JP2009204356A - 到来時間推定装置 - Google Patents

到来時間推定装置 Download PDF

Info

Publication number
JP2009204356A
JP2009204356A JP2008045025A JP2008045025A JP2009204356A JP 2009204356 A JP2009204356 A JP 2009204356A JP 2008045025 A JP2008045025 A JP 2008045025A JP 2008045025 A JP2008045025 A JP 2008045025A JP 2009204356 A JP2009204356 A JP 2009204356A
Authority
JP
Japan
Prior art keywords
correlator
output
time
filter
arrival time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008045025A
Other languages
English (en)
Inventor
Tomoaki Otsuki
知明 大槻
Toru Sakaguchi
透 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2008045025A priority Critical patent/JP2009204356A/ja
Publication of JP2009204356A publication Critical patent/JP2009204356A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】MUIとISIの影響を低減する。
【解決手段】タイムホッピング方式で送信されたUWB−IR信号は二乗検波器1に入力される。二乗検波器1の出力は第1の外れ値除去フィルタ2に入力され、偏差が最も大きいデータの値は「0」とされて、第1の相関器3に出力される。第1の相関器3は、時間インデックス別に繰り返し送信されるシンボルごとのタイムホッピングコードに対応する出力の和を算出する。第1の相関器3の出力は第2の外れ値除去フィルタ4に入力され、偏差が最も大きいデータの値が「0」とされ、第2の相関器5に入力される。第2の相関器5は、前記第1の相関器3の出力を時間インデックスごとに全シンボル分加算して、TOA推定手段6に出力する。これにより、MUIやISIにより値が大きくなった場合及び小さくなった場合のいずれの場合であっても、その影響を低減することができる。
【選択図】図1

Description

本発明は、タイムホッピング方式で送信された信号の到来時刻を推定する到来時間推定装置に関する。
UWB−IR(Ultra Wideband - Impulse Radio:超広帯域インパルス無線通信)方式は、高い時間分解能を持ち、高精度な到来時間(TOA:Time of Arrival)推定及びそれに基づく位置推定が可能であることが知られている。
そのTOA推定法の一つとして、エネルギー検出に基づく方法が知られている。この方法によれば、複雑な構成を必要とすることなく到来時間推定を行うことができる。
エネルギー検出に基づいてTOA推定を行う従来の到来時間推定装置について図6〜図8を参照して説明する。
図6は従来のエネルギー検出に基づく到来時間推定装置の構成を示すブロック図、図7は送信信号波形と二乗検波器の出力を説明するための図、図8は図6の到来時間推定装置における各部の出力信号を説明するための図である。
図6に示すように、この到来時間推定装置は、受信信号のエネルギーに対応する信号を出力する二乗検波器11、該二乗検波器11の出力が供給される第1の相関器12、該第1の相関器12の出力が供給される第2の相関器13、及び、第2の相関器13の出力に基づいて信号の到来時刻を推定するTOA推定手段14から構成されている。
図示しない送信機から送信されるタイムホッピング(TH)方式のUWB−IR信号は、複数のシンボルが繰返し送信され、1シンボルが複数のフレームからなり、各フレームは複数のチップを有しており、各フレームにおけるタイムホッピングコードに応じて決定されるチップ位置にインパルス信号が送信される信号である。図7の(a)には、1シンボル分の送信波形が示されており、この例では、タイムホッピングコードに基づいて、第1フレームの第4チップ、第2フレームの第3チップ、及び、第3フレームの第2チップにインパルス信号が送信されている。このシンボルが複数繰り返して送信される。
前記送信信号は、図示しないアンテナで受信され、二乗検波器11に入力される。二乗検波器11は、チップ周期(Tc)ごとに受信信号を積分し、チップ周期ごとの受信信号エネルギーに対応する大きさの信号を出力する。
図7の(b)は、図7の(a)に示す送信信号を受信した二乗検波器11の出力の一例を示している。この図において、横軸は時間、縦軸は出力信号レベルを示している。各種雑音、マルチユーザ干渉(MUI:Multiuser Interference)及び符号間干渉(ISI:Intersymbol Interference)などの影響により、インパルス信号が送信されていないチップにも二乗検波器11から信号が出力されている。
二乗検波器11の出力は、第1の相関器12に入力される。第1の相関器12では、シンボルごとにそれぞれタイムホッピングコードに対応した出力を足し合わせる処理を行う。
図8の(b)は、前記図7の(b)と同様に、二乗検波出力の一例を示しており、図8の(c)は第1の相関器12の出力の一例を示している。
第1の相関器12は、チップ位置をずらしながら、タイムホッピングコードに対応するチップ位置の二乗検波出力をシンボルごとに加算する。図示するように、第1の相関器12は、時間インデックス(I)、(II)・・・ごとに、各シンボルに含まれるフレームにおけるタイムホッピングコードに対応した位置の出力を足し合わせて出力する。
図8の(c)に示した例では、時間インデックス(I)に対応する出力は、繰返し送信されるシンボル(シンボルインデックス(1)、(2)・・・)ごとに、その時間インデックス(I)における各フレームにおけるタイムホッピングコードに対応するチップの出力を足し合わせたものとなっている。また、時間インデックス(I)のタイミングよりも1チップ分ずれたタイミングである時間インデックス(II)に対応する出力は、各シンボルに含まれる各フレームにおける時間インデックス(II)に応じたタイムホッピングコードに対応するチップの出力を足し合わせたものとなっている。
このように、第1の相関器12からは、各時間インデックス対応に、繰り返し送信されるシンボルごとのタイムホッピングコードに対応するチップ位置の受信エネルギーの和に対応する信号が出力される。
第1の相関器12の出力は、第2の相関器13に入力される。第2の相関器13では、前記第1の相関器12からの出力信号を時間インデックス毎にそれぞれ全シンボル分を足し合わせる。
図8の(d)は、第2の相関器13の出力信号の一例を示す図である。
この図に示すように、第2の相関器13は、前記第1の相関器12から時間インデックスごとにシンボルインデックス別に出力される信号を、各時間インデックスに含まれるシンボルインデックス別の信号を加算して、各時間インデックスごとの繰り返し送信された全シンボル分の受信エネルギーの総和を出力する。
TOA推定手段14は、前記第2の相関器13の出力に基づいて、送信信号を最初に受信したタイミングを推定する。
第2の相関器13の出力が最大となる時刻のインデックスがnmaxであったとする。このとき、該出力が最大となる時間インデックスnmaxから、サーチバックウィンドウ長Wsbだけ前方の範囲、すなわち、{nmax−Wsb〜nmax}の範囲で、所定のしきい値ξを上回る最初のチップ(時間インデックス)を、信号の最初の到来成分を含むチップnDPとする。ここで、前記しきい値ξは、シミュレーションにより最適化した値を用いる。
図8の(d)に示した例では、図中○で示した位置でしきい値ξを超えている時間インデックス(nDP)が到来位置であると推定される。
このように、エネルギー検出に基づいたTOA推定法によれば、複雑な構成を必要とすることなく、到来時間を推定することが可能となる。
しかしながら、推定の精度が、マルチパスに起因する符号間干渉(ISI)や、多ユーザからの多元接続ユーザ干渉(MUI)により劣化するという問題があり、マルチユーザ干渉(MUI)や符号間干渉(ISI)が大きい環境下では、受信信号の最初の到来時刻の検出が難しくなるという問題がある。
この問題を解決する方法として、フィルタ内の最小値を出力する最小化フィルタを用いてそれらの影響を低減する方法が提案されている(非特許文献1)。
図9と図10を参照して、最小化フィルタを用いた到来時間推定装置について説明する。図9は最小化フィルタを用いた到来時間推定装置の構成を示すブロック図であり、図10は最小化フィルタの動作を説明するための図である。
前記図6と図9とを比較すると明らかなように、図9に示した到来時間推定装置は、前述した第1の相関器12と第2の相関器13との間に、最小化フィルタ15が挿入されている。最小化フィルタ15は、フィルタ内の全ての値をそれらの最小値にして出力するものである。前記第1の相関器12の出力を第2の相関器13に通す前に、長さWの最小化フィルタ15を通し、最小化フィルタ適用後の値を足し合わせた出力を新たな第1の相関器12の出力として第2の相関器13に供給する。
図10は最小化フィルタ15の動作を説明するための図である。ここでは、フィルタ長Wが3であるものとする。前記図8の(b)及び(c)に関して説明したように、第1の相関器12は、時間インデックス別に、各シンボルに含まれているタイムホッピングコードに対応するチップの受信信号エネルギーの和に対応する信号を出力する。
図10の(a)は、ある時間インデックスに対応する第1の相関器12の出力、すなわち、最小化フィルタ15の入力の一例を示している。この例では、シンボルインデックス(1)のシンボルに含まれる対応するチップの二乗検波出力が、「6E」、「22E」及び「4E」(Eは受信エネルギーの単位とする)であった場合を示している。ここで、縦軸の相関インデックスは、フレーム番号に対応する。この場合、そのシンボルの第2番目のフレームの対応するチップの二乗検波出力が他のチップの出力と比べて非常に大きい「22E」であり、MUIやISIによる誤りである可能性が高い。
最小化フィルタ15は、フィルタ内の値を全てその最小値に置き換えて出力するものであるため、この例では、図10の(b)に示すように、全ての相関インデックスにおける値を「4E」に変換し、その合計である「12E」をその時間インデックスにおけるシンボルインデックス(1)の値として前記第2の相関器13に出力する。
これにより、MUIとISIによる影響を低減することができる。
Zafer Sahinoglu and Ismail Guvenc "Multiuser Interference Mitigation in Noncoherent UWB Ranging via Nonlinear Filtering", EURASIP Journal on Wireless Communications and Networking, vol. 2006 (2006), PP.1-10
上記した最小化フィルタによれば、MUIとISIの影響を低減できる場合があるが、低減できない場合もある。すなわち、所望ユーザの信号がある時間インデックスにおいて、MUIとISIによる誤りによって値が小さくなり、なお且つ、その誤りが大きい出力がフィルタ内に一つでもある場合、その影響を低減することが不可能となる。
最小化フィルタがMUIとISIの影響を低減できない場合について、図11を参照して説明する。
図11の(a)に示す例のように、あるシンボルに含まれるタイムホッピングコードに対応するチップの二乗検波出力が、「6E」、「30E」及び「25E」であったとする。このとき、相関インデックス1における「6E」という値はMUIとISIによる誤りによって値が小さくなっているものと考えられるが、最小化フィルタ15の出力は、図11の(b)のように、全ての値が最も小さい値である「6E」に置き換えられてしまうこととなる。
このように、MUIとISIによる誤りにより値が小さくなり、その誤りが大きい場合には、最小化フィルタを用いてもMUIとISIによる影響を低減することができない。
そこで、本発明は、MUIやISIの影響により相関器の出力が小さくなってしまった場合及び大きくなってしまった場合のいずれにも対応することができる到来時間推定装置を提供することを目的としている。
上記目的を達成するために、本発明の到来時間推定装置は、タイムホッピング方式により送信される信号の到来時刻を推定する到来時間推定装置であって、受信信号のエネルギーを検出する受信エネルギー検出部と、前記受信エネルギー検出部の出力が入力され、該入力された信号の中から偏差が最も大きい入力信号を除去する外れ値除去フィルタと、前記外れ値除去フィルタの出力が入力され、時間インデックス別に、シンボルごとのタイムホッピングコードに対応した出力を加算する第1の相関器と、前記第1の相関器の出力が入力され、時間インデックスごとに全シンボル分のタイムホッピングコードに対応した出力を加算する第2の相関器と、前記第2の相関器の出力に基づいて、受信信号の到来時間を推定する到来時間推定手段とを有するものである。
また、前記第1の相関器の出力が入力され、該第1の相関器の出力の中から偏差が最も大きい出力を除去して、前記第2の相関器に出力する第2の外れ値除去フィルタを有するものである。
このような本発明によれば、従来は除去することができなかったISIやMUIによって値が小さくなってしまう場合にもISIやMUIの影響を低減することができ、従来よりも高精度なTOA推定が可能となる。
また、各相関器の前に適用する2段階外れ値除去フィルタとした場合には、さらに高精度に到来時間を推定することができる。
図1は、本発明の到来時間推定装置の一実施の形態の構成を示すブロック図である。
この図に示すように、本発明の到来時間推定装置は、受信信号のエネルギーに対応する信号を出力する二乗検波器1、該二乗検波器1の出力が供給される第1の外れ値除去フィルタ2、該第1の外れ値除去フィルタ2の出力が供給される第1の相関器3、該第1の相関器3の出力が供給される第2の外れ値除去フィルタ4、該第2の外れ値除去フィルタ4の出力が供給される第2の相関器5、及び、該第2の相関器5の出力に基づいて到来時刻を推定するTOA推定手段6から構成されている。ここで、二乗検波器1、第1の相関器3、第2の相関器5及びTOA推定手段6は、それぞれ、前記図6における二乗検波器11、第1の相関器12、第2の相関器13及びTOA推定手段14と同じものである。
前記第1の外れ値除去フィルタ2及び第2の外れ値除去フィルタ4は、いずれも、所定長を有するフィルタであり、フィルタ内に格納された値の中で偏差(平均値との差)が最大である値を除去して出力する。すなわち、フィルタ内で一番外れている値を「0」に置き換えて出力する。なお、偏差が最大である値が複数ある場合には、任意にあるいはランダムに決定した1個の値を「0」に置き換えて出力する。
図2は、前記第1の外れ値除去フィルタ2の動作を説明するための図である。
前述と同様にして、前記二乗検波器1からは、図2の(a)に示すような信号が出力され、この信号が、第1の外れ値除去フィルタ2に入力される。図2の(b)は、該第1の外れ値除去フィルタ2内に格納されたデータの例を示している。なお、ここでは、フィルタ長Wが3であるものとしている。
図示するように、第1の外れ値除去フィルタ2には、シンボルごとに、それぞれタイムホッピングコードに対応したチップの二乗検波出力が格納される。
図示する例では、あるシンボルの時間インデックス(I)のデータが「2E」、「7E」及び「E」であり、時間インデックス(II)のデータが「8E」、「9E」及び「3E」であるものとしている。
このとき、前記第1の外れ値除去フィルタ2は、それぞれの時間インデックスのデータのうち、偏差が最も大きいデータの値を「0」に置き換える。これにより、偏差が最も大きいデータをその後の演算に使用しないようにする。
すなわち、図2の(c)に示すように、時間インデックス(I)のデータについては相関インデックス2の値「7E」を「0」に置き換え、時間インデックス(II)のデータについては、相関インデックス3の値「3E」を「0」に置き換えて、前記第1の相関器3に出力する。第1の相関器3では、前記図8に関して説明したと同様に、時間インデックス別に、シンボルごとにタイムホッピングコードに対応するチップ位置の出力を足し合わせる。この例では、時間インデックス(I)のこのシンボルに対応する出力は「3E」となり、時間インデックス(II)のこのシンボルに対応する出力は「17E」となる。
このように、第1の外れ値除去フィルタ2により、MUIやISIによる誤りによって、値が小さくなったり、あるいは大きくなったデータは、その後の処理で使用されなくなり、前記第1の相関器2の前に設けられた第1の外れ値除去フィルタ2により1シンボル内で相関を取る際のMUIとISIによる影響を低減することができる。
前記第1の相関器3の出力は、前記第2の外れ値除去フィルタ4に入力される。
第2の外れ値除去フィルタ4は、前記第1の相関器3から出力されるデータの中から最も偏差の大きいデータの値を「0」に置き換えて第2の相関器5に出力する。第2の相関器5は、前述のように、各時間インデックスごとに繰返し送信される全てのシンボル分のタイムホッピングコードに対応する出力の総和を算出するものである。
図3を参照して、第2の外れ値除去フィルタ4の動作について説明する。図3の(a)は前記第1の相関器3の出力が前記第2の外れ値除去フィルタ4に格納された状態の一例を示す図であり、図3の(b)は第2の外れ値除去フィルタ4の出力の一例を示す図である。また、図3の(c)は、比較のため、前述した最小化フィルタを用いた場合の最小化フィルタの出力の一例を示す図である。
前述のように、前記第1の相関器3から、時間インデックス別に、繰返し送信されるシンボルごとのタイムホッピングコードに対応する出力の和の信号が出力され、この信号が前記第2の外れ値除去フィルタ4に入力される。図3の(a)は、第2の外れ値除去フィルタ4に格納されたデータの一例を示しており、ある時間インデックスにおけるシンボルインデックス(1)の出力が「6E」、「22E」及び「4E」であり、シンボルインデックス(2)の出力が「6E」、「30E」及び「25E」である場合が示されている。なお、前記第1の外れ値除去フィルタ2により「0」とされた二乗検波出力は、この図からは取り除かれている。
第2の外れ値除去フィルタ4は、フィルタに格納されているデータのうち、最も偏差の大きいデータの値を「0」に置き換えて出力する。したがって、図3の(b)に示すように、シンボルインデックス(1)における相関インデックス2の値「22E」は「0」とされ、シンボルインデックス(2)における相関インデックス1の値「6E」は「0」とされ、前記第2の相関器5に出力される。
これにより、MUIとISIの影響により値が大きくなってしまった外れ値(シンボルインデックス(1)の「22E」)、及び、値が小さくなってしまった外れ値(シンボルインデックス(2)の「6E」)は、その後の処理で使用されなくなる。
このように、第2の相関器5の前に設けられた第2の外れ値除去フィルタ4により、シンボル繰返し内で相関を取る際のMUIとISIの影響を低減することができる。
一方、前述した最小化フィルタを用いた場合は、図3の(c)に示すように、MUIとISIの影響により値が小さくなってしまったシンボルインデックス(2)の場合は、MUIとISIによる影響を除去することができない。
次に、外れ値除去フィルタを用いた本発明の到来時間推定装置と、前述した最小化フィルタを用いた従来の到来時間測定装置の特性評価結果について説明する。
図4は、このような本発明の到来時間推定装置の特性評価のために行ったシミュレーションの諸元を示す図である。この図に示すように、サンプリング周波数20GHz、シンボル長(Tsym)が160ns、フレーム長(Tf)が32ns、1シンボル当たりのフレーム数を5、1フレーム当たりのパルス数を1、所望ユーザのタイムホッピングコードを[4,2,5,1,1]、干渉ユーザのタイムホッピングコードを[1,4,2,5,1]とした。また、フィルタ長Wを4、シンボル繰返し数を80とし、干渉ユーザ数が0の場合と1の場合でシミュレーションを行った。
図5はシミュレーション結果を示す図であり、(a)は干渉ユーザがいない場合(干渉ユーザ数が0)、(b)は干渉ユーザ数が1であり、そのEb/No=5dBの場合、のそれぞれにおける平均絶対誤差(MAE:Mean Absolute Error)を示している。横軸は、所望ユーザのEb/No(ビット当たりの電力密度対雑音電力密度比)である。なお、図中、aは本発明の外れ値除去フィルタを用いた場合を示し、bは最小化フィルタを用いた場合を示している。
図5の(a)に示す干渉ユーザがいない場合は、所望ユーザのEb/Noが低いときは、最小化フィルタを用いる場合とほぼ同じ特性であり、高いときは劣化しているが、それ以外では、本発明の外れ値除去フィルタが有効であることを示している。このことから、ISIの影響を十分に低減しているものといえる。
図5の(b)に示す干渉ユーザがいる場合は、所望ユーザのEb/Noが低いときは、最小化フィルタを用いる場合とほぼ等しい特性であり、高いときもほぼ等しい特性となり、それ以外では、本発明の外れ値除去フィルタが有効であることを示している。このことから、MUIとISIの影響を十分に低減していることがわかる。
なお、上述した実施の形態においては、第1の相関器3の前に第1の外れ値除去フィルタ2を設け、第2の相関器5の前に第2の外れ値除去フィルタ4を設けて、2段階の外れ値除去フィルタを設けていたが、いずれか一方の外れ値除去フィルタを設けるだけでも十分に効果が期待できる。この場合は、前記第1の相関器3の前にのみ外れ値除去フィルタを設ける方が、第2の相関器5の前にのみ設ける場合よりも効果がある。
また、上述した説明においてはフィルタ長Wが3であるとして説明し、前記シミュレーション時にはフィルタ長Wを4としたが、これらに限られることはない。シンボルの繰返し数やユーザ数に応じて最適なフィルタ長を決定すればよい。
さらに、上記においては、タイムホッピング方式によりインパルス信号が送信されるUWB−IR方式の場合について説明したが、本発明は、これに限られることはなく、タイムホッピング方式により信号が送信される場合において同様に適用することができる。
本発明の到来時間推定装置の一実施の形態の構成を示すブロック図である。 第1の外れ値除去フィルタの動作を説明するための図である。 第2の外れ値除去フィルタの動作を説明するための図である。 本発明の到来時間推定装置の特性を評価するために行ったシミュレーションの条件を説明するための図である。 本発明の到来時間推定装置のシミュレーション結果を示す図である。 従来のエネルギー検出に基づく到来時間推定装置の構成を示すブロック図である。 送信信号波形と二乗検波器の出力を説明するための図である。 図6の到来時間推定装置における各部の出力信号を説明するための図である。 最小化フィルタを用いた到来時間推定装置の構成を示すブロック図である。 最小化フィルタの動作を説明するための図である。 最小化フィルタがMUIとISIの影響を低減できない場合について説明するための図である。
符号の説明
1:二乗検波器、2:第1の外れ値除去フィルタ、3:第1の相関器、4:第2の外れ値除去フィルタ、5:第2の相関器、6:TOA推定手段

Claims (2)

  1. タイムホッピング方式により送信される信号の到来時刻を推定する到来時間推定装置であって、
    受信信号のエネルギーを検出する受信エネルギー検出部と、
    前記受信エネルギー検出部の出力が入力され、該入力された信号の中から偏差が最も大きい入力信号を除去する外れ値除去フィルタと、
    前記外れ値除去フィルタの出力が入力され、時間インデックス別に、シンボルごとのタイムホッピングコードに対応した出力を加算する第1の相関器と、
    前記第1の相関器の出力が入力され、時間インデックスごとに全シンボル分のタイムホッピングコードに対応した出力を加算する第2の相関器と、
    前記第2の相関器の出力に基づいて、受信信号の到来時間を推定する到来時間推定手段と
    を有することを特徴とする到来時間推定装置。
  2. 前記第1の相関器の出力が入力され、該第1の相関器の出力の中から偏差が最も大きい出力を除去して、前記第2の相関器に出力する第2の外れ値除去フィルタを有することを特徴とする請求項1記載の到来時間推定装置。
JP2008045025A 2008-02-26 2008-02-26 到来時間推定装置 Withdrawn JP2009204356A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045025A JP2009204356A (ja) 2008-02-26 2008-02-26 到来時間推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045025A JP2009204356A (ja) 2008-02-26 2008-02-26 到来時間推定装置

Publications (1)

Publication Number Publication Date
JP2009204356A true JP2009204356A (ja) 2009-09-10

Family

ID=41146800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045025A Withdrawn JP2009204356A (ja) 2008-02-26 2008-02-26 到来時間推定装置

Country Status (1)

Country Link
JP (1) JP2009204356A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103118428A (zh) * 2013-03-01 2013-05-22 无锡优辰电子信息科技有限公司 一种超宽带定位的toa估计方法及电路总成
CN108233987A (zh) * 2018-01-10 2018-06-29 福建师范大学 消除多径噪声信道下超宽带信号符号间干扰的系统及方法
CN108234367A (zh) * 2018-01-10 2018-06-29 福建师范大学 消除多径无噪声信道超宽带信号符号间干扰的系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103118428A (zh) * 2013-03-01 2013-05-22 无锡优辰电子信息科技有限公司 一种超宽带定位的toa估计方法及电路总成
CN103118428B (zh) * 2013-03-01 2015-07-15 无锡优辰电子信息科技有限公司 一种超宽带定位的toa估计方法及电路总成
CN108233987A (zh) * 2018-01-10 2018-06-29 福建师范大学 消除多径噪声信道下超宽带信号符号间干扰的系统及方法
CN108234367A (zh) * 2018-01-10 2018-06-29 福建师范大学 消除多径无噪声信道超宽带信号符号间干扰的系统及方法

Similar Documents

Publication Publication Date Title
JP5738406B2 (ja) フレーム開始デリミタを検出する方法及び装置
Witrisal et al. Equivalent system model and equalization of differential impulse radio UWB systems
US7660230B2 (en) M-ARY orthogonal coded/balanced UWB transmitted reference systems
JP7209540B2 (ja) 安全なチャネルサウンディング
Sahinoglu et al. Multiuser interference mitigation in noncoherent UWB ranging via nonlinear filtering
Sharma et al. A new sparse signal-matched measurement matrix for compressive sensing in UWB communication
JP2009204356A (ja) 到来時間推定装置
CA2543517A1 (en) Transmission and detection in ultrawide band communications
Djapic et al. Blind synchronization in asynchronous UWB networks based on the transmit-reference scheme
Niranjayan et al. A myriad filter detector for UWB multiuser communication
JP2009529256A (ja) マルチパスおよび複数アンテナ無線システムのための非データ支援チャンネル推定量
US20160173207A1 (en) Method and Apparatus for Implementing Wireless Body Area Network
Tian et al. Timing acquisition with noisy template for ultra-wideband communications in dense multipath
KR100781277B1 (ko) 무선 채널 환경의 성능 측정 방법
US20100142647A1 (en) Method for processing a sampled rectified ultra wide band signal
Berber et al. Inherent diversity combining techniques to mitigate frequency selective fading in chaos-based DSSS systems
Qiu et al. Blind classification of the short-code and the long-code direct sequence spread spectrum signals
Hsu et al. Timing synchronization in ultra-wideband systems with delay line combination receivers
KR101300037B1 (ko) 초광대역 다중 사용자 시스템에서 일반화된 가우시언 라플라시안 분포 모델에 기반한 향상된 uwb 수신 방법
Khodadad et al. A robust pn length estimation in down link low-snr ds-cdma multipath channels
US20090103592A1 (en) Myriad filter detector for multiuser communication
EP1665692B1 (en) Method and apparatus for removing code aliases when using short synchronization codes
KR101201029B1 (ko) Uwb시스템의 신호획득을 위한 탐색 알고리즘 성능 분석 방법
Huang et al. An effective timing synchronization scheme for DHTR UWB receivers
Alemseged et al. Detection and identification of nbi for multichannel uwb autocorrelation receivers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120710

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807