JP2009207476A - Productive agricultural method for life prolongation force of living plant body and non-septic living body - Google Patents

Productive agricultural method for life prolongation force of living plant body and non-septic living body Download PDF

Info

Publication number
JP2009207476A
JP2009207476A JP2008093016A JP2008093016A JP2009207476A JP 2009207476 A JP2009207476 A JP 2009207476A JP 2008093016 A JP2008093016 A JP 2008093016A JP 2008093016 A JP2008093016 A JP 2008093016A JP 2009207476 A JP2009207476 A JP 2009207476A
Authority
JP
Japan
Prior art keywords
living body
organisms
water
plant
productive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008093016A
Other languages
Japanese (ja)
Inventor
Tomoaki Otsuka
具明 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008093016A priority Critical patent/JP2009207476A/en
Publication of JP2009207476A publication Critical patent/JP2009207476A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an agricultural method by which the water-absorbing action of a plant is highly facilitated to promote its photosynthesis action and carbon dioxide fixation and produce a non-rotten vegetable or fruit. <P>SOLUTION: The agricultural method for producing the life prolongation force of the living plant body and a non-rotten vegetable or fruit, includes connecting and applying electricity from a culture medium 2 having a polar electricity (electric field) to the above-ground portion of the living plant body 1 to expand the electric potential between the culture medium 2 and the chest height position 4 (trunk) of the living plant body 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

植物生体の改善による生産方法と自然環境の関連に関する。  It relates to the relationship between production methods and natural environment by improving plant life.

植物は酸素の生産者であるが、人は酸素の消費者であると共に、食生活の主体も全て植物である。
従って、植物とは切っても切れない永遠に生存する相利共生の関係である筈の自然環境は、全て人間社会が破壊した現下は見るも無残である。
その結果が、地球的な温暖化の起因となり、二酸化酸素の削減がうめき声で叫ばれているのが現状の人間社会である。
環境の悪化は、自然環境にとどまらず食物界に大きな問題を提起している。
即ち、「農薬野菜や果実」の存在がある。これが人の健康を害し、子供の頭脳や成長を害している。
このような生活環境では、とても健康的な長寿社会とは言いがたく期待も出来ない現状である。
Plants are oxygen producers, but humans are consumers of oxygen, and all of their diets are plants.
Therefore, the natural environment of the cocoon, which is an everlasting symbiotic relationship that cannot be cut off from the plant, is completely unseen, even though it has been destroyed by human society.
The result is global warming, and the current human society is screaming to reduce oxygen dioxide.
The deterioration of the environment poses a serious problem not only in the natural environment but also in the food industry.
That is, there are “agricultural vegetables and fruits”. This harms human health and harms the brains and growth of children.
In such a living environment, it is difficult to expect a very healthy and long-lived society.

発明が解決しょうとする課題Problems to be solved by the invention

植物とは長年に亘る研究と付き合いから、植物が持つ偉大な潜在能力を有する生物であることは関係者なら誰でも知っているが、植物生体が未分化生体であることと生体が極性的電気を有し、この電位が「成長や生体バランス」に関連していることは、誰にも知られていない。
本発明は、生体電位の拡大を図るためのエネルギーは全て自然力と半導体で賄うことを開発して「生体の生理機構の改善」で「生体の成長力と酸化還元の促進」即ち、「電子伝達系の改善」で「植物生体の延命力と非腐敗植物」の生産的システムとして本発明に至ったのである。
Everyone involved knows that plants are living organisms that have great potential, based on many years of research and research. However, plant organisms are undifferentiated organisms and living organisms have polar electricity. It is unknown to anyone that this potential is related to “growth and biological balance”.
The present invention has developed that all the energy for expanding the bioelectric potential is covered by natural forces and semiconductors, and "improving the growth mechanism and oxidation-reduction of the living body", that is, "electron transfer" By improving the system ", the present invention has been achieved as a productive system of" life extension of plant organisms and non-rotted plants ".

課題を解決するための手段Means for solving the problem

概念
地球上に生存する生物中で「5,000年〜10,000年」も生存できる能力を有する唯一の植物生体である理由に加えて未分化生体であることから「生体の機能改善や酸化還元の改善」の能力を信じるエネルギーは「生体電位の拡大」から生れたアイデアである。
Concept In addition to the reason that it is the only plant organism that has the ability to survive "5,000 to 10,000 years" among living organisms on the earth, it is an undifferentiated organism and therefore "improves biological function and oxidation The energy that believes in the ability of “improvement of reduction” is an idea derived from “expansion of bioelectric potential”.

概要
以上の知見と研究に基く生体の活性化は、未分化細胞(幹細胞、始原細胞)の電気的な刺激が生体の活発化に一番役立つことが判った。
従って、生体が有する極性電位を半導体で電子の一方的な増幅拡大を以って「電子伝達系と生体活性化」を促進することが本件目的を達成する手段である。
Outline It has been found that the activation of the living body based on the above knowledge and research is most useful for the activation of the living body by electrical stimulation of undifferentiated cells (stem cells, progenitor cells).
Therefore, promoting the "electron transfer system and biological activation" by unidirectional amplification and amplification of electrons in the semiconductor with the polar potential of the living body is a means for achieving this object.

極性的電気(電場)とは
本件の物質中に存在する極性的電気を有する物質とは植物生体、土壌、培地、水(水耕培地)の2点間に電圧計の陰、陽の計測リード棒を2点間に差し込み電位測定可能な物質を言う。即ち、自由電子の存在物質である。
What is polar electricity (electric field)? Substances with polar electricity that exist in this substance are voltmeter negative and positive measurement leads between plant life, soil, culture medium, and water (hydroponic culture medium). A substance that can measure potential by inserting a rod between two points. That is, it is a free electron existence substance.

半導体とは
本件で言う電気デバイス半導体とは、「ダイオード、トランジスター」を言う。
What is a semiconductor? In this case, an electrical device semiconductor means a "diode, transistor".

外部電源とコンバターとは
乾電池、蓄電池,太陽電気、フオトダイオード、フオトトランジスター、オール直流電源を言う。コンバーターはジシジシコンバーター等の電子拡大デバイス。
External power supply and converter are dry battery, storage battery, solar electricity, photodiode, phototransistor, all DC power supply. The converter is an electronic expansion device such as a squeeze converter.

植物生体とは
木本植物、草本植物、果樹木、花木、果菜,果実,野菜、など,植物全般を言う。生体とは、(幹、茎、枝、菜、根、果実、果物、花)など植物関連物質を言う。
Plant life means all plants such as woody plants, herbaceous plants, fruit trees, flowering trees, fruit vegetables, fruits and vegetables. Living organisms refer to plant-related substances such as (stem, stem, branch, vegetable, root, fruit, fruit, flower).

用途
木本植物、草本植物に拘わらず植物全般、挿し木、土壌栽培,水耕栽培、水草,海草の植物全般。
Applications Regardless of woody plants and herbaceous plants, all plants, cuttings, soil cultivation, hydroponics, aquatic plants, seaweeds in general.

生命力と非腐敗生体とは
植物生体の生命力は全て生体の「水分バランス」の良否にある。従って、生体内の水質は生体電位の拡大に伴う電子水は「疑集力、毛管力、表面張力」の活水に改変して「メニスカス」の反応を有する「水養水」に改善されているから極めて吸水作用が容易である。
従って、「水分バランス」が整い安く、これが延命力の原動力である。又、本件の実験果物の非腐敗ミカンの原因は、全て生体内に有する電子水である。
従って、腐敗菌の浸入余地が全くないからである。その証として実験ミカンは全て「ミイラ、ミカン」に至ったのである。(非腐敗ミカン)
What is vitality and non-rotated organisms? The vitality of plant organisms is all about the “water balance” of the organism. Therefore, the water quality in the living body has been improved to "hydrotrophic water" having a reaction of "meniscus" by changing the electronic water accompanying the expansion of the bioelectric potential to active water of "skepticism, capillary force, surface tension". Therefore, it is very easy to absorb water.
Therefore, the “moisture balance” is set and cheap, and this is the driving force for life extension. In addition, the cause of non-rotted mandarin in the experimental fruit of this case is all electronic water in the living body.
Therefore, there is no room for entry of spoilage bacteria. As a proof of this, all the experimental mandarin oranges came to "Mummy, mandarin orange". (Non-rotted mandarin orange)

適用形態
植物が有する極性的電位は、培地との関連から発生する電位である。生体の成長システムは根毛より培地中の養水分を接木部、茎、枝葉、梢預に向かって上昇されて、生体の全てを潤すが、その反対に梢頂より生産エネルギーを細根部に蓄積する。(生命エネルギー)システムになっている。
植物生体の最大のネックは、吸水作用(水分バランス)の良否にある。即ち、植物の発生は「水中で生れて、陸上に上陸」した経緯から「水ストレス」が、植物共通の持病と言われている所以である。
従って、生体の「水ストレス」が生存の極みである。その理由から、本発明は、植物生体の「吸水」に最大の水質技術を開発している。
即ち、前記に示した総合的には「疑集力とメニスカス」現象を以って培地水の改善を図る手段で培地中に有する自由電子を半導体で誘引して、生体電位の拡大システムが全てである。即ち、生体の各器官に係わる全ての機能が活性化するからである。
従って、吸水作用が極めて容易化されるから、日中のクチクラ蒸散化が減少(しおれ現象)し、光合成作用が促進されて「生体バランスが整い恒常化」する結果が、生体の「成長、生命力」を生み、これに伴う活力も生れる。
従って、「二酸化炭素の固定」が促進するから「炭素削減」による自然環境の改善による貢献も生れる。他方では、植物生体の延命力と非腐敗の食物の生産化が容易になり、健康で長生きできる「腐食しない野菜や果実」が市販されるから食の生活に貢献できる。
Application form The polar potential of a plant is the potential generated from the association with the medium. The growth system of the living body raises the nutrient water in the medium from the root hair toward the grafted part, stem, branches, leaves, and tree top, moisturizes all the living body, but conversely stores the production energy from the top of the tree top in the fine root part. . (Life energy) system.
The biggest bottleneck of plant organisms is the quality of water absorption (moisture balance). That is, the occurrence of plants is the reason why “water stress” is said to be a common disease common to plants because of “being born in water and landing on land”.
Therefore, the “water stress” of the living body is the extreme of survival. For this reason, the present invention has developed the greatest water quality technology for “water absorption” of plant organisms.
In other words, the overall system for expanding the biopotential is all about attracting free electrons in the medium by means of a means for improving the medium water by means of the “suspicion and meniscus” phenomenon as described above. It is. That is, all the functions related to each organ of the living body are activated.
Therefore, the water absorption action is greatly facilitated, the daytime cuticle transpiration is reduced (wilt phenomenon), the photosynthetic action is promoted, and the result is that the "biological balance is balanced and constant". ", And the energy that comes with it.
Therefore, since “carbon dioxide fixation” is promoted, “carbon reduction” contributes to the improvement of the natural environment. On the other hand, it is easy to prolong the life of plant organisms and produce non-perishable foods, and healthy and long-lived “non-corrosive vegetables and fruits” are marketed, which can contribute to food life.

発明の効果The invention's effect

本発明の最大ニュースは「米粒」大の半導体で伸長成長が停止した「くぬ木の大木」が通常木の約30%の肥大成長データーがある。(嘘のような本当の事でである。)現下の地球的な温暖化現象は目に余るものである。そこで農林水産省と環境省との委託契約による(独)森林総合研究所のデーター、即ち、「日本国の二酸化炭素の固定基準」である。その平均スギの樹令35年生は年間約68kgと規定している。(平均基準)
この基準に対して、本発明技術である延命技術を以って対照実験を試みた。35年樹齢の成長スギに対し、樹齢50年生スギで対照データーに類似したスギを選抜して実験木2本と非実験木3本の各胸高置に肥大成長バンドをセットして、実験木には半導体を培地と接木部間にセッテングし、非実験木には無処理での実験開始より約10ケ月後に調べて見た。その結果は、
非実験木スギ3本の平均の肥大成長1〜2mm
実験木スギ2本の平均の肥大成長5,2mm
以上の結果から類推すると国の68kgの固定率に対して約30%の成長差が経験測から判断される。従って、68kg×30%=88kgの固定、即ち、20kgが本発明の技術的な効果である。京都議定書では、森林木による3,9%の削減を約束している中で本件技術は国際的にも類を見ない画期的な世界に誇られる技術である。
The biggest news of the present invention is the growth data of about 30% of the normal tree of “Kunugi no Oki”, which has stopped growing in the “rice grain” semiconductor. (It is a real thing like a lie.) The current global warming phenomenon is inconspicuous. Therefore, the data of the National Forest Research Institute, which is a consignment agreement between the Ministry of Agriculture, Forestry and Fisheries and the Ministry of the Environment, that is, “Fixed standards for carbon dioxide in Japan”. The average age of the cedar tree 35 years is defined as approximately 68 kg per year. (Average basis)
Contrary to this standard, a control experiment was attempted using the life extension technology which is the technology of the present invention. For 35-year-old grown cedar, 50-year-old cedar similar to the control data was selected, and a hypertrophic growth band was set on each chest height of 2 experimental trees and 3 non-experimental trees. Set the semiconductor between the culture medium and the grafted part, and examined the non-experimental tree about 10 months after the start of the untreated experiment. The result is
Average growth of 3 non-experimental cedar trees 1-2 mm
Average growth of 2 cedar tree
By analogy with the above results, a growth difference of about 30% is judged from experience based on the fixed rate of 68 kg in the country. Therefore, 68 kg × 30% = 88 kg fixed, that is, 20 kg is the technical effect of the present invention. The Kyoto Protocol promises a reduction of 3.9% by forest trees, and this technology is a technology that can be proud of a groundbreaking world unparalleled internationally.

本発明は、植物生体が持つ極性的電位の拡大を図るため培地中の自由電子を半導体で誘引して生体地上部(幹)にバイパス印加接続するという極めてシンプルな手段である。
本来的にマツ、スギ、ヒノキ等の生体が有する培地と胸高置の極性的電位は約350mv〜700mvであるが、半導体によるバイパス印加すると、即、1,100mv〜1,300mvにアップする生体電位の理由については、未だ不明な課題が存在する点については今後の課題である。従って実態について例示的に説明する。
(1)雑木林の「くぬ木とナラ木」数10本に半導体のバイパス方式で4月ごろ実施実験を始め、10月10日実施木の周辺に「コウタケ」が約30本発生し、又従来から考えられない「ドングリ」の落下に驚いた。(ドングリ大豊作)
(2)花粉症害は、大きな社会問題化している。その原因は植物生体の「水ストレス」と文献は主張する中で本件技術は「水ストレス改善」である理由から実験実施した。即ち、同地上のスギ4本を選抜した実験木2本に半導体バイパスをセット、非実験をコントロール木として比較した。
春4月ごろ実験を開始、翌年の1月に調査する。
実験木スギの2本共に着花量ゼロ状態。
非実験木スギの2本共に枝葉が曲がる程の着花量が付着
結果は、本件発明の「水分バランス」技術の証である。(恒常的なホメオシタシス)
(3)同地上のヒノキ樹齢55年生6本を選抜し、実験木3本に半導体バイパスをセットし胸高置に肥大成長バンドをセツト、非実験木3本に肥大成長バンドをセット各1月に比較実験を開始同年12月に調査する。
ヒノキ実験木3本の平均肥大成長4,5mm
ヒノキ非実験木3本の平均肥大成長1,1mm
(4)イチゴの比較実験、宝交イチゴの細根部に半導体を挿入して完熟を待つて糖度の比較実験をして見た。
実験宝交イチゴ糖度17,5度(最高)
非実験宝交イチゴ糖度14,5度(最高)
(5)白菜の比較実験、黄月77白菜の細根部に半導体を挿入し、コントロール黄月77との比較をして見た、同11末に収穫して糖度の比較実験した。
実験黄月77 糖度6,0度
非実験黄月77 糖度3,0度
現下の巷では、京都議定書に基く3,9%の二酸化炭素の削減を森林で賄う云々と言われる状況は1日も早期な解決を要望すると共に本件技術を広く世界に提供して全ての人類と共に温暖化現象の改善を願うものである。
The present invention is an extremely simple means for attracting free electrons in a culture medium with a semiconductor and bypass-connecting to the living body ground part (stem) in order to increase the polar potential of the plant body.
The polar potential of the medium and chest height of the living body such as pine, cedar, and cypress is about 350 mV to 700 mV, but the biological potential immediately increases to 1,100 mV to 1,300 mV when a semiconductor bypass is applied. The reason for this is a future issue in that there are still unknown issues. Therefore, the actual situation will be described as an example.
(1) An experiment was conducted in April with the semiconductor bypass system on several “Kinugi and oak trees” in the miscellaneous forest, and about 30 “Kotake” occurred around the trees on October 10. I was surprised at the fall of the “acorn” that I could n’t imagine. (Big acorn crop)
(2) Pollen disease has become a major social problem. The literature claimed that the cause was “water stress” of plant organisms, and the experiment was conducted because the technology was “water stress improvement”. That is, a semiconductor bypass was set on two experimental trees selected from four cedars on the ground, and non-experiment was compared as a control tree.
The experiment will begin around April in April and will be investigated in January of the following year.
Two of the experimental wood cedars are in a zero flowering state.
The amount of flowering to which the leaves and leaves of both non-experimental tree cedars are attached is the proof of the “moisture balance” technique of the present invention. (Constant homeostasis)
(3) Select 6 cypress trees aged 55 years on the ground, set semiconductor bypass on 3 experimental trees, set hypertrophic growth band at chest height, set hypertrophic growth band on 3 non-experimental trees each January A comparative experiment will be started and will be investigated in December of the same year.
Average enlarged growth of 3 cypress trees
Average growth of 3 cypress non-experimental trees 1,1mm
(4) Comparison experiment of strawberry, a semiconductor was inserted into the fine root part of Baiko Strawberry and waited for ripeness, and a comparison experiment of sugar content was performed.
Experimental treasure strawberry sugar degree 17.5 degree (highest)
Non-experimental treasure strawberry sugar degree 14.5 degree (highest)
(5) Comparison experiment of Chinese cabbage, yellow moon 77 A semiconductor was inserted into the fine root part of Chinese cabbage, and compared with the control yellow moon 77.
Experimental Yellow Moon 77 Sugar Level 6, 0 degrees Non-Experimental Yellow Moon 77 Sugar Level 3, 0 degrees In the current Sakai, it is said that the forest is supposed to cover 3.9% of carbon dioxide reduction based on the Kyoto Protocol for a day. We hope for an early solution and offer this technology widely to the world to improve the global warming phenomenon with all humanity.

植物生体の測定方法
通常の極性的電位の測定は、植物生体の胸高置(地上約130cm)と培地との間を電圧計で測定する。
草本植物は、培地と茎又は葉や梢頂との間を電圧測定する。本件の半導体セットの測定法は半導体の接木部のセツト前、後を測定してその比較による数値の大、小が実効の指標になる。即ち、その数値の大きい程効果がある。これが基本的な測定法である。(図1参照)
Method for Measuring Plant Living Body Normal polar potential is measured with a voltmeter between the breast height of the plant body (about 130 cm above the ground) and the culture medium.
Herbaceous plants measure the voltage between the medium and the stem or leaf or treetop. The measurement method of the semiconductor set in this case is to measure the size before and after the set of the grafted portion of the semiconductor, and the large or small value of the comparison is an effective index. That is, the larger the value, the more effective. This is the basic measurement method. (See Figure 1)

以下に示す実施による発明態様を説明するが、例示は単なる説明用のもので、発明思想の制限又は限定を意味するものではない。  Inventive embodiments according to the following implementation will be described, but the examples are merely illustrative and do not imply limitations or limitations on the inventive idea.

例(1)
てんぐす病微のサクラ木の生体電位は、320mvに対してダイオード2ケ所を培地と接木部間に印加接続すると生体電位は1,100mvにアップする。約1ケ月後には、回復のきざしが確認され初め、約2ケ月後には完治した。
Example (1)
The biopotential of the cherry tree of the genus Tsurugis disease increases to 1,100 mV when two diodes are applied and connected between the culture medium and the grafted part with respect to 320 mV. After about one month, the signs of recovery began to be confirmed, and after about two months, the disease was completely cured.

例(2)
マツの立ち枯れ寸前の生体電位は350mvであったがダイオード3ケを培地と接木部間に接続印加すると生体電位は1,200mvにアップする。接地後約3ケ月後には、ほぼ完全に完治する。
Example (2)
The biopotential immediately before the pine withered was 350 mv, but when three diodes were connected between the culture medium and the grafted portion, the biopotential increased to 1,200 mv. Approximately 3 months after contact with the ground, it is almost completely cured.

例(3)
ヒノキ樹齢53年生のヒノ木の比較木を同所で2本を選出して、肥大成長測定をした。即ち、実験木と非実験に各胸高置バンドをセツトし、実験木の生体電位550mvに対してトランジスター1個を培地と接木部間にセットし、電子バイパスを印加すると1,200mvにアップする。非実験木570mv(生体電位)で実験開始後約10ケ月後に調べて見た。
非実験木の肥大成長は約1mm
実験木の肥大成長は約4,5mm
結果、実験木が約3,5倍の肥大成長
Example (3)
Two comparative cypress trees of 53 years old cypress trees were selected at the same site, and hypertrophic growth was measured. That is, each chest height band is set in the experiment tree and in the non-experiment, and one transistor is set between the culture medium and the grafted portion with respect to the biopotential of 550 mv in the experiment tree. A non-experimental tree of 570 mv (bioelectric potential) was examined about 10 months after the start of the experiment.
The growth of non-experimental tree is about 1mm
Experimental tree enlargement growth is about 4.5mm
As a result, the experimental tree grows about 3.5 times larger

例(4)
スギの樹齢52年生の比較対照木を同所で2本を選出して、非実験木の生体電位520mvに対する実験木の生体電位は480mvの培地と接木間にダイオード2ケ所に電子バイパスを印加接続して実験を開始後12ケ月後に調べて見た。
非実験木の肥大成長は2mm
実験木の肥大成長は5,3mm 成長差3,3mm
特質結果が出る。即ち、実験スギ木にはスギの実が全く無いのに対し、非実験木にはスギの実が枝葉が折れる程茂っている。(着花量の豊作対不作)
Example (4)
Two comparison trees of 52-year-old cedar trees were selected at the same location, and the biopotential of the experimental tree was 520 mv for the non-experimental tree, and an electronic bypass was applied between the 480 mv medium and the graft. The experiment was examined 12 months after the start.
The growth of non-experimental tree is 2mm
Experiment tree enlargement growth is 5,3mm Growth difference is 3,3mm
A characteristic result is obtained. In other words, the experimental cedar trees have no cedar nuts, whereas the non-experimental trees are so thick that the branches and leaves are broken. (Abundance vs. bad harvest of flowers)

本発明のダイオード、トランジスターを植物生体に樹木及び培地にセットした状態を示す正面図(見取図)  Front view (schematic diagram) showing a state in which the diode and transistor of the present invention are set on a plant body in a tree and a culture medium 本発明のダイオードをミカンの木にセットした状態を示す正面図  The front view which shows the state which set the diode of this invention to the citrus tree 本発明のダイオードをピーマンにセットした状態を示す正面図  The front view which shows the state which set the diode of this invention to the bell pepper 本発明のダイオードをポット内部に収容しその上に白菜をセットした状態をお示す正面図  The front view which shows the state which accommodated the diode of this invention in the pot inside, and set the Chinese cabbage on it 本発明のダイオードに挿し木を水耕栽培のポットにセットした状態を示す断側面図  The cut-away side view which shows the state which set the cutting to the diode of this invention in the pot of hydroponics 本発明のダイオードをイチゴに植栽してセツトした状態を示す正面図  The front view which shows the state which planted the diode of this invention in the strawberry and was set 本発明のダイオードを水耕栽培(水槽)にセットした状態を示す断面図  Sectional drawing which shows the state which set the diode of this invention to hydroponics (water tank) 本発明のダイオードを複数本の桜並木に用いた上体を示す側面図  The side view which shows the upper body which used the diode of this invention for the multiple rows of cherry trees ダイオードの一方に3本のリード線を介して電子端子をセットした状態を示す平面図  The top view which shows the state which set the electronic terminal to one side of the diode via three lead wires ダイオードの下部にリード金属を3本取り付けプラスチック板で固定した状態を示す平面図  Top view showing a state where three lead metals are attached to the bottom of the diode and fixed with a plastic plate 上部のトランジスターに、先端にイオン金属を取付けた2本のリード金属を圧着端子、プラスチック板をボルト、ナットで取付けた状態を示す平面図  Top view showing the state where two lead metals with ionic metal attached to the tip are attached to the upper transistor with crimp terminals, plastic plate with bolts and nuts 多孔質材に複数個のダイオードを横に並べ固定して,四方にリード線を介して圧着端子を取り付け該圧着端子を多孔質材にカシメた状態を示す平面図  A plan view showing a state in which a plurality of diodes are horizontally arranged and fixed to a porous material, and crimp terminals are attached to the four sides via lead wires, and the crimp terminals are crimped to the porous material.

符号の説明Explanation of symbols

1 植物生体
2 培地
3 接木部
4 胸高置
5 細根部
6 根毛
7 ダイオード
8 トランジスター
9 ポット(容器)
10 圧着端子
11 タッピング
12 押しピン
13 アース棒
14 アースイオン推(金属)
15 炭素繊維トランジスター
16 プラスチック板
17 水(水耕培地)
18 押しピンダイオード
19 差込ダイオー
20 水槽
21 繊維ダイオード(図12参照)
22 浮木板(安定板)
23 圧着端子
24 イオン金属
25 多孔質材(シート)
26 リード金属(配線)
27 プラスチック板
28 ナット
29 スポンジ
30 カシメ
DESCRIPTION OF SYMBOLS 1 Plant living body 2 Medium 3 Grafting part 4 Chest height placement 5 Fine root part 6 Root hair 7 Diode 8 Transistor 9 Pot (container)
10 Crimping terminal 11 Tapping 12 Push pin 13 Ground rod 14 Earth ion thrust (metal)
15 Carbon fiber transistor 16 Plastic plate 17 Water (hydroponic medium)
18 Push-pin diode 19 Insertion diode 20 Water tank 21 Fiber diode (see FIG. 12)
22 Floating board (stabilizing board)
23 Crimping terminal 24 Ion metal 25 Porous material (sheet)
26 Lead metal (wiring)
27 Plastic plate 28 Nut 29 Sponge 30 Caulking

Claims (5)

極性的電気(電場)を有する培地より「半導体」を単独又は複数個を用いて電子の誘導を以って植物生体の地上部に印加接続して生体の胸高置(幹)と培地間の電位の拡大を図ることを特徴とした植物生体の延命力と非腐敗生体の生産的農法。  The potential between the living body's chest (stem) and the medium by applying and connecting “semiconductors” from the medium with polar electricity (electric field) to the above-ground part of the living body of the living body of the body by induction of electrons using a single or a plurality. The life-extending ability of plant organisms and the productive farming of non-rotated organisms, characterized by the expansion of 植物生体と培地近傍に「半導体」を単独又は複数個を直接的又は間接的に挿入又は設置して植物生体に電気的な刺激を与えて生体の活性化を図ることを特徴とした請求項1の植物生体の延命力と非腐敗生体の生産的農法。  2. The living body is activated by applying electrical stimulation to the living body by inserting or placing “semiconductors” alone or in plural or directly or indirectly in the vicinity of the living body and the culture medium. Of plant life and productive farming of non-septic organisms. 植物生体と培地間の電位の拡大を図る配線路に「コンバーターや外部電源」のエネルギーを追加して、生体と培地間の電位拡大と安定化を図ることを特徴とした請求項1,2の植物生体の延命力と非腐敗生体の生産的農法。  The potential of the potential between the living body and the medium is increased and stabilized by adding energy of a "converter or an external power source" to the wiring path for expanding the potential between the living body and the medium. Life extension of plant life and productive farming of non-rotated organisms. 培地中の電子誘導の拡大を図る手段に「半導体のリード線」に複数金属を接続してイオン化反応による誘導促進を図ることを特徴とした請求項1,2,3の植物生体の延命力と非腐敗生体の生産的農法。  The life extension of a plant body according to claim 1, 2 or 3, characterized in that a plurality of metals are connected to "semiconductor lead wires" as means for expanding electron induction in the culture medium to promote induction by an ionization reaction. Productive farming of non-perishable organisms. 水耕培地水中又は用水中に「半導体」を単独又は複数個を水浸し又は通水性の袋、容器などに収容水侵して、水質の活性化を図ることを特徴とした請求項1,2,3の植物性生体の延命力と非腐敗生体の生産的農法。  The water quality is activated by immersing "semiconductor" in water culture medium water or irrigation water singly or in plural, or infiltrating water in a water-permeable bag or container. Of plant life and productive farming of non-rotated organisms.
JP2008093016A 2008-03-03 2008-03-03 Productive agricultural method for life prolongation force of living plant body and non-septic living body Pending JP2009207476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093016A JP2009207476A (en) 2008-03-03 2008-03-03 Productive agricultural method for life prolongation force of living plant body and non-septic living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093016A JP2009207476A (en) 2008-03-03 2008-03-03 Productive agricultural method for life prolongation force of living plant body and non-septic living body

Publications (1)

Publication Number Publication Date
JP2009207476A true JP2009207476A (en) 2009-09-17

Family

ID=41181248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093016A Pending JP2009207476A (en) 2008-03-03 2008-03-03 Productive agricultural method for life prolongation force of living plant body and non-septic living body

Country Status (1)

Country Link
JP (1) JP2009207476A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052203A1 (en) * 2009-10-27 2011-05-05 Otuka Tomoaki Needle farming method
CN104067896A (en) * 2014-06-09 2014-10-01 江西农业大学 Structuring method of citrus central guide branch high-yield tree shape

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052203A1 (en) * 2009-10-27 2011-05-05 Otuka Tomoaki Needle farming method
CN102711439A (en) * 2009-10-27 2012-10-03 大塚具明 Needle farming method
JP5131876B2 (en) * 2009-10-27 2013-01-30 具明 大塚 $ 1 farming
JPWO2011052203A1 (en) * 2009-10-27 2013-03-14 大塚 具明 $ 1 farming
CN104067896A (en) * 2014-06-09 2014-10-01 江西农业大学 Structuring method of citrus central guide branch high-yield tree shape

Similar Documents

Publication Publication Date Title
CN104737828B (en) Chinese chestnut branch embedding grafting method
Hagan et al. Relationships of soil moisture stress to different aspects of growth in Ladino clover
CN107996246B (en) Method for planting and overwintering tropical plant moringa oleifera in northern area
Mota et al. Matter accumulation and photosynthetic responses of macaw palm to cyclical drought
JP2009207476A (en) Productive agricultural method for life prolongation force of living plant body and non-septic living body
CN203814292U (en) Device for preventing meloidogyne of kiwi fruit seedlings
CN107667757A (en) A kind of implantation methods of hill gooseberry
CN106857170A (en) A kind of honey peach method for cultivating seedlings
JP2009000093A (en) Agricultural method using semiconductor
WO2011052203A1 (en) Needle farming method
JP2008092932A (en) Vigorous farming method of plant by semiconductor
Bidein et al. Efficacy of combining varietal resistance with organic fertilizer application in reducing infestation of cucumber (Cucumis sativus L.) by Insect Pests in the Niger Delta
Leithy et al. Response of Canola plants to antitranspirant levels and limited irrigation
Motisi et al. Rootstock effect on stem water potential gradients in cv.'Armking'nectarine trees
JP2009278963A (en) Method for functionally improving plant organism
Dulay et al. Seed germination of selected economically important indigenous fruit trees
Sharon et al. Aspects of the water economy of avocado trees (Persea americana, cv. Hass)
Dong et al. Effects of planting density on diurnal variation of microenvironment in Huangguogan orchards
Bakar et al. Influence of weather factors on the seasonal abundance of citrus mite Eutetranychus orientalis (Klein) on different citrus cultivars
WO1999012409A1 (en) Composition for improving dietary nutritive component of plant and method for improving dietary nutritive component of plant
CN107853044A (en) The mating system of the elegant pearl podocarpus of gold
JPH0775446A (en) Plant growing method
CN106689121B (en) A kind of spindle tree pollen cryopreservation and the production method of regeneration
Cimpoi et al. Influence of corbohydrate content on grafting in table grape varieties Gelu and Paula
Dubey et al. Aquatic Vegetables is the “New Gold” under Changing Climate Scenario