JP2009200064A - Method of manufacturing light-emitting device - Google Patents

Method of manufacturing light-emitting device Download PDF

Info

Publication number
JP2009200064A
JP2009200064A JP2006157495A JP2006157495A JP2009200064A JP 2009200064 A JP2009200064 A JP 2009200064A JP 2006157495 A JP2006157495 A JP 2006157495A JP 2006157495 A JP2006157495 A JP 2006157495A JP 2009200064 A JP2009200064 A JP 2009200064A
Authority
JP
Japan
Prior art keywords
light emitting
substrate
jig
light
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006157495A
Other languages
Japanese (ja)
Inventor
Naoyuki Tokuchi
直之 徳地
Yoshihiro Someno
義博 染野
Yuji Taga
雄次 多賀
Akira Sugano
晃 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2006157495A priority Critical patent/JP2009200064A/en
Priority to PCT/JP2007/061055 priority patent/WO2007142108A1/en
Publication of JP2009200064A publication Critical patent/JP2009200064A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02375Positioning of the laser chips
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0236Fixing laser chips on mounts using an adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a light-emitting device capable of particularly, properly and easily positioning the light-emitting surfaces of a plurality of light-emitting elements at the same height. <P>SOLUTION: Surface light-emitting lasers 12, 13 are so secured by means of a tool 30 that the light-emitting surfaces 12b, 13b of the surface light-emitting elements 12, 1 are in contact with a facing flat surface 30 of the tool 30. With the light-emitting surfaces 12b, 13b positioned at the same height, the jig 30 is moved near a base 50, and the surface light-emitting lasers 12, 13 are joined to the base 50 with molten solder 53. The solder 53 is hardened to secure the surface light-emitting lasers 12, 13 onto the base 50. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えばホログラム再生装置に使用される発光装置の製造方法に関する。   The present invention relates to a method for manufacturing a light emitting device used in, for example, a hologram reproducing device.

下記の特許文献に記載されているように、ホログラムデータの再生では、再生参照光を、ホログラムデータが記録された記録媒体に入射させると、ブラッグ条件式により、前記再生参照光が前記データの干渉縞で回折され、再生光が発せられる。そして、前記再生光に含まれるホログラムデータの内容が、CCDやCMOSセンサなどからなる撮像素子により読み出される。   As described in the following patent document, in reproduction of hologram data, when reproduction reference light is incident on a recording medium on which hologram data is recorded, the reproduction reference light is interfered with the data by Bragg conditional expression. The light is diffracted by the fringes and emitted. Then, the content of the hologram data contained in the reproduction light is read out by an image pickup device such as a CCD or CMOS sensor.

ところで下記の特許文献に記載されているように、前記再生参照光を発光する発光装置には、例えば、複数の面発光レーザ(VCSEL)が配置された面発光レーザアレイが使用される。   By the way, as described in the following patent document, for example, a surface emitting laser array in which a plurality of surface emitting lasers (VCSEL) are arranged is used for the light emitting device that emits the reproduction reference light.

このように複数の面発光レーザを用いる利点は、容易に且つ安価に、前記再生参照光の波長帯域を広くできるためである。すなわち再生参照光の波長帯域の異なる複数の面発光レーザを組み合わせることで、広範な波長帯域を得ることが可能である。このように広範な波長帯域を有する面発光レーザアレイであれば、複数のホログラムデータが波長多重にて広範な波長帯域で記録されている場合に、その波長帯域の全域をカバーすることが可能である。よって適切に各ホログラムデータを再生することが出来る。   The advantage of using a plurality of surface emitting lasers in this way is that the wavelength band of the reproduction reference light can be widened easily and inexpensively. That is, a wide wavelength band can be obtained by combining a plurality of surface emitting lasers having different wavelength bands of the reproduction reference light. Such a surface emitting laser array having a wide wavelength band can cover the entire wavelength band when multiple hologram data are recorded in a wide wavelength band by wavelength multiplexing. is there. Therefore, each hologram data can be reproduced appropriately.

また、波長αで記録されたホログラムデータが、例えば記録媒体の異方性熱膨張等により、前記ホログラムデータを波長αで再生できず前記波長αと異なる波長βで再生しなければならない場合、上記の面発光レーザであれば、その波長を有する面発光レーザに切り替えることで、適切に前記ホログラムデータを再生することが可能である。
特開2005−331864号公報 特開2006−58726号公報 特開2003−233293号公報
Further, when the hologram data recorded at the wavelength α cannot be reproduced at the wavelength α due to, for example, anisotropic thermal expansion of the recording medium, the hologram data must be reproduced at a wavelength β different from the wavelength α. If the surface emitting laser is, it is possible to appropriately reproduce the hologram data by switching to the surface emitting laser having the wavelength.
JP 2005-331864 A JP 2006-58726 A JP 2003-233293 A

しかしながら、面発光レーザの製造過程で、前記面発光レーザに厚さのばらつきが生じた。   However, in the process of manufacturing the surface emitting laser, the surface emitting laser has a thickness variation.

前記面発光レーザに厚さのばらつきが生じると以下の問題点が生じた。その問題点を下記に説明する。   When the thickness of the surface emitting laser varies, the following problems occur. The problem will be described below.

図15に示すように基板1上には例えば、2つの面発光レーザ2,3が設置されている。前記基板1と面発光レーザ2,3とを有して面発光レーザアレイ6が構成される。   As shown in FIG. 15, for example, two surface emitting lasers 2 and 3 are installed on the substrate 1. A surface emitting laser array 6 is configured by including the substrate 1 and the surface emitting lasers 2 and 3.

図15に示すように、前記面発光レーザアレイ6と記録媒体5との間にはレンズ4が設けられている。このレンズ4にて、前記面発光レーザ2,3から照射された再生参照光2a,3aが平行光に調整される。   As shown in FIG. 15, a lens 4 is provided between the surface emitting laser array 6 and the recording medium 5. With this lens 4, the reproduction reference beams 2 a and 3 a irradiated from the surface emitting lasers 2 and 3 are adjusted to parallel beams.

ところで、図15に示すように、前記面発光レーザ2,3の厚さは違うため、前記基板1から見て前記面発光レーザ2,3の発光面(発光部の表面)2b,3bの高さは異なる。よって、前記面発光レーザ2の発光面2bと前記レンズ4の主点4aとの距離H1と、前記面発光レーザ3の発光面3bと前記レンズ4の主点4aとの距離H2とは異なってしまう。   By the way, as shown in FIG. 15, since the surface emitting lasers 2 and 3 have different thicknesses, the light emitting surfaces (surfaces of the light emitting portions) 2b and 3b of the surface emitting lasers 2 and 3 are high when viewed from the substrate 1. It is different. Therefore, the distance H1 between the light emitting surface 2b of the surface emitting laser 2 and the principal point 4a of the lens 4 and the distance H2 between the light emitting surface 3b of the surface emitting laser 3 and the principal point 4a of the lens 4 are different. End up.

このため例えば、前記面発光レーザ3の前記発光面3bと前記レンズ4の主点4aとの距離H2を制御して、再生参照光3aを平行光に調整しても、もう一方の再生参照光2aは、前記発光面2bと主点4aとの距離H1が前記距離H2よりも短いため、図15に示すように拡散光になったり、あるいは前記距離H1が前記距離H2よりも長くなると集束光となってしまう。拡散光や集束光となった場合、前記ホログラムデータ7全体に平行光が照射されなくなり、ホログラムの各干渉縞に対する入射角度が異なり、前記ホログラムデータ7を再生できないといった問題が生じる。   Therefore, for example, even if the reproduction reference light 3a is adjusted to parallel light by controlling the distance H2 between the light emitting surface 3b of the surface emitting laser 3 and the principal point 4a of the lens 4, the other reproduction reference light is used. 2a, since the distance H1 between the light emitting surface 2b and the principal point 4a is shorter than the distance H2, it becomes diffused light as shown in FIG. 15, or when the distance H1 becomes longer than the distance H2, the focused light. End up. When the light becomes diffuse light or focused light, the entire hologram data 7 is not irradiated with parallel light, and the incident angle with respect to each interference fringe of the hologram is different, resulting in a problem that the hologram data 7 cannot be reproduced.

また、前記面発光レーザの厚さが同一である場合でも、前記面発光レーザを基板上に固定するための前記面発光レーザと基板間に介在する接着層の厚さのばらつきにより、面発光レーザの発光面の高さ位置がばらつくこともある。   In addition, even when the thickness of the surface emitting laser is the same, the surface emitting laser is caused by a variation in the thickness of the adhesive layer interposed between the surface emitting laser and the substrate for fixing the surface emitting laser on the substrate. The height position of the light emitting surface may vary.

そこで本発明は上記従来の課題を解決するためのものであり、特に、適切且つ容易に複数の発光素子の各各発光面の高さのばらつきを従来より抑制することが可能な発光装置の製造方法を提供することを目的としている。   Therefore, the present invention is for solving the above-described conventional problems, and in particular, manufacturing a light-emitting device capable of appropriately and easily suppressing variations in height of each light-emitting surface of a plurality of light-emitting elements than in the past. It aims to provide a method.

本発明は、基板上に複数の発光素子が設けられた発光装置の製造方法において、
複数の前記発光素子の各発光面を前記基板上にて同一高さに合わせた状態で、前記発光素子を前記基板上に接着剤を介して密着させ、
その後、前記接着剤を硬化して、前記発光素子を前記基板上に固定することを特徴とするものである。
The present invention relates to a method for manufacturing a light emitting device in which a plurality of light emitting elements are provided on a substrate.
With the light emitting surfaces of the plurality of light emitting elements being adjusted to the same height on the substrate, the light emitting elements are adhered to the substrate via an adhesive,
Thereafter, the adhesive is cured to fix the light emitting element on the substrate.

これにより、複数の前記発光素子の厚さがばらついていても(少なくとも一つの発光素子が、他の発光素子と異なる膜厚で形成されている)、適切且つ容易に前記発光素子の各発光面を同一高さに合わせることが可能である。また、一度に、各発光素子の発光面を同一高さに合わせた状態で、接着工程及び固定工程を行うので、各発光素子を別々に接着固定せず、製造工程を簡略化できる。そして本発明の製造方法にて製造された発光装置をホログラム再生装置に使用した場合、高精度な再生機能を有するホログラム再生装置を製造できる。   Thereby, even if the thickness of the plurality of light emitting elements varies (at least one light emitting element is formed with a different film thickness from other light emitting elements), each light emitting surface of the light emitting element can be appropriately and easily obtained. Can be adjusted to the same height. In addition, since the bonding process and the fixing process are performed at a time with the light emitting surfaces of the respective light emitting elements being set to the same height, the manufacturing process can be simplified without separately bonding and fixing the respective light emitting elements. And when the light-emitting device manufactured with the manufacturing method of this invention is used for a hologram reproduction apparatus, the hologram reproduction apparatus which has a highly accurate reproduction | regeneration function can be manufactured.

本発明では、複数の前記発光素子を治具に取り付けて、各発光面を同一高さに合わせ、前記同一高さを維持しながら前記発光素子を基板上に接着剤を介して密着させ、前記接着剤を硬化した後、前記治具を除去することが好ましい。これに各発光面の高さ位置合わせ、さらにその後の接着剤への密着工程、及び固定工程を、前記治具を用いて行うことが出来るので、高精度に前記発光素子を基板上に位置を合わせて固定できるとともに、製造工程を簡略化できる。   In the present invention, a plurality of the light emitting elements are attached to a jig, the respective light emitting surfaces are matched to the same height, and the light emitting elements are brought into close contact with a substrate via an adhesive while maintaining the same height, It is preferable to remove the jig after the adhesive is cured. Since it is possible to perform the height alignment of each light emitting surface, and the subsequent adhesion step to the adhesive and the fixing step using the jig, the light emitting element is positioned on the substrate with high accuracy. It can be fixed together, and the manufacturing process can be simplified.

また本発明では、以下の工程を有することが好ましい。
(a) 前記発光面と対向する対向面が同一平面で形成された前記治具を用意し、前記同一平面に複数の前記発光素子の各発光面を当接させた状態にて、前記発光素子を前記治具に固定する工程と、
(b) 前記治具を前記基板上に対向させ、このとき、複数の前記発光素子の各発光面を同一高さに合わせ、前記同一高さを維持しながら、前記基板と前記発光素子間を前記接着剤を介して密着させる工程と、
(c) 前記接着剤を硬化して、前記発光素子を前記基板上に固定する工程と、
(d) 前記発光素子と前記治具間の固定状態を解除し、前記治具を除去する工程。
Moreover, in this invention, it is preferable to have the following processes.
(A) The light emitting element is prepared in a state in which the light emitting surface is opposed to the light emitting surface, the jig having the same plane formed thereon, and the light emitting surfaces of the plurality of light emitting elements in contact with the same plane. Fixing to the jig;
(B) The jig is opposed to the substrate, and at this time, the light emitting surfaces of the plurality of light emitting elements are matched to the same height, and the gap between the substrate and the light emitting elements is maintained while maintaining the same height. Adhering via the adhesive;
(C) curing the adhesive and fixing the light emitting element on the substrate;
(D) A step of releasing the fixed state between the light emitting element and the jig and removing the jig.

上記した治具を用いることで、より簡単且つより高精度に、複数の前記発光素子の各発光面が同一高さに調製された発光装置を製造できる。   By using the jig described above, it is possible to manufacture a light emitting device in which the light emitting surfaces of the plurality of light emitting elements are adjusted to the same height more easily and with higher accuracy.

また本発明は、基板上に複数の発光素子が設けられた発光装置の製造方法において、
複数の前記発光素子の各発光面と対向する対向面が同一平面で形成された治具を用意し、各発光素子を発光面側から前記治具の前記同一平面に当接させて前記治具に固定した状態で、前記発光素子を前記基板上に接着剤を介して密着させ、
その後、前記接着剤を硬化して、前記発光素子を前記基板上に固定し、さらに、前記発光素子と前記治具間の固定状態を解除し、前記治具を除去することを特徴とするものである。
The present invention also relates to a method for manufacturing a light emitting device in which a plurality of light emitting elements are provided on a substrate.
A jig is prepared in which opposing surfaces facing the respective light emitting surfaces of the plurality of light emitting elements are formed on the same plane, and each light emitting element is brought into contact with the same plane of the jig from the light emitting surface side. In a state of being fixed to, the light emitting element is closely attached to the substrate via an adhesive,
Thereafter, the adhesive is cured, the light emitting element is fixed on the substrate, the fixing state between the light emitting element and the jig is released, and the jig is removed. It is.

これにより、簡単且つ適切に、複数の前記発光素子の各発光面の高さのばらつきを従来より抑制できる。   Thereby, the dispersion | variation in the height of each light emission surface of the said several light emitting element can be suppressed conventionally and easily.

また本発明では、前記発光素子の前記発光面との反対面、及び前記基板の表面には、夫々、電極が設けられており、発光素子側電極と、基板側電極の少なくとも一方には溝が形成され、前記溝を除く前記電極上に前記接着剤を設けることが好ましい。前記溝を、前記発光素子を前記基板上に密着させた際に例えば余分な前記接着剤を逃がすための逃げ溝として機能させることが出来る。   In the present invention, electrodes are provided on the surface opposite to the light emitting surface of the light emitting element and the surface of the substrate, respectively, and a groove is formed on at least one of the light emitting element side electrode and the substrate side electrode. Preferably, the adhesive is provided on the electrode formed and excluding the groove. The groove can function as an escape groove for, for example, releasing excess adhesive when the light emitting element is brought into close contact with the substrate.

また本発明では、前記発光素子の前記発光面との反対面、及び前記基板の表面には、夫々、電極が設けられており、前記接着剤には導電性接着剤を使用し、発光素子側電極と、基板側電極間を前記導電性接着剤を介して導通接続させることが好ましい。   In the present invention, electrodes are provided on the surface opposite to the light emitting surface of the light emitting element and the surface of the substrate, respectively, and a conductive adhesive is used as the adhesive, and the light emitting element side It is preferable that the electrode and the substrate-side electrode are electrically connected via the conductive adhesive.

このとき、前記導電性接着剤には半田を用いることが好ましい。これにより、容易に前記基板側電極と前記発光素子側電極間を導通接続させることが出来る。しかも半田を用いた場合は、基板側電極と前記発光素子側電極間を金属結合にて強固に結合でき、例えば前記治具を除去した際に、接着層の膜厚が変動したり、環境温度変化等による熱収縮や熱膨張を極力抑えることができ、製造後に、前記発光素子の各発光面の高さが変動することを適切に抑制できる。   At this time, it is preferable to use solder for the conductive adhesive. Thereby, the substrate side electrode and the light emitting element side electrode can be easily connected to each other. In addition, when solder is used, the substrate-side electrode and the light-emitting element-side electrode can be firmly bonded by metal bonding. For example, when the jig is removed, the thickness of the adhesive layer varies, Thermal shrinkage and thermal expansion due to changes and the like can be suppressed as much as possible, and fluctuations in the height of each light emitting surface of the light emitting element can be appropriately suppressed after manufacturing.

また本発明では、前記導電性接着剤には有機成分を含む導電性ペーストを用い、前記導電性接着剤の硬化の際、加熱処理にて前記有機成分を除去することが好ましい。硬化後においても有機成分が含まれると、例えば前記治具を除去した際に、接着層の膜厚が変動したり、また製造後、環境温度変化等によって熱収縮や熱膨張が起こりやすいが、前記有機成分を除去することで、製造後に、前記発光素子の各発光面の高さが変動することを適切に抑制できる。   Moreover, in this invention, it is preferable to use the electrically conductive paste containing an organic component for the said electrically conductive adhesive, and to remove the said organic component by heat processing in the case of hardening of the said electrically conductive adhesive. When organic components are contained even after curing, for example, when the jig is removed, the film thickness of the adhesive layer varies, and after production, thermal shrinkage and thermal expansion are likely to occur due to environmental temperature changes, etc. By removing the organic component, it is possible to appropriately suppress the fluctuation of the height of each light emitting surface of the light emitting element after manufacturing.

また本発明では、前記接着剤を、各発光素子と基板間に点在させることが好ましい。前記基板と前記発光素子間の全面を前記接着剤にて密着させると、前記基板と接着剤間の界面や、前記発光素子と前記接着剤間の界面等に密閉された空孔が生じやすい。かかる場合、環境温度変化等によって前記空孔内に存在する空気が熱収縮や熱膨張を起こすことで前記基板と発光素子間の密着性が低下しやすい。また、前記発光素子と基板間を密着させたときに余分な接着剤が前記発光素子の周囲に広がる可能性もある。したがって前記接着剤を点在させることで、上記問題を解決することが出来る。   In the present invention, the adhesive is preferably interspersed between each light emitting element and the substrate. When the entire surface between the substrate and the light emitting element is brought into close contact with the adhesive, pores sealed at the interface between the substrate and the adhesive, the interface between the light emitting element and the adhesive, and the like are likely to be generated. In such a case, the air existing in the holes due to a change in environmental temperature or the like causes thermal contraction or thermal expansion, so that the adhesion between the substrate and the light emitting element tends to be lowered. Further, when the light emitting element and the substrate are brought into close contact with each other, there is a possibility that excess adhesive spreads around the light emitting element. Therefore, the said problem can be solved by interspersing the said adhesive agent.

本発明によれば、複数の発光素子の厚さがばらついていても、適切且つ容易に前記発光素子の各発光面を同一高さに合わせることが可能である。したがって本発明の製造方法にて製造された発光装置をホログラム再生装置に使用した場合、高精度な再生機能を有するホログラム再生装置を製造できる。   According to the present invention, even if the thickness of the plurality of light emitting elements varies, it is possible to appropriately and easily match the light emitting surfaces of the light emitting elements to the same height. Therefore, when the light emitting device manufactured by the manufacturing method of the present invention is used in a hologram reproducing device, a hologram reproducing device having a highly accurate reproducing function can be manufactured.

図1は、ホログラム再生装置によって記録媒体からホログラムデータを再生する概念図である。図2〜図5は、本実施形態における発光装置(面発光レーザアレイ)の製造方法を示す一工程図(いずれも厚さ方向から切断した部分断面図)である。図6は、図2工程に示す面発光レーザ及び治具を真上から見た部分平面図である。図7、図8は、本実施形態における発光装置の製造方法の好ましい一例を示す一工程図(図7は、図3の工程に代わる工程図であり、図3に比べて拡大して示す部分拡大断面図、図8は、図4の工程に代わる工程図であり、図4に比べて拡大して示す部分拡大断面図)である。図9、図10は、本実施形態における発光装置の製造方法の好ましい一例を示す一工程図(図9は、図11に示すA−A線に沿って厚み方向に切断し矢印方向から見た前記基板及び接着剤(半田)の部分拡大断面図、図10は、図9工程後、前記面発光レーザと基板とを接合した状態を示す前記基板、面発光レーザ及び接着剤(半田)の部分拡大断面図)である。図11は、図9に示す基板及び接着剤(半田)を真上から見た部分拡大平面図である。図12は、図11とは異なる基板の形状を示す前記基板及び接着剤(半田)を真上から見た部分拡大平面図である。図13は、図12に示す基板上に面発光レーザを接合させた前記基板、前記接着剤(半田)及び前記面発光レーザを厚さ方向から切断した部分断面図(切断位置を、図13工程の一工程前の図12で示すと、図12に示すB−B線である。図13の部分断面図は、このB−B線に沿って厚み方向に切断し矢印方向から見たものである)である。図14は、本実施形態による製造方法によって製造された面発光レーザアレイをホログラム再生装置に組み込み、各面発光レーザから照射される再生参照光の照射状態を説明するための概念図である。   FIG. 1 is a conceptual diagram of reproducing hologram data from a recording medium by a hologram reproducing apparatus. 2 to 5 are process diagrams (both are partial cross-sectional views cut from the thickness direction) showing a method for manufacturing the light emitting device (surface emitting laser array) in the present embodiment. FIG. 6 is a partial plan view of the surface emitting laser and the jig shown in FIG. 7 and 8 are process diagrams showing a preferred example of the method for manufacturing a light-emitting device according to the present embodiment (FIG. 7 is a process diagram replacing the process of FIG. 3 and is an enlarged view of FIG. 3. FIG. 8 is an enlarged cross-sectional view, and FIG. 8 is a process diagram in place of the process of FIG. 9 and 10 are process diagrams showing a preferred example of the method for manufacturing the light emitting device according to the present embodiment (FIG. 9 is cut in the thickness direction along the line AA shown in FIG. 11 and viewed from the arrow direction. FIG. 10 is a partial enlarged cross-sectional view of the substrate and the adhesive (solder), and FIG. 10 shows the substrate, the surface-emitting laser, and the adhesive (solder) part in a state where the surface-emitting laser and the substrate are joined after the step of FIG. FIG. FIG. 11 is a partially enlarged plan view of the substrate and the adhesive (solder) shown in FIG. 9 viewed from directly above. FIG. 12 is a partially enlarged plan view of the substrate and the adhesive (solder) showing the shape of the substrate different from that in FIG. 13 is a partial cross-sectional view of the substrate in which a surface emitting laser is bonded to the substrate shown in FIG. 12, the adhesive (solder), and the surface emitting laser are cut in the thickness direction (the cutting position is shown in FIG. 13). 12 before one step is the BB line shown in Fig. 12. The partial cross-sectional view of Fig. 13 is cut in the thickness direction along the BB line and viewed from the arrow direction. Yes). FIG. 14 is a conceptual diagram for explaining the irradiation state of the reproduction reference light irradiated from each surface emitting laser by incorporating the surface emitting laser array manufactured by the manufacturing method according to the present embodiment into the hologram reproducing apparatus.

図1に示すホログラム再生装置10は、同一の基板50上に複数の面発光レーザ(VCSEL)(発光素子)12,13が形成された面発光レーザアレイ14と、レンズアレイ17と、CCDやCMOSセンサなどからなる撮像素子18と、ピンホールフィルタ19と、記録媒体20を設置するための設置部(図示しない)と、を有して構成される。   A hologram reproducing apparatus 10 shown in FIG. 1 includes a surface emitting laser array 14 in which a plurality of surface emitting lasers (VCSEL) (light emitting elements) 12 and 13 are formed on the same substrate 50, a lens array 17, a CCD, and a CMOS. The image sensor 18 which consists of sensors etc., the pinhole filter 19, and the installation part (not shown) for installing the recording medium 20 are comprised.

図1に示すように記録媒体20には、図示しないホログラム記録装置によってホログラムデータ21が記録されている。前記ホログラムデータ21は干渉縞として現れる。図1では前記ホログラムデータ21は一つだけ図示されているが、実際には多数の前記ホログラムデータ21が波長多重や角度多重にて記録されている。   As shown in FIG. 1, hologram data 21 is recorded on a recording medium 20 by a hologram recording device (not shown). The hologram data 21 appears as interference fringes. Although only one hologram data 21 is shown in FIG. 1, a large number of hologram data 21 are actually recorded by wavelength multiplexing or angle multiplexing.

今、図1に示すホログラム再生装置の前記面発光レーザ12から再生参照光22を前記記録媒体20に向けて照射する。前記再生参照光22の光径は、前記マイクロレンズ15にて広げられ、さらにコリメートレンズ16にて平行光にされる。   Now, the reproduction reference beam 22 is irradiated toward the recording medium 20 from the surface emitting laser 12 of the hologram reproducing apparatus shown in FIG. The light diameter of the reproduction reference light 22 is expanded by the microlens 15 and further collimated by the collimating lens 16.

前記再生参照光22は前記記録媒体20に照射角度θ1で照射される。前記再生参照光22が前記ホログラムデータ21に照射されると、ブラッグ条件式を満たす干渉縞では光が回折して、再生光(回折光)23が前記記録媒体20から前記撮像素子18に向けて放出される。このとき前記再生光23は前記ピンホールフィルタ19に設けられたピンホール19aを通って前記撮像素子8に到達する。前記撮像素子8では、前記ホログラムデータ21の内容が再生される。前記ピンホールフィルタ19を設ける理由は、前記再生参照光22を前記記録媒体20に照射したときに、前記記録媒体20から複数のホログラムデータの再生光が放射されたとき、そのうちの一つの再生光23のみを適切に前記撮像素子18にて受光させるために設けられたものである。前記ピンホールフィルタ19を設けることで、複数の前記ホログラムデータ21を夫々適切に再生することが可能である。   The reproduction reference beam 22 is applied to the recording medium 20 at an irradiation angle θ1. When the reproduction reference beam 22 is applied to the hologram data 21, the light is diffracted by the interference fringes satisfying the Bragg conditional expression, and the reproduction beam (diffracted beam) 23 is directed from the recording medium 20 toward the image sensor 18. Released. At this time, the reproduction light 23 reaches the image sensor 8 through a pinhole 19 a provided in the pinhole filter 19. In the image sensor 8, the contents of the hologram data 21 are reproduced. The reason why the pinhole filter 19 is provided is that, when the reproduction reference light 22 is irradiated onto the recording medium 20, when the reproduction light of a plurality of hologram data is emitted from the recording medium 20, one of the reproduction lights 23 is provided in order for the image sensor 18 to receive light appropriately. By providing the pinhole filter 19, it is possible to appropriately reproduce the plurality of hologram data 21.

本実施形態では、前記基板50上に設置された複数の面発光レーザ12,13の発光面が基準面から見て同じ高さ位置に形成されている。以下、本実施形態における面発光レーザアレイ14の製造方法について説明する。   In the present embodiment, the light emitting surfaces of the plurality of surface emitting lasers 12 and 13 installed on the substrate 50 are formed at the same height as viewed from the reference surface. Hereinafter, a method for manufacturing the surface emitting laser array 14 in the present embodiment will be described.

図2に示すように、各面発光レーザ12,13の表面側には発光部12a,13aが形成され、前記面発光レーザ12、13の表面が発光面12b,13bとなっている。前記発光面12b,13bには表面電極31,32が現れている。   As shown in FIG. 2, light emitting portions 12a and 13a are formed on the surface sides of the surface emitting lasers 12 and 13, and the surfaces of the surface emitting lasers 12 and 13 are light emitting surfaces 12b and 13b. Surface electrodes 31 and 32 appear on the light emitting surfaces 12b and 13b.

ここで図2では、発光面12b,13bを、各面発光レーザ12,13全体の表面として示しているが、「発光面」とは、前記面発光レーザ12、3から光が照射される表面を言い、厳密には前記発光部12a,13aの露出面、あるいは前記発光部12a、3aと対向する面を指す。   Here, in FIG. 2, the light emitting surfaces 12 b and 13 b are shown as surfaces of the entire surface emitting lasers 12 and 13, but the “light emitting surface” is a surface irradiated with light from the surface emitting lasers 12 and 3. Strictly speaking, it refers to the exposed surfaces of the light emitting portions 12a and 13a or the surfaces facing the light emitting portions 12a and 3a.

本実施形態では、前記発光部12,13の表面(発光面)が平坦化面となるように平面加工されていることが好ましい。また前記発光部12,13の表面とその周囲の少なくとも一部の表面が平面加工されていることがより好ましく、さらに、図2のように、前記面発光レーザ12,13の表面全体が平面加工されていることが最も好ましい。図2では、前記表面電極31,32の表面が前記発光面12b、3bと同一平面で形成されているが、例えば図2に示す表面電極31,32が、発光部12,13の表面(発光面)上に設けられ、前記発光部12,13の表面から前記表面電極31,32の表面が突出しているような形態であってもよい。   In the present embodiment, it is preferable that the surface processing (light emitting surface) of the light emitting units 12 and 13 is planarized so as to be a flattened surface. Further, it is more preferable that the surface of the light emitting units 12 and 13 and at least a part of the surrounding surface thereof are processed by plane processing. Most preferably. In FIG. 2, the surfaces of the surface electrodes 31 and 32 are formed in the same plane as the light emitting surfaces 12b and 3b. For example, the surface electrodes 31 and 32 shown in FIG. The surface of the surface electrodes 31 and 32 may protrude from the surface of the light emitting units 12 and 13.

なお以下の説明では、特に断らない限り、図2のように、前記表面電極31,32の表面が前記発光面12b、3bと同一平面で形成され、前記面発光レーザ12,13の表面全体を「発光面12b,13b」として説明する。   In the following description, unless otherwise specified, as shown in FIG. 2, the surfaces of the surface electrodes 31 and 32 are formed in the same plane as the light emitting surfaces 12b and 3b, and the entire surfaces of the surface emitting lasers 12 and 13 are formed. This will be described as “light emitting surfaces 12b and 13b”.

また図2に示すように、前記面発光レーザ12,13の前記発光面12b,13bと反対側の面、すなわち裏面12c,13cには裏面電極(発光素子側電極)33、34が現れている。   Further, as shown in FIG. 2, back surface electrodes (light emitting element side electrodes) 33 and 34 appear on the surfaces of the surface emitting lasers 12 and 13 opposite to the light emitting surfaces 12b and 13b, that is, on the back surfaces 12c and 13c. .

図2に示すように、前記面発光レーザ12の厚さ寸法はH3で、前記面発光レーザ13の厚さ寸法はH4であり、前記厚さ寸法H3,H4は異なっている。ここで、厚さ寸法は、発光面12b,13bから裏面12c,13c(このとき、裏面電極33,34の厚みを加えてもよい)までの厚さ寸法を指す。本実施形態において、前記面発光レーザ12,13の厚さ寸法H3,H4が異なることは必須要件ではない。すなわち前記厚さ寸法H3,H4は同じであってもよい。ただし前記厚さ寸法H3,H4が異なる場合に、本実施形態における面発光レーザアレイ14の製造方法を用いることが本発明の効果が適切に発揮され好適である。   As shown in FIG. 2, the thickness dimension of the surface emitting laser 12 is H3, the thickness dimension of the surface emitting laser 13 is H4, and the thickness dimensions H3 and H4 are different. Here, the thickness dimension refers to a thickness dimension from the light emitting surfaces 12b and 13b to the back surfaces 12c and 13c (in this case, the thickness of the back electrodes 33 and 34 may be added). In the present embodiment, it is not essential that the surface emitting lasers 12 and 13 have different thickness dimensions H3 and H4. That is, the thickness dimensions H3 and H4 may be the same. However, when the thickness dimensions H3 and H4 are different, it is preferable to use the method of manufacturing the surface emitting laser array 14 in the present embodiment because the effects of the present invention are appropriately exhibited.

図2に示すように、前記面発光レーザ12,13の発光面12b,13bとの対向面30aが同一平面Cで形成された治具30を用意する。この明細書において、「治具」とは、前記面発光レーザ12,13を取り付けた状態にて、前記面発光レーザ12,13を基板50上の所定位置まで運ぶための工具を言う。前記治具30の材質は特に限定されるものではないが後述するように透明あるいは半透明であり、前記治具30の表面30c側から前記面発光レーザ12、13の発光面12b,13bが透けて見えることが好ましい。また図6に示すように前記治具30の平面面積は、各面発光レーザ12,13の平面面積を足し合わせた面積よりも大きい。前記治具30の平面形状は特に限定されるものではない。図6では、前記治具30の平面形状は矩形状となっている。   As shown in FIG. 2, a jig 30 having a surface 30 a facing the light emitting surfaces 12 b and 13 b of the surface emitting lasers 12 and 13 formed on the same plane C is prepared. In this specification, the “jig” refers to a tool for carrying the surface emitting lasers 12 and 13 to a predetermined position on the substrate 50 with the surface emitting lasers 12 and 13 attached. The material of the jig 30 is not particularly limited, but is transparent or semi-transparent as will be described later, and the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 are transparent from the surface 30c side of the jig 30. It is preferable to see. As shown in FIG. 6, the planar area of the jig 30 is larger than the total area of the planar areas of the surface emitting lasers 12 and 13. The planar shape of the jig 30 is not particularly limited. In FIG. 6, the planar shape of the jig 30 is rectangular.

前記治具30には、前記面発光レーザ12、13の発光面12b、13bの一部と対向する位置に吸引孔30bが形成されている。前記治具30とは別に、あるいは一体に図示しない吸引機構が設けられており、前記発光面12b,13bを前記治具30の前記対向面30aに当接させた状態にて、前記吸引孔30bから空気を上方に引き前記面発光レーザ12、13を前記前記治具30の対向面30aに吸引力にて吸着固定させる。ただし固定方法は別の方法であってもよい。   A suction hole 30b is formed in the jig 30 at a position facing a part of the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13. A suction mechanism (not shown) is provided separately or integrally with the jig 30, and the suction hole 30 b is in a state where the light emitting surfaces 12 b and 13 b are in contact with the facing surface 30 a of the jig 30. Then, the air is pulled upward from and the surface emitting lasers 12 and 13 are attracted and fixed to the facing surface 30a of the jig 30 by suction. However, another fixing method may be used.

前記「当接」とは、ここでは前記発光面12b,13b全体と前記対向面30a全体とが完全に接触している場合のみならず、若干隙間がある場合も含む。すなわち少なくとも一部が接触し、前記治具30にて前記面発光レーザ12,13が固定された状態であればよい。例えば上記したように、前記表面電極31,32が前記発光面12b,13b上に突出して形成されている場合、前記発光面12b,13bと、前記表面電極31,32の表面間は段差が生じるため、厳密には、前記発光面12b,13全体と前記対向面30a全体とが完全に接触せず隙間が生じるが、かかる場合も本実施形態では「当接」した状態という。   Here, the “contact” includes not only the case where the entire light emitting surfaces 12b and 13b and the entire opposing surface 30a are in complete contact, but also the case where there is a slight gap. That is, it is only necessary that at least a part is in contact and the surface emitting lasers 12 and 13 are fixed by the jig 30. For example, as described above, when the surface electrodes 31 and 32 are formed to protrude on the light emitting surfaces 12b and 13b, a step is generated between the light emitting surfaces 12b and 13b and the surfaces of the surface electrodes 31 and 32. Therefore, strictly speaking, the entire light emitting surfaces 12b and 13 and the entire facing surface 30a are not completely in contact with each other, and a gap is formed.

上記したように前記治具30の対向面30aは同一平面Cで形成されており、図2の工程では、複数の前記面発光レーザ12、13の各発光面12b,13bを対向面30aに当接させた状態にて、各面発光レーザ12,13を前記治具30にて固定している。   As described above, the facing surface 30a of the jig 30 is formed on the same plane C, and in the step of FIG. 2, the light emitting surfaces 12b and 13b of the plurality of surface emitting lasers 12 and 13 are brought into contact with the facing surface 30a. The surface emitting lasers 12 and 13 are fixed by the jig 30 in the contact state.

各面発光レーザ12,13の前記治具30への位置決めは、前記治具30が透明あるいは半透明であり、図6のように前記治具30の表面30cから前記面発光レーザ12,13の発光面12b,13bが透けて見える場合は、前記治具30の前記表面30cあるいは前記対向面30aに、及び前記面発光レーザ12、13の発光面12b,13b上に位置決め用のマーク部40,41を設けておき、前記マーク部40,41にて位置合わせすることが可能である。図6に示す符号40の位置決めマーク部40は、前記治具30側に形成されたものであり、符号41の位置決め用マーク部41は前記面発光レーザ12,13の発光面12b、3bに設けられたものである。例えば、前記マーク部40,41が図示Y方向(長さ方向)と平行な仮想線D上及び図示X方向(図示Y方向と直交する方向、幅方向)と平行な仮想線E上に夫々一直線に並ぶように前記面発光レーザ12、13を前記治具30に対し位置決めする。これにより、前記面発光レーザ12、13を図示X方向及び図示Y方向の双方に正確に位置決めできる。   The positioning of the surface emitting lasers 12 and 13 with respect to the jig 30 is such that the jig 30 is transparent or translucent, and the surface emitting lasers 12 and 13 are placed from the surface 30c of the jig 30 as shown in FIG. When the light emitting surfaces 12b and 13b are seen through, the positioning mark portion 40 on the surface 30c or the opposing surface 30a of the jig 30 and on the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13, 41 can be provided and the mark portions 40 and 41 can be aligned. The positioning mark portion 40 shown in FIG. 6 is formed on the jig 30 side, and the positioning mark portion 41 shown in FIG. 6 is provided on the light emitting surfaces 12 b and 3 b of the surface emitting lasers 12 and 13. It is what was done. For example, the mark portions 40 and 41 are straight on a virtual line D parallel to the Y direction (length direction) in the drawing and on a virtual line E parallel to the X direction (direction perpendicular to the Y direction in the drawing, width direction). The surface emitting lasers 12 and 13 are positioned with respect to the jig 30 so as to line up with each other. Thereby, the surface emitting lasers 12 and 13 can be accurately positioned in both the X direction and the Y direction shown in the drawing.

次に図3に示す工程では、基板50を、基台54上に設置する。前記基板50の表面には前記面発光レーザ12、13と対向する位置に基板側電極51,52が形成されている。図3の工程では、前記基板側電極51,52上に導電性接着剤53を塗布する。   Next, in the step shown in FIG. 3, the substrate 50 is placed on the base 54. Substrate side electrodes 51 and 52 are formed on the surface of the substrate 50 at positions facing the surface emitting lasers 12 and 13. In the process of FIG. 3, a conductive adhesive 53 is applied on the substrate-side electrodes 51 and 52.

この実施形態では、前記導電性接着剤53には半田を使用する。以下では、符号53を半田として説明する。   In this embodiment, solder is used for the conductive adhesive 53. Below, the code | symbol 53 is demonstrated as solder.

前記半田53には特にすず(Sn)を主成分とする合金が好適に用いられる。この場合、Snは全半田粒子中の50質量%以上、より好ましくは90質量%以上を占める。Snと合金を形成する金属としては、半田の融点の高低、あるいは電気伝導率の高低の目的に応じて、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)、ビスマス(Bi)、アンチモン(Sb)、亜鉛(Zn)、インジウム(In)から1種あるいは2種以上を選択することができる。例えば、金、銀、銅は電気伝導率が高いので、Sn−Au、Sn−Ag、Sn−Cu、Sn−Ag−Cu系合金等は、電気伝導率の高い半田を形成するが、融点が200〜300℃と高い。また、Sn−Bi系合金からなる半田は融点が60〜200℃と低く、加工性に優れており、基板や面発光レーザに熱損傷を与えにくい。また特にSn−Biは、融点が140℃程度であって低融点半田としては最適である。   For the solder 53, an alloy mainly containing tin (Sn) is preferably used. In this case, Sn accounts for 50% by mass or more, more preferably 90% by mass or more, based on the total solder particles. As a metal forming an alloy with Sn, gold (Au), silver (Ag), copper (Cu), nickel (Ni), bismuth (depending on the purpose of the melting point of the solder or the electrical conductivity) One or more of Bi), antimony (Sb), zinc (Zn), and indium (In) can be selected. For example, since gold, silver, and copper have high electrical conductivity, Sn—Au, Sn—Ag, Sn—Cu, Sn—Ag—Cu alloys, etc., form solder with high electrical conductivity, but have a melting point. It is as high as 200 to 300 ° C. Further, the solder made of the Sn—Bi alloy has a low melting point of 60 to 200 ° C. and is excellent in workability, and hardly causes thermal damage to the substrate and the surface emitting laser. In particular, Sn—Bi has a melting point of about 140 ° C. and is optimal as a low melting point solder.

本実施形態では、前記半田53にはSn−Auはんだが好適に使用される。
前記半田53の厚みを10〜30μm程度にする。前記半田53の厚みは、従来に比べて厚い。本実施形態では、前記面発光レーザ12,13の厚みがばらついていると、図4工程で説明するように、半田53を介した前記面発光レーザ12,13と基板50間の間隔に差が生じる。このように間隔に差が生じても全ての前記面発光レーザ12と基板50間を適切に半田53にて固定するために、前記半田53の膜厚を従来よりも厚く設定する。
In the present embodiment, Sn—Au solder is preferably used for the solder 53.
The thickness of the solder 53 is about 10 to 30 μm. The solder 53 is thicker than the conventional one. In this embodiment, if the thickness of the surface emitting lasers 12 and 13 varies, there will be a difference in the distance between the surface emitting lasers 12 and 13 and the substrate 50 via the solder 53, as will be described with reference to FIG. Arise. In order to fix all the surface emitting lasers 12 and the substrate 50 appropriately with the solder 53 even if the gaps are different in this way, the film thickness of the solder 53 is set to be thicker than before.

図3に示すように、前記治具30に固定された前記面発光レーザ12、13を、前記基板50上に対向させるが、このとき、前記面発光レーザ12,13の各発光面12b,13bが同じ高さ位置となるように、前記治具30を調整する。前記面発光レーザ12,13の各発光面12b,13bの高さ位置の基準面は任意に設定できる。例えば、前記基準面は、図3に示す基台54の表面(基板50の裏面)54aである。かかる場合、前記治具30の対向面30a(同一平面C)と前記表面54aとが平行となるように前記治具30を調整する。これによって、前記表面54aから、各発光面12b,13bの高さを同一高さに出来る。あるいは前記基板50の表面が前記高さの基準面であってもよい。   As shown in FIG. 3, the surface emitting lasers 12 and 13 fixed to the jig 30 are opposed to the substrate 50. At this time, the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 are opposed to each other. Are adjusted so that they are at the same height position. The reference plane at the height position of the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 can be arbitrarily set. For example, the reference surface is the front surface (back surface of the substrate 50) 54a of the base 54 shown in FIG. In this case, the jig 30 is adjusted so that the opposing surface 30a (same plane C) of the jig 30 and the surface 54a are parallel to each other. Thereby, the height of each light emitting surface 12b, 13b can be made the same height from the surface 54a. Alternatively, the surface of the substrate 50 may be the reference surface having the height.

前記半田53をレーザ照射等により加熱して溶融した状態にする。そして上記した各発光面12b,13bの同一高さ状態を保ちながら、すなわち高さの基準面が前記基台54の表面54aである場合には、前記治具30の対向面30aと前記表面54aとを平行状態に保ちながら前記治具30を徐々に前記基板50に近付ける。   The solder 53 is heated and melted by laser irradiation or the like. And while maintaining the above-mentioned light emitting surfaces 12b and 13b at the same height, that is, when the height reference surface is the surface 54a of the base 54, the opposing surface 30a of the jig 30 and the surface 54a. The jig 30 is gradually brought closer to the substrate 50 while maintaining a parallel state.

そして、図4に示すように、各面発光レーザ12,13を前記半田53に同時に押し当て、前記面発光レーザ12,13と前記基板50間を溶融状態の前記半田53を介して同時に密着させる。   Then, as shown in FIG. 4, the surface emitting lasers 12 and 13 are simultaneously pressed against the solder 53, and the surface emitting lasers 12 and 13 and the substrate 50 are simultaneously brought into close contact with each other through the molten solder 53. .

図2で説明したように、前記面発光レーザ12のほうが、前記面発光レーザ13に比べて厚さが薄い。よって図4のように各面発光レーザ12,13と基板50間を半田53を介して密着させた状態では、前記面発光レーザ12と前記基板50間の間隔H6は、前記面発光レーザ13と前記基板50間の間隔H5よりも大きくなる。上記したように本実施形態では前記半田53の厚みを従来よりも厚くしているから広い間隔H6内に適切に前記半田53を介在させることが出来る。   As described with reference to FIG. 2, the surface emitting laser 12 is thinner than the surface emitting laser 13. Therefore, in the state where the surface emitting lasers 12 and 13 and the substrate 50 are in close contact with each other through the solder 53 as shown in FIG. 4, the interval H6 between the surface emitting laser 12 and the substrate 50 is the same as that of the surface emitting laser 13. It becomes larger than the interval H5 between the substrates 50. As described above, in the present embodiment, since the thickness of the solder 53 is larger than that of the conventional one, the solder 53 can be appropriately interposed in the wide space H6.

図4に示すように、前記面発光レーザ12,13を前記治具30にて固定し、各発光面12b,13bの高さを同一高さにして、各面発光レーザ12,13と前記基板50間を前記半田53を介して密着させた状態を維持したまま、前記半田53を硬化させる。前記半田53の硬化は温度が下がることで徐々に促進される。前記半田53の硬化を早めたい場合は図示しない冷却機構にて強制的に前記半田53を冷却してもよい。   As shown in FIG. 4, the surface emitting lasers 12 and 13 are fixed by the jig 30, and the heights of the light emitting surfaces 12b and 13b are set to the same height, so that the surface emitting lasers 12 and 13 and the substrate are formed. The solder 53 is hardened while maintaining a state in which 50 spaces are in close contact with each other via the solder 53. Curing of the solder 53 is gradually promoted as the temperature decreases. In order to accelerate the hardening of the solder 53, the solder 53 may be forcibly cooled by a cooling mechanism (not shown).

これにより前記面発光レーザ12、13を前記基板50上に半田53を介して同時に固定できる。そして前記治具30の吸引孔30bからの吸引を停止し、前記治具30と前記面発光レーザ12,13間の固定状態を解除して、前記治具30を除去する。   As a result, the surface emitting lasers 12 and 13 can be simultaneously fixed on the substrate 50 via the solder 53. Then, suction from the suction hole 30b of the jig 30 is stopped, the fixed state between the jig 30 and the surface emitting lasers 12 and 13 is released, and the jig 30 is removed.

そして図5に示すように、前記面発光レーザ12,13の表面電極31,32と、前記基板50の表面に形成された基板側電極55,56間を例えばワイヤ57にて導通接続させる(ワイヤボンディング)。   As shown in FIG. 5, the surface electrodes 31 and 32 of the surface emitting lasers 12 and 13 and the substrate side electrodes 55 and 56 formed on the surface of the substrate 50 are electrically connected by, for example, wires 57 (wires). bonding).

図5に示すように、前記面発光レーザ12,13と基板50間は半田53にて固定されており、これにより前記面発光レーザ12,13の裏面電極33,34と前記基板50の基板側電極51,52間を導通接続させることができる。   As shown in FIG. 5, the surface-emitting lasers 12 and 13 and the substrate 50 are fixed with solder 53, whereby the back electrodes 33 and 34 of the surface-emitting lasers 12 and 13 and the substrate 50 side of the substrate 50 are fixed. The electrodes 51 and 52 can be conductively connected.

上記した本実施形態の製造方法によれば、前記面発光レーザ12,13の各発光面12b,13bを基準面から見て同一高さにて形成できる。ここで前記「同一高さ」とは、±2μm程度の誤差を含むものである。   According to the manufacturing method of this embodiment described above, the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 can be formed at the same height when viewed from the reference surface. Here, the “same height” includes an error of about ± 2 μm.

本実施形態では、対向面30aが同一平面Cで形成された治具30を用いることで、前記面発光レーザ12,13の基板50上への取り付けを簡単且つ適切に行うことが可能である。すなわち各面発光レーザ12,13の発光面12b,13bの高さ位置を夫々、別々に調整する必要がなく、前記同一平面Cを基準面(例えば図3に示す表面54a)に平行にした状態を維持しながら、前記面発光レーザ12,13を基板50上に半田53を介して密着させればよいので、各発光面12b,13bの高さ位置合わせを、一度に行うことが出来、さらに各面発光レーザ12,13の基板50への密着工程を同時に行うことができるとともに、一度に半田53を硬化させて、前記面発光レーザ12、13を同時に、基板50上に固定出来るため、製造工程を簡略化できる。   In this embodiment, by using the jig 30 having the opposing surface 30a formed on the same plane C, it is possible to easily and appropriately attach the surface emitting lasers 12 and 13 onto the substrate 50. That is, there is no need to separately adjust the height positions of the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13, and the same plane C is parallel to the reference surface (for example, the surface 54a shown in FIG. 3). Since the surface emitting lasers 12 and 13 may be brought into close contact with the substrate 50 via the solder 53 while maintaining the above, the height alignment of the light emitting surfaces 12b and 13b can be performed at one time. Since the surface-emitting lasers 12 and 13 can be simultaneously adhered to the substrate 50 and the surface-emitting lasers 12 and 13 can be simultaneously fixed on the substrate 50 by curing the solder 53 at the same time. The process can be simplified.

図2〜図5工程では、半田53を使用している。半田53は金属だけで形成され、有機成分を含んでいない。前記面発光レーザ12,13と基板50間(半田53と前記面発光レーザ12,13間、前記半田53と基板50間、及び半田53内部)は金属結合で強固に結合されている。前記有機成分を含む場合は、前記治具30を除去して前記治具30による基板50方向への押圧状態を解除すると、若干、接着層の高さが変動して、前記発光面12b,13bの高さが変動する可能性がある。また有機成分を含むと、金属との熱膨張係数の違いから環境温度変化によって各発光面12b,13bの高さが変動したり、あるいは接着層と面発光レーザ12,13や前記接着層と基板50間の密着性が低下することもある。したがって有機成分を含まないほうがよい。   2 to 5, solder 53 is used. The solder 53 is made of only metal and does not contain an organic component. The surface-emitting lasers 12 and 13 and the substrate 50 (between the solder 53 and the surface-emitting lasers 12 and 13, the solder 53 and the substrate 50, and the inside of the solder 53) are firmly bonded by metal bonding. When the organic component is included, when the jig 30 is removed and the pressing state of the jig 30 toward the substrate 50 is released, the height of the adhesive layer slightly varies, and the light emitting surfaces 12b and 13b The height of can vary. In addition, when an organic component is included, the height of each light emitting surface 12b, 13b varies due to a change in environmental temperature due to a difference in thermal expansion coefficient from the metal, or the adhesive layer and the surface emitting lasers 12, 13 or the adhesive layer and the substrate. Adhesion between 50 may be lowered. Therefore, it is better not to contain organic components.

前記有機成分は、図5工程後、すなわち接着剤の硬化工程後において含まなければよい。   The organic component should not be included after the step of FIG. 5, that is, after the step of curing the adhesive.

したがって前記基板50と前記面発光レーザ12,13間に介在する導電性接着剤には有機成分を含む導電性ペーストを用い、前記導電性接着剤を硬化の際、加熱処理して前記有機成分を除去してもよい。前記導電性ペーストには、例えば金属レジネートや、金属粒子と有機ビヒクル(有機溶剤と樹脂バインダー)とを有するものを使用できる。前記有機成分を、加熱処理の際に、熱分解して蒸発させる。これにより最終的に前記接着層には前記有機成分が残存せず金属だけで形成することが可能になる。なお前記有機成分を前記接着層中、数質量%含んでいても、前記導電性接着剤として、例えば、異方性導電ペースト(ACP)や異方性導電フィルム(ACF)を用いる場合に比べて前記治具30を除去したときの前記接着層の膜厚変動を小さくできる。また上記したように金属レジネート等を使用する場合は、有機成分が除去されるため、図3工程で、導電性接着剤を前記基板50上に塗布したときの膜厚と、加熱処理後の接着層の膜厚とは大きく変動する。したがって膜厚減少量と、図4に示す間隔H5,H6を考慮して、前記導電性接着剤の膜厚を調整することが必要である。   Therefore, a conductive paste containing an organic component is used as the conductive adhesive interposed between the substrate 50 and the surface emitting lasers 12 and 13, and the organic component is removed by heat treatment when the conductive adhesive is cured. It may be removed. As the conductive paste, for example, a resin having metal resinate or metal particles and an organic vehicle (an organic solvent and a resin binder) can be used. The organic component is thermally decomposed and evaporated during the heat treatment. As a result, the organic component does not remain in the adhesive layer finally, and it is possible to form the adhesive layer with only the metal. Even if the organic component is contained in the adhesive layer by several mass%, the conductive adhesive is, for example, compared with the case where an anisotropic conductive paste (ACP) or an anisotropic conductive film (ACF) is used. The film thickness variation of the adhesive layer when the jig 30 is removed can be reduced. In addition, when a metal resinate or the like is used as described above, since organic components are removed, the film thickness when the conductive adhesive is applied on the substrate 50 and the adhesion after the heat treatment in the step of FIG. The thickness of the layer varies greatly. Therefore, it is necessary to adjust the film thickness of the conductive adhesive in consideration of the film thickness reduction amount and the intervals H5 and H6 shown in FIG.

なお図2〜図5の工程では、一つの面発光レーザアレイ14を製造するための方法であったが、例えば複数の面発光レーザアレイ14を一度に製造するために、大きな基板上に多数の面発光レーザを図2ないし図5に示す工程にて固定し、その後、前記基板を、各面発光レーザアレイ14毎に切断することで、複数の前記面発光レーザアレイ14を一度に形成することが可能である。   2 to 5 are methods for manufacturing one surface emitting laser array 14. However, for example, in order to manufacture a plurality of surface emitting laser arrays 14 at once, a large number of substrates are formed on a large substrate. A surface emitting laser is fixed in the steps shown in FIGS. 2 to 5, and then the substrate is cut into each surface emitting laser array 14 to form a plurality of the surface emitting laser arrays 14 at one time. Is possible.

ところで図2工程では、前記基板50上の基板側電極51,52上の全面に、半田53を塗布していた。ただし、前記基板側電極51,52上の全面に半田53を塗布すると、図4に示すように、特に、より押圧される側の前記面発光レーザ13と基板50間に介在する半田53は、その余分量が多く、余分な半田53が面発光レーザ13の周囲から流れ出て思わぬ箇所に付着する可能性がある。また、前記半田53を介して前記基板50と面発光レーザ12,13とを密着させたとき、前記半田53と前記基板50との間や、前記半田53と前記面発光レーザ12,13との間に密閉された空孔が形成されやすい。空孔が形成されると、この空孔内に存在する空気が環境温度変化等により熱膨張や熱圧縮して前記半田53と前記面発光レーザ12,13間、及び前記半田53と前記基板50間の密着性を低下させる危険性がある。   In the process of FIG. 2, the solder 53 is applied to the entire surface of the substrate-side electrodes 51 and 52 on the substrate 50. However, when the solder 53 is applied to the entire surface of the substrate-side electrodes 51 and 52, as shown in FIG. 4, in particular, the solder 53 interposed between the surface-emitting laser 13 and the substrate 50 on the more pressed side is The extra amount is large, and extra solder 53 may flow out from the periphery of the surface emitting laser 13 and adhere to an unexpected location. Further, when the substrate 50 and the surface emitting lasers 12 and 13 are brought into close contact with each other via the solder 53, the solder 53 and the substrate 50, or between the solder 53 and the surface emitting lasers 12 and 13. Air holes sealed in between are easily formed. When the holes are formed, the air existing in the holes is thermally expanded or compressed due to a change in environmental temperature or the like, and between the solder 53 and the surface emitting lasers 12 and 13, and between the solder 53 and the substrate 50. There is a risk of reducing the adhesion between them.

したがって図7に示すように、前記基板50上の基板側電極51,52上に複数の球状の半田60を点在させることが好ましい。前記半田60の形状は、球状に限定されない。前記半田60が点在されていれば形状を限定するものではない。   Therefore, as shown in FIG. 7, it is preferable that a plurality of spherical solders 60 are scattered on the substrate-side electrodes 51 and 52 on the substrate 50. The shape of the solder 60 is not limited to a spherical shape. The shape is not limited as long as the solder 60 is scattered.

図7のように前記半田60を前記基板側電極51,52上に点在した後、前記半田60を溶融する。   After the solder 60 is scattered on the substrate side electrodes 51 and 52 as shown in FIG. 7, the solder 60 is melted.

そして図8に示すように、前記半田60を介して前記面発光レーザ12,13と基板50間を密着させる。このとき、厚みの厚いほうの面発光レーザ13と前記基板50間に介在する半田60は、面発光レーザ12と基板50間に介在する半田60に比べてより押し潰される。
そして図8の状態にて前記半田60を硬化させ、前記治具30を除去する。
Then, as shown in FIG. 8, the surface emitting lasers 12 and 13 and the substrate 50 are brought into close contact with each other through the solder 60. At this time, the solder 60 interposed between the thicker surface emitting laser 13 and the substrate 50 is crushed more than the solder 60 interposed between the surface emitting laser 12 and the substrate 50.
Then, the solder 60 is cured in the state shown in FIG. 8, and the jig 30 is removed.

図7,図8工程では、このとき、厚みの厚いほうの面発光レーザ13と前記基板50間に介在する半田60は、面発光レーザ12と基板50間に介在する半田60に比べてより押し潰されるが、前記半田60を点在させることで、押し潰された状態でも半田60が前記面発光レーザ13と前記基板50間に適切に収まり、思わぬ箇所に半田60が付着するのを回避できる。さらに前記面発光レーザ12,13と半田60間や、前記基板50と前記半田60間に密閉された空孔が形成されにくくなり前記面発光レーザ12,13と基板50間の密着性を強固に出来る。   7 and 8, the solder 60 interposed between the thicker surface emitting laser 13 and the substrate 50 is more pressed than the solder 60 interposed between the surface emitting laser 12 and the substrate 50. Although it is crushed, the solder 60 is scattered between the surface-emitting laser 13 and the substrate 50 even in the crushed state, and the solder 60 is prevented from adhering to an unexpected place. it can. Further, it becomes difficult to form a sealed hole between the surface emitting lasers 12 and 13 and the solder 60, or between the substrate 50 and the solder 60, and the adhesion between the surface emitting lasers 12 and 13 and the substrate 50 is strengthened. I can do it.

また図7工程では、前記半田60の大きさが均一であるが、大きさが異なっていても、前記面発光レーザ12と基板50間、及び前記面発光レーザ13と基板50間で少なくとも一つの半田60が密着していれば、導電性を確保できる。   In the process of FIG. 7, the size of the solder 60 is uniform, but at least one between the surface-emitting laser 12 and the substrate 50 and between the surface-emitting laser 13 and the substrate 50 even if the sizes are different. If the solder 60 is in close contact, the conductivity can be ensured.

また図9,図11に示すように、前記基板側電極51には、溝51aが設けられていることが好ましい。なお前記基板側電極52も同様に溝が設けられているが、ここでは、前記基板側電極51で説明する。図9,図11に示す構造では、前記溝51aは、前記電極51を分断せず、前記溝51aの底面には前記電極51,52が現れている。   As shown in FIGS. 9 and 11, the substrate side electrode 51 is preferably provided with a groove 51a. The substrate side electrode 52 is similarly provided with a groove, but here, the substrate side electrode 51 will be described. In the structure shown in FIGS. 9 and 11, the groove 51a does not divide the electrode 51, and the electrodes 51 and 52 appear on the bottom surface of the groove 51a.

図9,図11に示す溝51aは、幅方向(図示X方向)及び前記幅方向に直交する長さ方向(図示Y方向)に直線状で複数条設けられている。前記溝51aの形状は図9,図11に示す形状に限定されないが、少なくとも前記電極51のいずれか一の側面51bから抜ける形状(前記側面51bにまで繋がる形状)で形成されることが好適である。   A plurality of grooves 51a shown in FIGS. 9 and 11 are provided in a straight line in the width direction (X direction in the drawing) and in the length direction (Y direction in the drawing) orthogonal to the width direction. The shape of the groove 51 a is not limited to the shape shown in FIGS. 9 and 11, but it is preferable that the groove 51 a is formed in a shape that can be removed from at least one side surface 51 b of the electrode 51 (a shape that leads to the side surface 51 b). is there.

図9,図11に示すように、前記溝51aを除く前記電極51の表面51c(凸形状の表面)に、球状の半田61を点在させる。   As shown in FIGS. 9 and 11, spherical solder 61 is scattered on the surface 51c (convex surface) of the electrode 51 excluding the groove 51a.

そして前記半田61を溶融し、図10に示すように、前記半田61を介して前記面発光レーザ12と基板50間を密着させる。このとき前記半田61は押し潰される。この実施形態では、前記溝51aの底面には電極51が現れているので、前記溝51a内も半田濡れ性に優れた状態である。したがって図10に示すように、押し潰された半田61の一部は前記溝51a内に逃げる。このように前記溝51aを余分な半田61が逃げる逃げ溝として機能させることが出来る。またこのように逃げ溝を設けることで、前記半田61を押し潰したときに、空気が密閉された状態で前記半田61と前記電極51間に溜まりにくくなり前記空気が前記逃げ溝から抜けやすくなる。   Then, the solder 61 is melted, and the surface emitting laser 12 and the substrate 50 are brought into close contact with each other through the solder 61 as shown in FIG. At this time, the solder 61 is crushed. In this embodiment, since the electrode 51 appears on the bottom surface of the groove 51a, the groove 51a is also excellent in solder wettability. Therefore, as shown in FIG. 10, a part of the crushed solder 61 escapes into the groove 51a. In this way, the groove 51a can be made to function as an escape groove through which excess solder 61 escapes. Also, by providing the escape groove in this way, when the solder 61 is crushed, air is less likely to collect between the solder 61 and the electrode 51 in a sealed state, and the air can easily escape from the escape groove. .

前記半田61を介して前記面発光レーザ12と基板50間を密着させた後、前記半田61を硬化して、前記面発光レーザ12を前記基板50上に固定する。   After the surface emitting laser 12 and the substrate 50 are brought into close contact with each other through the solder 61, the solder 61 is cured and the surface emitting laser 12 is fixed on the substrate 50.

あるいは図12に示すように前記溝51aの形成によって、前記電極51を複数の小電極51dに分割してもよい。前記溝51aからは前記基板50の表面が現れている。   Alternatively, as shown in FIG. 12, the electrode 51 may be divided into a plurality of small electrodes 51d by forming the groove 51a. The surface of the substrate 50 appears from the groove 51a.

図12に示すように各小電極51dの表面に、半田62を点在させる。そして前記半田62を溶融し、前記半田62を介して前記面発光レーザ12と基板50間を密着させた後、前記半田62を硬化して、前記面発光レーザ12を前記基板50上に固定する。   As shown in FIG. 12, solder 62 is scattered on the surface of each small electrode 51d. Then, the solder 62 is melted and the surface emitting laser 12 and the substrate 50 are brought into close contact with each other via the solder 62, and then the solder 62 is cured to fix the surface emitting laser 12 on the substrate 50. .

ところで図12では、前記小電極51d間の溝51aには基板50の表面が露出しているので、前記半田62が押し潰されたとき、前記半田62は前記基板50上に流れにくい。前記基板50表面は半田濡れ性が悪いためである。ただし前記溝51aを上記した空気逃げとして機能させることは出来る。   In FIG. 12, since the surface of the substrate 50 is exposed in the groove 51a between the small electrodes 51d, the solder 62 hardly flows onto the substrate 50 when the solder 62 is crushed. This is because the surface of the substrate 50 has poor solder wettability. However, the groove 51a can function as the air escape described above.

図12に示す構造では、導電性接着剤として、例えば半田と有機成分(樹脂)を含む半田接着剤等を使用した場合に効果的である。前記有機成分には例えば熱硬化性樹脂が設けられ、加熱によって前記半田と分離して熱硬化させられる。このとき図13のように樹脂65は主として前記溝51a内に逃げ、一方、半田66は、前記小電極51dと前記面発光レーザ12の裏面電極33間に介在して、前記小電極51dと前記裏面電極33間を接合する。このように前記溝51aを樹脂65の逃げ溝として機能させることができる。   The structure shown in FIG. 12 is effective when, for example, a solder adhesive containing solder and an organic component (resin) is used as the conductive adhesive. The organic component is provided with a thermosetting resin, for example, and is thermally cured by being separated from the solder by heating. At this time, as shown in FIG. 13, the resin 65 mainly escapes into the groove 51a, while the solder 66 is interposed between the small electrode 51d and the back electrode 33 of the surface-emitting laser 12, and the small electrode 51d and the The back electrodes 33 are joined. In this way, the groove 51 a can function as a relief groove for the resin 65.

以上のように本実施形態によれば、面発光レーザアレイ14に取り付けられる複数の面発光レーザ12,13の発光面12b,13bを基準面から見て同一高さで形成することが出来る。   As described above, according to the present embodiment, the light emitting surfaces 12b and 13b of the plurality of surface emitting lasers 12 and 13 attached to the surface emitting laser array 14 can be formed at the same height when viewed from the reference surface.

よって、図14に示すように、複数の前記面発光レーザ12,13の各発光面12b,13bとレンズ16の主点16a間の距離H7,H8を同じにでき、したがって前記面発光レーザ12から放射される再生参照光22、及び前記面発光レーザ13から放射される再生参照光71を共に、前記レンズ16にて平行光に調整できる。よって、前記ホログラムデータ21を再生可能な波長を得るべく、前記面発光レーザ12,13を切り替えても平行光で一定の光強度以上の再生参照光22,71を得ることができ、前記ホログラムデータ21を適切に再生できる。以上により本実施形態により製造された面発光レーザアレイ14を用いて前記ホログラム再生装置10を製造すれば、広範な波長帯域にて再生参照光を一定の光強度以上の平行光で得ることができ、よってホログラム再生機能に優れたホログラム再生装置を製造できる。   Therefore, as shown in FIG. 14, the distances H7 and H8 between the light emitting surfaces 12b and 13b of the plurality of surface emitting lasers 12 and 13 and the principal point 16a of the lens 16 can be made the same. Both the reproduced reference light 22 emitted and the reproduced reference light 71 emitted from the surface emitting laser 13 can be adjusted to parallel light by the lens 16. Therefore, in order to obtain a wavelength at which the hologram data 21 can be reproduced, even if the surface emitting lasers 12 and 13 are switched, reproduction reference beams 22 and 71 having a certain light intensity or more can be obtained with parallel light. 21 can be properly reproduced. As described above, when the hologram reproducing apparatus 10 is manufactured using the surface emitting laser array 14 manufactured according to the present embodiment, the reproduction reference light can be obtained as parallel light having a certain light intensity or more in a wide wavelength band. Therefore, a hologram reproducing device having an excellent hologram reproducing function can be manufactured.

ところで、図2のように、面発光レーザ12,13の発光面12b,13b及びその周囲全体を含む素子表面が平坦化面で形成されているか、あるいは、発光面12b,13b上に表面電極31,32が形成されている程度の段差である場合はともかく、前記面発光レーザ12,13の素子表面が明らかに凹凸面として形成され、前記素子表面を平坦化面で形成していない場合がある。かかる場合、凸部表面(最表面)に前記発光面12b,13bが現れる形態である場合には、この発光面12b,13bを、前記治具30の前記対向面30aに当接させれば足りるが、凹部表面に前記発光面12b,13bが現れる形態である場合、前記対向面30aに前記凹部表面を当接させることができないので、最表面である凸部表面を前記治具30の前記対向面30aに当接させる。かかる場合、各面発光レーザ12、13において、凸部表面と、凹部表面との間の高さ寸法に多少ばらつきが生じている場合、本形態の製造方法を実効すると、、凸部表面と、凹部表面との間の高さ寸法のばらつきが、面発光レーザ12,13の発光面12b,13bの高さのばらつきとして反映されるが、本形態では、従来に比べて面発光レーザ12,13の高さ寸法H3,H4のばらつき、及び接着層の膜厚のばらつきの累積誤差はない。したがって本形態では、治具30にて各面発光レーザ12,13を支持するとき、上記のように厳密に、各発光面12b,13bを同一高さに合わせていない場合でも、発光面12b、13b側から本実施形態の治具30を用いて支持し、その状態にて、各面発光レーザ12、13を基板50上に接着層を介して固定することで、従来に比べて発光面12b,13bの高さのばらつきを小さくすることが可能である。なおこのときの高さ寸法のばらつきは±2μm程度であり、これ以上ばらつきが広がる場合には、治具30に各面発光レーザ12、13を支持するとき、前記面発光レーザ12、13の各発光面12b,13bを同一高さに合わせた状態にして、治具30に各面発光レーザ12、13を固定することが必要となる。   Incidentally, as shown in FIG. 2, the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 and the element surface including the entire periphery thereof are formed as a flat surface, or the surface electrode 31 is formed on the light emitting surfaces 12b and 13b. , 32, the surface of the element of the surface emitting lasers 12, 13 is clearly formed as an uneven surface, and the surface of the element may not be formed as a flat surface. . In such a case, when the light emitting surfaces 12b and 13b appear on the convex surface (outermost surface), it is sufficient that the light emitting surfaces 12b and 13b are brought into contact with the facing surface 30a of the jig 30. However, when the light emitting surfaces 12b and 13b appear on the concave surface, the concave surface cannot be brought into contact with the opposing surface 30a. Therefore, the convex surface that is the outermost surface is opposed to the jig 30. It abuts on the surface 30a. In such a case, in each of the surface emitting lasers 12 and 13, in the case where there is some variation in the height dimension between the convex surface and the concave surface, when the manufacturing method of the present embodiment is effective, The variation in the height between the surface of the recesses is reflected as the variation in the height of the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13, but in this embodiment, the surface emitting lasers 12 and 13 are compared with the conventional ones. There are no accumulated errors of variations in the height dimensions H3 and H4 and variations in the thickness of the adhesive layer. Therefore, in this embodiment, when the surface emitting lasers 12 and 13 are supported by the jig 30, even when the light emitting surfaces 12 b and 13 b are not strictly adjusted to the same height as described above, the light emitting surfaces 12 b and 12 b By supporting the surface emitting lasers 12 and 13 on the substrate 50 through an adhesive layer in this state, the light emitting surface 12b can be supported as compared with the conventional case. , 13b can be reduced in variation in height. In addition, the variation in the height dimension at this time is about ± 2 μm, and when the variation further spreads, when the surface emitting lasers 12 and 13 are supported on the jig 30, each of the surface emitting lasers 12 and 13 is supported. It is necessary to fix the surface emitting lasers 12 and 13 to the jig 30 with the light emitting surfaces 12b and 13b set to the same height.

なお実施形態では基板50上に設けられた面発光レーザ12,13は2個であったが、さらに多くの面発光レーザが搭載されてもよい。かかる場合、少なくとも一個の面発光レーザの膜厚が、他の面発光レーザの膜厚と異なる場合、本実施形態における製造方法を適用すると効果的である。   In the embodiment, the number of surface emitting lasers 12 and 13 provided on the substrate 50 is two, but more surface emitting lasers may be mounted. In such a case, when the film thickness of at least one surface emitting laser is different from the film thickness of other surface emitting lasers, it is effective to apply the manufacturing method according to this embodiment.

また図7以降では、導電性接着剤を半田として説明したが、有機成分を含む導電性ペーストにも適用できる。かかる導電性ペーストは、硬化の際、加熱処理にて前記有機成分が除去されることが好ましい。   In FIG. 7 and subsequent figures, the conductive adhesive is described as solder, but it can also be applied to a conductive paste containing an organic component. In the conductive paste, it is preferable that the organic component is removed by heat treatment at the time of curing.

本実施形態では、面発光レーザアレイ14の用途してホログラム再生装置10を説明したが、ホログラム再生装置に限定されるものではない。複数の面発光レーザを使用し、各面発光レーザの発光面が同一高さであることが要求される用途であれば適用可能である。   In the present embodiment, the hologram reproducing apparatus 10 has been described as an application of the surface emitting laser array 14, but is not limited to the hologram reproducing apparatus. The present invention is applicable to applications where a plurality of surface emitting lasers are used and the light emitting surfaces of the surface emitting lasers are required to have the same height.

また「発光素子」として面発光レーザを用いたが、前記面発光レーザに限定されるものではない。   Further, although the surface emitting laser is used as the “light emitting element”, it is not limited to the surface emitting laser.

また図3の前記半田53等の導電性接着剤の塗布工程であるが、前記導電性接着剤を、前記面発光レーザ12,13の裏面電極33,34に塗布していてもよいし、あるいは前記基板側電極51,52上及び前記裏面電極33,34の双方に塗布してもよい。ただし、前記基板側電極51,52上に塗布することが簡単に導電性接着剤を塗布できて好適である。   Further, in the process of applying a conductive adhesive such as the solder 53 of FIG. 3, the conductive adhesive may be applied to the back electrodes 33 and 34 of the surface emitting lasers 12 and 13, or You may apply | coat to both the said board | substrate side electrodes 51 and 52 and the said back surface electrodes 33 and 34. FIG. However, it is preferable to apply on the substrate side electrodes 51 and 52 because the conductive adhesive can be easily applied.

また前記導電性接着剤の形態は、ペースト状、フィルム状、粉状等、特に限定されるものではない。   Moreover, the form of the said conductive adhesive is not specifically limited, such as a paste form, a film form, and a powder form.

また前記導電性接着剤の基板側電極51,52上への形成方法は、スクリーン印刷、インクジェット方式、スパッタ法等、特に限定されない。   Further, the method for forming the conductive adhesive on the substrate-side electrodes 51 and 52 is not particularly limited, such as screen printing, an ink jet method, and a sputtering method.

また、本実施形態では、前記面発光レーザ12、13の発光面12b,13bに表面電極31,32が設けられていたが、前記面発光レーザ12、3の裏面12c,13cに夫々、2つの電極が設けられていてもよい。かかる場合、各電極毎に半田等の導電性接着剤を介して基板50上に固定する。   In the present embodiment, the surface electrodes 31 and 32 are provided on the light emitting surfaces 12 b and 13 b of the surface emitting lasers 12 and 13, but two surfaces are provided on the back surfaces 12 c and 13 c of the surface emitting lasers 12 and 3, respectively. An electrode may be provided. In such a case, each electrode is fixed onto the substrate 50 via a conductive adhesive such as solder.

また、前記面発光レーザ12,13と基板50間を半田等の導電性接着剤にて固定したが、これは電極間を導通接続することが一つの理由である。よって前記面発光レーザ12,13と基板50間を導通接続する必要のない場合は、導電性接着剤以外の接着剤を使用することが可能である。   Further, the surface emitting lasers 12 and 13 and the substrate 50 are fixed with a conductive adhesive such as solder, which is one reason why the electrodes are electrically connected. Therefore, when it is not necessary to electrically connect the surface emitting lasers 12 and 13 and the substrate 50, an adhesive other than the conductive adhesive can be used.

ホログラム再生装置によって記録媒体からホログラムデータを再生する概念図、Conceptual diagram of reproducing hologram data from a recording medium by a hologram reproducing device, 本実施形態における発光装置(面発光レーザアレイ)の製造方法を示す一工程図(厚さ方向から切断した部分断面図)、1 process drawing (partial sectional view cut | disconnected from thickness direction) which shows the manufacturing method of the light-emitting device (surface emitting laser array) in this embodiment, 図2の次に行われる一工程図(厚さ方向から切断した部分断面図)、One process diagram (partial sectional view cut from the thickness direction) performed next to FIG. 図3の次に行われる一工程図(厚さ方向から切断した部分断面図)、One process diagram (partial sectional view cut from the thickness direction) performed next to FIG. 図4の次に行われる一工程図(厚さ方向から切断した部分断面図)、One process diagram (partial sectional view cut from the thickness direction) performed after FIG. 図2工程に示す面発光レーザ及び治具を真上から見た部分平面図、2 is a partial plan view of the surface emitting laser and jig shown in FIG. 本実施形態における発光装置の製造方法の好ましい一例を示す一工程図(図3の工程に代わる工程図であり、図3に比べて拡大して示す部分拡大断面図)、1 process drawing which shows a preferable example of the manufacturing method of the light-emitting device in this embodiment (it is a process drawing which replaces the process of FIG. 3, and is a partial expanded sectional view expanded and shown compared with FIG. 3), 図7の次に行われる一工程図(図4の工程に代わる工程図であり、図4に比べて拡大して示す部分拡大断面図)、FIG. 7 is a process diagram that is performed next to the process diagram (a process diagram in place of the process in FIG. 本実施形態における発光装置の製造方法の好ましい一例を示す一工程図(図9は、図11に示すA−A線に沿って厚み方向に切断し矢印方向から見た前記基板及び接着剤(半田)の部分拡大断面図)、FIG. 9 is a process diagram showing a preferred example of a method for manufacturing a light emitting device according to the present embodiment (FIG. 9 is a view of the substrate and adhesive (solder) cut in the thickness direction along the line AA shown in FIG. ) Partial enlarged sectional view of 図9の次に行われる一工程図(図9工程後、前記面発光レーザと基板とを接合した状態を示す前記基板、面発光レーザ及び接着剤(半田)の部分拡大断面図)、FIG. 9 is a process diagram subsequent to FIG. 9 (partial enlarged cross-sectional view of the substrate, surface emitting laser and adhesive (solder) showing a state where the surface emitting laser and the substrate are joined after the step of FIG. 9); 図9に示す基板及び接着剤(半田)を真上から見た部分拡大平面図、The partial enlarged plan view which looked at the board | substrate and adhesive agent (solder) shown in FIG. 9 from right above, 図11とは異なる基板の形状を示す前記基板及び接着剤(半田)を真上から見た部分拡大平面図、FIG. 11 is a partially enlarged plan view of the substrate and the adhesive (solder) showing the shape of the substrate different from FIG. 図12に示す基板上に面発光レーザを接合させた前記基板、前記接着剤(半田)及び前記面発光レーザを厚さ方向から切断した部分断面図(切断位置を、図13工程の一工程前の図12で示すと、図12に示すB−B線である。図13の部分断面図は、このB−B線に沿って膜み方向に切断し矢印方向から見たものである)、FIG. 12 is a partial cross-sectional view of the substrate in which a surface emitting laser is bonded to the substrate shown in FIG. 12, the adhesive (solder), and the surface emitting laser are cut from the thickness direction (the cutting position is one step before the step in FIG. 13). 12 is a BB line shown in Fig. 12. The partial cross-sectional view of Fig. 13 is cut along the BB line in the filming direction and viewed from the arrow direction), 本実施形態による製造方法によって製造された面発光レーザアレイをホログラム再生装置に組み込み、各面発光レーザから照射される再生参照光の照射状態を説明するための概念図、The conceptual diagram for demonstrating the irradiation state of the reproduction | regeneration reference light irradiated from each surface emitting laser, incorporating the surface emitting laser array manufactured by the manufacturing method by this embodiment in a hologram reproduction apparatus, 従来の問題点を説明するための各面発光レーザから照射される再生参照光の照射状態を示す概念図、The conceptual diagram which shows the irradiation state of the reproduction | regeneration reference light irradiated from each surface emitting laser for demonstrating the conventional problem,

符号の説明Explanation of symbols

10 ホログラム再生装置
12、13 面発光レーザ
12b、13b 発光面
14 面発光レーザアレイ
17 レンズアレイ
18 撮像素子
19 ピンホールフィルタ
20 記録媒体
21 ホログラムデータ
22、71 再生参照光
23 再生光
30 治具
30a 対向面
33 裏面電極(発光素子側電極)
40、41 マーク部
50 基板
51 基板側電極
51a 溝
53、60、61、62、66 半田(導電性接着剤)
54 基台
57 ワイヤ
65 樹脂
C 同一平面
DESCRIPTION OF SYMBOLS 10 Hologram reproducing | regenerating apparatus 12, 13 Surface emitting laser 12b, 13b Light emitting surface 14 Surface emitting laser array 17 Lens array 18 Image pick-up element 19 Pinhole filter 20 Recording medium 21 Hologram data 22, 71 Reproduction reference light 23 Reproduction light 30 Jig 30a Opposite Surface 33 Back electrode (light emitting element side electrode)
40, 41 Mark part 50 Substrate 51 Substrate side electrode 51a Groove 53, 60, 61, 62, 66 Solder (conductive adhesive)
54 Base 57 Wire 65 Resin C Coplanar

Claims (9)

基板上に複数の発光素子が設けられた発光装置の製造方法において、
複数の前記発光素子の各発光面を前記基板上にて同一高さに合わせた状態で、前記発光素子を前記基板上に接着剤を介して密着させ、
その後、前記接着剤を硬化して、前記発光素子を前記基板上に固定することを特徴とする発光装置の製造方法。
In a method for manufacturing a light emitting device in which a plurality of light emitting elements are provided on a substrate,
With the light emitting surfaces of the plurality of light emitting elements being adjusted to the same height on the substrate, the light emitting elements are adhered to the substrate via an adhesive,
Then, the said adhesive agent is hardened | cured and the said light emitting element is fixed on the said board | substrate, The manufacturing method of the light-emitting device characterized by the above-mentioned.
複数の前記発光素子を治具に取り付けて、各発光面を同一高さに合わせ、前記同一高さを維持しながら前記発光素子を基板上に接着剤を介して密着させ、前記接着剤を硬化した後、前記治具を除去する請求項1記載の発光装置の製造方法。   A plurality of the light emitting elements are attached to a jig, the light emitting surfaces are set to the same height, and the light emitting elements are adhered to the substrate via an adhesive while maintaining the same height, and the adhesive is cured. The method of manufacturing a light emitting device according to claim 1, wherein the jig is removed after the step. 以下の工程を有する請求項2記載の発光装置の製造方法。
(a) 前記発光面と対向する対向面が同一平面で形成された前記治具を用意し、前記同一平面に複数の前記発光素子の各発光面を当接させた状態にて、前記発光素子を前記治具に固定する工程と、
(b) 前記治具を前記基板上に対向させ、このとき、複数の前記発光素子の各発光面を同一高さに合わせ、前記同一高さを維持しながら、前記基板と前記発光素子間を前記接着剤を介して密着させる工程と、
(c) 前記接着剤を硬化して、前記発光素子を前記基板上に固定する工程と、
(d) 前記発光素子と前記治具間の固定状態を解除し、前記治具を除去する工程。
The manufacturing method of the light-emitting device of Claim 2 which has the following processes.
(A) The light emitting element is prepared in a state in which the light emitting surface is opposed to the light emitting surface, the jig having the same plane formed thereon, and the light emitting surfaces of the plurality of light emitting elements in contact with the same plane. Fixing to the jig;
(B) The jig is opposed to the substrate, and at this time, the light emitting surfaces of the plurality of light emitting elements are matched to the same height, and the gap between the substrate and the light emitting elements is maintained while maintaining the same height. Adhering via the adhesive;
(C) curing the adhesive and fixing the light emitting element on the substrate;
(D) A step of releasing the fixed state between the light emitting element and the jig and removing the jig.
基板上に複数の発光素子が設けられた発光装置の製造方法において、
複数の前記発光素子の各発光面と対向する対向面が同一平面で形成された治具を用意し、各発光素子を発光面側から前記治具の前記同一平面に当接させて前記治具に固定した状態で、前記発光素子を前記基板上に接着剤を介して密着させ、
その後、前記接着剤を硬化して、前記発光素子を前記基板上に固定し、さらに、前記発光素子と前記治具間の固定状態を解除し、前記治具を除去することを特徴とする発光装置の製造方法。
In a method for manufacturing a light emitting device in which a plurality of light emitting elements are provided on a substrate,
A jig is prepared in which opposing surfaces facing the respective light emitting surfaces of the plurality of light emitting elements are formed on the same plane, and each light emitting element is brought into contact with the same plane of the jig from the light emitting surface side. In a state of being fixed to, the light emitting element is closely attached to the substrate via an adhesive,
Then, the adhesive is cured, the light emitting element is fixed on the substrate, the fixing state between the light emitting element and the jig is released, and the jig is removed. Device manufacturing method.
前記発光素子の前記発光面との反対面、及び前記基板の表面には、夫々、電極が設けられており、発光素子側電極と、基板側電極の少なくとも一方には溝が形成され、前記溝を除く前記電極上に前記接着剤を設ける請求項1ないし4のいずれかに記載の発光装置の製造方法。   Electrodes are provided on the surface opposite to the light emitting surface of the light emitting element and the surface of the substrate, respectively, and a groove is formed in at least one of the light emitting element side electrode and the substrate side electrode. The method for manufacturing a light-emitting device according to claim 1, wherein the adhesive is provided on the electrode excluding the electrode. 前記発光素子の前記発光面との反対面、及び前記基板の表面には、夫々、電極が設けられており、前記接着剤には導電性接着剤を使用し、発光素子側電極と、基板側電極間を前記導電性接着剤を介して導通接続させる請求項1ないし5のいずれかに記載の発光装置の製造方法。   Electrodes are provided on the surface opposite to the light emitting surface of the light emitting element and the surface of the substrate, respectively, and a conductive adhesive is used as the adhesive, and the light emitting element side electrode and the substrate side are provided. The method for manufacturing a light-emitting device according to claim 1, wherein electrodes are electrically connected to each other via the conductive adhesive. 前記導電性接着剤には半田を用いる請求項6記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 6, wherein solder is used for the conductive adhesive. 前記導電性接着剤には有機成分を含む導電性ペーストを用い、前記導電性接着剤の硬化の際、加熱処理にて前記有機成分を除去する請求項6記載の発光装置の製造方法。   The method for manufacturing a light-emitting device according to claim 6, wherein a conductive paste containing an organic component is used as the conductive adhesive, and the organic component is removed by heat treatment when the conductive adhesive is cured. 前記接着剤を、各発光素子と基板間に点在させる請求項1ないし8のいずれかに記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1, wherein the adhesive is scattered between each light emitting element and the substrate.
JP2006157495A 2006-06-06 2006-06-06 Method of manufacturing light-emitting device Withdrawn JP2009200064A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006157495A JP2009200064A (en) 2006-06-06 2006-06-06 Method of manufacturing light-emitting device
PCT/JP2007/061055 WO2007142108A1 (en) 2006-06-06 2007-05-31 Method of manufacturing light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157495A JP2009200064A (en) 2006-06-06 2006-06-06 Method of manufacturing light-emitting device

Publications (1)

Publication Number Publication Date
JP2009200064A true JP2009200064A (en) 2009-09-03

Family

ID=38801366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157495A Withdrawn JP2009200064A (en) 2006-06-06 2006-06-06 Method of manufacturing light-emitting device

Country Status (2)

Country Link
JP (1) JP2009200064A (en)
WO (1) WO2007142108A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128387A (en) * 2010-12-10 2012-07-05 Sae Magnetics(H K )Ltd Optical waveguide device and optical transmission device using the same
JP2014529564A (en) * 2011-08-12 2014-11-13 フラウンホファー ゲセルシャフト ツールフェールデルンク ダー アンゲヴァンテンフォルシュンク エー.ファオ. Method for structuring flat substrate made of glassy material and optical element
JP2014229822A (en) * 2013-05-24 2014-12-08 スタンレー電気株式会社 Semiconductor light emitting element array, and semiconductor light emitting element array manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617385A (en) * 1979-07-20 1981-02-19 Tokyo Shibaura Electric Co Production of display device
JP2000049415A (en) * 1998-07-30 2000-02-18 Matsushita Electric Ind Co Ltd Nitride semiconductor laser element
JP2003347524A (en) * 2002-05-28 2003-12-05 Sony Corp Transferring method of element, arraying method of element, and manufacturing method of image display
JP4306247B2 (en) * 2002-12-27 2009-07-29 日亜化学工業株式会社 Semiconductor light emitting device
JP2006085935A (en) * 2004-09-14 2006-03-30 Mitsubishi Electric Corp Manufacturing method of field emission device and field emission device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128387A (en) * 2010-12-10 2012-07-05 Sae Magnetics(H K )Ltd Optical waveguide device and optical transmission device using the same
JP2014529564A (en) * 2011-08-12 2014-11-13 フラウンホファー ゲセルシャフト ツールフェールデルンク ダー アンゲヴァンテンフォルシュンク エー.ファオ. Method for structuring flat substrate made of glassy material and optical element
JP2014229822A (en) * 2013-05-24 2014-12-08 スタンレー電気株式会社 Semiconductor light emitting element array, and semiconductor light emitting element array manufacturing method

Also Published As

Publication number Publication date
WO2007142108A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP2006120288A (en) Suspension substrate with circuit
EP0908843B1 (en) Contactless electronic card and its manufacturing method
JP2009200064A (en) Method of manufacturing light-emitting device
US6700911B2 (en) Semiconductor laser device, fabricating method thereof and optical pickup employing the semiconductor laser device
EP3491899B1 (en) Light-emitting device and method for manufacturing same
CN100483872C (en) Semiconductor laser device, method for manufacturing the same and optical pickup apparatus
TW201246925A (en) Semiconductor apparatus, manufacturing apparatus, and manufacturing method
EP0688050A1 (en) Assembly method for integrated circuit card and such obtained card
EP1084482B1 (en) Method for producing an integrated circuit card and card produced according to said method
JP2007019077A (en) Semiconductor laser unit and optical pickup equipment
EP1192593B1 (en) Device and method for making devices comprising at least a chip mounted on a support
JP2002076373A (en) Electronic device and optical device
JP4100685B2 (en) Semiconductor device
US9514772B2 (en) Magnetic head device having suspension and spacer
JP2003309314A (en) Integrated optical element and its manufacturing method
FR2786317A1 (en) Flush contact chip card production comprises etching connection terminal contact pads in a continuous metallic strip on which the chip is mounted
US20060086772A1 (en) System and method for improving hard drive actuator lead attachment
JP2002050017A (en) Magnetic head device, and method and device for manufacturing the same
JP4704396B2 (en) LIGHT EMITTING DEVICE AND OPTICAL PICKUP DEVICE EQUIPPED WITH THE SAME
JP2007242842A (en) Semiconductor laser device and manufacturing method thereof
JP2009259299A (en) Light emitting device, and hologram reproducing device using the light emitting device
US7897892B2 (en) Method of bonding an optical component
WO2021151981A1 (en) Security element, electronic card, electronic payment terminal and corresponding assembly method
JP2006237418A (en) Semiconductor laser equipment and optical pickup using the same
JP2018006397A (en) Wiring board and manufacturing method of the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901