JP2009203500A - Method for producing hot dip metal plated steel strip - Google Patents

Method for producing hot dip metal plated steel strip Download PDF

Info

Publication number
JP2009203500A
JP2009203500A JP2008045455A JP2008045455A JP2009203500A JP 2009203500 A JP2009203500 A JP 2009203500A JP 2008045455 A JP2008045455 A JP 2008045455A JP 2008045455 A JP2008045455 A JP 2008045455A JP 2009203500 A JP2009203500 A JP 2009203500A
Authority
JP
Japan
Prior art keywords
gas
nozzle
steel strip
sub
main nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008045455A
Other languages
Japanese (ja)
Other versions
JP5169307B2 (en
Inventor
Gentaro Takeda
玄太郎 武田
Hideyuki Takahashi
秀行 高橋
Keisuke Ono
圭介 小野
Shinji Goto
信二 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008045455A priority Critical patent/JP5169307B2/en
Publication of JP2009203500A publication Critical patent/JP2009203500A/en
Application granted granted Critical
Publication of JP5169307B2 publication Critical patent/JP5169307B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To more stably produce a hot dip metal plated steel strip of high quality by suppressing the occurrence of surface defects in plating caused by splashes in a method for producing the hot dip metal plated steel strip by which the control of the coating weight in plating is performed by using a gas wiping nozzle. <P>SOLUTION: In the method for producing a hot dip metal plated steel strip where the surface of a steel strip continuously taken up from a hot dip metal plating bath is sprayed with a gas from a gas wiping nozzle A, and the control of the coating weight in plating at the surface of the steel strip is performed, the gas wiping nozzle A is provided with: a main nozzle 1; and sub-nozzles 2a, 2b jetting a gas jet whose jetting direction is tilted to a direction crossed with the gas jetting direction of the main nozzle 1 at a speed lower than that of the gas jet jetted from the main nozzle 1 at the upper side or/and the lower side of the main nozzle 1, and the gas temperature of the gas jet jetted from the sub-nozzles 2a, 2b is ≤500°C, and is made higher than the gas temperature of the gas jet jetted from the main nozzle 1 by ≥50°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、溶融金属めっき浴から連続的に引き上げられる鋼帯の表面に、ガスワイピングノズルから気体を吹き付け、鋼帯表面のめっき付着量の制御を行う溶融金属めっき鋼帯の製造方法に関するものである。   The present invention relates to a method for producing a molten metal plated steel strip in which a gas wiping nozzle is sprayed with a gas onto the surface of a steel strip that is continuously pulled up from a molten metal plating bath to control the amount of coating on the surface of the steel strip. is there.

連続溶融めっきプロセスにおいては、図4に示すように、一般に溶融金属が満たされているめっき浴20に鋼帯Xを浸漬させ、この鋼帯Xをめっき浴20から垂直上方に引き上げた後、鋼帯を挟んで対向して設けられたガスワイピングノズル21から鋼帯面に気体を吹き付けるガスワイピングが行われる(図4において、22はシンクロ−ル、23はサポートロール、24はロールを示す)。このガスワイピングにより、余剰な溶融金属が掻き取られてめっき付着量が制御されるとともに、鋼帯表面に付着した溶融金属が板幅方向および板長手方向で均一化される。ガスワイピングノズル21は、多様な鋼帯幅に対応するとともに、鋼帯引き上げ時の幅方向の位置ズレなどに対応するため、通常、鋼帯幅より長く構成され、鋼帯の幅端部より外側まで延びている。   In the continuous hot dipping process, as shown in FIG. 4, the steel strip X is generally immersed in a plating bath 20 filled with a molten metal, and the steel strip X is pulled up vertically from the plating bath 20, and then the steel. Gas wiping is performed by blowing gas onto the steel strip surface from the gas wiping nozzle 21 provided facing the band (in FIG. 4, 22 is a synchro, 23 is a support roll, and 24 is a roll). By this gas wiping, excess molten metal is scraped off and the amount of plating adhesion is controlled, and the molten metal adhering to the steel strip surface is made uniform in the plate width direction and the plate longitudinal direction. The gas wiping nozzle 21 is usually configured to be longer than the width of the steel strip and outside the width end of the steel strip in order to cope with various steel strip widths and to cope with positional deviation in the width direction when the steel strip is pulled up. It extends to.

このようなガスワイピング方式では、鋼帯に衝突した気体噴流の乱れによって鋼帯下方に落下する溶融金属が周囲に飛び散る、いわゆるスプラッシュが発生し、これが鋼帯表面に付着してめっき鋼帯の表面品質の低下を招くという問題がある。このスプラッシュ発生の問題は、ガスワイピングノズルから鋼帯面に吹き付ける気体圧力を高くするとより顕在化する。   In such a gas wiping method, a so-called splash is generated in which molten metal falling below the steel strip is scattered around due to the turbulence of the gas jet that collided with the steel strip, which adheres to the surface of the steel strip and adheres to the surface of the plated steel strip. There is a problem that the quality is degraded. The problem of the occurrence of splash becomes more apparent when the gas pressure blown from the gas wiping nozzle to the steel strip surface is increased.

鋼帯の連続製造プロセスにおいて生産量を増加させるには、鋼帯通板速度(ライン速度)を増加させればよい。しかし、連続溶融めっきプロセスにおいてガスワイピング方式でめっき付着量を制御する場合、ライン速度を増加させると、溶融金属の粘性によって鋼帯のめっき浴通過直後の初期付着量が増加するため、めっき付着量を一定範囲内に制御するには、ガスワイピングノズルから鋼帯面に吹き付ける気体圧力をより高圧に設定する必要があり、これによってスプラッシュが大幅に増加し、良好な表面品質を維持できなくなる。   In order to increase the production amount in the continuous manufacturing process of the steel strip, the steel strip passing speed (line speed) may be increased. However, when controlling the coating amount by gas wiping method in the continuous hot dipping process, if the line speed is increased, the initial coating amount immediately after passing through the plating bath of the steel strip increases due to the viscosity of the molten metal. In order to control within a certain range, it is necessary to set the gas pressure blown from the gas wiping nozzle to the steel strip surface to a higher pressure, which greatly increases the splash and makes it impossible to maintain good surface quality.

また、付着量を薄目付けにするには、ガスワイピングノズルから鋼帯面に吹き付ける気体圧力を高くすることが有効である。しかし、鋼帯面に吹き付ける気体圧力を高くすると、スプラッシュ発生量が増加し、良好な表面品質を維持しにくくなる。   In order to reduce the amount of adhesion, it is effective to increase the gas pressure blown from the gas wiping nozzle to the steel strip surface. However, if the gas pressure sprayed on the steel strip surface is increased, the amount of splash generation increases, and it becomes difficult to maintain good surface quality.

このようなスプラッシュ発生の問題を解決するため、主として鋼帯に付着した溶融金属の付着量を制御するガスワイピング用のノズル(主ノズル)の上下に補助的なノズル(副ノズル)を設け、副ノズルの作用によって主ノズルの性能を向上させることを狙いとした、以下のような方法が提案されている。   In order to solve such a problem of occurrence of splash, auxiliary nozzles (sub nozzles) are provided above and below a gas wiping nozzle (main nozzle) that mainly controls the amount of molten metal adhering to the steel strip. The following methods have been proposed that aim to improve the performance of the main nozzle by the action of the nozzle.

特許文献1に示される方法は、主ノズルの周囲から火炎や燃焼ガスを噴射して、主ノズルからの噴流と周囲空気とを遮断して、ワイピング能力を向上させることができるとしている。   In the method disclosed in Patent Document 1, flames and combustion gases are injected from the periphery of the main nozzle, and the jet flow from the main nozzle and the ambient air are interrupted to improve the wiping capability.

特許文献2に示される方法は、主に付着金属の厚さを制御するガスを噴射する主ノズルと、前記主ノズルの上部及び下部の少なくとも一方に、各ノズルのガス噴射口間がガス出口側端部の厚みが0.1〜2.0mmの仕切り板で仕切られ、気体の噴射方向が主ノズルから噴射される気体の噴射方向と交差する方向に傾斜した、主ノズルから噴射するガスよりも低速のガスを噴射する副ノズルによって、主ノズルから噴射される主噴流の拡散を抑制してポテンシャルコアを延長し、ワイピング能力を向上させることができるとしている。
特開2002−348650号公報 特開2006−328487号公報
In the method disclosed in Patent Document 2, a main nozzle that mainly injects a gas for controlling the thickness of an attached metal, and at least one of an upper part and a lower part of the main nozzle, a gas outlet side between each nozzle Than the gas injected from the main nozzle, which is partitioned by a partition plate having an end thickness of 0.1 to 2.0 mm, and the gas injection direction is inclined in a direction intersecting with the gas injection direction injected from the main nozzle The sub nozzle that injects the low-speed gas suppresses the diffusion of the main jet injected from the main nozzle and extends the potential core, thereby improving the wiping capability.
JP 2002-348650 A JP 2006-328487 A

しかし、本発明者らが検討したところによれば、例えば溶融亜鉛めっき鋼帯を製造する場合、特許文献1に示された形態で安易に主ノズルの周囲にノズルあるいはバーナーを配置して外気との「遮断ガス」を噴射しても、実際には主ノズルからのガスとの混合が促進されてポテンシャルコアは延長されないし、副ノズルから火炎あるいは1000℃近い高温ガスを噴射すると、鋼帯と亜鉛との合金化を促進してしまい、合金層の成長によって逆に通常ワイピングノズルだけの場合よりも薄目付けしにくくなることがわかった。また、火炎あるいは高温ガスの噴射ガス量を極力抑えたとしても、亜鉛がヒューム化、鋼帯表面の酸化亜鉛による外観不良、火炎・燃焼ガスの巾方向不均一噴射に起因する巾方向合金化ムラによる皮膜特性のバラツキ増加等の製品品質上の問題が発生することがわかった。   However, according to a study by the present inventors, for example, when producing a hot dip galvanized steel strip, a nozzle or a burner is easily arranged around the main nozzle in the form shown in Patent Document 1, and the outside air Even if the “cut-off gas” is injected, the mixing with the gas from the main nozzle is promoted and the potential core is not extended. When a flame or a high-temperature gas close to 1000 ° C. is injected from the sub nozzle, It has been found that alloying with zinc is promoted, and the growth of the alloy layer, on the contrary, makes it harder to apply lighter than the case of using only a normal wiping nozzle. In addition, even if the amount of flame or high-temperature gas injection is suppressed as much as possible, zinc is fume-free, poor appearance due to zinc oxide on the surface of the steel strip, and uneven width-direction alloying due to non-uniform injection of flame and combustion gas in the width direction. It was found that there were problems in product quality, such as an increase in the variation in film characteristics due to aging.

副ノズル(補助ノズル)による主ノズルのポテンシャルコア延長効果を得るには、特許文献2に示されるように、主ノズルと副ノズルの隙間を極力狭めるようにしなければならない。しかしながら、近年、金属めっき膜厚のさらなる薄膜化へのニーズが高まっている中で、ノズル圧力を増加させても、ワイピングガスの冷却効果によって溶融金属の粘度が低下するため、特許文献2のワイピングノズルをもってしても、溶融亜鉛めっきの場合で片面30g/m以下の膜厚にすることができないという問題がある。 In order to obtain the potential core extension effect of the main nozzle by the sub nozzle (auxiliary nozzle), as shown in Patent Document 2, it is necessary to narrow the gap between the main nozzle and the sub nozzle as much as possible. However, in recent years, the need for further thinning of the metal plating film thickness has increased, and even if the nozzle pressure is increased, the viscosity of the molten metal is reduced by the cooling effect of the wiping gas. Even if it has a nozzle, there exists a problem that it cannot be made into the film thickness of 30 g / m < 2 > or less on one side in the case of hot dip galvanization.

したがって本発明の目的は、以上のような従来技術の課題を解決し、ガスワイピングノズルを用いてめっき付着量の制御を行う溶融金属めっき鋼帯の製造方法において、スプラッシュに起因するめっき表面欠陥の発生を抑え、高品質の溶融金属めっき鋼帯をより安定して製造することができる溶融金属めっき鋼帯の製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems of the prior art, and in the manufacturing method of a molten metal plated steel strip in which the amount of plating adhesion is controlled using a gas wiping nozzle, plating surface defects caused by splash are eliminated. An object of the present invention is to provide a method for producing a hot-dip metal-plated steel strip that can suppress the generation and more stably produce a high-quality hot-dip metal-plated steel strip.

上記課題を解決するための本発明の要旨は、溶融金属めっき浴から連続的に引き上げられる鋼帯の表面に、ガスワイピングノズルから気体を吹き付け、鋼帯表面のめっき付着量の制御を行う溶融金属めっき鋼帯の製造方法において、
前記ガスワイピングノズルは、主ノズルと、該主ノズルの上側又は/及び下側に、主ノズルから噴射される気体噴流よりも低速で、噴射方向が主ノズルの気体噴射方向と交差する方向に傾斜した気体噴流が噴射される副ノズルを備え、前記副ノズルから噴射される気体噴流の気体温度は500℃以下であって、前記主ノズルから噴射される気体噴流の気体温度よりも50℃以上高温とすることを特徴とする溶融金属めっき鋼帯の製造方法である。
The gist of the present invention for solving the above problems is a molten metal that controls the amount of plating on the surface of the steel strip by blowing gas from a gas wiping nozzle onto the surface of the steel strip that is continuously pulled up from the molten metal plating bath. In the manufacturing method of the plated steel strip,
The gas wiping nozzle is tilted in a direction in which the injection direction intersects the gas injection direction of the main nozzle at a lower speed than the gas jet injected from the main nozzle on the upper side and / or lower side of the main nozzle. The gas temperature of the gas jet ejected from the sub nozzle is 500 ° C. or less, and is 50 ° C. or more higher than the gas temperature of the gas jet ejected from the main nozzle. It is a manufacturing method of the hot-dip metal plating steel strip characterized by these.

本発明によれば、スプラッシュに起因するめっき表面欠陥の発生を抑え、高品質の溶融金属めっき鋼帯をより安定して製造することができるようになる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the plating surface defect resulting from a splash can be suppressed and a high quality hot-dip metal plating steel strip can be manufactured more stably.

図1は本発明の実施に使用するガスワイピングノズルの一実施形態を示す縦断面図、図2は、図1のガスワイピングノズルの噴射口先端部の拡大図である。図1および図2において、Aはガスワイピングノズル、Xは鋼帯、mは鋼帯Xの表面に付着した溶融金属である。   FIG. 1 is a longitudinal sectional view showing an embodiment of a gas wiping nozzle used in the practice of the present invention, and FIG. 2 is an enlarged view of a front end of an injection port of the gas wiping nozzle of FIG. 1 and 2, A is a gas wiping nozzle, X is a steel strip, and m is a molten metal adhering to the surface of the steel strip X.

ガスワイピングノズルAは、主ノズル1とその上側及び下側に設けられる副ノズル2a、2bとを備え、副ノズル2a、2bの気体噴射方向は主ノズル1の気体噴射方向(通常、鋼帯X面に対してほぼ直角方向である。)と交差する方向に傾斜し、主ノズル1からの気体噴流(以下、主噴流という。)に副ノズル2a、2bからの気体噴流(以下、副噴流という。)が合流するように構成されている。図2中のγ、γは主ノズル1の気体噴流の噴射方向に対する副ノズル2a、2bの気体噴流の噴射方向の傾斜角である。 The gas wiping nozzle A includes a main nozzle 1 and auxiliary nozzles 2a and 2b provided on the upper side and the lower side thereof, and the gas injection direction of the auxiliary nozzles 2a and 2b is the gas injection direction of the main nozzle 1 (usually a steel strip X Gas jets from the sub nozzles 2a and 2b (hereinafter referred to as sub-jets) to the gas jets from the main nozzle 1 (hereinafter referred to as main jets). .) Are configured to merge. Γ a and γ b in FIG. 2 are inclination angles of the jet direction of the gas jet of the sub nozzles 2 a and 2 b with respect to the jet direction of the gas jet of the main nozzle 1.

主ノズル1は上下の第1ノズル部材3a、3bを備え、この第1ノズル部材3a、3bの先端間が気体噴射口(ノズルスリット)4を形成している。また、この主ノズル1を構成する第1ノズル部材3a、3bの外側(上方および下方)には第2ノズル部材5a、5bが配置され、このうち第2ノズル部材5aと第1ノズル部材3aとにより副ノズル2aが形成され、第2ノズル部材5bと第1ノズル部材3bとにより副ノズル2bが形成されている。そして、第1ノズル部材3aと第2ノズル部材5aの先端部間と、第1ノズル部材3bと第2ノズル部材5bの先端部間が、各々気体噴射口(ノズルスリット)6a、6bを形成している。このような主ノズル1と副ノズル2a、2bからなるノズル本体の縦断面形状は、先端に向かって先細りするテーパ形状となっている。第1ノズル部材3a、3bの噴射口先端部の厚みは0.1〜2.0mmの範囲内で製作されている。   The main nozzle 1 includes upper and lower first nozzle members 3a and 3b, and a gas injection port (nozzle slit) 4 is formed between the tips of the first nozzle members 3a and 3b. Further, second nozzle members 5a and 5b are arranged outside (upper and lower) of the first nozzle members 3a and 3b constituting the main nozzle 1, and among these, the second nozzle member 5a and the first nozzle member 3a Thus, the sub nozzle 2a is formed, and the second nozzle member 5b and the first nozzle member 3b form the sub nozzle 2b. And between the front-end | tip parts of the 1st nozzle member 3a and the 2nd nozzle member 5a, and between the front-end | tip parts of the 1st nozzle member 3b and the 2nd nozzle member 5b form gas injection port (nozzle slit) 6a, 6b, respectively. ing. The vertical cross-sectional shape of the nozzle body composed of the main nozzle 1 and the sub nozzles 2a and 2b is a tapered shape that tapers toward the tip. The first nozzle members 3a and 3b are manufactured so that the tip end portions of the injection ports are within a range of 0.1 to 2.0 mm.

このようなガスワイピングノズルAでは、主に主ノズル1からの主噴流で鋼帯表面の溶融金属の掻き取りが行われ、一方、副ノズル2a、2bからは主噴流よりも低速の副噴流が噴射される。このような副噴流が副ノズル2a、2bから噴射されることにより、鋼帯表面で気体噴流の衝突圧力が上昇し、また鋼帯通板方向の衝突圧力分布の圧力勾配が急峻になる。この気体噴流により、めっき掻き取り力が向上し、鋼帯の高速通板時においても気体圧力を過剰に高めることなく溶融金属の掻き取りを行うことが可能になり、スプラッシュの発生を効果的に抑制することができるようになる。しかし、スプラッシュの発生は抑制されるが、気体噴流による冷却効果により、片面40g/m以下の薄目付けには不利であった。 In such a gas wiping nozzle A, the molten metal on the steel strip surface is scraped off mainly by the main jet flow from the main nozzle 1, while the sub-jets 2a and 2b have a sub-jet flow at a lower speed than the main jet flow. Be injected. By injecting such a sub-jet from the sub-nozzles 2a and 2b, the collision pressure of the gas jet increases on the surface of the steel strip, and the pressure gradient of the collision pressure distribution in the steel plate passage direction becomes steep. This gas jet improves the scraping power of the plating and makes it possible to scrape the molten metal without excessively increasing the gas pressure even during high-speed feeding of the steel strip. It becomes possible to suppress. However, although the generation of splash is suppressed, the cooling effect by the gas jet is disadvantageous for thinning of 40 g / m 2 or less on one side.

図3は、従来の単一ノズル形式のガスワイピングノズル(副ノズルを有しないガスワイピングノズル)と、図1に示すガスワイピングノズルの衝突圧力分布曲線を比較して示したものである。図3において、(a)は主噴流のみで、従来の単一ノズル形式のガスワイピングノズルの衝突圧力分布曲線、(b)は図1のガスワイピングノズルで主噴流のガス温度と副噴流のガス温度に温度差が無い場合の衝突圧力分布曲線、(c)は図1のガスワイピングノズルで主噴流の気体温度に対して副噴流の気体温度が200℃高い場合の衝突圧力分布曲線を各々示している。   FIG. 3 shows a comparison between collision pressure distribution curves of a conventional single nozzle type gas wiping nozzle (a gas wiping nozzle having no sub nozzle) and the gas wiping nozzle shown in FIG. 3A shows a collision pressure distribution curve of a conventional single nozzle type gas wiping nozzle with only a main jet, and FIG. 3B shows a gas temperature of a main jet and a gas of a sub jet in the gas wiping nozzle of FIG. (C) shows the collision pressure distribution curve when the gas temperature of the secondary jet is 200 ° C. higher than the gas temperature of the main jet in the gas wiping nozzle of FIG. 1 when there is no temperature difference. ing.

グラフ横軸のy/bにおいて、bはノズルスリット幅(スリットギャップ。図1のノズルでは主ノズルのスリットギャップ。)、yは気体噴流中心(y=0)からの鉛直方向距離である。また、縦軸の衝突圧力比とは、(a)の衝突圧力分布曲線の最大圧力を基準(1.0)とし、その最大圧力に対する圧力比である。y<0は気体噴流中心より下方側(溶融めっき槽側)、y>0は気体噴流中心より上方側(反溶融めっき槽側)である。   In y / b on the horizontal axis of the graph, b is the nozzle slit width (slit gap; the slit gap of the main nozzle in the nozzle of FIG. 1), and y is the vertical distance from the gas jet center (y = 0). Further, the collision pressure ratio on the vertical axis is a pressure ratio with respect to the maximum pressure with the maximum pressure of the collision pressure distribution curve of (a) as the reference (1.0). y <0 is the lower side from the center of the gas jet (on the side of the hot dip plating tank), and y> 0 is the upper side of the center of the gas jet (on the side of the anti-hot dip plating tank).

図3に示されるように、図1のガスワイピングノズルで主噴流の気体温度と副噴流の気体温度に温度差が無い(b)の衝突圧力分布は、従来の単一ノズル形式のガスワイピングノズルによる(a)の衝突圧力分布に比べて気体噴流の拡散が抑制され、衝突圧力分布曲線の圧力勾配が急峻に変化するとともに衝突圧力が上昇しており、これによって(a)に比べてめっき掻き取り力が向上していることが判る。   As shown in FIG. 3, there is no temperature difference between the gas temperature of the main jet and the gas temperature of the sub-jet in the gas wiping nozzle of FIG. Compared with the collision pressure distribution in (a), the diffusion of the gas jet is suppressed, the pressure gradient of the collision pressure distribution curve changes sharply and the collision pressure rises. It can be seen that the picking power has improved.

図1のようなノズル形態の下で副噴流の気体温度を主噴流の気体温度よりも高温にした(c)は、(b)に比べて衝突圧力分布曲線の形状がさらに急峻になり、衝突圧力が上昇しており、これによって(b)よりもめっき掻き取り力の更なる向上が可能になる。このような効果は、主噴流に対して比重の軽い副噴流が、混合を最小限抑えられた形で主噴流の外側を流れ、主噴流の拡散を抑えるとともに、比重が軽い分だけ衝突圧力が低下することで発生する。また副噴流の気体温度を高温にすることによって、ワイピングされる溶融金属の温度低下を抑制できるため、同じワイピング圧力でもより薄目付けにすることが可能になる。   When the gas temperature of the sub-jet is made higher than the gas temperature of the main jet under the nozzle configuration as shown in FIG. 1, the shape of the collision pressure distribution curve becomes steeper than that of (b), and the collision occurs. The pressure is rising, and this makes it possible to further improve the plating scraping power as compared with (b). This effect is achieved by the fact that the secondary jet, which has a low specific gravity relative to the main jet, flows outside the main jet in a form that minimizes mixing, thereby suppressing the diffusion of the main jet and reducing the collision pressure by the light specific gravity. It occurs when it falls. Moreover, since the temperature drop of the molten metal to be wiped can be suppressed by increasing the gas temperature of the sub-jet, it is possible to make it thinner with the same wiping pressure.

原理的には副噴流の気体温度は主噴流の気体温度より50℃以上高ければよく、副噴流の気体温度は高いほど圧力勾配を急峻にする効果は大きいが、該温度を高温にし過ぎるとめっき皮膜側への悪影響が顕在化する。溶融亜鉛めっき鋼帯を想定すると、合金化温度は一般的に500〜600℃とされているので、低温側の500℃が上限となる。このような理由から、本発明では、副ノズルから噴射される気体噴流の気体温度を500℃以下に規定するとともに、主ノズルから噴射される気体噴流の気体温度よりも50℃以上高温とすることを規定した。   In principle, the gas temperature of the sub-jet should be 50 ° C. higher than the gas temperature of the main jet. The higher the gas temperature of the sub-jet, the greater the effect of steeping the pressure gradient. The adverse effect on the film side becomes obvious. Assuming a hot dip galvanized steel strip, the alloying temperature is generally 500 to 600 ° C., so the upper limit is 500 ° C. on the low temperature side. For this reason, in the present invention, the gas temperature of the gas jet injected from the sub nozzle is regulated to 500 ° C. or lower, and the temperature is set to 50 ° C. or higher than the gas temperature of the gas jet injected from the main nozzle. Stipulated.

本発明では、主ノズルへ供給する噴射用気体の供給手段は、特に限定されない。例えば圧縮機又はブロアなどによって行うことができる。この場合、主ノズルから噴射される気体噴流の気体温度は、通常、室温〜150℃の範囲内である。   In the present invention, the means for supplying the injection gas supplied to the main nozzle is not particularly limited. For example, it can be performed by a compressor or a blower. In this case, the gas temperature of the gas jet injected from the main nozzle is usually in the range of room temperature to 150 ° C.

本発明では、主ノズルから噴射する主噴流の噴射気体と副ノズルから噴射する副噴流の噴射気体に温度差を付与する。温度差を付与するには、例えば主ノズルへは圧縮機を用いて主噴流用気体を供給し、副ノズルへは、前記圧縮機で加圧した気体の一部を抜き出して減圧し、熱交換器で加熱昇温して供給する方法、焼鈍炉の燃焼排ガスと空気・窒素との混合ガスあるいはブロアで空気等のガスを加圧し、加圧前又は加圧後に、熱交換機で加熱昇温したものを用いてもよい。しかし、噴射用気体の供給源はこれらに限定されるものでない。   In the present invention, a temperature difference is given to the jet gas of the main jet injected from the main nozzle and the jet gas of the sub jet injected from the sub nozzle. In order to give a temperature difference, for example, a main jet gas is supplied to the main nozzle using a compressor, and a part of the gas pressurized by the compressor is extracted and decompressed to the sub nozzle to perform heat exchange. A method of heating and heating with a furnace, pressurizing a gas such as air with a mixed gas of combustion exhaust gas and air / nitrogen in an annealing furnace or a blower, and heating with a heat exchanger before or after pressurization A thing may be used. However, the supply source of the gas for injection is not limited to these.

本発明によれば、副ノズルから噴射される気体温度を、主ノズルから噴射される気体温度よりも高くすることにより、鋼帯表面で気体噴流の衝突圧力が上昇する効果を維持しつつ、鋼帯通板方向の衝突圧力分布曲線の圧力勾配が急峻になり、めっき掻き取り力を十分に発揮することができる。めっき掻き取り力を向上できることで、従来技術に較べて気体の噴射圧力を下げたり、ガスワイピングノズルと鋼帯の距離を大きくしたりすることが可能となり、これによってスプラッシュの発生を効果的に抑制することができる。また気体の噴射圧力を下げたり、ガスワイピングノズルと鋼帯の距離を大きくしたりすることで、スプラッシュがガスワイピングノズルに付着しにくくなり、ノズル詰りを防止する点からも有利である。以上のことから、本発明によれば高品質の溶融金属めっき鋼帯をより安定して製造することができるようになる。   According to the present invention, the gas temperature injected from the sub nozzle is made higher than the gas temperature injected from the main nozzle, thereby maintaining the effect of increasing the collision pressure of the gas jet on the steel strip surface, The pressure gradient of the collision pressure distribution curve in the banding plate direction becomes steep, and the plating scraping force can be sufficiently exhibited. The ability to improve the plating scraping power makes it possible to lower the gas injection pressure and increase the distance between the gas wiping nozzle and the steel strip compared to the conventional technology, thereby effectively suppressing the occurrence of splash. can do. Further, by lowering the gas injection pressure or increasing the distance between the gas wiping nozzle and the steel strip, the splash becomes difficult to adhere to the gas wiping nozzle, which is advantageous from the viewpoint of preventing nozzle clogging. From the above, according to the present invention, a high-quality molten metal-plated steel strip can be manufactured more stably.

鋼帯を高速通板させる場合、気体圧力を過剰に高めることなく溶融金属の掻き取りを行うことができるので、鋼帯を高速通板させる場合もスプラッシュの発生を効果的に抑制することができる。   When the steel strip is passed at high speed, the molten metal can be scraped without excessively increasing the gas pressure, so that splash can be effectively suppressed even when the steel strip is passed at high speed. .

薄目付け化する場合も、気体圧力を過剰に高めることなく溶融金属の掻き取りを行うことができるので、スプラッシュの発生を効果的に抑制することができる。   Even in the case of thinning, since the molten metal can be scraped off without excessively increasing the gas pressure, the occurrence of splash can be effectively suppressed.

ガスワイピングノズルの最適な形状・設置形態を調査するため、溶融亜鉛めっき鋼帯の製造ラインにおいて、溶融亜鉛めっき鋼帯の製造試験を行った。ガスワイピングノズルは、主ノズルおよび主ノズルの上下に副ノズルを備えるものを用い、溶融亜鉛めっき浴面からのガスワイピングノズル高さ:400mm、ガスワイピングノズル−鋼帯間距離:8mm、ノズルギャップは主ノズル、副ノズルともにすべて0.8mm、主ノズルのガス噴射方向は鋼帯面に直角、副ノズルのガスの噴射方向は、主ノズルのガス噴射方向に対する傾斜角度を上下とも20°とした。   In order to investigate the optimum shape and installation form of the gas wiping nozzle, a production test of a hot dip galvanized steel strip was conducted on the hot dip galvanized steel strip production line. As the gas wiping nozzle, a main nozzle and a nozzle provided on the upper and lower sides of the main nozzle are used, the height of the gas wiping nozzle from the hot dip galvanizing bath surface: 400 mm, the distance between the gas wiping nozzle and the steel strip: 8 mm, the nozzle gap is Both the main nozzle and the sub nozzle were 0.8 mm, the gas injection direction of the main nozzle was perpendicular to the steel strip surface, and the gas injection direction of the sub nozzle was 20 ° in both directions up and down with respect to the gas injection direction of the main nozzle.

板厚0.8mm×板幅1000mmの鋼帯を、ライン速度160m/min又は120m/minで通板し、主ノズルから噴射するガス圧力、副ノズルから噴射するガス圧力、ガス温度を変化させ、スプラッシュ発生量を調査した。溶融亜鉛めっき浴温度は460℃とした。   A steel strip having a plate thickness of 0.8 mm and a plate width of 1000 mm is passed at a line speed of 160 m / min or 120 m / min, and the gas pressure injected from the main nozzle, the gas pressure injected from the sub nozzle, and the gas temperature are changed, Splash generation was investigated. The hot dip galvanizing bath temperature was 460 ° C.

主ノズル、副ノズルへの噴射用ガス供給は次のようにした。主ノズルへは、常温空気を圧縮機で所定圧力に加圧したものを供給し、副ノズルへは下記の方法で供給した。
(イ)常温空気をブロアで所定圧力に加圧し、熱交換器で所定温度に加熱したものを供給(表1の副ノズルガス供給源:ブロア)。
(ロ)焼鈍炉の燃焼排ガスを熱交換器で所定温度まで低下したものを供給(表1の副ノズルガス供給源:熱交換器)。
(ハ)焼鈍炉の燃焼排ガスと常温空気を混合し所定温度とし、ブロアで所定圧力に加圧したものを供給(表1の副ノズルガス供給源:排ガス+空気)
(ニ)常温空気を圧縮機で所定圧力に加圧したものを供給(表1の副ノズルガス供給源:圧縮機)。
(ホ)焼鈍炉の燃焼排ガスをブロアで所定圧力に加圧したものを供給(表1の副ノズルガス供給源:燃焼排ガス)。
The gas for injection to the main nozzle and the sub nozzle was supplied as follows. The main nozzle was supplied with room temperature air pressurized to a predetermined pressure with a compressor, and supplied to the sub nozzle by the following method.
(A) Supplying air at normal temperature pressurized to a predetermined pressure with a blower and heated to a predetermined temperature with a heat exchanger (sub nozzle gas supply source in Table 1: blower).
(B) Supplying the combustion exhaust gas of the annealing furnace to a predetermined temperature with a heat exchanger (sub nozzle gas supply source in Table 1: heat exchanger).
(C) Combustion exhaust gas from an annealing furnace and room temperature air are mixed to obtain a predetermined temperature and supplied to a predetermined pressure with a blower (sub nozzle gas supply source: exhaust gas + air in Table 1)
(D) Supplying room temperature air pressurized to a predetermined pressure with a compressor (sub nozzle gas supply source in Table 1: compressor).
(E) Supplying the combustion exhaust gas of the annealing furnace pressurized to a predetermined pressure with a blower (sub nozzle gas supply source in Table 1: combustion exhaust gas).

スプラッシュ発生量は、各製造条件で通過した鋼帯長さに対する検査工程でスプラッシュ欠陥ありと判定された鋼帯長さの比率であり、実用上問題とならない軽度のスプラッシュ欠陥を含んでいる。合金化ムラは目視による判定結果である。   The splash generation amount is a ratio of the steel strip length determined to have a splash defect in the inspection process to the steel strip length passed under each manufacturing condition, and includes a slight splash defect that does not cause a problem in practice. The alloying unevenness is a visual determination result.

試験結果を表1に示す。   The test results are shown in Table 1.

Figure 2009203500
Figure 2009203500

発明例1〜4、比較例1、2は、ライン速度160m/minで、主ノズルのガス圧力とガス温度、副ノズルのガス圧力を同じ条件にして、副ノズルガスと主ノズルガスの温度差を変えたものである。発明例1〜4は、比較例1に比べて、スプラッシュ発生量と付着量の両方が低減されている。比較例2は、副ノズルガス温度を高温にしすぎたため合金化挙動が変化し、薄目付け効果はなくなり、合金化ムラが発生した。発明例1〜4では、副ノズルガスと主ノズルガスの温度差が大きくなるほど、スプラッシュ発生を抑制する効果、薄目付け効果が優れる。   Inventive Examples 1 to 4 and Comparative Examples 1 and 2 change the temperature difference between the sub nozzle gas and the main nozzle gas at the line speed of 160 m / min under the same conditions of the gas pressure and gas temperature of the main nozzle and the gas pressure of the sub nozzle. It is a thing. Inventive Examples 1-4, both the amount of splash generation and the amount of adhesion are reduced compared to Comparative Example 1. In Comparative Example 2, since the sub-nozzle gas temperature was set too high, the alloying behavior was changed, the thinning effect was lost, and uneven alloying occurred. In invention examples 1-4, the effect which suppresses generation | occurrence | production of a splash and the thinning effect are excellent, so that the temperature difference of sub nozzle gas and main nozzle gas becomes large.

発明例5は、主ノズルガス圧力を低下させて付着量を比較例1と同じになるようにした。発明例5は、スプラッシュ発生量が比較例1の半分以下に減少しており、同じ付着量では、本発明法がスプラッシュ発生を抑制する効果が優れることがわかる。   In Invention Example 5, the main nozzle gas pressure was lowered so that the amount of adhesion was the same as in Comparative Example 1. In Invention Example 5, the amount of splash generation is reduced to less than half that of Comparative Example 1, and it can be seen that the method of the present invention is excellent in suppressing the occurrence of splash at the same adhesion amount.

発明例6は主ノズルガス圧力と副ノズルガス圧力を比較例1と同じ条件で、副ノズルガス温度を本発明範囲内とし、薄目付けにするためにライン速度を120mpmに低下させたものである。付着量は25g/mまで薄目付け化され、スプラッシュ発生量は0.9%で付着量が42g/mの比較例1と同じレベルに抑えられた。 In Invention Example 6, the main nozzle gas pressure and the sub nozzle gas pressure were the same as those in Comparative Example 1, the sub nozzle gas temperature was within the range of the present invention, and the line speed was reduced to 120 mpm to achieve a light weight. The amount of adhesion was reduced to 25 g / m 2 , the amount of splash was 0.9%, and the amount of adhesion was suppressed to the same level as in Comparative Example 1 with 42 g / m 2 .

比較例3、4は、薄目付けにするために、ライン速度を120mpmに低下させ、さらに主ノズルガス圧力を比較例1より高くしたものである。主ノズルガスと副ノズルガスに温度差を付与しない比較例3は、主ノズルガス圧力が発明例6より高いにもかかわらず付着量は30g/m未満にならず、しかもスプラッシュ発生量は1.3%と、発明例6に比べて高い発生量となった。比較例4は、副ノズルガス温度を高温にしすぎたため合金化挙動が変化し、薄目付け効果はなくなり、合金化ムラが発生した。 In Comparative Examples 3 and 4, the line speed is reduced to 120 mpm and the main nozzle gas pressure is made higher than that of Comparative Example 1 in order to achieve a lighter weight. In Comparative Example 3, which does not give a temperature difference between the main nozzle gas and the sub nozzle gas, the adhesion amount is not less than 30 g / m 2 even though the main nozzle gas pressure is higher than that of Invention Example 6, and the amount of splash generation is 1.3%. As compared with Invention Example 6, the generation amount was high. In Comparative Example 4, since the sub-nozzle gas temperature was set too high, the alloying behavior was changed, the thinning effect was lost, and uneven alloying occurred.

本発明は、スプラッシュによるめっき表面欠陥の発生を抑え、高品質の溶融金属めっき鋼帯をより高速で製造できる溶融亜鉛めっき鋼帯を製造方法として利用することができる。   INDUSTRIAL APPLICABILITY The present invention can use a hot-dip galvanized steel strip that can suppress the occurrence of plating surface defects due to splash and can produce a high-quality hot-metal plated steel strip at a higher speed.

また、本発明は、鋼帯を高速通板させて溶融亜鉛めっき鋼帯を製造する際にスプラッシュによるめっき表面欠陥の発生を抑え、高品質の溶融金属めっき鋼帯を製造する方法として利用することができる。また、本発明は、溶融亜鉛めっき鋼帯のめっき厚を薄目付け化したときにスプラッシュによるめっき表面欠陥の発生を抑え、高品質の溶融金属めっき鋼帯を製造する方法として利用することができる。   In addition, the present invention is used as a method for producing a high-quality molten metal-plated steel strip by suppressing the occurrence of plating surface defects due to splash when producing a hot-dip galvanized steel strip by passing the steel strip at high speed. Can do. Further, the present invention can be used as a method for producing a high-quality molten metal-plated steel strip by suppressing the occurrence of plating surface defects due to splash when the plating thickness of the hot-dip galvanized steel strip is thinned.

本発明の実施に使用するガスワイピングノズルの一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the gas wiping nozzle used for implementation of this invention. 図1のガスワイピングノズルの噴射口先端部の拡大図である。FIG. 2 is an enlarged view of a spray nozzle tip of the gas wiping nozzle of FIG. 従来の単一ノズル形式のガスワイピングノズルと図1に示すガスワイピングノズルの作用を説明する図である。It is a figure explaining the effect | action of the gas wiping nozzle of the conventional single nozzle format, and the gas wiping nozzle shown in FIG. 溶融金属めっき鋼帯の製造設備を説明する概略図である。It is the schematic explaining the manufacturing equipment of a molten metal plating steel strip.

符号の説明Explanation of symbols

X 鋼帯
A ガスワイピングノズル
m 鋼帯表面に付着した溶融金属
1 主ノズル
2a、2b 副ノズル
3a、3b 第1ノズル部材
4 気体噴射口(ノズルスリット)
5a、5b 第2ノズル部材
6a、6b 気体噴射口(ノズルスリット)
20 めっき浴
21 ガスワイピングノズル
22 シンクロ−ル
23 サポートロール
24 ロール
X Steel strip A Gas wiping nozzle m Molten metal attached to the steel strip surface 1 Main nozzle 2a, 2b Sub nozzle 3a, 3b First nozzle member 4 Gas injection port (nozzle slit)
5a, 5b Second nozzle member 6a, 6b Gas injection port (nozzle slit)
20 Plating bath 21 Gas wiping nozzle 22 Synchro 23 Support roll 24 Roll

Claims (1)

溶融金属めっき浴から連続的に引き上げられる鋼帯の表面に、ガスワイピングノズルから気体を吹き付け、鋼帯表面のめっき付着量の制御を行う溶融金属めっき鋼帯の製造方法において、
前記ガスワイピングノズルは、主ノズルと、該主ノズルの上側又は/及び下側に、主ノズルから噴射される気体噴流よりも低速で、噴射方向が主ノズルの気体噴射方向と交差する方向に傾斜した気体噴流が噴射される副ノズルを備え、前記副ノズルから噴射される気体噴流の気体温度は500℃以下であって、前記主ノズルから噴射される気体噴流の気体温度よりも50℃以上高温とすることを特徴とする溶融金属めっき鋼帯の製造方法。
In the method of manufacturing a molten metal plated steel strip, the gas wiping nozzle is blown with a gas to the surface of the steel strip that is continuously pulled up from the molten metal plating bath, and the amount of plating adhesion on the surface of the steel strip is controlled.
The gas wiping nozzle is tilted in a direction in which the injection direction intersects the gas injection direction of the main nozzle at a lower speed than the gas jet injected from the main nozzle on the upper side and / or lower side of the main nozzle. The gas temperature of the gas jet ejected from the sub nozzle is 500 ° C. or less, and is 50 ° C. or more higher than the gas temperature of the gas jet ejected from the main nozzle. A method for producing a hot-dip metal-plated steel strip.
JP2008045455A 2008-02-27 2008-02-27 Manufacturing method of molten metal plated steel strip Expired - Fee Related JP5169307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045455A JP5169307B2 (en) 2008-02-27 2008-02-27 Manufacturing method of molten metal plated steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045455A JP5169307B2 (en) 2008-02-27 2008-02-27 Manufacturing method of molten metal plated steel strip

Publications (2)

Publication Number Publication Date
JP2009203500A true JP2009203500A (en) 2009-09-10
JP5169307B2 JP5169307B2 (en) 2013-03-27

Family

ID=41146061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045455A Expired - Fee Related JP5169307B2 (en) 2008-02-27 2008-02-27 Manufacturing method of molten metal plated steel strip

Country Status (1)

Country Link
JP (1) JP5169307B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042929A2 (en) * 2011-09-23 2013-03-28 포항공과대학교 산학협력단 Lip cleaner for air knife having improved ventilation
JP2014055307A (en) * 2012-09-11 2014-03-27 Jfe Steel Corp Wiping method for continuously molten metal-plated steel strip
JP5469274B1 (en) * 2013-06-27 2014-04-16 日光金属株式会社 Surface modification treatment method and surface modification treatment apparatus
KR101528044B1 (en) * 2013-10-24 2015-06-10 주식회사 포스코 A Gas Wiping Apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101518572B1 (en) * 2013-08-27 2015-05-07 주식회사 포스코 Plating strip manufacturing apparatus
EP3037201A1 (en) * 2014-12-22 2016-06-29 HILTI Aktiengesellschaft Method for producing a closed drill ring for a core drill bit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5299933A (en) * 1976-02-17 1977-08-22 Nisshin Steel Co Ltd Method of controlling quantity of adherence of plating metal in continuous hot dipping step
JP2002348650A (en) * 2001-05-22 2002-12-04 Nippon Steel Corp Wiping device for hot-dip plating, and method
JP2006328487A (en) * 2005-05-27 2006-12-07 Jfe Steel Kk Hot-dip plated steel strip manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5299933A (en) * 1976-02-17 1977-08-22 Nisshin Steel Co Ltd Method of controlling quantity of adherence of plating metal in continuous hot dipping step
JP2002348650A (en) * 2001-05-22 2002-12-04 Nippon Steel Corp Wiping device for hot-dip plating, and method
JP2006328487A (en) * 2005-05-27 2006-12-07 Jfe Steel Kk Hot-dip plated steel strip manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042929A2 (en) * 2011-09-23 2013-03-28 포항공과대학교 산학협력단 Lip cleaner for air knife having improved ventilation
WO2013042929A3 (en) * 2011-09-23 2013-05-23 포항공과대학교 산학협력단 Lip cleaner for air knife having improved ventilation
KR101290319B1 (en) 2011-09-23 2013-07-26 포항공과대학교 산학협력단 Lip cleaner for air knife having enhanced ventilation
JP2014055307A (en) * 2012-09-11 2014-03-27 Jfe Steel Corp Wiping method for continuously molten metal-plated steel strip
JP5469274B1 (en) * 2013-06-27 2014-04-16 日光金属株式会社 Surface modification treatment method and surface modification treatment apparatus
KR101528044B1 (en) * 2013-10-24 2015-06-10 주식회사 포스코 A Gas Wiping Apparatus

Also Published As

Publication number Publication date
JP5169307B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5169307B2 (en) Manufacturing method of molten metal plated steel strip
KR101910756B1 (en) Continuous hot-dip metal coating method, galvanized steel strip, and continuous hot-dip metal coating facility
AU720827B2 (en) Method and system for cooling strip material
JP4696690B2 (en) Manufacturing method of molten metal plated steel strip
JP5470932B2 (en) Hot-dip metal-plated steel strip manufacturing equipment and hot-metal-plated steel strip manufacturing method
WO2020039869A1 (en) Method for manufacturing hot-dip metal plated steel strip, and continuous hot-dip metal plating facility
JP4862479B2 (en) Manufacturing method of molten metal plated steel strip
WO2018012132A1 (en) Method for manufacturing molten metal plated steel strip and continuous molten metal plating equipment
JP6031906B2 (en) Wiping method for continuous molten metal-plated steel strip.
KR20080108342A (en) Method for manufacturing molten-metal plated steel band
JP4677846B2 (en) Manufacturing method of molten metal plated steel strip
JP2017222923A (en) Production method of molten metal plated steel strip, and continuous molten metal plating facility
JP6638872B1 (en) Method for producing hot-dip coated steel strip and continuous hot-dip metal plating equipment
JP5824905B2 (en) Manufacturing method of molten metal plated steel strip
JP4946167B2 (en) Manufacturing method of molten metal plated steel strip
JP2011252180A (en) Method of manufacturing hot dip metal coated steel strip
JP5386779B2 (en) Method and apparatus for manufacturing hot-dip galvanized steel sheet
JP2020190005A (en) Method for manufacturing hot-dip metal coated steel strip, and continuous hot-dip metal coating equipment
JP5287876B2 (en) Manufacturing method of molten metal plated steel strip
JP2010235967A (en) Apparatus and method for producing hot dip metal coated steel strip
JP6635086B2 (en) Manufacturing method of hot-dip galvanized steel strip
JP6439755B2 (en) Method for producing galvannealed steel sheet
JP6414360B2 (en) Manufacturing method of molten metal plated steel strip
JP2007070664A (en) Hot dip metal coated steel strip manufacturing method
JPH03287752A (en) Continuous hot dipping device for band steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5169307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees