JP2009209299A - Antistatic coating, antistatic film and methods of their formation - Google Patents

Antistatic coating, antistatic film and methods of their formation Download PDF

Info

Publication number
JP2009209299A
JP2009209299A JP2008055609A JP2008055609A JP2009209299A JP 2009209299 A JP2009209299 A JP 2009209299A JP 2008055609 A JP2008055609 A JP 2008055609A JP 2008055609 A JP2008055609 A JP 2008055609A JP 2009209299 A JP2009209299 A JP 2009209299A
Authority
JP
Japan
Prior art keywords
antistatic
film
paint
parts
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008055609A
Other languages
Japanese (ja)
Other versions
JP5477525B2 (en
Inventor
Kohei Isayama
浩平 諫山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Chuden Kogyo Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Chuden Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Chuden Kogyo Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2008055609A priority Critical patent/JP5477525B2/en
Publication of JP2009209299A publication Critical patent/JP2009209299A/en
Application granted granted Critical
Publication of JP5477525B2 publication Critical patent/JP5477525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antistatic coating having an excellent drying performance, an antistatic film which is composed of 2 layers having been formed in one day using the antistatic coating, and a method for forming the film. <P>SOLUTION: The antistatic coating contains a moisture-hardenable polyurethane, and at least one of electroconductive substance selected from a carbon-based electroconductive substance and a whisker-type electroconductive substance. The antistatic film is composed of an undercoat film formed by using the antistatic coating and a topcoat film formed by using an electroconductive coating. The antistatic film is formed by forming the undercoat film on the coating surface of the steel of an electric pylon using the antistatic coating and forming the topcoat film on the undercoat film using the weather-resistant electroconductive coating. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は帯電防止塗料、帯電防止膜及びその形成方法に関する。   The present invention relates to an antistatic paint, an antistatic film and a method for forming the same.

従来から、高圧送電鉄塔の高所作業における静電気障害を防止するために、送電鉄塔の溶融亜鉛メッキ鋼材塗装面に帯電防止膜が形成されている。この帯電防止膜は、2層からなるものであり、下層膜用の下塗り塗料として、エポキシ樹脂系の導電性塗料を用いることが知られており(例えば、特許文献1参照)、また、上層膜用の上塗り塗料としては、ウレタン樹脂系の導電性塗料が用いられている。   Conventionally, an antistatic film has been formed on a hot-dip galvanized steel-coated surface of a power transmission tower in order to prevent static electricity failure in high-area work of the high-voltage power transmission tower. This antistatic film is composed of two layers, and it is known to use an epoxy resin-based conductive paint as an undercoat paint for a lower layer film (see, for example, Patent Document 1). Urethane resin-based conductive paints are used as top coats for the coating.

特開平6―55138号公報JP-A-6-55138

ところで、送電鉄塔に帯電防止膜を形成するための塗装作業は、作業中の感電事故などを防止すべく、塗装対象の送電鉄塔が支持する架空送電線を停電する必要がある。従って、この塗装作業は短時間で完了させる必要があり、好ましくは、作業期間は1日以内である。しかしながら、前記下層膜用下塗り塗料としてエポキシ樹脂系の導電性塗料を用いた場合には、乾燥時間が長くかかってしまう。このため、1日で、下層膜及び上層膜の2層からなる帯電防止膜を形成することができないという問題がある。   By the way, in the painting work for forming the antistatic film on the power transmission tower, it is necessary to blackout the overhead power transmission line supported by the power transmission tower to be painted in order to prevent an electric shock accident during the work. Therefore, it is necessary to complete this painting work in a short time, and the work period is preferably within one day. However, when an epoxy resin-based conductive paint is used as the undercoat for the lower layer film, it takes a long time to dry. For this reason, there exists a problem that the antistatic film | membrane which consists of two layers, a lower layer film and an upper layer film, cannot be formed in one day.

そこで、本発明の課題は、上記従来技術の問題点を解決することにあり、乾燥性の優れた帯電防止塗料を提供することにある。また、前記帯電防止塗料を用いて1日で2層形成されてなる帯電防止膜及びその形成方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide an antistatic coating material having excellent drying properties. Another object of the present invention is to provide an antistatic film formed by using two layers of the antistatic paint in one day and a method for forming the antistatic film.

本発明の帯電防止塗料は、湿気硬化型ポリウレタン樹脂と、カーボン系導電性物質及びウィスカ型導電性物質から選ばれた少なくとも1種からなる導電性物質とを含有することを特徴とする。本発明の帯電防止塗料は、湿気硬化型ポリウレタン樹脂を含むことで、乾燥性に優れている。かつ、カーボン系導電性物質及びウィスカ型導電性物質から選ばれた少なくとも1種からなる導電性物質を含むことで、本帯電防止塗料を用いて塗装した場合に、帯電防止膜として好適な電気特性を得ることができる。   The antistatic coating material of the present invention contains a moisture curable polyurethane resin and at least one conductive material selected from a carbon-based conductive material and a whisker-type conductive material. The antistatic coating material of this invention is excellent in drying property by including a moisture hardening type polyurethane resin. In addition, it contains at least one conductive material selected from a carbon-based conductive material and a whisker-type conductive material, so that it can be used as an antistatic film when applied with the antistatic coating. Can be obtained.

前記導電性物質以外の前記帯電防止塗料100質量部に対して、前記導電性物質1〜15質量部を配合することが好ましい。導電性物質がこのような量で添加されていることで、得られた帯電防止膜が、より好適な電気特性及び物性を有することができる。   It is preferable to blend 1 to 15 parts by mass of the conductive substance with respect to 100 parts by mass of the antistatic paint other than the conductive substance. When the conductive substance is added in such an amount, the obtained antistatic film can have more preferable electric characteristics and physical properties.

電気特性及び物性を考慮すると、より好ましい配合量としては、前記導電性物質として、前記カーボン系導電性物質を配合する場合には、カーボン系導電性物質を前記導電性物質以外の前記帯電防止塗料100質量部に対して、2.5〜15質量部で配合することである。また、前記導電性物質として、前記ウィスカ型導電性物質を配合する場合には、前記導電性物質以外の前記帯電防止塗料100質量部に対して、ウィスカ型導電性物質を7.5〜15質量部で配合することである。   In consideration of electrical characteristics and physical properties, a more preferable blending amount is that, when the carbon-based conductive material is blended as the conductive material, the carbon-based conductive material is replaced with the antistatic paint other than the conductive material. It is to mix | blend with 2.5-15 mass parts with respect to 100 mass parts. Further, when the whisker-type conductive material is blended as the conductive material, the whisker-type conductive material is 7.5 to 15 masses per 100 parts by mass of the antistatic paint other than the conductive material. It is to mix in part.

より好ましくは、前記導電性物質として、前記カーボン系導電性物質及び前記ウィスカ型導電性物質を組み合わせ、前記導電性物質以外の前記帯電防止塗料100質量部に対して、5〜15質量部となるように配合すると共に、前記カーボン系導電性物質の配合量が、2.5〜15質量部を満たすか、又は、前記ウィスカ型導電性物質の配合量が、7.5〜15質量部を満たすように配合することである。カーボン系導電性物質及びウィスカ型導電性物質が含有されていることで、電気特性としての破壊電圧及び絶縁抵抗がそれぞれ特に好ましい範囲となる。   More preferably, as the conductive material, the carbon-based conductive material and the whisker-type conductive material are combined, and the amount becomes 5 to 15 parts by mass with respect to 100 parts by mass of the antistatic paint other than the conductive material. And the blending amount of the carbon-based conductive material satisfies 2.5 to 15 parts by mass, or the blending amount of the whisker-type conductive material satisfies 7.5 to 15 parts by mass. It is to blend. By including the carbon-based conductive material and the whisker-type conductive material, the breakdown voltage and the insulation resistance as electrical characteristics are particularly preferable ranges, respectively.

ここで、特に本発明の好適な実施形態として、前記カーボン系導電性物質としては、グラファイトを用いることができる。また、前記ウィスカ型導電性物質としては、SbドープSnO2膜が被覆されたTiO2を用いることができる。 Here, particularly as a preferred embodiment of the present invention, graphite can be used as the carbon-based conductive material. In addition, as the whisker type conductive material, TiO 2 coated with an Sb-doped SnO 2 film can be used.

本発明の帯電防止膜は、前記帯電防止塗料を用いて形成された下層膜と、導電性塗料を用いて形成された上層膜とからなることを特徴とする。下層膜に前記帯電防止塗料を用いることで、乾燥性に優れると共に、電気特性及び物性も優れた帯電防止膜とすることができる。   The antistatic film of the present invention comprises a lower layer film formed using the antistatic paint and an upper layer film formed using a conductive paint. By using the antistatic coating material for the lower layer film, it is possible to obtain an antistatic film having excellent drying properties and excellent electrical characteristics and physical properties.

また、下層膜の絶縁抵抗が10kΩ以下、又は、下層膜の破壊電圧が0.2kV以下となるものであることが好ましい。この範囲であれば、十分に帯電防止膜として用いることが可能である。   Moreover, it is preferable that the insulation resistance of the lower layer film is 10 kΩ or less, or the breakdown voltage of the lower layer film is 0.2 kV or less. If it is this range, it can fully be used as an antistatic film.

本発明の帯電防止膜の形成方法は、送電鉄塔の鋼材塗装面に、前記帯電防止塗料を用いて下層膜を形成した後に、前記下層膜上に、耐候性の導電性塗料を用いて上層膜を形成して、帯電防止膜を形成することを特徴とする。送電鉄塔の鋼材塗装面に前記帯電防止塗料を用いて下層膜を形成することで、簡易に乾燥性及び電気特性に優れた下層膜を形成することができるので、1日に2層形成することができる。   The method for forming an antistatic film according to the present invention includes forming a lower layer film on the steel coating surface of a power transmission tower using the antistatic paint, and then forming an upper layer film on the lower layer film using a weather-resistant conductive paint. To form an antistatic film. By forming the lower layer film on the steel coating surface of the power transmission tower using the antistatic paint, it is possible to easily form the lower layer film having excellent drying properties and electrical characteristics. Can do.

本発明の帯電防止塗料によれば、得られる帯電防止膜が乾燥性及び電気特性に優れているという優れた効果を奏する。このため、送電鉄塔における帯電防止膜形成に用いれば、1日に2層形成することができ、作業時間の短縮を図ることができるという優れた効果を奏する。   According to the antistatic coating material of the present invention, the obtained antistatic film has an excellent effect that it is excellent in drying properties and electrical characteristics. For this reason, if it uses for antistatic film | membrane formation in a power transmission tower, it can form two layers a day, and there exists the outstanding effect that working time can be shortened.

本実施形態の帯電防止塗料は、湿気硬化型ポリウレタン樹脂と、導電性物質とを含むものである。湿気硬化型ポリウレタン樹脂を含むことで、乾燥性に優れ、その結果、1日以内にこの塗料で下層膜を形成し、その上に上層膜を形成する、即ち1Day2Coatを実現することができる。かつ、導電性物質を含むことで、電気特性にも優れている。以下、詳細に説明する。   The antistatic paint of this embodiment contains a moisture curable polyurethane resin and a conductive substance. By including the moisture curable polyurethane resin, it is excellent in drying property. As a result, a lower layer film can be formed with this paint within one day, and an upper layer film can be formed thereon, that is, 1 Day 2 Coat can be realized. In addition, by including a conductive substance, the electrical characteristics are excellent. Details will be described below.

湿気硬化型ポリウレタン樹脂としては、1液型の湿気硬化型ポリウレタン樹脂塗料を使用するのが好ましい。湿気硬化型ポリウレタン樹脂塗料は、半硬化乾燥時間にて20℃環境下で4時間、指触乾燥時間で2時間程度であるため、乾燥性に優れている。特に、1液型の湿気硬化型ポリウレタン樹脂塗料を使用することで、2液型塗料の場合のような混合比により可使時間が制限されることがないため、より好ましい。1液型の湿気硬化型ポリウレタン樹脂塗料としては、ポリオールとポリイソシアネートとを反応させてすべての水酸基をウレタン結合させることにより得られるイソシアネート基(−NCO基)を残留させた樹脂を主剤として含むものがあげられる。ポリイソシアネートは3官能基以上で、架橋間の重量平均分子量が500〜1500(Mw)であることが好ましい。これらの湿気硬化型樹脂塗料は、公知の種々の製法によって製造されたものが好適に使用できる。このような1液型湿気硬化型ポリウレタン樹脂塗料としては、例えば、パイネ#8010S(商品名、中電工業社製)やVグラン(商品名、大日本塗料社製)などが挙げられる。   As the moisture-curable polyurethane resin, it is preferable to use a one-component moisture-curable polyurethane resin paint. The moisture curable polyurethane resin paint is excellent in drying property because it is 4 hours in a 20 ° C. environment at a semi-curing drying time and 2 hours in a finger drying time. In particular, the use of a one-component moisture-curable polyurethane resin paint is more preferable because the pot life is not limited by the mixing ratio as in the case of a two-component paint. The one-component moisture-curable polyurethane resin paint contains, as a main component, a resin in which an isocyanate group (-NCO group) obtained by reacting a polyol with a polyisocyanate and urethane-bonding all hydroxyl groups remains. Can be given. The polyisocyanate preferably has three or more functional groups and a weight average molecular weight between crosslinks of 500 to 1500 (Mw). As these moisture curable resin coatings, those produced by various known production methods can be suitably used. Examples of such one-component moisture-curable polyurethane resin paints include Paine # 8010S (trade name, manufactured by Chuden Kogyo Co., Ltd.) and V Gran (trade name, manufactured by Dainippon Paint Co., Ltd.).

導電性物質としては、カーボン系導電性物質及びウィスカ型導電性物質から選ばれた少なくとも1種を用いることができる。これらを添加した湿気硬化型ポリウレタン樹脂を用いて成膜する場合には、電気特性もよく、また、付着性も優れているからである。このような導電性物質の配合量としては、前記導電性物質以外の前記帯電防止塗料100質量部に対して、前記導電性物質1〜15質量部を配合することである。この範囲であれば、帯電防止塗料として十分な電気特性を有することができると共に、付着性にも優れるからである。この範囲を超えて導電性物質が配合されると、付着力、塗膜強度が低下し、他方で、この範囲に満たない場合には、十分な導電性を得ることができない。   As the conductive material, at least one selected from a carbon-based conductive material and a whisker-type conductive material can be used. This is because when the film is formed using a moisture curable polyurethane resin to which these are added, the electrical characteristics are good and the adhesion is excellent. As a compounding quantity of such an electroconductive substance, it is mixing 1-15 mass parts of said electroconductive substances with respect to 100 mass parts of said antistatic coating materials other than the said electroconductive substance. This is because, within this range, it is possible to have sufficient electrical characteristics as an antistatic coating material and excellent adhesion. When a conductive substance is blended exceeding this range, the adhesive force and the coating film strength are reduced. On the other hand, when the conductive material is less than this range, sufficient conductivity cannot be obtained.

このようなカーボン系導電性物質は、特に前記導電性物質以外の前記帯電防止塗料100質量部に対して、2.5〜15質量部で配合することが好ましい。この範囲であれば、所望の電気特性及び物性を得ることができるからである。   Such a carbon-based conductive material is preferably blended in an amount of 2.5 to 15 parts by mass with respect to 100 parts by mass of the antistatic paint other than the conductive material. This is because desired electrical characteristics and physical properties can be obtained within this range.

カーボン系導電性物質としては、例えば、グラファイト、カーボンブラック等の黒色導電性顔料が挙げられるが、特にグラファイトが好ましい。グラファイトは、特に破壊電圧を下げることができ、かつ、塗料に混和して成膜すると、得られた膜の付着性を改善することができると共に、水分を透過させにくいという利点を有する。また、グラファイトは薄膜(例えば30μm)とした場合の方が、電気特性がよい。これは、グラファイトが粒状であるため、薄くした方が互いに導通経路を構成しやすいからである。   Examples of the carbon conductive material include black conductive pigments such as graphite and carbon black, and graphite is particularly preferable. In particular, graphite has the advantage that the breakdown voltage can be lowered, and when the film is mixed with a paint, the adhesion of the obtained film can be improved and moisture cannot easily permeate. In addition, graphite has better electrical characteristics when it is a thin film (for example, 30 μm). This is because, since graphite is granular, it is easier to form a conduction path with each other if it is made thinner.

ここで、グラファイトは、従来用いられていたカーボンブラックに比べて、着色力は小さい。例えば、グラファイトは10質量部で添加したとしても、色相の面では、カーボンブラック0.3質量部程度でしか影響しない。特に、2質量部以下で用いる場合、色相に影響することがない。また、グラファイトを用いれば、コストを抑えることも可能である。   Here, the coloring power of graphite is smaller than that of conventionally used carbon black. For example, even if graphite is added at 10 parts by mass, in terms of hue, it affects only about 0.3 parts by mass of carbon black. In particular, when it is used at 2 parts by mass or less, the hue is not affected. If graphite is used, the cost can be reduced.

ウィスカ型導電性物質は、針状で、互いに絡み合って形成されるネットワークにより、優れた導電性を得ることができ、特に形成された膜の絶縁抵抗を下げることができるという利点を有する。このようなウィスカ型導電性物質は、膜厚をあげるほど、互いに絡み合って形成されるネットワークにより、導通経路を多くとることができるのでより優れた導電性を得る膜を形成できる。ウィスカ型導電性物質は、前記導電性物質以外の前記帯電防止塗料100質量部に対して、7.5〜15質量部で配合することが好ましい。ウィスカ型導電性物質をこの範囲で含有することで、所望の電気特性及び物性を得ることができる。   The whisker-type conductive material has an advantage that excellent conductivity can be obtained by a network formed in a needle shape and entangled with each other, and in particular, the insulation resistance of the formed film can be lowered. Such a whisker-type conductive material can form a film with higher conductivity because a larger number of conduction paths can be formed by a network formed by being entangled with each other as the film thickness is increased. The whisker-type conductive substance is preferably blended in an amount of 7.5 to 15 parts by mass with respect to 100 parts by mass of the antistatic paint other than the conductive substance. By containing the whisker type conductive material in this range, desired electrical characteristics and physical properties can be obtained.

ウィスカ型導電性物質としては、真性導電性ウィスカ(例えば黒鉛ウィスカ、酸化亜鉛ウィスカ、酸化錫ウィスカ等)、被覆系導電性ウィスカ(チタンカリウム系、ホウ酸アルミニウム系、酸化チタン系)が挙げられる。この中でも、ウィスカ型導電性物質としては、被覆系導電性ウィスカとしてのTiO2粒子にSbドープSnO2を被膜したもの、K2O及びTiO2粒子にSbドープSnO2膜を被膜したものが好ましく、特に好ましくは酸化チタン系の白色導電性顔料であるTiO2粒子にSbドープSnO2を被膜したもの(以下、単に白色導電性顔料ともいう)である。このSbドープSnO2は、導電性であると共に透明性を有しているので、内部の酸化チタンの白色を保持することができる。なお、酸化チタン白顔料は絶縁性であり、このような導電性は有していない。このようなTiO2粒子にSbドープSnO2を被膜したものとしては、FT−3000(石原産業製)を用いることができ、K2O及びTiO2粒子にSbドープSnO2膜を被膜したものとしては、大塚化学製デントールWK―200が挙げられる。 Examples of the whisker-type conductive material include intrinsic conductive whiskers (for example, graphite whiskers, zinc oxide whiskers, tin oxide whiskers, etc.) and coated conductive whiskers (titanium potassium-based, aluminum borate-based, titanium oxide-based). Among these, as the whisker type conductive material, a TiO 2 particle as a coated conductive whisker is coated with Sb-doped SnO 2 , and a K 2 O and TiO 2 particle is coated with an Sb-doped SnO 2 film. Particularly preferred is a titanium oxide-based white conductive pigment TiO 2 particle coated with Sb-doped SnO 2 (hereinafter also simply referred to as a white conductive pigment). Since this Sb-doped SnO 2 is conductive and has transparency, the white color of the internal titanium oxide can be maintained. The titanium oxide white pigment is insulative and does not have such conductivity. As such a TiO 2 particle coated with Sb-doped SnO 2 , FT-3000 (manufactured by Ishihara Sangyo Co., Ltd.) can be used, and K 2 O and TiO 2 particles coated with an Sb-doped SnO 2 film. DENTOR WK-200 manufactured by Otsuka Chemical.

好ましくは、これらのカーボン系導電性物質及び前記ウィスカ型導電性物質を組み合わせて用いることである。上記塗料にカーボン系導電性物質を添加すると、形成された膜の破壊電圧を下げることができ、ウィスカ型導電性物質を添加すると、形成された膜の絶縁抵抗を下げることができる。従って、これら二つを組み合わせて上記塗料に添加したものを用いて成膜した場合、得られた膜は、絶縁抵抗(塗膜抵抗)及び破壊電圧が小さいので、安定した帯電防止効果を得ることができる。また、一般に、送電鉄塔の帯電防止膜において、下層膜に黒色系を用いると上層膜の白色系がくすんでしまう場合があるので、下層膜は白色系であることが求められる。従って、優れた白色性を有する上記TiO2粒子にSbドープSnO2と、色相への影響が少ないグラファイトを組み合わせて用いることで、より好ましい色相を得ることが可能である。 Preferably, the carbon-based conductive material and the whisker-type conductive material are used in combination. When a carbon-based conductive material is added to the paint, the breakdown voltage of the formed film can be lowered, and when a whisker-type conductive material is added, the insulation resistance of the formed film can be lowered. Therefore, when a film is formed using a combination of these two and added to the paint, the obtained film has a low insulation resistance (film resistance) and breakdown voltage, and thus a stable antistatic effect can be obtained. Can do. In general, in the antistatic film of a power transmission tower, when the black film is used for the lower film, the white film of the upper film may be dull, and therefore the lower film is required to be white. Therefore, it is possible to obtain a more preferable hue by using the TiO 2 particles having excellent whiteness in combination with Sb-doped SnO 2 and graphite having little influence on the hue.

この場合、カーボン系導電性物質及びウィスカ型導電性物質からなる導電性物質は、前記導電性物質以外の前記帯電防止塗料100質量部に対して、5〜15質量部、好ましくは、5〜10質量部で配合される。そして、さらにこの場合には、カーボン系導電性物質が前記導電性物質以外の前記帯電防止塗料100質量部に対して、2.5〜15質量部で配合されるか、又は、ウィスカ型導電性物質が、前記導電性物質以外の前記帯電防止塗料100質量部に対して、7.5〜15質量部で配合されるかのいずれかの条件を満たすことが必要である。   In this case, the conductive material composed of the carbon-based conductive material and the whisker-type conductive material is 5 to 15 parts by mass, preferably 5 to 10 parts by mass with respect to 100 parts by mass of the antistatic paint other than the conductive substance. Blended in parts by weight. In this case, the carbon-based conductive material is blended in an amount of 2.5 to 15 parts by mass with respect to 100 parts by mass of the antistatic paint other than the conductive material, or a whisker type conductive material. It is necessary that the material satisfies any one condition of 7.5 to 15 parts by mass with respect to 100 parts by mass of the antistatic coating material other than the conductive material.

さらに、湿気硬化型ポリウレタン樹脂塗料には、ポリウレタン樹脂におけるイソシアネートとの反応性がない各種顔料、添加剤を添加することができる。   Furthermore, various pigments and additives having no reactivity with isocyanate in the polyurethane resin can be added to the moisture-curable polyurethane resin paint.

上記顔料としては、体質顔料及び着色顔料があげられる。体質顔料としては、タルク、炭酸カルシウム、硫酸バリウム、マイカ状酸化鉄などが挙げられる。また、着色顔料としては、酸化チタン、ベンガラ、カーボンブラック、フタロシアニンブルーなどが挙げられる。これらの顔料は、上記樹脂に単独で配合してもよく、2種以上を組み合わせて配合することもできる。   Examples of the pigment include extender pigments and colored pigments. Examples of extender pigments include talc, calcium carbonate, barium sulfate, and mica-like iron oxide. Examples of the color pigment include titanium oxide, bengara, carbon black, and phthalocyanine blue. These pigments may be blended alone in the above resin, or may be blended in combination of two or more.

また、この湿気硬化型ポリウレタン樹脂塗料には、消泡剤溶液を添加することもできる。このような消泡剤溶液としてはシリコン系消泡剤などが挙げられる。具体的には、シリコンYSA6402(商品名、東芝シリコン社製)やシリコンKF69(商品名、信越化学社製)などが好適に使用できる。これらは、通常、後述の高沸点有機溶剤などで100倍に希釈して塗料組成物中に添加される。   Moreover, an antifoaming agent solution can also be added to this moisture hardening type polyurethane resin coating material. Examples of such an antifoaming agent solution include a silicon-based antifoaming agent. Specifically, silicon YSA6402 (trade name, manufactured by Toshiba Silicon Corporation), silicon KF69 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), or the like can be suitably used. These are usually diluted 100 times with a high-boiling organic solvent described later and added to the coating composition.

さらにまた、湿気硬化型ポリウレタン樹脂塗料の乾燥時間を短縮させたい場合には、所定の硬化促進剤を使用することもできる。この硬化促進剤としては、トリエチレンジアミン10重量部と上記高沸点有機溶剤90重量部との混合液などが挙げられ、その添加量は塗料全量に対して約1〜3重量%とするのがよい。   Furthermore, when it is desired to shorten the drying time of the moisture curable polyurethane resin paint, a predetermined curing accelerator can be used. Examples of the curing accelerator include a mixed solution of 10 parts by weight of triethylenediamine and 90 parts by weight of the high boiling point organic solvent, and the addition amount is preferably about 1 to 3% by weight with respect to the total amount of the paint. .

湿気硬化型ポリウレタン樹脂塗料は、そのまま塗装に供してもよく、希釈剤により希釈して粘度調整を行った上で塗装に供してもよい。希釈剤としては炭化水素系有機溶剤があげられる。このうち芳香族炭化水素系有機溶剤が好ましく、さらに高沸点のものがより好ましい。ここで、高沸点芳香族炭化水素系有機溶剤とは、蒸留範囲が160〜180℃であり、重質の芳香族化合物を95容量%以上含有し、日本塗料工業会規格JPIA−4に相当するものをいうものとする。このような高沸点芳香族炭化水素系溶剤としては、ソルベッソ100級スワゾール1000(商品名、丸善石油化学社製)、日石ハイゾール100(商品名、新日本石油化学社製)、イプゾール100(商品名、出光興産社製)などが挙げられる。上記溶剤の添加量は、目標とする粘度にもよるが、希釈後の塗料の全量に対して、5〜30重量%程度に設定できる。   The moisture-curable polyurethane resin paint may be used for coating as it is, or may be used for coating after dilution with a diluent to adjust the viscosity. Examples of the diluent include hydrocarbon organic solvents. Of these, aromatic hydrocarbon organic solvents are preferable, and those having a high boiling point are more preferable. Here, the high-boiling aromatic hydrocarbon organic solvent has a distillation range of 160 to 180 ° C., contains 95% by volume or more of a heavy aromatic compound, and corresponds to Japan Paint Industry Association Standard JPIA-4. It shall mean something. Examples of such high-boiling aromatic hydrocarbon solvents include Solvesso 100-grade Swazol 1000 (trade name, manufactured by Maruzen Petrochemical Co., Ltd.), Nisseki Hysol 100 (trade name, manufactured by Shin Nippon Petrochemical Co., Ltd.), and Ipsol 100 (product). Name, manufactured by Idemitsu Kosan Co., Ltd.). Although the amount of the solvent added depends on the target viscosity, it can be set to about 5 to 30% by weight with respect to the total amount of the paint after dilution.

以上のように、導電性物質、及び各種顔料・添加剤が添加された帯電防止用塗料は、公知の塗装方法を用いて塗装することができる。このような公知の塗装方法としては、刷毛塗り塗装、ローラー塗装などが挙げられる。その標準塗布量は、通常、刷毛塗り塗装の場合、0.15kg/m2程度とされ、このときの乾燥膜厚は、60μmである。また、塗膜厚は、その乾燥塗膜厚にて、20〜80μm、好ましくは30〜60μmとなるようにするのがよい。この膜厚は、厚ければ厚いほど塗膜の耐久性が向上するが、上記範囲未満では、塗膜の耐久性に問題があり、上記範囲を超えた場合、塗膜の乾燥時間が長くなり、かつガスが発生するため好ましくない。 As described above, the antistatic coating material to which the conductive substance and various pigments / additives are added can be applied using a known coating method. Examples of such known coating methods include brush coating and roller coating. The standard coating amount is usually about 0.15 kg / m 2 in the case of brush coating, and the dry film thickness at this time is 60 μm. Further, the coating thickness is 20 to 80 μm, preferably 30 to 60 μm, based on the dry coating thickness. The thicker the film, the better the durability of the coating film. However, if the thickness is less than the above range, there is a problem with the durability of the coating film. In addition, gas is generated, which is not preferable.

上記帯電防止用塗料による帯電防止膜用下層膜が半硬化乾燥状態になった後、この塗膜面に少なくとも1回導電性塗料を塗装し、上層膜を形成する。この導電性塗料としては、公知の導電性塗料を使用でき、耐候性を有するものであることが好ましく、例えば、フッ素樹脂系塗料、塩化ゴム系塗料、ポリウレタン樹脂系塗料、アクリル系塗料、シリコンアルキッド系塗料、シリコンアクリル系塗料などが挙げられ、適宜選択して塗装に使用できる。   After the lower layer film for the antistatic film by the antistatic paint is in a semi-cured and dried state, the upper surface film is formed by applying the conductive paint to the coating surface at least once. As this conductive paint, a known conductive paint can be used, and it is preferable that it has weather resistance. For example, fluororesin paint, chlorinated rubber paint, polyurethane resin paint, acrylic paint, silicon alkyd -Based paints, silicone acrylic paints, and the like, which can be appropriately selected and used for painting.

このようにして得られた帯電防止膜は、好ましくは、乾燥性が4時間以内、付着性が25kg/cm2以上であると共に、電気特性としての塗膜破壊電圧が0.8kVであることか、または、電気特性としての絶縁抵抗が1MΩ以下である。このような特性を有することで、十分実用に耐えうる帯電防止膜を形成することができる。この場合、下層膜は、好ましくは塗膜破壊電圧が0.2kV以下であるか、又は、電気特性としての絶縁抵抗が10kΩ以下であることが好ましい。 The antistatic film thus obtained preferably has a drying property within 4 hours, an adhesion property of 25 kg / cm 2 or more, and a coating breakdown voltage as an electrical property of 0.8 kV. Alternatively, the insulation resistance as an electrical property is 1 MΩ or less. By having such characteristics, it is possible to form an antistatic film that can withstand practical use. In this case, the lower layer film preferably has a coating breakdown voltage of 0.2 kV or less, or an insulation resistance as electrical characteristics of 10 kΩ or less.

このように下層膜及び上層膜を形成することで、2層からなる帯電防止膜を得ることが可能である。尚、本発明の帯電防止膜は、送電鉄塔に対してのみならず、例えば静電気スパークによる爆発を防止するために、石油製品タンクにも直接実施できる。   By forming the lower layer film and the upper layer film in this way, it is possible to obtain a two-layer antistatic film. The antistatic film of the present invention can be directly applied not only to a power transmission tower but also to a petroleum product tank in order to prevent an explosion due to, for example, electrostatic spark.

以下、実験例、実施例及び比較例により本発明をより詳細に説明する。なお、以下の実験例、実施例及び比較例において評価とは、各試料により得られた膜が帯電防止膜又は帯電防止膜用下層膜として適用可能かどうかの評価であり、○は適用が好ましいことを、△が適用可能であることを、×が適用不可能であることを示す。   Hereinafter, the present invention will be described in more detail with reference to experimental examples, examples, and comparative examples. In the following experimental examples, examples and comparative examples, the evaluation is an evaluation of whether or not the film obtained from each sample is applicable as an antistatic film or an underlayer film for an antistatic film, and ◯ is preferably applied. This means that Δ is applicable and × is not applicable.

(実験例1)
本実験例では、従来から用いられてきたエポキシ樹脂と、湿気硬化型ポリウレタン樹脂との物性を調べ、結果を比較した。まず、以下に示す配合で、塗料A(エポキシ樹脂系塗料)及びB(湿気硬化型ポリウレタン樹脂系塗料)を調整した。なお、各試料A、Bに含まれる物質の原料については、表1に示す。
A)エポキシ樹脂系 質量部
エポキシ樹脂ワニス 17
酸化チタン白顔料 8
リン酸アルミ防錆顔料 11
タルク顔料 19
アマイドワックス 2
MIBK 12
キシレン 16
ポリアミドアミン樹脂 15
合計 100
B)湿気硬化ウレタン樹脂系 質量部
湿気硬化型ポリイソシアネート樹脂 30
酸化チタン白顔料 10
タルク顔料 30
沈降性硫酸バリウム 5
シリコン系消泡剤溶液 1
高沸点芳香族炭化水素系溶剤 24
合計 100
(Experimental example 1)
In this experimental example, the physical properties of a conventionally used epoxy resin and a moisture curable polyurethane resin were examined, and the results were compared. First, paints A (epoxy resin paint) and B (moisture curable polyurethane resin paint) were prepared with the following composition. In addition, it shows in Table 1 about the raw material of the substance contained in each sample A and B.
A) Epoxy resin mass part Epoxy resin varnish 17
Titanium oxide white pigment 8
Aluminum phosphate anticorrosive pigment 11
Talc pigment 19
Amide wax 2
MIBK 12
Xylene 16
Polyamideamine resin 15
Total 100
B) Moisture-curing urethane resin system Mass parts Moisture-curing polyisocyanate resin 30
Titanium oxide white pigment 10
Talc pigment 30
Precipitated barium sulfate 5
Silicone defoamer solution 1
High boiling point aromatic hydrocarbon solvent 24
Total 100

Figure 2009209299
Figure 2009209299

この塗料A及びBを溶融亜鉛メッキ鋼板に膜厚30μmになるよう刷毛にて塗布した。塗布後、室内にて7日間乾燥させた。得られた膜A及び膜Bの乾燥性、及び付着性を調べた。乾燥性は、JIS―K5600―1−1に従って調べ、付着性は、elcometer社製のADHESION TESTERにより、接着剤としては東レ・ファインケミカル製の2液エポキシ樹脂TE2220を用いて調べた。結果を表2に示す。   The paints A and B were applied to a hot dip galvanized steel sheet with a brush so as to have a film thickness of 30 μm. After coating, it was dried indoors for 7 days. The dryness and adhesion of the obtained membrane A and membrane B were examined. The drying property was examined in accordance with JIS-K5600-1-1, and the adhesion property was examined by ADHESION TESTER manufactured by elcometer, and the two-component epoxy resin TE2220 manufactured by Toray Fine Chemical was used as an adhesive. The results are shown in Table 2.

Figure 2009209299
Figure 2009209299

塗料A(エポキシ樹脂系塗料)は、上塗り可能となるまで16時間かかり、乾燥性が悪かった。従って、1Day2Coatは不可能であった。これに対し、塗料Bは、4時間で上塗り可能となるため、乾燥性がよく、1日に2層形成できる可能性があった。また、付着性も塗料Aより優れていた。従って、下塗り用塗料としては、湿気硬化型ポリウレタン樹脂が好ましいことがわかった。   The coating material A (epoxy resin coating material) took 16 hours until it could be overcoated, and the drying property was poor. Therefore, 1Day2Coat was impossible. On the other hand, since the coating B can be overcoated in 4 hours, it has a good drying property and may form two layers a day. Also, the adhesion was superior to that of the paint A. Therefore, it was found that moisture-curable polyurethane resin is preferable as the undercoating paint.

本実験例では、実験例1で用いた塗料B(湿気硬化ウレタン樹脂系塗料)に、各種導電性物質を添加し、その物性を調べた。まず、以下の配合で塗料C、Dを調整した。   In this experimental example, various conductive substances were added to the coating material B (moisture-curing urethane resin-based coating material) used in Experimental Example 1, and the physical properties thereof were examined. First, paints C and D were prepared with the following composition.

C) 塗料Bに対し、グラファイトを10質量部で添加
D) 塗料Bに対し、白色導電性顔料を10質量部で添加
その後、塗料C、Dを溶融亜鉛メッキ鋼板に30μmになるように刷毛にて塗布した。塗布後、室内にて7日間乾燥させた。得られた膜C、Dの乾燥性、付着性、耐湿後付着性を調べた。乾燥性、付着性は実験例1と同様に、また、耐湿性は、JIS−K5600−7−2に従って調べた。また、同様に塗料C、Dで標準膜(30μm)及び厚膜(50μm)の2種類の膜を形成し、電気特性として、絶縁抵抗及び破壊電圧を調べた。電気特定の測定は、以下の2つの方法により、行った。一つは、測定器で測定するものであり、この測定方法を主に用いた。即ち、膜が形成されている溶融亜鉛メッキ綱板の一方の面に電極を設けると共に、他方の面に、直径62mm、厚さ80mmの黄銅製円筒電極を設けて、この電極に対して、直列に測定器用保護抵抗及び超高抵抗計(アドバンテスト製R8340)を設けた。そして、電極間に直流電圧を印加して絶縁抵抗を測定するとともに、破壊電圧を測定した。また、もう一つは、抵抗測定回路で測定するものであり、膜が形成されている溶融亜鉛メッキ綱板の一方の面に電極を設けると共に、他方の面に黄銅製円筒電極を設けて、この電極に対して、直列に電流測定用かつ測定器保護用抵抗、及び汎用電圧源(キクスイ製PCR2000L)を設けた。さらに、測定器保護用抵抗と汎用電圧源との間に、並列となるように電圧計を二つ互いに直列となるように設けた。そして、電極間に直流電圧を印加して絶縁抵抗を測定するとともに、破壊電圧を測定した。なお、電気特性以外の特性は、全て標準膜で測定した。結果を表3に示す。
C) Graphite is added to paint B at 10 parts by mass D) White conductive pigment is added to paint B at 10 parts by mass Thereafter, paints C and D are applied to a hot-dip galvanized steel sheet to a thickness of 30 μm. And applied. After coating, it was dried indoors for 7 days. The obtained films C and D were examined for drying property, adhesion property, and adhesion property after moisture resistance. The drying property and adhesion property were examined in the same manner as in Experimental Example 1, and the moisture resistance was examined according to JIS-K5600-7-2. Similarly, two kinds of films of a standard film (30 μm) and a thick film (50 μm) were formed with the paints C and D, and the insulation resistance and breakdown voltage were examined as electrical characteristics. The electrical specific measurement was performed by the following two methods. One is to measure with a measuring instrument, and this measuring method was mainly used. That is, an electrode is provided on one surface of a hot-dip galvanized steel sheet on which a film is formed, and a brass cylindrical electrode having a diameter of 62 mm and a thickness of 80 mm is provided on the other surface. Were provided with a protective resistance for measuring instrument and an ultrahigh resistance meter (R8340 manufactured by Advantest). Then, a DC voltage was applied between the electrodes to measure the insulation resistance, and the breakdown voltage was measured. In addition, the other is to measure with a resistance measurement circuit, provided with an electrode on one surface of a hot dip galvanized steel sheet on which a film is formed, and provided with a brass cylindrical electrode on the other surface, A resistance for measuring current and protecting a measuring instrument and a general-purpose voltage source (PCR2000L manufactured by Kikusui) were provided in series with this electrode. Further, two voltmeters were provided in series so as to be in parallel between the measuring instrument protection resistor and the general-purpose voltage source. Then, a DC voltage was applied between the electrodes to measure the insulation resistance, and the breakdown voltage was measured. All characteristics other than electrical characteristics were measured with a standard film. The results are shown in Table 3.

Figure 2009209299
Figure 2009209299

(比較例1)
本比較例では、実施例1に対し、比較例として、従来から用いられているエポキシ樹脂系アルミ導電性塗料G(配合は以下を参照)を調製し、実施例1と同様に膜Gを形成しその物性を調べた。結果を表3に示す。
(Comparative Example 1)
In this comparative example, an epoxy resin-based aluminum conductive paint G that has been conventionally used is prepared as a comparative example with respect to Example 1, and the film G is formed in the same manner as in Example 1. The physical properties were examined. The results are shown in Table 3.

E) 塗料Bに対し、アルミペーストを10質量部で添加
F) 塗料Bに対し、亜鉛粉末を10質量部で添加
G)エポキシ樹脂系アルミ導電性塗料 質量部
エポキシ樹脂ワニス 17
酸化チタン白顔料 8
リン酸アルミ防錆顔料 11
タルク顔料 4
アマイドワックス 2
MIBK 12
キシレン 16
アルミペースト 15
ポリアミドアミン樹脂 15
合計 100
E) Add 10 parts by weight of aluminum paste to paint B F) Add 10 parts by weight of zinc powder to paint B G) Epoxy resin-based aluminum conductive paint parts by weight Epoxy resin varnish 17
Titanium oxide white pigment 8
Aluminum phosphate anticorrosive pigment 11
Talc pigment 4
Amide wax 2
MIBK 12
Xylene 16
Aluminum paste 15
Polyamideamine resin 15
Total 100

以上の実施例1及び比較例1の結果から、湿気硬化型ポリウレタン樹脂(塗料E〜F)よりも乾燥性の悪いエポキシ樹脂系(G)を用いることはできないことが分かった。また、湿気硬化型ポリウレタン樹脂を用いた場合には、亜鉛粉末、グラファイト及び白色導電性顔料を添加しても乾燥性は良かった。さらに、グラファイトは、破壊電圧を低く抑え、白色導電性顔料は、絶縁抵抗を低く抑えることができることが分かった。   From the results of Example 1 and Comparative Example 1 described above, it was found that an epoxy resin system (G) having a drying property worse than that of the moisture curable polyurethane resin (paints E to F) cannot be used. In addition, when the moisture curable polyurethane resin was used, the drying property was good even when zinc powder, graphite and white conductive pigment were added. Furthermore, it has been found that graphite can keep the breakdown voltage low, and the white conductive pigment can keep the insulation resistance low.

本実施例では、実施例1で用いた塗料C、Dで膜を形成し、従来から用いられてきた上塗り用ウレタン帯電防止塗料α(アクリルポリオール38%含有)を重ね塗りして、得られた2層膜の評価を行った。実施例1と同様に塗料C、Dを溶融亜鉛メッキ鋼板に刷毛にて標準膜を厚さ30μm、厚膜を厚さ50μmになるように塗布した。塗布後、4時間乾燥させた。得られた下層膜C、Dに対して、上塗り用塗料αを厚さ30μmになるように刷毛で塗布した。その後、7日間乾燥を行ってから、電気特性、付着性、耐湿後付着性を調べた。結果を表4に示す。   In this example, a film was formed with the paints C and D used in Example 1, and a conventional overcoat urethane antistatic paint α (containing 38% acrylic polyol), which was conventionally used, was overcoated. Two-layer films were evaluated. In the same manner as in Example 1, paints C and D were applied to a hot dip galvanized steel sheet with a brush so that the standard film had a thickness of 30 μm and the thick film had a thickness of 50 μm. After application, it was dried for 4 hours. The overcoat paint α was applied to the obtained lower layer films C and D with a brush so as to have a thickness of 30 μm. Then, after drying for 7 days, electrical properties, adhesion, and adhesion after moisture resistance were examined. The results are shown in Table 4.

Figure 2009209299
Figure 2009209299

(比較例2)
本比較例では、実施例2に対し、比較として塗料E〜G(比較例1参照)を用いて、実施例1と同様の手順で膜E〜Gを形成し電気特性、付着性、耐湿後付着性を調べた。結果を表4に示す。
(Comparative Example 2)
In this comparative example, the coatings E to G (see comparative example 1) are used as a comparison with the example 2, and the films E to G are formed in the same procedure as in the example 1, and after the electrical characteristics, adhesion, and moisture resistance Adhesion was examined. The results are shown in Table 4.

実施例2及び比較例2から、導電性物質としてグラファイト(膜C参照)及び白色導電性顔料(膜D参照)を用いた場合には、従来品(膜G参照)と同様の物性を有する2層膜を形成することができることが分かった。亜鉛粉末は、下層膜のみの場合には、非常によい物性を有していたが、2層膜とした時に、特に耐湿後付着性に乏しく、実用的ではないことが分かった。   From Example 2 and Comparative Example 2, when graphite (see Membrane C) and white conductive pigment (see Membrane D) are used as the conductive material, it has the same physical properties as the conventional product (see Membrane G) 2 It was found that a layer film can be formed. Zinc powder had very good physical properties when only the lower layer film was used, but it was found that when it was made into a two-layer film, it had poor adhesion particularly after moisture resistance and was not practical.

本実施例では、グラファイト及び白色導電性顔料の最適添加量を調べた。まず、以下の配合で塗料H〜Qを調製した。   In this example, the optimum addition amounts of graphite and white conductive pigment were examined. First, paints H to Q were prepared with the following composition.

H) 塗料Bに対し、グラファイトを1質量部で添加
I) 塗料Bに対し、グラファイトを2.5質量部で添加
J) 塗料Bに対し、グラファイトを5質量部で添加
K) 塗料Bに対し、グラファイトを7.5質量部で添加
L) 塗料Bに対し、グラファイトを15質量部で添加
M) 塗料Bに対し、白色導電性顔料を1質量部で添加
N) 塗料Bに対し、白色導電性顔料を2.5質量部で添加
O) 塗料Bに対し、白色導電性顔料を5質量部で添加
P) 塗料Bに対し、白色導電性顔料を7.5質量部で添加
Q) 塗料Bに対し、白色導電性顔料を15質量部で添加
その後、塗料C及び塗料D(実施例2参照)、及び上記塗料H〜Qを溶融亜鉛メッキ鋼板に標準膜:30μm、厚膜:50μmになるように刷毛にて塗布した。塗布後、室内にて7日間乾燥させた。得られた膜C、D及びH〜Qの乾燥性、付着性、耐湿性、絶縁抵抗、破壊電圧を調べた。結果を表5、6に示す。
H) Addition of 1 part by weight of graphite to paint B I) Addition of 2.5 parts by weight of graphite to paint B J) Addition of 5 parts by weight of graphite to paint B K) To paint B Addition of graphite in 7.5 parts by mass L) Addition of 15 parts by weight of graphite to paint B M) Addition of 1 part by weight of white conductive pigment to paint B N) Addition of white conductivity to paint B O) Add a white conductive pigment at 2.5 parts by mass O) Add a white conductive pigment at 5 parts by mass to paint B P) Add a white conductive pigment at 7.5 parts by mass with respect to paint B Q) Paint B On the other hand, the white conductive pigment is added at 15 parts by mass. Thereafter, the paint C and paint D (see Example 2) and the paints H to Q are applied to a hot-dip galvanized steel sheet with a standard film of 30 μm and a thick film of 50 μm It was applied with a brush. After coating, it was dried indoors for 7 days. The obtained films C, D, and H to Q were examined for dryness, adhesion, moisture resistance, insulation resistance, and breakdown voltage. The results are shown in Tables 5 and 6.

Figure 2009209299
Figure 2009209299

Figure 2009209299
Figure 2009209299

以上の結果から、グラファイトの添加量は、1〜15質量部、特に、2.5〜15質量部が好ましいことが分かった。また、白色導電性顔料の添加量も、1〜15質量部、特に、7.5〜15質量部程度が好ましいことが分かった。さらに、添加量の多少を問わず、グラファイトは、破壊電圧を低く抑えることができ、また、白色導電性顔料は、絶縁抵抗を低く抑えることができることが分かった。   From the above results, it was found that the addition amount of graphite is preferably 1 to 15 parts by mass, particularly 2.5 to 15 parts by mass. Moreover, it turned out that the addition amount of a white electroconductive pigment is 1-15 mass parts, especially about 7.5-15 mass parts. Further, it was found that regardless of the amount of addition, graphite can keep the breakdown voltage low, and the white conductive pigment can keep the insulation resistance low.

(比較例3)
本比較例では、実施例3に対し、比較として導電性物質の含有量の異なる以下の塗料R、Sを調整し、実施例3と同様の手順で膜R、Sを形成し電気特性、付着性、耐湿後付着性を調べた。結果を表5、6に示す。
(Comparative Example 3)
In this comparative example, the following coating materials R and S having different conductive substance contents are adjusted as compared with Example 3, and films R and S are formed in the same procedure as in Example 3 to obtain electrical characteristics and adhesion. And adhesion after moisture resistance were examined. The results are shown in Tables 5 and 6.

R) 塗料Bに対し、グラファイトを17.5質量部で添加
S) 塗料Bに対し、白色導電性顔料を17.5質量部で添加
比較例3から、グラファイト及び白色導電性顔料を17.5質量部含有させた場合には、物性が劣ることが分かった。
R) Addition of 17.5 parts by mass of graphite to paint B S) Addition of 17.5 parts by weight of white conductive pigment to paint B From Comparative Example 3, 17.5 parts of graphite and white conductive pigment were added. It was found that the physical properties were inferior when contained in parts by mass.

本実施例では、グラファイト及び白色導電性顔料を組み合わせて添加した場合について調べた。まず、以下の配合で塗料T〜Vを調整した。   In this example, the case where graphite and a white conductive pigment were added in combination was examined. First, the paints T to V were adjusted with the following composition.

T) 塗料Bに対し、グラファイトを2.5質量部で、白色導電性顔料を2.5質量部で添加
U) 塗料Bに対し、グラファイトを5質量部で、白色導電性顔料を5質量部で添加
V) 塗料Bに対し、グラファイトを7.5質量部で、白色導電性顔料を7.5質量部で添加
その後、塗料T〜Vを溶融亜鉛メッキ鋼板に標準膜:30μm、厚膜:50μmになるように刷毛にて塗布した。塗布後、室内にて7日間乾燥させた。得られた膜T〜Vの電気特性、乾燥性、付着性、耐湿後付着性を調べた。結果を表7に示す。
T) Add 2.5 parts by weight of graphite and 2.5 parts by weight of white conductive pigment to paint B. U) Add 5 parts by weight of graphite and 5 parts by weight of white conductive pigment to paint B. V) Addition of 7.5 parts by weight of graphite and 7.5 parts by weight of white conductive pigment to paint B. Thereafter, paints T to V are applied to a hot-dip galvanized steel sheet with a standard film of 30 μm and a thick film: It apply | coated with the brush so that it might become 50 micrometers. After coating, it was dried indoors for 7 days. The obtained films T to V were examined for electrical properties, drying properties, adhesion properties, and post-humidity adhesion properties. The results are shown in Table 7.

Figure 2009209299
Figure 2009209299

どちらも、グラファイト及び白色導電性顔料をそれぞれ単独で用いる場合よりも絶縁抵抗及び破壊電圧が低かった。この結果から、グラファイト及び白色導電性顔料を組み合わせることが好ましいことが分かった。   In both cases, the insulation resistance and breakdown voltage were lower than when graphite and a white conductive pigment were each used alone. From this result, it was found that it is preferable to combine graphite and a white conductive pigment.

(比較例4)
本比較例では、実施例4に対し、比較として導電性物質の含有量の異なる以下の塗料W、Xを調整し、実施例4と同様の手順で膜W、Xを形成し電気特性、付着性、耐湿後付着性を調べた。結果を表7に示す。
(Comparative Example 4)
In this comparative example, the following paints W and X having different conductive substance contents are adjusted as compared with Example 4, and the films W and X are formed in the same procedure as in Example 4, so that the electrical characteristics and adhesion And adhesion after moisture resistance were examined. The results are shown in Table 7.

W) 塗料Bに対し、グラファイトを1質量部で、白色導電性顔料を5質量部で添加
X) 塗料Bに対し、グラファイトを10質量部で、白色導電性顔料を10質量部で添加
W) Addition of 1 part by weight of graphite and 5 parts by weight of white conductive pigment to paint B X) Addition of 10 parts by weight of graphite and 10 parts by weight of white conductive pigment to paint B

比較例4から、グラファイト及び白色導電性顔料を、前記導電性物質以外の前記帯電防止塗料100質量部に対して、5〜15質量部となるように配合すること、並びに、グラファイトが、2.5〜15質量部を満たすか、又は、前記白色導電性顔料が、7.5〜15質量部を満たすように配合すると、好ましい結果を得ることができることが分かった。   From Comparative Example 4, the graphite and the white conductive pigment are blended so as to be 5 to 15 parts by mass with respect to 100 parts by mass of the antistatic paint other than the conductive substance. It turned out that a favorable result can be obtained when it mix | blends so that 5-15 mass parts may be satisfy | filled or the said white conductive pigment may satisfy | fill 7.5-15 mass parts.

(実験例2)
本実験例では、下塗りに用いた導電性物質を上塗り導電性塗料に添加して、上塗用導電性塗料を調製し、その物性を調べた。まず、以下の配合で塗料を調整した。
β)ウレタン帯電防止塗料上塗 質量部
アクリルポリオール 51
酸化チタン白顔料 23
有機ベントナイト 2
白色導電性顔料 10
シリコン系消泡剤溶液 2
キシレン 5
酢酸ブチル 5
イソシアネート樹脂 12
合計 110
γ)ウレタン帯電防止塗料上塗 質量部
アクリルポリオール 51
酸化チタン白顔料 23
有機ベントナイト 2
白色導電性顔料 10
グラファイト 1
シリコン系消泡剤溶液 2
キシレン 5
酢酸ブチル 5
イソシアネート樹脂 12
合計 111
θ)フッソ樹脂帯電防止塗料 質量部
フッ素樹脂 35
酸化チタン白顔料 20
有機ベントナイト 1
アマイドワックス 1
紫外線吸収剤 1
シリコン系消泡剤溶液 2
白色導電性顔料 20
イソシアネート樹脂 6
酢酸ブチル 7
キシレン 7
合計 100
(Experimental example 2)
In this experimental example, the conductive material used for the undercoat was added to the topcoat conductive paint to prepare a topcoat conductive paint, and its physical properties were examined. First, a paint was prepared with the following composition.
β) Urethane antistatic paint top coat Mass part Acrylic polyol 51
Titanium oxide white pigment 23
Organic bentonite 2
White conductive pigment 10
Silicone defoamer solution 2
Xylene 5
Butyl acetate 5
Isocyanate resin 12
Total 110
γ) Urethane antistatic paint top coat Mass part Acrylic polyol 51
Titanium oxide white pigment 23
Organic bentonite 2
White conductive pigment 10
Graphite 1
Silicone defoamer solution 2
Xylene 5
Butyl acetate 5
Isocyanate resin 12
Total 111
θ) Fluoro resin antistatic paint Mass parts Fluoro resin 35
Titanium oxide white pigment 20
Organic bentonite 1
Amide wax 1
UV absorber 1
Silicone defoamer solution 2
White conductive pigment 20
Isocyanate resin 6
Butyl acetate 7
Xylene 7
Total 100

その後、塗料α(実施例2参照)、及び塗料β〜θを溶融亜鉛メッキ鋼板上に30μmになるように刷毛にて塗布した。塗布後、室内にて7日間乾燥させた。得られた膜α〜θの物性、耐湿性、色相を調べた。結果を表8に示す。   Thereafter, paint α (see Example 2) and paints β to θ were applied onto the hot dip galvanized steel sheet with a brush so as to be 30 μm. After coating, it was dried indoors for 7 days. The physical properties, moisture resistance, and hue of the obtained films α to θ were examined. The results are shown in Table 8.

Figure 2009209299
Figure 2009209299

この結果から、全て上塗り塗料として利用可能であることが分かった。   From this result, it was found that all can be used as a top coat.

本実施例では、2層膜を形成し、物性を調べた。下塗り塗料として、塗料C(実施例1参照)及び塗料U(実施例4参照)を用い、上塗り塗料として、塗料α〜θを用いた。塗料C、Uを溶融亜鉛メッキ鋼板にその厚さが標準膜:30μm、厚膜:50μmとなるように刷毛で塗布した。塗布後、4時間乾燥させた。得られた下層膜C、Uに対して、上塗り用塗料α〜θを、30μmになるようにそれぞれ刷毛で塗布した。その後、7日間乾燥を行ってから、電気特性、付着性、耐湿後付着性、耐候性を調べた。耐候性は、JIS−K5600―7―7に従った。結果を表9に示す。表9中、耐候性が○とは、500時間で光沢保持率70%以上を示す。   In this example, a two-layer film was formed and the physical properties were examined. Paint C (see Example 1) and paint U (see Example 4) were used as the undercoat paint, and paints α to θ were used as the top coat paint. The paints C and U were applied to a hot dip galvanized steel sheet with a brush so that the thickness was 30 μm for the standard film and 50 μm for the thick film. After application, it was dried for 4 hours. The top coatings α to θ were applied to the obtained lower layer films C and U with a brush so as to have a thickness of 30 μm. Then, after drying for 7 days, electrical characteristics, adhesion, adhesion after moisture resistance, and weather resistance were examined. The weather resistance was in accordance with JIS-K5600-7-7. The results are shown in Table 9. In Table 9, “O” indicates that the gloss retention is 70% or more in 500 hours.

Figure 2009209299
Figure 2009209299

以上の結果から、塗料C及びUはどちらもどのような上塗り塗料を用いても実用に耐えうることが分かった。特に、塗料Uの場合には、全ての上塗に適用して、乾燥性が満足でき、電気特性及び他の物性に優れていた。   From the above results, it was found that the coating materials C and U can withstand practical use regardless of the top coating material used. In particular, in the case of the paint U, it was applied to all the top coats to satisfy the dryness, and was excellent in electrical characteristics and other physical properties.

以上述べた実験例、実験例及び比較例から、本発明の帯電防止塗料によれば、得られた膜は、4時間で上塗り可能である。また、この得られた膜を下層膜とし、上層膜を形成すると、これら2層からなる膜は、破壊電圧が0.8kV以下か、又は絶縁抵抗が1MΩ以下であるといういずれかの条件を満たすので、電気特性にも優れている。従って、本発明の帯電防止塗料によれば、乾燥性及び電気特性に優れた帯電防止膜を形成することができ、いわゆる1DAY2COATで従来品と変わらない帯電防止膜を作製することができる。   From the experimental examples, experimental examples, and comparative examples described above, according to the antistatic paint of the present invention, the obtained film can be overcoated in 4 hours. Further, when the obtained film is used as a lower layer film and an upper layer film is formed, the film composed of these two layers satisfies one of the conditions that the breakdown voltage is 0.8 kV or less or the insulation resistance is 1 MΩ or less. So it has excellent electrical characteristics. Therefore, according to the antistatic coating material of the present invention, it is possible to form an antistatic film excellent in drying properties and electrical characteristics, and it is possible to produce an antistatic film that is the same as that of a conventional product by so-called 1DAY2COAT.

本発明の帯電防止塗料によれば、乾燥性及び電気特性に優れた帯電防止膜を形成することができる。従って、例えば送電鉄塔の鋼材表面に設けられる帯電防止膜として利用可能である。   According to the antistatic coating material of the present invention, it is possible to form an antistatic film having excellent drying properties and electrical characteristics. Therefore, for example, it can be used as an antistatic film provided on the steel material surface of a power transmission tower.

Claims (10)

湿気硬化型ポリウレタン樹脂と、カーボン系導電性物質及びウィスカ型導電性物質から選ばれた少なくとも1種からなる導電性物質とを含有することを特徴とする帯電防止塗料。   An antistatic paint comprising a moisture-curable polyurethane resin and a conductive material composed of at least one selected from a carbon-based conductive material and a whisker-type conductive material. 前記導電性物質以外の前記帯電防止塗料100質量部に対して、前記導電性物質1〜15質量部を配合することを特徴とする請求項1に記載の帯電防止塗料。   The antistatic paint according to claim 1, wherein 1 to 15 parts by mass of the conductive substance is blended with 100 parts by mass of the antistatic paint other than the conductive substance. 前記導電性物質として、前記カーボン系導電性物質を、前記導電性物質以外の前記帯電防止塗料100質量部に対して、2.5〜15質量部で配合することを特徴とする請求項1又は2に記載の帯電防止塗料。   The carbon-based conductive material is blended as the conductive material in an amount of 2.5 to 15 parts by mass with respect to 100 parts by mass of the antistatic paint other than the conductive material. 2. The antistatic paint according to 2. 前記導電性物質として、前記ウィスカ型導電性物質を、前記導電性物質以外の前記帯電防止塗料100質量部に対して、7.5〜15質量部で配合することを特徴とする請求項1又は2に記載の帯電防止塗料。   The whisker-type conductive substance is blended as the conductive substance in an amount of 7.5 to 15 parts by mass with respect to 100 parts by mass of the antistatic paint other than the conductive substance. 2. The antistatic paint according to 2. 前記導電性物質として、前記カーボン系導電性物質及び前記ウィスカ型導電性物質を組み合わせ、前記導電性物質以外の前記帯電防止塗料100質量部に対して、5〜15質量部となるように配合すると共に、前記カーボン系導電性物質の配合量が、2.5〜15質量部を満たすか、又は、前記ウィスカ型導電性物質の配合量が、7.5〜15質量部を満たすように配合することを特徴とする請求項1又は2に記載の帯電防止塗料。   As the conductive material, the carbon-based conductive material and the whisker-type conductive material are combined and blended so as to be 5 to 15 parts by mass with respect to 100 parts by mass of the antistatic paint other than the conductive material. In addition, the blending amount of the carbon-based conductive material satisfies 2.5 to 15 parts by mass, or the blending amount of the whisker-type conductive material satisfies 7.5 to 15 parts by mass. The antistatic paint according to claim 1, wherein the antistatic paint is used. 前記カーボン系導電性物質が、グラファイトであることを特徴とする請求項1〜5のいずれか一項に記載の帯電防止塗料。   The antistatic paint according to any one of claims 1 to 5, wherein the carbon-based conductive substance is graphite. 前記ウィスカ型導電性物質が、SbドープSnO2膜が被覆されたTiO2であることを特徴とする請求項1〜5のいずれか一項に記載の帯電防止塗料。 The antistatic paint according to claim 1, wherein the whisker-type conductive material is TiO 2 coated with an Sb-doped SnO 2 film. 請求項1〜7のいずれか一項に記載の帯電防止塗料を用いて形成された下層膜と、導電性塗料を用いて形成された上層膜とからなることを特徴とする帯電防止膜。   An antistatic film comprising: a lower layer film formed using the antistatic paint according to any one of claims 1 to 7; and an upper layer film formed using a conductive paint. 下層膜の絶縁抵抗が10kΩ以下、又は、下層膜の破壊電圧が0.2kV以下であることを特徴とする請求項8に記載の帯電防止膜。   The antistatic film according to claim 8, wherein the insulation resistance of the lower layer film is 10 kΩ or less, or the breakdown voltage of the lower layer film is 0.2 kV or less. 送電鉄塔の鋼材塗装面に、請求項1〜7のいずれか一項に記載の帯電防止塗料を用いて下層膜を形成した後に、前記下層膜上に、耐候性の導電性塗料を用いて上層膜を形成して、帯電防止膜を形成することを特徴とする送電鉄塔の帯電防止膜の形成方法。   After a lower layer film is formed on the steel coating surface of the power transmission tower using the antistatic paint according to any one of claims 1 to 7, an upper layer is formed on the lower layer film using a weather-resistant conductive paint. A method of forming an antistatic film for a power transmission tower, comprising forming a film to form an antistatic film.
JP2008055609A 2008-03-05 2008-03-05 Antistatic film and method for forming the same Active JP5477525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008055609A JP5477525B2 (en) 2008-03-05 2008-03-05 Antistatic film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008055609A JP5477525B2 (en) 2008-03-05 2008-03-05 Antistatic film and method for forming the same

Publications (2)

Publication Number Publication Date
JP2009209299A true JP2009209299A (en) 2009-09-17
JP5477525B2 JP5477525B2 (en) 2014-04-23

Family

ID=41182768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008055609A Active JP5477525B2 (en) 2008-03-05 2008-03-05 Antistatic film and method for forming the same

Country Status (1)

Country Link
JP (1) JP5477525B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321360A (en) * 2011-07-27 2012-01-18 东南大学 Preparation method of metal oxide whisker-polyurethane composite material with monodispersity
EP2509112A1 (en) * 2009-12-03 2012-10-10 Toray Industries, Inc. Film for backside sealing sheet of solar cell
WO2015005220A1 (en) * 2013-07-11 2015-01-15 セメダイン株式会社 Production method for electrically conductive cured article, electrically conductive cured article, curing method for pulsed light curing composition, and pulsed light curing composition
WO2015145584A1 (en) * 2014-03-25 2015-10-01 中国電力株式会社 Transmission tower coating paint and transmission tower coating method
WO2015145585A1 (en) * 2014-03-25 2015-10-01 中国電力株式会社 Transmission tower coating paint and transmission tower coating method
WO2017090775A1 (en) * 2015-11-26 2017-06-01 新日鐵住金株式会社 Coated metal sheet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224232A (en) * 1975-08-19 1977-02-23 Chugoku Electric Power Co Ltd:The Method for antistatic coating of signs of power transmission pylon
JPS558900A (en) * 1979-07-05 1980-01-22 Chugoku Electric Power Co Ltd:The Antistatic coating for power transmission iron pole mark
JPH05217417A (en) * 1992-02-05 1993-08-27 Otsuka Chem Co Ltd Highly conductive composition
JPH0655138A (en) * 1991-04-22 1994-03-01 Million Paint Kk Conductive coating layer
JPH06256991A (en) * 1993-03-05 1994-09-13 Nkk Corp Continuous electroplating device for steel strip
JPH11172153A (en) * 1997-12-12 1999-06-29 Nippon Shokubai Co Ltd Destaticizing coating material composition and its use
JP2004035673A (en) * 2002-07-02 2004-02-05 Dainippon Toryo Co Ltd Substrate adjusting agent
JP2004043905A (en) * 2002-07-12 2004-02-12 Dainippon Toryo Co Ltd Process for preventing corrosion in weather-resistant steel
JP2005314561A (en) * 2004-04-28 2005-11-10 Chuden Kogyo Kk Antistatic coating composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224232A (en) * 1975-08-19 1977-02-23 Chugoku Electric Power Co Ltd:The Method for antistatic coating of signs of power transmission pylon
JPS558900A (en) * 1979-07-05 1980-01-22 Chugoku Electric Power Co Ltd:The Antistatic coating for power transmission iron pole mark
JPH0655138A (en) * 1991-04-22 1994-03-01 Million Paint Kk Conductive coating layer
JPH05217417A (en) * 1992-02-05 1993-08-27 Otsuka Chem Co Ltd Highly conductive composition
JPH06256991A (en) * 1993-03-05 1994-09-13 Nkk Corp Continuous electroplating device for steel strip
JPH11172153A (en) * 1997-12-12 1999-06-29 Nippon Shokubai Co Ltd Destaticizing coating material composition and its use
JP2004035673A (en) * 2002-07-02 2004-02-05 Dainippon Toryo Co Ltd Substrate adjusting agent
JP2004043905A (en) * 2002-07-12 2004-02-12 Dainippon Toryo Co Ltd Process for preventing corrosion in weather-resistant steel
JP2005314561A (en) * 2004-04-28 2005-11-10 Chuden Kogyo Kk Antistatic coating composition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2509112A1 (en) * 2009-12-03 2012-10-10 Toray Industries, Inc. Film for backside sealing sheet of solar cell
EP2509112A4 (en) * 2009-12-03 2013-08-21 Toray Industries Film for backside sealing sheet of solar cell
CN102321360A (en) * 2011-07-27 2012-01-18 东南大学 Preparation method of metal oxide whisker-polyurethane composite material with monodispersity
CN102321360B (en) * 2011-07-27 2013-02-20 东南大学 Preparation method of metal oxide whisker-polyurethane composite material with monodispersity
KR20160058743A (en) * 2013-07-11 2016-05-25 세메다인 가부시키 가이샤 Production method for electrically conductive cured article, electrically conductive cured article, curing method for pulsed light curing composition, and pulsed light curing composition
CN105377993A (en) * 2013-07-11 2016-03-02 思美定株式会社 Production method for electrically conductive cured article, electrically conductive cured article, curing method for pulsed light curing composition, and pulsed light curing composition
WO2015005220A1 (en) * 2013-07-11 2015-01-15 セメダイン株式会社 Production method for electrically conductive cured article, electrically conductive cured article, curing method for pulsed light curing composition, and pulsed light curing composition
JPWO2015005220A1 (en) * 2013-07-11 2017-03-02 セメダイン株式会社 Method for producing conductive cured product, conductive cured product, curing method for pulsed photocurable composition, and pulsed photocurable composition
CN105377993B (en) * 2013-07-11 2019-03-22 思美定株式会社 The manufacturing method and electric conductivity solidfied material of electric conductivity solidfied material and the curing method and pulse Photocurable composition of pulse Photocurable composition
KR102175447B1 (en) * 2013-07-11 2020-11-06 세메다인 가부시키 가이샤 Production method for electrically conductive cured article and curing method for pulsed light curing composition
WO2015145584A1 (en) * 2014-03-25 2015-10-01 中国電力株式会社 Transmission tower coating paint and transmission tower coating method
WO2015145585A1 (en) * 2014-03-25 2015-10-01 中国電力株式会社 Transmission tower coating paint and transmission tower coating method
JP6092464B2 (en) * 2014-03-25 2017-03-08 中国電力株式会社 How to paint a transmission tower
JPWO2015145584A1 (en) * 2014-03-25 2017-04-13 中国電力株式会社 How to paint a transmission tower
JPWO2015145585A1 (en) * 2014-03-25 2017-04-13 中国電力株式会社 How to paint a transmission tower
WO2017090775A1 (en) * 2015-11-26 2017-06-01 新日鐵住金株式会社 Coated metal sheet
JPWO2017090775A1 (en) * 2015-11-26 2018-10-11 新日鐵住金株式会社 Coated metal plate

Also Published As

Publication number Publication date
JP5477525B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5477525B2 (en) Antistatic film and method for forming the same
US4155896A (en) Organic coatings and paints having unique electrical properties
NO155936B (en) PAINTING SYSTEM, AND USE OF THE PAINTING SYSTEM FOR COATING DRY PROTECTED STEEL SURFACES.
EP0224906B1 (en) Electrodeposition coating method
EP0174725B1 (en) Chlorosulfonated ethylene vinyl acetate polymer coating composition
EP0161736B1 (en) Chlorosulfonated polyethylene coating composition
CN104081288B (en) charging roller
MX2014011440A (en) Method for applying a powder coating.
EP1853674B1 (en) White colored electrically conductive primer paint compositions, a method of painting in which they are used and the painted objects which have been painted with said method of painting
JP2005513714A (en) One-part organopolysiloxane rubber for high voltage electrical insulation
Sathiyanarayanan et al. Performance studies of phosphate‐doped polyaniline containing paint coating for corrosion protection of aluminium alloy
CN109836975A (en) A kind of corrosion-resistant conductive coating and its preparation method and application
JP2014196460A (en) Conductive coating-floor paint, conductive coated floor, and building
JP4920103B2 (en) Epoxy resin composition
DE102013009933A1 (en) Paint system for potentially explosive areas with high corrosive load
JP5392991B2 (en) Conductive floor and construction method
WO2004016698A1 (en) Corrosion-resistant paint for metallic surfaces
CN115397925A (en) Preservative composition
Dhanalakshmi et al. Evaluation of poly (epoxy‐chlorinated rubber‐silicone) polymer‐polymer composite coating system
KR20010058990A (en) A epoxy flooring coating composition having antistatic function
JP2001198521A (en) Coating method of galvanized steel structure
JP2005314561A (en) Antistatic coating composition
KR20200093368A (en) Powder Coating Composition
RU2803990C1 (en) Chromate-free, quick-drying protective primer
JP6945030B1 (en) Paint composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140128

R150 Certificate of patent or registration of utility model

Ref document number: 5477525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250