron powder during sintering to form a structure with high hardness such as pearlite, bainite, martensite, and the like, thereby improving the strength of the iron powder sintered body. Moreover, in this invention, since it couple | bonds with W and V and produces | generates a carbide | carbonized_material, it contributes to high intensity | strength, It is necessary to prescribe | regulate the range of the compounding quantity according to content of W or V. If the blending amount is less than 0.4% by mass, sufficient strength cannot be obtained. Conversely, if the blending amount exceeds 1.5% by mass, coarse cementite is precipitated during sintering, leading to a decrease in toughness. Therefore, the compounding quantity of graphite shall be 0.4-1.5 mass%.

Cu粉末並びにNi粉末は共に、強度を向上させるために効果があり、本発明では、どちらか一方、若しくはその両方を合金用粉末中に配合すれば良い。   Both the Cu powder and the Ni powder are effective for improving the strength. In the present invention, either one or both may be blended in the alloy powder.

Cu粉末は、焼結時に液体となることで、鉄粉同士の焼結を促進して鉄粉焼結体の強度を向上させる。また、焼結後に焼入れ焼戻しといった熱処理を行わずとも強度を向上させることができるという特徴がある。このCu粉末の配合による効果は、0.5質量%以上で現れ始め、3.5質量%を超えると逆に焼結密度の低下を招いて強度が低下し始める。   Cu powder becomes liquid at the time of sintering, thereby promoting the sintering of iron powders and improving the strength of the iron powder sintered body. In addition, the strength can be improved without performing heat treatment such as quenching and tempering after sintering. The effect of blending this Cu powder begins to appear at 0.5% by mass or more, and when it exceeds 3.5% by mass, conversely, the sintered density decreases and the strength begins to decrease.

Ni粉末は、鉄粉中に拡散して焼入れ性を高めて強度を向上させる効果があるほか、鉄粉粒子界面にNiに富んだ残留γ相を形成して靭性を向上させる効果がある。このNi粉末の配合による効果は、0.5質量%以上で現れ始め、6.0質量%を超えると強度が低下し始める。   Ni powder has the effect of improving the toughness by forming a residual γ phase rich in Ni at the interface of the iron powder particles in addition to the effect of increasing the hardenability and improving the strength by diffusing into the iron powder. The effect of the Ni powder blending begins to appear at 0.5% by mass or more, and when it exceeds 6.0% by mass, the strength begins to decrease.

以上のように、Cu粉末とNi粉末が作用する仕組みは異なるが、強度、靭性レベルを良好といえる程度まで向上させるためには、Cu粉末および/またはNi粉末を合わせて1.0〜8.0質量%配合する必要がある。   As described above, although the mechanism in which the Cu powder and the Ni powder act is different, in order to improve the strength and toughness level to a satisfactory level, the Cu powder and / or the Ni powder are combined to 1.0 to 8. It is necessary to mix 0% by mass.

また、合金用粉末には、更にMo粉末を、0.3〜3.5質量%配合することが望ましい。Mo粉末は、焼結時に鉄粉中に拡散して焼入れ性を改善し、強度を向上させる。その効果を得るためには0.3質量%以上配合することが必要であり、3.5質量%を超えるとその効果が飽和するため、前記のように、配合量を規定した。   In addition, it is desirable that the alloy powder further contains 0.3 to 3.5% by mass of Mo powder. Mo powder diffuses into iron powder during sintering to improve hardenability and improve strength. In order to acquire the effect, it is necessary to mix | blend 0.3 mass% or more, and since the effect will be saturated when it exceeds 3.5 mass%, the compounding quantity was prescribed | regulated as mentioned above.

更には、前記した母粉、合金用粉末に加えて、鉄粉焼結体製造時の金型との摩擦を低減するため、通常は、ステアリン酸亜鉛、エチレンビスステアリルアミド等の潤滑剤を混合する。その潤滑剤の混合量は、0.05〜1.2質量%の範囲とすることが好ましい。0.05質量%未満であると、潤滑剤としての機能を発揮することができず、また、1.2質量%を超えると、成形体密度低下の原因となってしまう。   Furthermore, in addition to the above-mentioned mother powder and alloy powder, a lubricant such as zinc stearate and ethylene bisstearyl amide is usually mixed in order to reduce friction with the mold during the production of the iron powder sintered body. To do. The mixing amount of the lubricant is preferably in the range of 0.05 to 1.2% by mass. If it is less than 0.05% by mass, the function as a lubricant cannot be exhibited, and if it exceeds 1.2% by mass, the density of the molded product will be reduced.

次に、合金用粉末を母粉に混合して粉末冶金用混合粉末とする方法について説明する。本発明の鉄粉焼結体を製造するにあたっての合金用粉末の母粉への混合方法としては、単純に母粉と合金用粉末を混合するプレミックス法、有機物によって母粉に合金用粉末を付着させる方法といった一般に当業者に知られている何れの混合方法も採用することができる。また、プレミックス法によって予めCu粉末、Ni粉末、Mo粉末等の合金用粉末を混合し、その混合粉末を加熱して母粉と合金用粉末を拡散付着させた部分拡散型鋼粉とし、その後、グラファイトや潤滑剤と混合する方法等を採用しても良い。   Next, a method for mixing the alloy powder with the mother powder to obtain a mixed powder for powder metallurgy will be described. As a method of mixing the alloy powder into the mother powder in producing the iron powder sintered body of the present invention, a premix method in which the mother powder and the alloy powder are simply mixed, the alloy powder is added to the mother powder by an organic substance. Any mixing method generally known to those skilled in the art, such as a deposition method, can be employed. Further, by mixing pre-mix method powders for alloys such as Cu powder, Ni powder, Mo powder and the like, the mixed powder is heated to form a partially diffused steel powder in which the mother powder and the alloy powder are diffused and adhered, A method of mixing with graphite or a lubricant may be employed.

鉄粉焼結体は、前記した粉末冶金用混合粉末を圧縮成形して得た圧粉体を焼結することにより得られる。その製造方法の一例を説明すると、まず、V型混合機を用いて、前記した方法で母粉、合金用粉末、潤滑剤を混合して粉末冶金用混合粉末とする。潤滑剤としては、例えば、ステアリン酸亜鉛:0.75質量%を混合すれば良い。次に、その粉末冶金用混合粉を、シャルピー試験片用、或いは引張試験片用の金型に充填し、6t/cmの成形圧で圧縮成形して圧粉体を得る。得られた圧粉体を、RXガス、Nガス、AXガス等の雰囲気中で、温度:1100〜1260℃、時間:15〜90分の条件下で焼結することにより、鉄粉焼結体を得ることができる。 The iron powder sintered body is obtained by sintering a green compact obtained by compression-molding the powder metallurgy mixed powder described above. An example of the manufacturing method will be described. First, using a V-type mixer, the mother powder, the alloy powder, and the lubricant are mixed by the above-described method to obtain a mixed powder for powder metallurgy. As the lubricant, for example, zinc stearate: 0.75% by mass may be mixed. Next, the mixed powder for powder metallurgy is filled into a mold for a Charpy test piece or a tensile test piece, and compression molded at a molding pressure of 6 t / cm 2 to obtain a green compact. By sintering the obtained green compact in an atmosphere such as RX gas, N 2 gas, AX gas, etc. under conditions of temperature: 1100 to 1260 ° C. and time: 15 to 90 minutes, iron powder sintering You can get a body.

尚、この鉄粉焼結体は、焼結後に熱処理することによって、更に高強度化させることができる。例えば、温度:860℃、時間:20分の条件で加熱からオイル焼入れし、温度:180℃、時間:60分の条件で焼戻しする方法等を採用することができる。   This iron powder sintered body can be further strengthened by heat treatment after sintering. For example, a method of heating and oil quenching under conditions of temperature: 860 ° C. and time: 20 minutes and tempering under conditions of temperature: 180 ° C. and time: 60 minutes can be employed.

表1に示す成分組成の母粉および合金用粉末に、潤滑剤としてステアリン酸亜鉛を0.75質量%加え、30分間、V型混合機で混合して粉末冶金用混合粉末とした。次に、この粉末冶金用混合粉末を、断面の縦横長さ10mm×55mm、奥行10mm(10mm×55mm×10mm)の金型に充填し、6t/cmの成形圧で圧縮成形して圧粉体を得た。この圧粉体を10%の水素を含む窒素雰囲気中で、1120℃、30分の条件下で焼結して鉄粉焼結体とした。本実施例では、このようにして得られた鉄粉焼結体の焼結密度を測定すると共に、衝撃値(靭性)、並びに引張強度(強度)を調べた。その結果を表1に示す。 0.75% by mass of zinc stearate as a lubricant was added to the mother powder and alloy powder having the composition shown in Table 1, and mixed for 30 minutes with a V-type mixer to obtain a mixed powder for powder metallurgy. Next, this mixed powder for powder metallurgy is filled in a mold having a cross-sectional length and width of 10 mm × 55 mm and a depth of 10 mm (10 mm × 55 mm × 10 mm), and compression-molded with a molding pressure of 6 t / cm 2. Got the body. This green compact was sintered in a nitrogen atmosphere containing 10% hydrogen at 1120 ° C. for 30 minutes to obtain an iron powder sintered body. In this example, the sintered density of the iron powder sintered body thus obtained was measured, and the impact value (toughness) and tensile strength (strength) were examined. The results are shown in Table 1.

尚、焼結密度の測定は、得られた鉄粉焼結体の寸法と重量を測定し、計算により算出した。   The sintered density was measured by measuring the size and weight of the obtained iron powder sintered body and calculating it.

また、衝撃値は、シャルピー衝撃試験により求めた。MPIF STANDARD 40に準じ、試験機のハンマー荷重:5kg、ノッチ:なし、試験温度:室温の条件で、シャルピー吸収エネルギーを測定して衝撃値とした。衝撃値については、シャルピー吸収エネルギーが18.0J/cm以上のものを合格とした。 The impact value was determined by a Charpy impact test. In accordance with MPIF STANDARD 40, Charpy absorbed energy was measured as an impact value under the conditions of a hammer load of the testing machine: 5 kg, notch: none, test temperature: room temperature. As for the impact value, those having Charpy absorbed energy of 18.0 J / cm 2 or more were regarded as acceptable.

更には、引張強度は、MPIF STANDARD 10に準じた引張試験により求めた。強度については、引張強度が550MPa以上のものを合格とした。   Furthermore, the tensile strength was determined by a tensile test according to MPIF STANDARD 10. Regarding the strength, those having a tensile strength of 550 MPa or more were regarded as acceptable.

Figure 2009209410
Figure 2009209410

実施例1は、Wを母粉に含有するがその含有量が請求項1で定めた下限の0.05質量%のもの、実施例2は、Vを母粉に含有するがその含有量が請求項1で定めた下限の0.05質量%のものである。逆に、実施例5は、WとVを母粉に含有するがその合計含有量が請求項1で定めた上限の1.0質量%のもの、実施例6は、Wを母粉に含有するがその含有量が請求項1で定めた上限の1.0質量%のものである。実施例3,4は、WとVの含有量がそれらの中間のものである。   Example 1 contains W in the mother powder, but the content is 0.05% by mass of the lower limit defined in claim 1, and Example 2 contains V in the mother powder, but the content is The lower limit of 0.05% by mass as defined in claim 1. Conversely, Example 5 contains W and V in the mother powder, but the total content is 1.0% by mass of the upper limit defined in claim 1, and Example 6 contains W in the mother powder. However, the content is 1.0% by mass of the upper limit defined in claim 1. In Examples 3 and 4, the contents of W and V are intermediate between them.

また、実施例7は、グラファイトの配合量が請求項1で定めた下限の0.4質量%のもの、実施例8は、グラファイトの配合量が請求項1で定めた上限の1.5質量%のものである。実施例9は、Cu粉末とNi粉末の合計配合量が請求項1で定めた上限に近い7.8質量%のもの、実施例10は、Cu粉末とNi粉末の合計配合量が請求項1で定めた下限の1.0質量%のものである。実施例11は、Cu粉末のみを配合しNi粉末を配合しなかったものである。   Example 7 has a graphite content of 0.4% by mass as defined in claim 1, and Example 8 has an graphite content of 1.5% by mass as defined in claim 1. %belongs to. In Example 9, the total amount of Cu powder and Ni powder is 7.8% by mass, which is close to the upper limit defined in Claim 1, and in Example 10, the total amount of Cu powder and Ni powder is Claim 1. The lower limit of 1.0% by mass as defined in. In Example 11, only Cu powder was blended and Ni powder was not blended.

これらの実施例1〜11は、その何れもが請求項1に記載の条件を具備したものであり、合格判定基準の衝撃値:18.0J/cm以上、引張強度:550MPa以上を共に満足している。 All of Examples 1 to 11 satisfy the conditions described in claim 1 and satisfy both the impact value of the acceptance criterion: 18.0 J / cm 2 or more and the tensile strength: 550 MPa or more. is doing.

実施例12〜14は、Mo粉末を配合した請求項2に記載の条件を具備したものであり、実施例12は、Mo粉末の配合量が請求項2で定めた下限の0.3質量%のもの、実施例14は、Mo粉末の配合量が請求項2で定めた上限に近い3.0質量%のもの、実施例13は、Mo粉末の配合量がそれらの中間の0.8質量%のものである。   Examples 12 to 14 are provided with the conditions described in claim 2 in which Mo powder is blended, and in Example 12, the blending amount of Mo powder is 0.3% by mass of the lower limit defined in claim 2 In Example 14, the compounding amount of Mo powder is 3.0% by mass close to the upper limit defined in claim 2, and in Example 13, the compounding amount of Mo powder is 0.8 mass in between them. %belongs to.

これらの実施例12〜14は、前記したように、その何れもが請求項2に記載の条件を具備したものであり、合格判定基準の衝撃値:18.0J/cm以上、引張強度:550MPa以上を共に満足している。これらの実施例12〜14は、Mo粉末を配合した以外は、母粉中のWの含有量と、グラファイト、Cu粉末、Ni粉末の配合量が同じ実施例4と比較して、Mo粉末の配合量に応じて衝撃値と引張強度が更に向上している。 As described above, each of Examples 12 to 14 has the conditions described in claim 2. Impact value of acceptance criteria: 18.0 J / cm 2 or more, tensile strength: Both 550 MPa or more are satisfied. In Examples 12 to 14, the content of W in the mother powder and the amount of graphite, Cu powder, and Ni powder are the same as in Example 4 except that Mo powder is blended. The impact value and the tensile strength are further improved according to the blending amount.

比較例1は、グラファイトの配合量が請求項1で定めた下限未満の0.3質量%のもの、比較例2は、グラファイトの配合量が請求項1で定めた上限を超える1.7質量%のものである。比較例3は、Wを母粉に含有するがその含有量が請求項1で定めた下限未満の0.02質量%のもの、比較例4は、WとVを母粉に含有するがその合計含有量が請求項1で定めた上限を超える1.5質量%のものである。比較例5は、Cu粉末とNi粉末の合計配合量が請求項1で定めた下限未満の0.7質量%のもの、比較例6は、Cu粉末とNi粉末の合計配合量が請求項1で定めた上限を超える8.5質量%のものである。   Comparative Example 1 has a graphite blending amount of 0.3% by mass less than the lower limit defined in claim 1, and Comparative Example 2 has a graphite blending amount of 1.7% exceeding the upper limit defined in claim 1. %belongs to. Comparative Example 3 contains W in the mother powder, but its content is less than the lower limit defined in claim 1 of 0.02% by mass, and Comparative Example 4 contains W and V in the mother powder. The total content is 1.5% by mass exceeding the upper limit defined in claim 1. In Comparative Example 5, the total amount of Cu powder and Ni powder is 0.7% by mass less than the lower limit defined in Claim 1, and in Comparative Example 6, the total amount of Cu powder and Ni powder is Claim 1. It is 8.5 mass% exceeding the upper limit determined in.

以上説明したように、比較例1〜6は、請求項1記載の条件の何れかを満足しないので、合格判定基準の衝撃値:18.0J/cm以上、引張強度:550MPa以上のうち、少なくとも一方を満足していない。 As described above, Comparative Examples 1 to 6 do not satisfy any of the conditions described in claim 1, so that the impact value of the acceptance criterion: 18.0 J / cm 2 or more, and the tensile strength: 550 MPa or more, Not satisfied with at least one.

Claims (3)

プレアロイ型鋼粉でなる母粉と合金用粉末を混合した粉末冶金用混合粉末であって、
前記母粉は、Wおよび/またはVを合わせて0.05〜1.0質量%含有した鉄粉で、残部は不可避的不純物であると共に、
前記合金用粉末は、前記母粉を合わせた全混合粉末中の配合質量%が、グラファイト:0.4〜1.5質量%、Cu粉末および/またはNi粉末を合わせて1.0〜8.0質量%であることを特徴とする粉末冶金用混合粉末。
A mixed powder for powder metallurgy in which a base powder made of pre-alloyed steel powder and an alloy powder are mixed,
The mother powder is an iron powder containing 0.05 to 1.0% by mass of W and / or V together with the balance being inevitable impurities,
In the alloy powder, the blending mass% in the total mixed powder in which the mother powder is combined is graphite: 0.4 to 1.5 mass%, and the Cu powder and / or Ni powder is 1.0 to 8. A mixed powder for powder metallurgy characterized by being 0% by mass.
前記合金用粉末として、更に、全混合粉末中の配合質量%が、0.3〜3.5質量%のMo粉末を含むことを特徴とする請求項1記載の粉末冶金用混合粉末。   2. The mixed powder for powder metallurgy according to claim 1, wherein the alloying powder further contains 0.3 to 3.5% by mass of Mo powder in the total mixed powder. 請求項1または2記載の粉末冶金用混合粉末を圧縮成形して得た圧粉体を焼結することにより得られることを特徴とする鉄粉焼結体。   An iron powder sintered body obtained by sintering a green compact obtained by compression-molding the mixed powder for powder metallurgy according to claim 1 or 2.
JP2008053725A 2008-03-04 2008-03-04 Mixed powder for powder metallurgy and sintered iron powder Expired - Fee Related JP5119006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008053725A JP5119006B2 (en) 2008-03-04 2008-03-04 Mixed powder for powder metallurgy and sintered iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053725A JP5119006B2 (en) 2008-03-04 2008-03-04 Mixed powder for powder metallurgy and sintered iron powder

Publications (2)

Publication Number Publication Date
JP2009209410A true JP2009209410A (en) 2009-09-17
JP5119006B2 JP5119006B2 (en) 2013-01-16

Family

ID=41182848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053725A Expired - Fee Related JP5119006B2 (en) 2008-03-04 2008-03-04 Mixed powder for powder metallurgy and sintered iron powder

Country Status (1)

Country Link
JP (1) JP5119006B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291954A (en) * 1985-06-18 1986-12-22 Hitachi Metals Ltd Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JPS6263646A (en) * 1985-09-13 1987-03-20 Mitsubishi Metal Corp Production of valve seat made of fe sintered alloy for internal combustion engine
JPS6318001A (en) * 1986-07-11 1988-01-25 Kawasaki Steel Corp Alloy steel powder for powder metallurgy
JPS6320434A (en) * 1986-07-11 1988-01-28 Kawasaki Steel Corp Heat resistant alloy for piercing plug
JPH0456747A (en) * 1990-06-26 1992-02-24 Hitachi Powdered Metals Co Ltd Manufacture of wear resistant ferrous sintered alloy
JPH0681001A (en) * 1992-09-02 1994-03-22 Kawasaki Steel Corp Alloy steel powder
JPH0959740A (en) * 1995-08-22 1997-03-04 Kobe Steel Ltd Powder mixture for powder metallurgy and its sintered compact
JPH108223A (en) * 1996-06-21 1998-01-13 Nippon Piston Ring Co Ltd Production of joining type valve seat made of sintered alloy, and sintered alloy material for joining type valve seat
JP2000282103A (en) * 1999-03-30 2000-10-10 Kawasaki Steel Corp Iron-base powder mixture for high strength sintered parts
JP2001316780A (en) * 2000-05-02 2001-11-16 Hitachi Powdered Metals Co Ltd Valve seat for internal combustion engine and its production method
JP2002129296A (en) * 2000-10-27 2002-05-09 Nippon Piston Ring Co Ltd Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy
JP2004307950A (en) * 2003-04-08 2004-11-04 Riken Corp Iron-based sintered alloy, valve seat ring, raw material powder for producing iron-based sintered alloy and method of producing iron-based sintered alloy
JP2005126827A (en) * 2005-02-10 2005-05-19 Jfe Steel Kk Powdery mixture for high strength sintered component

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291954A (en) * 1985-06-18 1986-12-22 Hitachi Metals Ltd Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JPS6263646A (en) * 1985-09-13 1987-03-20 Mitsubishi Metal Corp Production of valve seat made of fe sintered alloy for internal combustion engine
JPS6318001A (en) * 1986-07-11 1988-01-25 Kawasaki Steel Corp Alloy steel powder for powder metallurgy
JPS6320434A (en) * 1986-07-11 1988-01-28 Kawasaki Steel Corp Heat resistant alloy for piercing plug
JPH0456747A (en) * 1990-06-26 1992-02-24 Hitachi Powdered Metals Co Ltd Manufacture of wear resistant ferrous sintered alloy
JPH0681001A (en) * 1992-09-02 1994-03-22 Kawasaki Steel Corp Alloy steel powder
JPH0959740A (en) * 1995-08-22 1997-03-04 Kobe Steel Ltd Powder mixture for powder metallurgy and its sintered compact
JPH108223A (en) * 1996-06-21 1998-01-13 Nippon Piston Ring Co Ltd Production of joining type valve seat made of sintered alloy, and sintered alloy material for joining type valve seat
JP2000282103A (en) * 1999-03-30 2000-10-10 Kawasaki Steel Corp Iron-base powder mixture for high strength sintered parts
JP2001316780A (en) * 2000-05-02 2001-11-16 Hitachi Powdered Metals Co Ltd Valve seat for internal combustion engine and its production method
JP2002129296A (en) * 2000-10-27 2002-05-09 Nippon Piston Ring Co Ltd Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy
JP2004307950A (en) * 2003-04-08 2004-11-04 Riken Corp Iron-based sintered alloy, valve seat ring, raw material powder for producing iron-based sintered alloy and method of producing iron-based sintered alloy
JP2005126827A (en) * 2005-02-10 2005-05-19 Jfe Steel Kk Powdery mixture for high strength sintered component

Also Published As

Publication number Publication date
JP5119006B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP6146548B1 (en) Method for producing mixed powder for powder metallurgy, method for producing sintered body, and sintered body
TW450855B (en) Method of preparing sintered products, sintered products, and water-atomised annealed iron-based powder used in the preparation
JP6227903B2 (en) Alloy steel powder for powder metallurgy and method for producing iron-based sintered body
JP5958144B2 (en) Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body
US8287615B2 (en) High-strength composition iron powder and sintered part made therefrom
EP1844172B1 (en) Iron-based powder combination
JP2010090470A (en) Iron-based sintered alloy and method for producing the same
JP5929967B2 (en) Alloy steel powder for powder metallurgy
TW201107495A (en) High strength low alloyed sintered steel
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JP2018016881A (en) Mixed powder for powder metallurgy, and method for producing iron-based sintered body
JP5929084B2 (en) Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same
JP4839271B2 (en) Mixed powder for powder metallurgy and sintered iron powder
JP5119006B2 (en) Mixed powder for powder metallurgy and sintered iron powder
US20090142220A1 (en) Sinter-hardening powder and their sintered compacts
JPH04165002A (en) High compressibility cr base alloy steel powder and manufacture of high strength sintered material using it
JP2003239002A (en) Iron based powdery mixture and method of producing iron based sintered compact
JP6627856B2 (en) Method for producing powder mixture for powder metallurgy and sintered body
WO2018143088A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JP4367133B2 (en) Iron-based powder mixture for high-strength sintered parts
JP2012126972A (en) Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same
JPH0959740A (en) Powder mixture for powder metallurgy and its sintered compact
JP2010255082A (en) Iron-based sintered alloy and method for producing the same
JP2023121011A (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JP2021042463A (en) Iron base pre-alloyed powder, iron based diffusion bonded powder, and powder metallurgical alloy powder using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5119006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees