JP2009201320A - Method for suppressing variation in series-connected capacitor and controller - Google Patents

Method for suppressing variation in series-connected capacitor and controller Download PDF

Info

Publication number
JP2009201320A
JP2009201320A JP2008042973A JP2008042973A JP2009201320A JP 2009201320 A JP2009201320 A JP 2009201320A JP 2008042973 A JP2008042973 A JP 2008042973A JP 2008042973 A JP2008042973 A JP 2008042973A JP 2009201320 A JP2009201320 A JP 2009201320A
Authority
JP
Japan
Prior art keywords
voltage
cell
average value
fluctuation range
capacitor module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008042973A
Other languages
Japanese (ja)
Inventor
Toshihiro Suzuki
利宏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power System Co Ltd
Original Assignee
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power System Co Ltd filed Critical Power System Co Ltd
Priority to JP2008042973A priority Critical patent/JP2009201320A/en
Publication of JP2009201320A publication Critical patent/JP2009201320A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To occasionally suppress variation in degradation in each of cells, to retain self-convergency in a capacitance, and to enhance reliability for a long period of time, in a capacitor module with a plurality of capacitor cells connected in series to each other. <P>SOLUTION: A voltage V<SB>CT</SB>and its voltage difference range ΔV<SB>CT</SB>are detected at a predetermined timing in a capacitor module with a plurality of capacitor cells connected in series to each other (1). An average value per cell is obtained (2). A cell voltage V<SB>CC</SB>and its voltage difference range ΔV<SB>CC</SB>are detected in each cell of the capacitor module at the same timing (3). The voltage of the cell and its voltage difference range are compared with the average of the voltage per cell and the average of the voltage difference range; and a bypass circuit (6) provided with a switching function and connected in parallel to the cell is turned on for a constant period of time to flow the bypass current (4), to the cell in which both of the cell voltage and the voltage difference range are larger than the average of the voltage per cell and the average of the voltage difference range. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、所定の間隔で各セルに並列接続した開閉機能付バイパス回路の電流のバイパス制御を実行することにより、複数のキャパシタセルを直列接続したキャパシタモジュール内の各セルの劣化のバラツキを抑制し、静電容量の自己収束性をもたせるようにした直列接続キャパシタのバラツキ抑制法及び制御装置に関する。   The present invention suppresses variation in deterioration of each cell in a capacitor module in which a plurality of capacitor cells are connected in series by executing current bypass control of a bypass circuit with an open / close function connected in parallel to each cell at a predetermined interval. In addition, the present invention relates to a method for suppressing variation in series-connected capacitors and a control device that have self-convergence of capacitance.

図6は直列接続キャパシタの初期化を行う設定レベルの例を説明する図である。複数の大容量のキャパシタを組み合わせて蓄電装置を構成する際に不可欠な条件として、キャパシタの直列接続時に生ずる、負担電圧の均等化の問題がある。本出願人らは、直列接続されるキャパシタの個々のセルに電圧監視制御装置としての並列モニタを接続して初期化する装置を提案している(例えば、特許文献1〜3参照)。   FIG. 6 is a diagram for explaining an example of setting levels for initializing the series-connected capacitors. As an indispensable condition for configuring a power storage device by combining a plurality of large-capacity capacitors, there is a problem of equalization of burden voltage that occurs when capacitors are connected in series. The present applicants have proposed a device for connecting and initializing a parallel monitor as a voltage monitoring control device to individual cells of capacitors connected in series (see, for example, Patent Documents 1 to 3).

並列モニタは、セルの電圧が特定の電圧に達したことを検出してバイパス回路を動作させることにより、そのセルの電圧がそれ以上高くなることを抑制するものである。つまり、並列モニタでは、コンパレータCMPによって各セルの電圧を基準電圧と比較して監視し、セルの電圧が基準電圧を越えるとバイパス回路(トランジスタ)をオンにして充電電流をバイパスしている。この動作により、初期化電圧として所定の値の基準電圧を設定し、充電電圧が基準電圧の設定値に達したセルから順次基準電圧で初期化(クランプ)して、個々のセルの負担電圧が不均一になる問題を解決している。   The parallel monitor detects that the voltage of the cell has reached a specific voltage and operates the bypass circuit, thereby suppressing the voltage of the cell from becoming higher. That is, in the parallel monitor, the voltage of each cell is compared with the reference voltage and monitored by the comparator CMP, and when the cell voltage exceeds the reference voltage, the bypass circuit (transistor) is turned on to bypass the charging current. With this operation, a reference voltage of a predetermined value is set as an initialization voltage, and the charging voltage is initialized (clamped) sequentially from the cell that has reached the reference voltage setting value. Solves the problem of non-uniformity.

直列接続キャパシタの初期化を行う場合の基準電圧(初期化電圧)の設定レベルは、大きく3つに分類される。1つめは、図6(a)に示すように最高充電電圧(満充電電圧)で各セルの電圧を一致させるようにする初期化である。2つめは、図6(b)に示すようにの最低電圧(ゼロ近傍の電圧)で各セルの電圧を一致させるようにする初期化である。そして、3つめは、図6(c)に示すように中間電圧で各セルの電圧を一致させるようにする初期化である。
特許第3491875号公報 特許第3504871号公報 特許第3507384号公報
The setting level of the reference voltage (initialization voltage) when the series connection capacitor is initialized is roughly classified into three. First, as shown in FIG. 6 (a), initialization is performed so that the voltages of the respective cells coincide with each other at the maximum charge voltage (full charge voltage). The second is initialization to make the voltages of the respective cells coincide with each other at the lowest voltage (voltage near zero) as shown in FIG. The third is initialization to make the voltage of each cell coincide with the intermediate voltage as shown in FIG.
Japanese Patent No. 3491875 Japanese Patent No. 3504871 Japanese Patent No. 3507384

上記のように並列モニタを利用して直列接続キャパシタの全てのセルの電圧を特定の電圧で一致させる従来の初期化の技術において、例えば図6(a)に示すように満充電電圧で初期化して各セル電圧を一致させる場合、漏れ電流等の固体差を無視すれば、初期化を行った後はいかなる充放電条件を経ても、再び最高充電電圧で各セルの電圧が一致する。そのため、通常使用条件でのセルの過電圧を防ぐことはできる。   In the conventional initialization technique in which the voltages of all the cells of the series-connected capacitors are made to coincide with each other by using the parallel monitor as described above, for example, initialization is performed with a full charge voltage as shown in FIG. When the cell voltages are matched, if individual differences such as leakage current are ignored, the voltage of each cell again matches the maximum charge voltage regardless of any charge / discharge conditions after initialization. Therefore, it is possible to prevent overvoltage of the cell under normal use conditions.

しかし、実際には、漏れ電流等の個体差の影響により、特定の電圧で一致させた各セルの電圧も徐々にずれていく。そのため、定期的な初期化やそれに類する操作が求められる。しかも、不特定の電圧範囲で長期連続稼働するようなアプリケーションでは、定期的に初期化を実施することが困難であり、課題となっている。   However, actually, the voltage of each cell matched with a specific voltage gradually shifts due to the influence of individual differences such as leakage current. Therefore, periodic initialization and similar operations are required. Moreover, in applications that operate continuously for a long time in an unspecified voltage range, it is difficult to perform initialization periodically, which is a problem.

因みに、直列接続キャパシタの各セルの電圧を初期化により最高充電電圧で一致させると、図6(a)に示すように静電容量の大きいセルCa、小さいセルCb、より小さいセルCcのように、静電容量に個体差がある場合、最高充電電圧より下の電圧範囲で各セルの電圧が不均一になる。この場合、静電容量の大きいセルCaの電圧が静電容量の小さいセルCcの電圧に比べて常に高くなる。   Incidentally, when the voltage of each cell of the series-connected capacitor is made to coincide with the maximum charging voltage by initialization, as shown in FIG. 6A, a cell Ca having a large capacitance, a cell Cb having a small capacitance, and a cell Cc having a smaller capacitance are obtained. When there is an individual difference in capacitance, the voltage of each cell becomes non-uniform in the voltage range below the maximum charging voltage. In this case, the voltage of the cell Ca having a large capacitance is always higher than the voltage of the cell Cc having a small capacitance.

一方、電気二重層キャパシタにおいて、電圧は主要な劣化要因であり、電圧が高いほど劣化は促進される。ここで、他の劣化要因が等しいと仮定すると、静電容量の大きいセルCaが静電容量の小さいセルCcよりも電圧が高いため、静電容量の大きいセルCaの劣化が相対的に進行し静電容量が小さくなる。これは、当初の静電容量の個体差を縮小する方向の変化であるから、最高充電電圧で一致した状態を維持することにより、静電容量の個体差を縮小方向に仕向けることができる。つまり、静電容量の自己収束性を持たせることができる。   On the other hand, in the electric double layer capacitor, the voltage is a major deterioration factor, and the higher the voltage, the more accelerated the deterioration. Here, assuming that the other deterioration factors are equal, the cell Ca having a large capacitance has a higher voltage than the cell Cc having a small capacitance, and therefore the deterioration of the cell Ca having a large capacitance relatively proceeds. Capacitance is reduced. This is a change in the direction of reducing the initial individual difference of the electrostatic capacity, and therefore, the individual difference of the electrostatic capacity can be directed in the reducing direction by maintaining a state in which they are matched at the maximum charging voltage. That is, the electrostatic self-convergence can be provided.

しかし、上述の如く、アプリケーションによっては最高充電電圧で一致された状態を維持することが困難になると、静電容量の自己収束性が見込めなくなる。また、最高充電電圧で一致された状態を維持することができる場合であっても、最高充電電圧で初期化するため電圧差が拡大し、一致するまでの時間が長くなり、初期化終了までの電力の損失や発熱が大きくなるという問題も生じる。   However, as described above, depending on the application, if it becomes difficult to maintain a state in which the maximum charging voltage is matched, the self-convergence of the capacitance cannot be expected. In addition, even if it is possible to maintain a matched state at the highest charging voltage, the voltage difference increases because the initialization is performed at the highest charging voltage, and the time until the matching becomes longer, the time until the initialization is completed. There is also a problem that power loss and heat generation increase.

また、図6(b)に示すように最低電圧で初期化してセル電圧を一致させると、最高充電電圧で初期化するのとは逆に静電容量の小さいセルCcが静電容量の大きいセルCaよりも電圧が高くなる。そのため、相対的に静電容量の小さいセルの劣化が進行して静電容量がさらに小さくなり、静電容量差が拡大(発散)する。図6(c)に示すように中間電圧で初期化してセル電圧を一致させる場合には、電圧の平均値の相対的な大小関係で静電容量差が縮小したり拡散したりする。   Also, as shown in FIG. 6B, when the cell voltage is matched by initializing at the lowest voltage, the cell Cc having a small capacitance is a cell having a large capacitance contrary to the initialization at the highest charging voltage. The voltage is higher than Ca. Therefore, the deterioration of the cell having a relatively small capacitance proceeds, the capacitance becomes further smaller, and the difference in capacitance expands (diverges). As shown in FIG. 6C, when the cell voltages are matched by initializing with an intermediate voltage, the capacitance difference is reduced or diffused depending on the relative magnitude relationship of the average value of the voltages.

本発明は、上記課題を解決するものであって、直列接続キャパシタの各セルの劣化のバラツキ抑制の制御を随時行って、静電容量の自己収束性を持たせ、長期にわたり信頼性を高めるようにするものである。   The present invention solves the above-described problem, and performs control of suppressing variation in deterioration of each cell of a series-connected capacitor as needed so as to have a self-convergence of capacitance and improve reliability over a long period of time. It is to make.

そのために本発明に係る直列接続キャパシタのバラツキ抑制法は、複数のキャパシタセルを直列接続したキャパシタモジュールにおいて、所定のタイミングで前記キャパシタモジュールの電圧及び電圧変動幅を検出して、前記キャパシタモジュール内の1セル当たりの電圧の平均値及び電圧変動幅の平均値を求めると共に、前記所定のタイミングで前記キャパシタモジュール内の各セルの電圧及び電圧変動幅を検出して、前記セルの電圧及び電圧変動幅を前記1セル当たりの電圧の平均値及び電圧変動幅の平均値と比較し、前記セルの電圧及び電圧変動幅がいずれも前記1セル当たりの電圧の平均値及び電圧変動幅の平均値より大きいセルに対して、当該セルに並列接続した開閉機能付バイパス回路を一定時間オンにしてバイパス電流を流すことにより、所定の間隔で前記開閉機能付バイパス回路によるバイパス制御を実行して、前記キャパシタモジュール内の各セルの劣化のバラツキを抑制し、静電容量の自己収束性をもたせるようにしたことを特徴とする。   For this purpose, according to the method for suppressing variation in series connected capacitors according to the present invention, in a capacitor module in which a plurality of capacitor cells are connected in series, the voltage of the capacitor module and the voltage fluctuation range are detected at a predetermined timing. The average value of the voltage per cell and the average value of the voltage fluctuation range are obtained, and the voltage and voltage fluctuation range of each cell in the capacitor module are detected at the predetermined timing, and the voltage and voltage fluctuation range of the cell are detected. Is compared with the average value of the voltage per cell and the average value of the voltage fluctuation range, and both the voltage and the voltage fluctuation range of the cell are larger than the average value of the voltage per cell and the average value of the voltage fluctuation range. With respect to a cell, a bypass circuit with an open / close function connected in parallel to the cell is turned on for a certain period of time to allow a bypass current to flow. By performing bypass control by the bypass circuit with an opening / closing function at a predetermined interval, the variation in deterioration of each cell in the capacitor module is suppressed, and the capacitance self-convergence is provided. Features.

また、直列接続キャパシタのバラツキ抑制制御装置は、周期的に制御信号を発生する制御信号発生手段と、前記制御信号に基づき所定のタイミングで複数のキャパシタセルを直列接続したキャパシタモジュールの電圧及び電圧変動幅を検出するモジュール電圧検出手段と、前記キャパシタモジュール内の1セル当たりの電圧の平均値及び電圧変動幅の平均値を求める演算手段と、前記制御信号に基づき所定のタイミングで前記キャパシタモジュール内の各セルの電圧及び電圧変動幅を検出するセル電圧検出手段と、前記セル電圧検出手段により検出した前記セルの電圧及び電圧変動幅を前記演算手段により求めた前記キャパシタモジュール内の1セル当たりの電圧の平均値及び電圧変動幅の平均値と比較し、前記セルの電圧及び電圧変動幅がいずれも前記1セル当たりの電圧の平均値及び電圧変動幅の平均値より大きいセルに対して、当該セルに並列接続した開閉機能付バイパス回路を一定時間オンにしてバイパス電流を流すバイパス制御手段とを備え、所定の間隔で前記開閉機能付バイパス回路によるバイパス制御を実行して、前記キャパシタモジュール内の各セルの劣化のバラツキを抑制し、静電容量の自己収束性をもたせるようにしたことを特徴とする。   In addition, the series connected capacitor variation suppression control apparatus includes a control signal generating unit that periodically generates a control signal, and a voltage and voltage fluctuation of a capacitor module in which a plurality of capacitor cells are connected in series at a predetermined timing based on the control signal. Module voltage detecting means for detecting the width; computing means for obtaining an average value of the voltage per cell in the capacitor module and an average value of the voltage fluctuation width; and a predetermined timing based on the control signal. Cell voltage detection means for detecting the voltage and voltage fluctuation range of each cell, and the voltage per cell in the capacitor module obtained by the calculation means for the cell voltage and voltage fluctuation width detected by the cell voltage detection means The cell voltage and voltage fluctuation range are compared with the average value and voltage fluctuation range. A bypass control means for causing a bypass current to flow by turning on a bypass circuit with an open / close function connected in parallel to the cell for a certain period of time with respect to a cell whose deviation is greater than the average value of the voltage per cell and the average value of the voltage fluctuation range; And performing bypass control by the bypass circuit with an opening / closing function at a predetermined interval to suppress variation in deterioration of each cell in the capacitor module and to have self-convergence of capacitance. Features.

本発明によれば、複数のキャパシタセルを直列接続したキャパシタモジュールにおいて、所定の間隔で、セルの電圧及び電圧変動幅がいずれもキャパシタモジュール内の1セル当たりの電圧の平均値及び電圧変動幅の平均値より大きいセルに対して、当該セルに並列接続した開閉機能付バイパス回路を一定時間オンにしてバイパス電流を流すので、静電容量の小さいセルの電圧が静電容量の大きいセルの電圧より大きくなっていくのを防ぎ、キャパシタモジュール内の各セルの劣化のバラツキ抑制の制御を随時行うことができる。しかも、ゼロ電圧近傍から最高充電電圧近傍まで充電レベルに関係なくセル劣化のバラツキ抑制の制御を繰り返し行うことができるので、静電容量の自己収束性を持たせ、長期にわたり信頼性を高めることができる。   According to the present invention, in a capacitor module in which a plurality of capacitor cells are connected in series, the cell voltage and the voltage fluctuation range are both the average value of the voltage per cell in the capacitor module and the voltage fluctuation range at a predetermined interval. For cells larger than the average value, the bypass circuit with open / close function connected in parallel to the cell is turned on for a certain period of time, so that the bypass current flows. Therefore, the voltage of the cell with a small capacitance is higher than the voltage of the cell with a large capacitance. It is possible to prevent the increase in size and to control the variation variation of each cell in the capacitor module as needed. In addition, since it is possible to repeatedly control the variation in cell deterioration regardless of the charge level from near zero voltage to near the maximum charge voltage, it is possible to increase the self-convergence of capacitance and improve reliability over a long period of time. it can.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係る直列接続キャパシタのバラツキ抑制制御装置の実施の形態を説明する図、図2は制御信号Sg と電圧の検出・制御タイミング、制御サイクルを説明する図である。図1において、1はモジュール電圧検出部、2は演算処理部、3(1) 〜3(n) はセル電圧検出部、4(1) 〜4(n) はバイパス制御部、5は制御信号発生部、6(1) 〜6(n) は開閉機能付バイパス回路 、100はキャパシタモジュール、200は充放電部、300はバラツキ抑制制御装置、C(1) 〜C(n) はセル、R(1) 〜R(n) は抵抗、VCCはセル電圧、VCTはモジュール電圧、ΔVCCはセル電圧変動幅、ΔVCTはモジュール電圧変動幅、nはセルの直列接続数を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining an embodiment of a variation suppression control device for series-connected capacitors according to the present invention, and FIG. 2 is a diagram for explaining a control signal Sg, voltage detection / control timing, and a control cycle. In FIG. 1, 1 is a module voltage detection unit, 2 is an arithmetic processing unit, 3 (1) to 3 (n) are cell voltage detection units, 4 (1) to 4 (n) are bypass control units, and 5 is a control signal. Generating unit, 6 (1) to 6 (n) is a bypass circuit with an opening / closing function, 100 is a capacitor module, 200 is a charging / discharging unit, 300 is a variation suppressing control device, C (1) to C (n) are cells, R (1) to R (n) are resistors, V CC is a cell voltage, V CT is a module voltage, ΔV CC is a cell voltage fluctuation range, ΔV CT is a module voltage fluctuation width, and n is the number of cells connected in series.

図1において、セルC(1) 〜C(n) は、n(直列接続数)個が直列接続され充電電源や負荷を含む充放電部200より任意の電圧範囲で充放電されるキャパシタモジュール100を構成し、例えば電気二重層キャパシタからなるキャパシタ蓄電装置(ユニット、バンク)を構成している。各セルC(1) 〜C(n) には、それぞれバイパス電流をオンオフバイパスする開閉機能付バイパス回路4(1) 〜6(n) が抵抗R(1) 〜R(n) と共に並列接続されている。 In FIG. 1, n (number of series connection ) cells C (1) to C (n) are connected in series and charged / discharged in an arbitrary voltage range from a charging / discharging unit 200 including a charging power source and a load. For example, a capacitor power storage device (unit, bank) composed of an electric double layer capacitor is configured. In each cell C (1) to C (n) , bypass circuits 4 (1) to 6 (n) with open / close functions for bypassing the bypass current are connected in parallel together with resistors R (1) to R (n). ing.

バラツキ抑制制御装置300において、モジュール電圧検出部1は、セルC(1) 〜C(n) からなるキャパシタモジュール100の電圧を検出するものであり、所定のタイミングでモジュール電圧VCTと所定時間におけるモジュール電圧変動幅ΔVCTを出力する。演算処理部2は、モジュール電圧検出部1の出力するモジュール電圧VCTとモジュール電圧変動幅ΔVCTをそれぞれnで除算したn分の1の値、つまりキャパシタモジュール100内の1セル当たりの平均値を計算するものである。セル電圧検出部3(1) 〜3(n) は、各セルC(1) 〜C(n) の電圧を検出するものであり、所定のタイミングでセルの電圧VCCと所定時間におけるセル電圧変動幅ΔVCCを出力する。ここで、電圧変動幅は、充電時の電圧上昇幅、放電時の電圧降下幅を含む絶対値である。 In the variation suppression control device 300, the module voltage detector 1 detects the voltage of the capacitor module 100 composed of the cells C (1) to C (n) , and the module voltage VCT and the predetermined time at a predetermined timing. The module voltage fluctuation range ΔV CT is output. The arithmetic processing unit 2 is a 1 / n value obtained by dividing the module voltage V CT and the module voltage fluctuation range ΔV CT output from the module voltage detection unit 1 by n, that is, an average value per cell in the capacitor module 100. Is calculated. The cell voltage detectors 3 (1) to 3 (n) detect the voltages of the cells C (1) to C (n) , and the cell voltage V CC and the cell voltage at a predetermined time at a predetermined timing. The fluctuation range ΔV CC is output. Here, the voltage fluctuation width is an absolute value including a voltage rise width during charging and a voltage drop width during discharge.

バイパス制御部4(1) 〜4(n) は、各セルC(1) 〜C(n) 毎に、演算処理部2の出力するモジュール電圧VCTとモジュール電圧変動幅ΔVCTのそれぞれn分の1の値(1セル当たりの平均値)、及びセル電圧検出部3(1) 〜3(n) の出力するセル電圧VCCとセル電圧変動幅ΔVCCを入力して、開閉機能付バイパス回路6(1) 〜6(n) をオン/オフ制御するものである。バイパス制御部4(1) 〜4(n) では、セル電圧VCCがモジュール電圧VCTのn分の1の値より大きく、且つセル電圧変動幅ΔVCCがモジュール電圧変動幅ΔVCTのn分の1の値より大きい場合に、そのセルC(1) 〜C(n) に対し並列接続された開閉機能付バイパス回路6(1) 〜6(n) をオンにする。開閉機能付バイパス回路6(1) 〜6(n) がオンにされると、そのセルC(1) 〜C(n) の端子間は、抵抗R(1) 〜R(n) を通して短絡されるので、セル電圧VCCと抵抗R(1) 〜R(n) に依存して電流がバイパスされる。このバイパス制御により静電容量が小さいため平均より大きくなったセルの充電電圧が選択的に抑えられ、結果的に最高電圧での均等化がなされ、各セルの劣化のバラツキを抑制し、静電容量の自己収束性をもたせることができる。 The bypass control units 4 (1) to 4 (n) are provided for each of the cells C (1) to C (n) by n of the module voltage V CT and the module voltage fluctuation range ΔV CT output from the arithmetic processing unit 2, respectively. 1 (average value per cell) and cell voltage V CC output from cell voltage detectors 3 (1) to 3 (n) and cell voltage fluctuation width ΔV CC The circuits 6 (1) to 6 (n) are on / off controlled. In the bypass control units 4 (1) to 4 (n) , the cell voltage V CC is larger than 1 / n of the module voltage V CT and the cell voltage fluctuation width ΔV CC is n times the module voltage fluctuation width ΔV CT . in the case of greater than a value of 1, to turn on the cell C (1) -C with parallel-connected switching functional to (n) bypass circuit 6 (1) to 6 (n). When the bypass circuit 6 (1) to 6 (n) with switching function is turned on, the terminals of the cells C (1) to C (n) are short-circuited through the resistors R (1) to R (n). Therefore, the current is bypassed depending on the cell voltage V CC and the resistors R (1) to R (n) . By this bypass control, the charging voltage of the cells that have become larger than the average is selectively suppressed because the electrostatic capacity is small. As a result, equalization at the highest voltage is achieved, and variations in deterioration of each cell are suppressed, and electrostatic charges are suppressed. Capacitance self-convergence can be provided.

制御信号発生部5は、モジュール電圧検出部1、セル電圧検出部3(1) 〜3(n) 、バイパス制御部4(1) 〜4(n) を動作させるための制御信号Sg を発生するものである。この制御信号Sg により、モジュール電圧VCT、セル電圧VCCをそれぞれ検出(サンプリング)するタイミングt1、t2、……、モジュール電圧変動幅ΔVCT、セル電圧変動幅ΔVCCをそれぞれ計算する時間幅、セルC(1) 〜C(n) をバイパス制御する時間幅を制御する。 The control signal generator 5 generates a control signal Sg for operating the module voltage detector 1, the cell voltage detectors 3 (1) to 3 (n) , and the bypass controllers 4 (1) to 4 (n). Is. Based on the control signal Sg, timings t1, t2,... For detecting (sampling) the module voltage V CT and the cell voltage V CC , time widths for calculating the module voltage fluctuation width ΔV CT and the cell voltage fluctuation width ΔV CC , The time width for bypass control of the cells C (1) to C (n) is controlled.

抵抗R(1) 〜R(n) は、開閉機能付バイパス回路6(1) 〜6(n) を流れる電流の大きさを規定するものバイパス回路のインピーダンス素子である。例えば抵抗R(1) 〜R(n) の値を小さくするほど、開閉機能付バイパス回路6(1) 〜6(n) をオンにしたときにそのセルC(1) 〜C(n) の充電電流をバイパスして開閉機能付バイパス回路6(1) 〜6(n) に流れる電流が大きくなる。また、放電時には、セルC(1) 〜C(n) から流れる放電電流が大きくなる。このことにより、充電時には電圧の上昇がより抑えられ、放電時には電圧の降下がより促進される。充電時において、抵抗R(1) 〜R(n) の値がゼロであれば、全充電電流をバイパスし、さらにセルC(1) 〜C(n) からの放電電流も流れることになる。 The resistors R (1) to R (n) are impedance elements of the bypass circuit that define the magnitude of the current flowing through the bypass circuits 6 (1) to 6 (n) with switching functions. For example, the smaller the values of the resistors R (1) to R (n) , the smaller the values of the cells C (1) to C (n) when the bypass circuits 6 (1) to 6 (n) with switching functions are turned on. By bypassing the charging current, the current flowing through the open / close function bypass circuits 6 (1) to 6 (n) increases. Further, during discharge, the discharge current flowing from the cells C (1) to C (n) increases. As a result, the voltage rise is further suppressed during charging, and the voltage drop is further promoted during discharging. At the time of charging, if the values of the resistors R (1) to R (n) are zero, the entire charging current is bypassed, and the discharging currents from the cells C (1) to C (n) also flow.

抵抗R(1) 〜R(n) を通して開閉機能付バイパス回路6(1) 〜6(n) に流れる電流による電圧降下は、そのときのセルC(1) 〜C(n) の電圧と等しくなる。すなわち、定電流充電によるときのバイパス電流は、セルC(1) 〜C(n) の充電電圧が大きくなるにしたがって大きくなる。一方、放電時においてはセルC(1) 〜C(n) の充電電圧が降下するにしたがって放電電流は小さくなる。すなわち、充電時において、セル電圧が低い時には、充電電流の一部がバイパスして流れ、セル電圧が高くなるとセルからの放電電流が流れることもある。しかし、放電時においては、セル電圧と抵抗値により規定される放電電流がセルから流れる。 Voltage drop due to the resistance R (1) ~R (n) through the current flowing through the opening and closing function with bypass circuit 6 (1) ~6 (n) , equal to the cell voltage of the C (1) ~C (n) at that time Become. That is, the bypass current at the time of constant current charging increases as the charging voltage of the cells C (1) to C (n) increases. On the other hand, at the time of discharging, the discharging current decreases as the charging voltage of the cells C (1) to C (n) decreases. That is, during charging, when the cell voltage is low, a part of the charging current flows by bypass, and when the cell voltage increases, the discharge current from the cell may flow. However, during discharge, a discharge current defined by the cell voltage and the resistance value flows from the cell.

本実施の形態では、例えば図2に示すように制御信号Sg の立ち下がりt1で1回目の電圧Vt1を検出し、次に制御信号Sg の立ち上がりt2で2回目の電圧Vt2を検出する。そして、モジュール電圧の検出では、2回目の電圧Vt2をモジュール電圧VCTとして出力すると共に、2回目の電圧Vt2から1回目の電圧Vt1を引いた差をモジュール電圧変動幅ΔVCTとして出力する。同様に、セル電圧の検出では、それぞれのセルにおいて、2回目の電圧Vt2をセル電圧VCCとして出力すると共に、2回目の電圧Vt2から1回目の電圧Vt1を引いた差をセル電圧変動幅ΔVCCとして出力する。これらの出力に基づき、バイパス制御では、セル電圧VCC、セル電圧変動幅ΔVCCをそれぞれモジュール電圧VCTのセル当たりの平均値、モジュール電圧変動幅ΔVCTのセル当たりの平均値、つまりこれらをセルの直列接続数nで割った1セル当たりの値と比較する。そして、セル電圧VCC、セル電圧変動幅ΔVCCのいずれも平均値より大きい値を示すセルにおいて制御信号Sg がHighとなっているt2から次のt1の間を制御期間として、充電時には充電電流をバイパスすることにより充電電圧の上昇を抑制する。また、放電時には、放電電流をバイパス回路にも流すことによりさらに電圧を降下させる。このことにより、各セルが最高電圧で均等化され、各セルの劣化のバラツキが抑制され、静電容量の自己収束性をもたせることができる。 In the present embodiment, for example, as shown in FIG. 2, the first voltage V t1 is detected at the falling t1 of the control signal Sg, and then the second voltage V t2 is detected at the rising t2 of the control signal Sg. In module voltage detection, the second voltage V t2 is output as the module voltage V CT and the difference obtained by subtracting the first voltage V t1 from the second voltage V t2 is output as the module voltage fluctuation width ΔV CT. To do. Similarly, in the detection of the cell voltage, in each cell, the second voltage V t2 is output as the cell voltage V CC and the difference obtained by subtracting the first voltage V t1 from the second voltage V t2 is the cell voltage. Output as a fluctuation range ΔV CC . Based on these outputs, in the bypass control, the cell voltage V CC and the cell voltage fluctuation range ΔV CC are respectively calculated as the average value of the module voltage V CT per cell and the average value of the module voltage fluctuation range ΔV CT per cell, that is, Compared with the value per cell divided by the number n of cells connected in series. Then, in the cell in which both the cell voltage V CC and the cell voltage fluctuation range ΔV CC are larger than the average value, the control signal Sg is set to the control period from t2 to t1 where the control signal Sg is High, and the charging current is charged during charging. By bypassing, the rise in charging voltage is suppressed. Further, at the time of discharging, the voltage is further lowered by passing a discharging current through the bypass circuit. As a result, the cells are equalized at the maximum voltage, the variation in deterioration of each cell is suppressed, and the self-convergence of the capacitance can be provided.

図3は本発明に係るキャパシタモジュールの充電時のバラツキ抑制法の実施の形態を説明するための図、図4はバラツキ抑制処理の実行に伴うキャパシタモジュールの各セルの電圧の推移の例を示す図である。   FIG. 3 is a diagram for explaining an embodiment of a variation suppressing method during charging of the capacitor module according to the present invention, and FIG. 4 shows an example of a transition of voltage of each cell of the capacitor module in accordance with execution of the variation suppressing process. FIG.

本発明に係るキャパシタモジュール100の充電時のバラツキ抑制法による処理アルゴリズムは、例えば図3に示すようにまず、計時をスタートさせ(ステップS11)、計時がt1になると(ステップS12)、モジュール電圧VCTt1とセル電圧VCCt1を測定してメモリに格納する(ステップS13)。t1は0、つまり計時スタートと同時でもよいし、計時スタートから所定の時間をおいてもよい。続いて計時がt2になるのを待って、t2になると(ステップS14)、モジュール電圧VCTt2とセル電圧VCCt2を測定してメモリに格納する(ステップS15)。次に、ΔVCT=VCTt2−VCTt1、ΔVCC=VCCt2−VCCt1によりt1からt2の間の各電圧の変動幅ΔVCT、ΔVCCをそれぞれ計算する(ステップS16)。 For example, as shown in FIG. 3, the processing algorithm based on the variation suppression method during charging of the capacitor module 100 according to the present invention first starts timekeeping (step S11), and when timekeeping reaches t1 (step S12), the module voltage V CTt1 and cell voltage V CCt1 are measured and stored in the memory (step S13). t1 may be 0, that is, at the same time as the timing start, or may be a predetermined time from the timing start. Then, after waiting for the time t2 to reach t2 (step S14), the module voltage V CTt2 and the cell voltage V CCt2 are measured and stored in the memory (step S15). Next, ΔV CT = V CTt2 −V CTt1 and ΔV CC = V CCt2 −V CCt1 are used to calculate fluctuation ranges ΔV CT and ΔV CC of each voltage between t1 and t2, respectively (step S16).

そして、セル電圧VCCt2がモジュール電圧VCTt2のセル当たりの平均値より大きいか(ステップS17)、セル電圧変動幅ΔVCCがモジュール電圧VCTのセル当たりの平均値より大きいか(ステップS18)を判定する。セル電圧VCCt2がモジュール電圧VCTt2のセル当たりの平均値より大きく(ステップS17の処理でYES)、且つセル電圧変動幅ΔVCCがモジュール電圧VCTのセル当たりの平均値より大きい(ステップS18の処理でYES)の場合には、そのセルの開閉機能付バイパス回路をオンにする(ステップS19)。ステップS17、S17の処理で少なくともいずれかがNOの場合には、そのセルの開閉機能付バイパス回路はオフのままとし、さらに計時がt3になるのを待って、t3になると(ステップS20)、オンにした開閉機能付バイパス回路をオフにして(ステップS21)、計時をリセットし(ステップS22)、ステップS11の処理に戻る。 Whether the cell voltage V CCt2 is larger than the average value per cell of the module voltage V CTt2 (step S17) or whether the cell voltage fluctuation width ΔV CC is larger than the average value per cell of the module voltage V CT (step S18). judge. Cell voltage V CCt2 is larger than the average value per cell of module voltage V CTt2 (YES in step S17), and cell voltage fluctuation width ΔV CC is larger than the average value per cell of module voltage V CT (in step S18). If YES in the process, the bypass circuit with an opening / closing function of the cell is turned on (step S19). When at least one of the processes in steps S17 and S17 is NO, the bypass circuit with an opening / closing function of the cell remains off, and further waits for time t3 to reach t3 (step S20). The bypass circuit with open / close function turned on is turned off (step S21), the time count is reset (step S22), and the process returns to step S11.

相対的に静電容量の大きいセルCa 、静電容量の小さいセルCb 、さらに静電容量の小さいセルCc からなり、平均値との関係では、セルCa のみが大きいものとして以下に説明する。キャパシタモジュールの例により、本実施形態のバラツキ抑制処理を実行したときの各セルの電圧の推移を示すと図4(a)のようになる。すなわち、セルCa は、セル電圧変動幅ΔVCCが平均値より小さくなるので、開閉機能付バイパス回路はオンにならない。これに対し、静電容量の一番小さいセルCc は、セル電圧変動幅ΔVCCが平均値より大きく、セル電圧VCCもすぐに平均値より大きくなってしまうので、高い頻度で開閉機能付バイパス回路がオンになる(tc4−tc5、tc6−tc7、tc8〜)。中間の静電容量のセルCb は、セル電圧変動幅ΔVCCが平均値より大きいが、セル電圧VCCが平均値より大きくなる機会が少なくなるので、その分開閉機能付バイパス回路がオンになる頻度は減ってくる(tc2−tc3、tc6−tc7)。 The following description will be made assuming that the cell Ca has a relatively large capacitance, the cell Cb has a small capacitance, and the cell Cc has a small capacitance, and only the cell Ca is large in relation to the average value. FIG. 4A shows the transition of the voltage of each cell when the variation suppressing process of the present embodiment is executed by the example of the capacitor module. That is, since the cell voltage fluctuation range ΔV CC is smaller than the average value in the cell Ca, the bypass circuit with an opening / closing function is not turned on. On the other hand, the cell Cc having the smallest capacitance has a cell voltage fluctuation range ΔV CC larger than the average value, and the cell voltage V CC soon becomes larger than the average value. The circuit is turned on (tc4-tc5, tc6-tc7, tc8-). In the cell Cb having an intermediate capacitance, the cell voltage fluctuation range ΔV CC is larger than the average value, but the chance that the cell voltage V CC becomes larger than the average value is reduced. The frequency decreases (tc2-tc3, tc6-tc7).

充電モードに対し、放電モードでは、図4(b)、(c)に示すように静電容量の小さいセルCb 、Cc のうち放電開始時に電圧の高いセルに対して初期の段階で開閉機能付バイパス回路がオンになるだけである。図4(b)に示す例は、放電開始時にセルCb の電圧が高い場合であり、td1〜td2間で判定してtd2〜td3間で開閉機能付バイパス回路をオンさせることにより、低い電圧レベルに調整している。同様に図4(c)に示す例は、放電開始時にセルCc の電圧が高い場合であり、td5〜td6間で判定してtd6〜td7間で開閉機能付バイパス回路をオンさせることにより、低い電圧レベルに調整している。このことにより、静電容量の小さいセルの電圧が静電容量の大きいセルの電圧より高くなる状態を早期(細破線/点線→太破線/点線)に解消し、結果的に各セルの最高電圧を均等化する図6(a)に近い制御を実現し、静電容量の自己収束性を持たせている。   As compared with the charge mode, in the discharge mode, as shown in FIGS. 4B and 4C, among the cells Cb and Cc having a small capacitance, a cell having a high voltage at the start of discharge is provided with an opening / closing function at an initial stage. It just turns on the bypass circuit. The example shown in FIG. 4B is a case where the voltage of the cell Cb is high at the start of discharge, and a low voltage level is obtained by turning on the bypass circuit with an opening / closing function between td2 and td3 by judging between td1 and td2. It is adjusted to. Similarly, the example shown in FIG. 4C is a case where the voltage of the cell Cc is high at the start of discharge, and is determined by turning on the bypass circuit with an opening / closing function between td6 and td7 as judged between td5 and td6. The voltage level is adjusted. As a result, the state in which the voltage of the cell having a small capacitance becomes higher than the voltage of the cell having a large capacitance is resolved early (thin broken line / dotted line → thick broken line / dotted line), and as a result, the highest voltage of each cell. The control close to that shown in FIG. 6A is realized, and the self-convergence of the capacitance is given.

図5はモジュール電圧検出部とセル電圧検出部とバイパス制御部と制御信号発生部の回路構成例を示す図であり、11、12、21、22はレジスタ、13、23は減算回路、14、15は除算回路、31、32はコンパレータ、33はアンド回路、51は立ち下がり検出回路、52は立ち上がり検出回路を示す。   FIG. 5 is a diagram showing circuit configuration examples of the module voltage detection unit, the cell voltage detection unit, the bypass control unit, and the control signal generation unit. 11, 12, 21, and 22 are registers, 13 and 23 are subtraction circuits, Reference numeral 15 denotes a division circuit, 31 and 32 denote comparators, 33 denotes an AND circuit, 51 denotes a fall detection circuit, and 52 denotes a rise detection circuit.

図5において、モジュール電圧検出部1は、制御信号Sg の立ち下がり信号Sgt1 により、入力のモジュール電圧の測定データを格納するレジスタ11、制御信号Sg の立ち上がり信号Sgt2 により入力のモジュール電圧の測定データを格納するレジスタ12、レジスタ12の出力データからレジスタ11の出力データを減算する減算回路13を備えたものである。演算処理部2は、減算回路13の出力データをnで除算する除算回路14、レジスタ12の出力データをnで除算する除算回路14を備えたものである。このモジュール電圧検出部1により、除算回路14からモジュール電圧変動幅ΔVCTのセル当たりの平均値ΔVCT/nが出力され、除算回路14からモジュール電圧VCTのセル当たりの平均値VCT/nが出力される。 In FIG. 5, the module voltage detection unit 1 measures the input module voltage by the register 11 storing the measurement data of the input module voltage by the falling signal S gt1 of the control signal Sg and the rising signal S gt2 of the control signal Sg. A register 12 for storing data and a subtracting circuit 13 for subtracting the output data of the register 11 from the output data of the register 12 are provided. The arithmetic processing unit 2 includes a division circuit 14 that divides the output data of the subtraction circuit 13 by n, and a division circuit 14 that divides the output data of the register 12 by n. The module voltage detecting unit 1, the average value [Delta] V CT / n per cell from the division circuit 14 module voltage fluctuation width [Delta] V CT is output, the average from the division circuit 14 per cell module voltage V CT value V CT / n Is output.

セル電圧検出部2は、制御信号Sg の立ち下がり信号Sgt1 により入力のセル電圧の測定データを格納するレジスタ21、制御信号Sg の立ち上がり信号Sgt2 により入力のセル電圧の測定データを格納するレジスタ22、レジスタ22の出力データからレジスタ21の出力データを減算する減算回路23を備えたものである。このセル電圧検出部3により、減算回路23からセル電圧変動幅ΔVCCが出力され、レジスタ22からセル電圧VCCが出力される。 The cell voltage detector 2 is a register 21 for storing input cell voltage measurement data by the falling signal S gt1 of the control signal Sg, and a register for storing input cell voltage measurement data by the rising signal S gt2 of the control signal Sg. 22 and a subtracting circuit 23 for subtracting the output data of the register 21 from the output data of the register 22. The cell voltage detector 3 outputs the cell voltage fluctuation width ΔV CC from the subtracting circuit 23 and the cell voltage V CC from the register 22.

バイパス制御部3は、セル電圧VCCとモジュール電圧VCTの平均値VCT/nとを比較するコンパレータ31、セル電圧変動幅ΔVCCとモジュール電圧変動幅ΔVCTの平均値ΔVCT/nとを比較するコンパレータ32、コンパレータ31の出力とコンパレータ32の出力と制御信号Sg とをアンド処理するアンド回路33を備えたものである。 The bypass control unit 3 compares the cell voltage V CC with the average value V CT / n of the module voltage V CT , the cell voltage fluctuation width ΔV CC and the average value ΔV CT / n of the module voltage fluctuation width ΔV CT Are provided with an AND circuit 33 that AND-processes the output of the comparator 32, the output of the comparator 31, the output of the comparator 32, and the control signal Sg.

制御信号発生部5は、制御信号Sg のHighからLowへの立ち下がりを検出して立ち下がり信号Sgt1 を出力する立ち下がり検出回路51、制御信号Sg のLowからHighへの立ち上がりを検出して立ち上がり信号Sgt2 を出力する立ち上がり検出回路52を備えたものである。 The control signal generator 5 detects a falling edge of the control signal Sg from High to Low and outputs a falling signal Sgt1 , and detects a rising edge of the control signal Sg from Low to High. A rising edge detection circuit 52 that outputs a rising edge signal S gt2 is provided.

なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、充電時と共に放電時も開閉機能付バイパス回路の制御を行い、制御できる時間を多くして迅速な電圧の抑制を図っているが、放電時の損失を極力減らして蓄電量を限界まで有効利用したい場合など、充電時のみ開閉機能付バイパス回路の制御を行うようにしてもよい。また、本実施形態について具体的な処理、回路の構成例を示して説明したが、これらの処理や回路等の構成は当業者における設計事項として適宜変形、変更可能であることはいうまでもない。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above embodiment, the bypass circuit with an opening / closing function is controlled both during charging and during discharging, and the controllable time is increased to quickly suppress the voltage. For example, when it is desired to effectively use the amount to the limit, the bypass circuit with an opening / closing function may be controlled only during charging. Although the present embodiment has been described with specific processing and circuit configuration examples, it goes without saying that the configuration of these processing and circuits and the like can be appropriately modified and changed as design matters for those skilled in the art. .

本発明に係るキャパシタモジュールのバラツキ抑制制御装置の実施の形態を説明する図。The figure explaining embodiment of the variation suppression control apparatus of the capacitor module which concerns on this invention. 制御信号Sg と電圧の検出・制御タイミング、制御サイクルを説明する図。The figure explaining control signal Sg, voltage detection and control timing, and control cycle. 本発明に係るキャパシタモジュールのバラツキ抑制法の実施の形態を説明するための図。The figure for demonstrating embodiment of the variation suppression method of the capacitor module which concerns on this invention. バラツキ抑制処理の実行に伴うキャパシタモジュールの各セルの電圧の推移の例を示す図。The figure which shows the example of transition of the voltage of each cell of a capacitor module accompanying execution of a variation suppression process. モジュール電圧検出部とセル電圧検出部とバイパス制御部と制御信号発生部の回路構成例を示す図。The figure which shows the circuit structural example of a module voltage detection part, a cell voltage detection part, a bypass control part, and a control signal generation part. キャパシタモジュールの初期化を行う設定レベルの例を説明する図。The figure explaining the example of the setting level which initializes a capacitor module.

符号の説明Explanation of symbols

1…モジュール電圧検出部、2…演算処理部、3(1) 〜3(n) …セル電圧検出部、4(1) 〜4(n) …バイパス制御部、5…制御信号発生部、6(1) 〜6(n) …開閉機能付バイパス回路 、100…キャパシタモジュール、200…充放電部、300…バラツキ抑制制御装置、C(1) 〜C(n) …セル、R(1) 〜R(n) …抵抗、VCC…セル電圧、VCT…モジュール電圧、ΔVCC…セル電圧変動幅、ΔVCT…モジュール電圧変動幅、n…セルの直列接続数 DESCRIPTION OF SYMBOLS 1 ... Module voltage detection part, 2 ... Arithmetic processing part, 3 (1) -3 ( n) ... Cell voltage detection part, 4 (1) -4 (n) ... Bypass control part, 5 ... Control signal generation part, 6 (1) to 6 (n) ... bypass circuit with open / close function, 100 ... capacitor module, 200 ... charging / discharging unit, 300 ... variation control device, C (1) to C (n) ... cell, R (1) to R (n) ... resistance, V CC ... cell voltage, V CT ... module voltage, ΔV CC ... cell voltage fluctuation range, ΔV CT ... module voltage fluctuation range, n ... number of cells connected in series

Claims (2)

複数のキャパシタセルを直列接続したキャパシタモジュールにおいて、
所定のタイミングで前記キャパシタモジュールの電圧及び電圧変動幅を検出して、前記キャパシタモジュール内の1セル当たりの電圧の平均値及び電圧変動幅の平均値を求めると共に、
前記所定のタイミングで前記キャパシタモジュール内の各セルの電圧及び電圧変動幅を検出して、前記セルの電圧及び電圧変動幅を前記1セル当たりの電圧の平均値及び電圧変動幅の平均値と比較し、
前記セルの電圧及び電圧変動幅がいずれも前記1セル当たりの電圧の平均値及び電圧変動幅の平均値より大きいセルに対して、当該セルに並列接続した開閉機能付バイパス回路を一定時間オンにしてバイパス電流を流すことにより、
所定の間隔で前記開閉機能付バイパス回路によるバイパス制御を実行して、前記キャパシタモジュール内の各セルの劣化のバラツキを抑制し、静電容量の自己収束性をもたせるようにしたことを特徴とする直列接続キャパシタのバラツキ抑制法。
In a capacitor module in which a plurality of capacitor cells are connected in series,
Detecting the voltage and voltage fluctuation range of the capacitor module at a predetermined timing to obtain an average value of voltage per cell and an average value of voltage fluctuation range in the capacitor module;
The voltage and voltage fluctuation range of each cell in the capacitor module is detected at the predetermined timing, and the voltage and voltage fluctuation range of the cell are compared with the average value of the voltage per cell and the average value of the voltage fluctuation range. And
For a cell whose voltage and voltage fluctuation range are both greater than the average value of the voltage per cell and the average value of voltage fluctuation range, the bypass circuit with open / close function connected to the cell is turned on for a certain period of time. By passing a bypass current,
The bypass control by the bypass circuit with an opening / closing function is executed at a predetermined interval to suppress variation in deterioration of each cell in the capacitor module, and to have self-convergence of capacitance. A method for suppressing variation in series-connected capacitors.
周期的に制御信号を発生する制御信号発生手段と、
前記制御信号に基づき所定のタイミングで複数のキャパシタセルを直列接続したキャパシタモジュールの電圧及び電圧変動幅を検出するモジュール電圧検出手段と、
前記キャパシタモジュール内の1セル当たりの電圧の平均値及び電圧変動幅の平均値を求める演算手段と、
前記制御信号に基づき所定のタイミングで前記キャパシタモジュール内の各セルの電圧及び電圧変動幅を検出するセル電圧検出手段と、
前記セル電圧検出手段により検出した前記セルの電圧及び電圧変動幅を前記演算手段により求めた前記キャパシタモジュール内の1セル当たりの電圧の平均値及び電圧変動幅の平均値と比較し、前記セルの電圧及び電圧変動幅がいずれも前記1セル当たりの電圧の平均値及び電圧変動幅の平均値より大きいセルに対して、当該セルに並列接続した開閉機能付バイパス回路を一定時間オンにしてバイパス電流を流すバイパス制御手段と
を備え、所定の間隔で前記開閉機能付バイパス回路によるバイパス制御を実行して、前記キャパシタモジュール内の各セルの劣化のバラツキを抑制し、静電容量の自己収束性をもたせるようにしたことを特徴とする直列接続キャパシタのバラツキ抑制制御装置。
Control signal generating means for periodically generating a control signal;
Module voltage detecting means for detecting a voltage and a voltage fluctuation range of a capacitor module in which a plurality of capacitor cells are connected in series at a predetermined timing based on the control signal;
An arithmetic means for obtaining an average value of voltage and an average value of voltage fluctuation range per cell in the capacitor module;
Cell voltage detection means for detecting the voltage and voltage fluctuation range of each cell in the capacitor module at a predetermined timing based on the control signal;
The cell voltage and the voltage fluctuation range detected by the cell voltage detection means are compared with the average value of the voltage per cell in the capacitor module and the average value of the voltage fluctuation width obtained by the calculation means, For a cell whose voltage and voltage fluctuation range are both larger than the average value of the voltage per cell and the average value of voltage fluctuation range, a bypass circuit with an open / close function connected in parallel to the cell is turned on for a certain period of time and a bypass current And a bypass control means that performs bypass control by the bypass circuit with an opening / closing function at a predetermined interval to suppress variation in deterioration of each cell in the capacitor module, and to reduce the self-convergence of capacitance. An apparatus for suppressing variation in series-connected capacitors, characterized in that it is provided.
JP2008042973A 2008-02-25 2008-02-25 Method for suppressing variation in series-connected capacitor and controller Pending JP2009201320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042973A JP2009201320A (en) 2008-02-25 2008-02-25 Method for suppressing variation in series-connected capacitor and controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042973A JP2009201320A (en) 2008-02-25 2008-02-25 Method for suppressing variation in series-connected capacitor and controller

Publications (1)

Publication Number Publication Date
JP2009201320A true JP2009201320A (en) 2009-09-03

Family

ID=41144228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042973A Pending JP2009201320A (en) 2008-02-25 2008-02-25 Method for suppressing variation in series-connected capacitor and controller

Country Status (1)

Country Link
JP (1) JP2009201320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115015A (en) * 2009-11-30 2011-06-09 Sanyo Electric Co Ltd Equalization device, battery system and electric vehicle including the same, and equalization processing program
JPWO2013121916A1 (en) * 2012-02-17 2015-05-11 住友建機株式会社 Excavator and control method of excavator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115015A (en) * 2009-11-30 2011-06-09 Sanyo Electric Co Ltd Equalization device, battery system and electric vehicle including the same, and equalization processing program
JPWO2013121916A1 (en) * 2012-02-17 2015-05-11 住友建機株式会社 Excavator and control method of excavator
US9548615B2 (en) 2012-02-17 2017-01-17 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Shovel and control method of shovel

Similar Documents

Publication Publication Date Title
US8952660B2 (en) Systems and methods for balancing battery cells
EP2741093A1 (en) Ground fault detection device, ground fault detection method, solar energy system, and ground fault detection program
US10553913B2 (en) Battery apparatus, charging control apparatus, and charging control method
US10522882B2 (en) Semiconductor device, battery pack, and mobile terminal with multi-speed CPU
JP6229248B2 (en) Storage module cell monitoring device and disconnection detection method
US10211490B2 (en) Storage battery deterioration measurement device and power storage system
JP7054868B2 (en) Battery management system, battery system, and vehicle power supply system
US7956789B2 (en) Disconnection detecting circuit and disconnection detecting method by using capacitor
JP5910889B2 (en) Power storage system
WO2017047084A1 (en) Voltage detection circuit, abnormality detection device, and battery system
JP4767766B2 (en) Battery management system and battery management method
US20150077061A1 (en) Regulating device, battery assembly device and regulating method
JP5324381B2 (en) CHARGE CONTROL DEVICE AND CHARGE CONTROL METHOD IN THE CHARGE CONTROL DEVICE
JP6041040B2 (en) Storage battery, storage battery control method, control device, and control method
US20150048795A1 (en) Charge control apparatus and charge control method
US20160190832A1 (en) Semiconductor device and battery voltage measuring method
KR102349705B1 (en) Battery cell balancing circuit and apparatus and method for balancing of a battery cell for using the same
JP6386816B2 (en) Battery state monitoring circuit and battery device
JP4069721B2 (en) Abnormality detection device for battery pack
US11110817B2 (en) Equalization control device and in-vehicle power supply device
JP2009201320A (en) Method for suppressing variation in series-connected capacitor and controller
JP2010104230A (en) Uninterruptible power supply system and method for charging battery
JP6136820B2 (en) Battery monitoring device, power storage device, and battery monitoring method
KR20190048526A (en) Cell balancing apparatus and method
JP5953567B2 (en) Power storage device and charging / discharging method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120627