WO2007142108A1 - Method of manufacturing light-emitting device - Google Patents

Method of manufacturing light-emitting device Download PDF

Info

Publication number
WO2007142108A1
WO2007142108A1 PCT/JP2007/061055 JP2007061055W WO2007142108A1 WO 2007142108 A1 WO2007142108 A1 WO 2007142108A1 JP 2007061055 W JP2007061055 W JP 2007061055W WO 2007142108 A1 WO2007142108 A1 WO 2007142108A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
substrate
jig
adhesive
manufacturing
Prior art date
Application number
PCT/JP2007/061055
Other languages
French (fr)
Japanese (ja)
Inventor
Naoyuki Tokuchi
Yoshihiro Someno
Yuji Taga
Akira Kanno
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Publication of WO2007142108A1 publication Critical patent/WO2007142108A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02375Positioning of the laser chips
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0236Fixing laser chips on mounts using an adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Definitions

  • the present invention relates to a manufacturing method of a light emitting device used for a hologram reproducing device, for example.
  • the light emitting device that emits the reproduction reference light includes, for example, a surface on which a plurality of surface emitting lasers (VCSEL: Vertical Cavity Surface Emitting Laser) are arranged.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • a light emitting laser array is used.
  • the advantage of using a plurality of surface emitting lasers in this way is that the wavelength band of the reproduction reference light can be widened easily and inexpensively.
  • a wide range of wavelength bands can be obtained by combining a plurality of surface emitting lasers having different wavelength bands of the reproduction reference light.
  • the entire wavelength band should be covered. Is possible. Therefore, each hologram data can be reproduced appropriately.
  • Patent Document 1 JP 2005-331864 A Patent Document 2: Japanese Unexamined Patent Publication No. 2006-58726
  • Patent Document 2 JP 2003-233293 A
  • the surface emitting laser has a thickness variation.
  • two surface emitting lasers 2 and 3 are installed on a substrate 1 to form a surface emitting laser array 6.
  • a lens 4 is provided between the surface emitting laser array 6 and the recording medium 5. With this lens 4, the reproduction reference beams 2a and 3a emitted from the surface emitting lasers 2 and 3 are adjusted to parallel beams.
  • the heights of the light emitting surfaces (surfaces of the light emitting portions) 2b and 3b of the surface emitting lasers 2 and 3 viewed from the substrate 1 are as follows. Is different. That is, the distance HI between the light emitting surface 2b of the surface emitting laser 2 and the principal point 4a of the lens 4 is different from the distance H2 between the light emitting surface 3b of the surface emitting laser 3 and the principal point 4a of the lens 4. It will be.
  • the distance between the light emitting surface 3b and the principal point 4a of the lens 4 is H2 so that the reproduction irradiation light 3a of the surface emitting laser 3 becomes parallel light.
  • the distance HI between the light emitting surface 2b and the principal point 4a is shorter than the distance H2
  • the other reproduction reference light 2a is diffused light.
  • the distance HI is set so that the irradiation light 2a of the surface emitting laser 2 becomes parallel light
  • the reproduction irradiation light 2a of the surface emitting laser 2 becomes focused light.
  • the entire hologram data 7 is not irradiated with the reproduction irradiation light as parallel light.
  • the incident angle of the reproduction irradiation light with respect to each interference fringe of the hologram is different, resulting in a problem that the hologram data 7 cannot be reproduced.
  • the thickness of the adhesive layer interposed between the surface emitting laser and the substrate for fixing the surface emitting laser on the substrate varies.
  • the height position of the light emitting surface of the surface emitting laser may vary.
  • the present invention is for solving the above-described conventional problems, and in particular, it is possible to suppress variation in height of each light emitting surface of a plurality of light emitting elements more appropriately and easily than before.
  • the purpose is to provide a method for manufacturing an efficient light emitting device.
  • the present invention provides a method of manufacturing a light-emitting device in which a plurality of light-emitting elements are provided on a substrate, wherein the light-emitting surfaces of the plurality of light-emitting elements are aligned at the same height on the substrate.
  • the element is adhered to the substrate via an adhesive,
  • the adhesive is cured, and the light emitting element is fixed on the substrate.
  • the light emitting elements of the light emitting elements can be appropriately and easily formed.
  • Each light emitting surface can be adjusted to the same height.
  • the bonding process and the fixing process are performed at a time with the light emitting surfaces of the respective light emitting elements being set to the same height, the manufacturing process can be simplified without individually bonding and fixing the light emitting elements.
  • a plurality of the light emitting elements are attached to a jig, the light emitting surfaces are made to have the same height, and the light emitting elements are placed on a substrate via an adhesive while maintaining the same height. It is preferable that the jig is removed after the adhesive is cured and the adhesive is cured. In addition, since the height alignment of each light emitting surface and the subsequent adhesion process to the adhesive and the fixing process can be performed using the jig, the light emitting element can be positioned on the substrate with high accuracy. They can be fixed together and the manufacturing process can be simplified.
  • the present invention provides a method for manufacturing a light emitting device in which a plurality of light emitting elements are provided on a substrate.
  • electrodes are provided on the surface opposite to the light emitting surface of the light emitting element and the surface of the substrate, respectively, and the electrode on the opposite surface of the light emitting element and the substrate surface are provided. It is preferable that a groove is formed in at least one of the electrodes on the surface, and the adhesive is provided on the electrode excluding the groove. Further, the electrodes may be divided into small electrodes by the grooves, or the grooves may be formed in a lattice shape. This groove can function as an escape groove for releasing, for example, excess adhesive and air when the light emitting element is adhered onto the substrate.
  • electrodes are provided on the surface opposite to the light emitting surface of the light emitting element and the surface of the substrate, respectively, and a conductive adhesive is used as the adhesive.
  • a conductive adhesive is used as the adhesive.
  • the element side electrode and the substrate side electrode are electrically connected via the conductive adhesive.
  • solder for the conductive adhesive.
  • the substrate side electrode and the light emitting element side electrode can be easily connected to each other.
  • the substrate side electrode and the light emitting element side electrode can be firmly bonded by metal bonding, for example, when the jig is removed, the film thickness of the adhesive layer varies, Thermal contraction and thermal expansion due to environmental temperature changes and the like can be suppressed as much as possible, and fluctuations in the height of each light emitting surface of the light emitting element can be appropriately suppressed after manufacturing.
  • a conductive paste containing an organic component is used for the conductive adhesive, and the organic component is removed by heat treatment when the conductive adhesive is cured. If organic components are contained even after curing, for example, when the jig is removed, the thickness of the adhesive layer may fluctuate, and thermal shrinkage and thermal expansion may easily occur due to environmental temperature changes after manufacturing. By removing the organic component, it is possible to appropriately suppress the fluctuation of the height of each light emitting surface of the light emitting element after manufacturing.
  • the adhesive is interspersed between each light emitting element and the substrate.
  • the entire surface between the substrate and the light emitting element is closely attached with the adhesive, air holes that are sealed at the interface between the substrate and the adhesive, the interface between the light emitting element and the adhesive, or the like are likely to be generated. .
  • the adhesion between the substrate and the light emitting element is likely to be lowered due to the thermal contraction or thermal expansion of the air present in the pores due to environmental temperature change or the like.
  • excess adhesive may spread around the light emitting element. Therefore, the above problem can be solved by interspersing the adhesive.
  • the jig is provided with a suction hole, and the light emitting surface of the light emitting element is brought into contact with the opposing surface of the jig and then sucked to bring the light emitting element into the jig. It is fixed. Thereby, each light emitting element can be easily fixed to and detached from the jig.
  • the present invention even if the thickness of the plurality of light emitting elements varies, it is possible to appropriately and easily match the light emitting surfaces of the light emitting elements to the same height. Therefore, the present invention
  • a hologram reproducing device having a highly accurate reproducing function can be manufactured.
  • FIG. 1 is a conceptual diagram in which hologram data is reproduced from a recording medium by a hologram reproducing device.
  • 2 to 5 are process diagrams (all partial sectional views cut from the thickness direction) showing the first embodiment of the present invention.
  • FIG. 6 is a partial plan view of the surface emitting laser and jig shown in FIG. 2 as viewed from directly above.
  • 7 and 8 are process drawings showing a second embodiment of the method for manufacturing a light emitting device according to the present invention.
  • FIG. 9 to 11 are views showing a substrate electrode structure suitable for the second embodiment and a manufacturing method thereof. Further, FIG. 9 is a partially enlarged cross-sectional view taken along the line AA shown in FIG. 11 and viewed from the direction of the arrow, and FIG. 10 shows the surface emitting laser, the substrate, and the substrate after the process of FIG. FIG. 11 is a partially enlarged plan view of the substrate and the adhesive shown in FIG. 9 as viewed from directly above.
  • FIG. 12 and FIG. 13 are diagrams showing electrode structures of other substrates suitable for the second embodiment.
  • Fig. 12 is a partially enlarged plan view of the electrodes and adhesive (solder) of another substrate viewed from directly above
  • Fig. 13 is a surface emitting laser bonded on the substrate shown in Fig. 12. It is the fragmentary sectional view which cut
  • FIG. 14 is a conceptual diagram for explaining the irradiation state of reproduction reference light when the surface emitting laser array manufactured according to the first or second embodiment is incorporated in a hologram reproduction apparatus.
  • a hologram reproducing apparatus 10 shown in FIG. 1 includes a surface emitting laser array 14 in which a plurality of surface emitting lasers (light emitting elements) 12 and 13 are formed on a substrate 50, a lens array 17, a CCD, a CMOS sensor, and the like.
  • the image pickup device 18, the pinhole filter 19, and an installation unit (not shown) for installing the recording medium 20 are configured.
  • Hologram data 21 is recorded on the recording medium 20 by a hologram recording device (not shown).
  • the hologram data 21 appears as interference fringes.
  • Figure 1 shows the horodala. Only one hologram data 21 is shown. Actually, a large number of hologram data 21 are recorded on the recording medium 20 by wavelength multiplexing or angle multiplexing.
  • the reproduction reference beam 22 is irradiated toward the recording medium 20 from the surface emitting laser 12 of the hologram reproducing apparatus shown in FIG.
  • the diameter of the reproduction reference beam 22 is expanded by the microlens 15 and further collimated by the collimator lens 16.
  • the reproduction reference beam 22 is applied to the recording medium 20 at an irradiation angle ⁇ 1.
  • the reproduction reference light 22 is irradiated onto the hologram data 21
  • the light is diffracted by the interference fringes satisfying the Bragg conditional expression, and the reproduction light (diffracted light) 23 is directed from the recording medium 20 toward the image sensor 18. Released.
  • the reproduction light 23 reaches the image sensor 18 through a pinhole 19a provided in the pinhole filter 19.
  • the contents of the hologram data 21 are reproduced.
  • the reason why the pinhole filter 19 is provided is that, when the reproduction reference light 22 is irradiated onto the recording medium 20, when the reproduction light of a plurality of hologram data is emitted from the recording medium 20, one of the reproduction lights 23 is provided in order for the image sensor 18 to receive light appropriately.
  • the pinhole filter 19 By providing the pinhole filter 19, a plurality of the hologram data 21 can be appropriately reproduced.
  • the light emitting surfaces of the plurality of surface emitting lasers 12 and 13 installed on the substrate 50 are formed at the same height as viewed from the reference plane in the optical design of the light emitting device. Has been.
  • a method for manufacturing the surface emitting laser array 14 in the embodiment of the present invention will be described.
  • the light emitting portions 12a and 13a are formed on the surface sides of the surface emitting lasers 12 and 13, and the light emitting portions are exposed.
  • the surfaces become the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13, respectively.
  • surface electrodes 31 and 32 are formed on the light emitting surfaces 12b and 13b.
  • back surface electrodes (light emitting element side electrodes) 33 and 34 are formed on the surfaces of the surface emitting lasers 12 and 13 opposite to the light emitting surfaces 12b and 13b, that is, on the back surfaces 12c and 13c.
  • the light emitting portions 12a and 13a are exposed and the surface opposite to the surface (the light emitting surfaces 12b and 13b in FIG. 2) is “light emitting”. Sometimes referred to as “face”. However, the surface on which the light emitting portions 12a and 13a of the surface emitting lasers 12 and 13 are exposed will be described as the “light emitting surface” of each surface emitting laser 12 and 13.
  • the surface of the light emitting units 12 and 13 is processed to be a flat surface.
  • the surface of the light emitting units 12 and 13 and at least a part of the surface around the surface are processed into a flat surface.
  • the surface is processed.
  • the surfaces of the surface electrodes 31 and 32 are formed in the same plane as the light emitting surfaces 12b and 13b.
  • the surface electrodes 31 and 32 protrude on the surfaces (light emitting surfaces) of the light emitting portions 12 and 13. It may be provided.
  • the surface of the surface electrodes 31 and 32 is planarized so as to be flush with the light emitting surfaces 12b and 13b, ie, The entire surface of the surface emitting lasers 12 and 13 will be described as “light emitting surfaces 12b and 13b”.
  • the thickness of the surface emitting laser 12 is H3, and the thickness of the surface emitting laser 13 is H4, and the thicknesses are H3 and H4.
  • the thickness dimension refers to the thickness dimension from the light emitting surfaces 12b and 13b to the back electrodes 33 and 34 (in this case, the thickness of the back electrodes 33 and 34 may be excluded).
  • the thickness dimensions H3 and H4 are different, the effects of the present invention are appropriately exhibited.
  • a jig 30 is prepared in which a surface 30 a facing the light emitting surfaces 12 b and 13 b of the surface emitting lasers 12 and 13 is formed.
  • the “jig” refers to a tool for carrying the surface emitting lasers 12 and 13 to a predetermined position on the substrate 50 while being attracted by a suction force.
  • the facing surface 30a of the jig 30 is formed in a flat shape so that the light emitting surfaces 12b and 13b are aligned on the same plane C when the surface emitting lasers 12 and 13 are attracted to the jig 30.
  • the material of the jig 30 is not particularly limited, but is transparent or transparent so that the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 can be seen from the surface 30c side of the jig 30. It is preferable that it is translucent. Further, in the present embodiment, as shown in FIG. 6, the planar shape of the jig 30 is a rectangular shape, and the planar area of each surface emitting laser 12, 13 is It is larger than the total area of plane areas. The planar shape of the jig 30 is not particularly limited.
  • suction holes 30b, 30b are formed at positions facing a part of the light emitting surfaces 12b, 13b of the surface emitting lasers 12, 13, and a suction mechanism (not shown) It is provided as a body or separate body. Then, by sucking air from the suction holes 30b and 30b in a state where the light emitting surfaces 12b and 13b are in contact with the facing surface 30a of the jig 30, the surface emitting lasers 12 and 13 are controlled by the treatment. It is fixed to the opposing surface 30a of the tool 30 by suction. However, another fixing method may be used.
  • the “contact” includes not only the case where the entire light emitting surfaces 12b and 13b are completely in contact with the facing surface 30a, but also the case where there is a slight gap. That is, it is sufficient that at least a part of the light emitting surfaces 12b and 13b and the facing surface 30a are in contact with each other and the surface emitting lasers 12 and 13 are fixed by the jig 30.
  • the surface electrodes 31 and 32 are formed to protrude on the light emitting surfaces 12b and 13b, there is a step between the light emitting surfaces 12b and 13b and the surfaces of the surface electrodes 31 and 32. Arise. In this case, strictly speaking, in the present embodiment, the light emitting surfaces 12b, 13 and the opposing surface 30a are not completely in contact with each other and a gap is generated.
  • the surface emitting lasers 12 and 13 are fixed to the jig 30 in a state where the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 are in contact with the facing surface 30a.
  • the surface emitting lasers 12 and 13 can be easily positioned on the jig 30.
  • a positioning mark portion 40 is provided on the surface 30c or the opposed surface 30a of the jig 30 as shown in FIG.
  • Positioning mark portions 41 are provided on the light emitting surfaces 12b and 13b, respectively.
  • the mark portions 40, 41 are on the imaginary line D parallel to the Y direction (length direction) shown in the figure and on the imaginary line E parallel to the X direction (direction perpendicular to the Y direction shown in the figure, width direction).
  • the surface emitting lasers 12 and 13 are positioned with respect to the jig 30 so that they are aligned in a straight line. Thereby, the surface emitting lasers 12 and 13 can be accurately positioned in the X direction and the Y direction shown in the drawing.
  • the substrate 50 is placed on the base 54.
  • Surface of the substrate 50 Substrate-side electrodes 51 and 52 are formed at positions facing the surface-emitting lasers 12 and 13, and solder 53 is applied as a conductive adhesive on the substrate-side electrodes 51 and 52.
  • an alloy mainly containing tin (Sn) is particularly preferably used.
  • Sn accounts for 50% by mass or more, more preferably 90% by mass or more of the total solder particles.
  • the metal that forms an alloy with Sn includes gold (Au), silver (Ag), copper (Cu), nickel (Ni), bismuth, depending on the purpose of the melting point of the solder or the electrical conductivity.
  • Au gold
  • Ag silver
  • Cu copper
  • Ni nickel
  • bismuth bismuth
  • One or more of (Bi), antimony (Sb), zinc (Zn), indium (In) force can be selected.
  • solder For example, gold, silver, and copper have high electrical conductivity, so Sn—Au, Sn—Ag, Sn—Cu, Sn—Ag—Cu alloys, etc., form solder with high electrical conductivity, but have a melting point. It is as high as 200 to 300 ° C.
  • the solder made of Sn_Bi alloy has excellent workability with a low melting point of 60-200 ° C, and hardly damages the substrate and the surface emitting laser.
  • Sn_Bi has a melting point of about 140 ° C and is optimal as a low melting point solder.
  • Sn—Au solder is preferably used for the solder 53.
  • the coating amount (film thickness) of the solder 53 is set to the film thickness required for the conventional solder connection and the interval. Set the thickness to take into account the difference (approximately 10 to 30 / im).
  • the surface emitting lasers 12 and 13 fixed to the jig 30 are opposed to the substrate 50.
  • the solder 53 is heated and melted by laser irradiation or the like.
  • the light emitting surfaces 12b and 13b described above are in the same height state, that is, while the surface 54a of the base 54, which is a reference surface for the height, and the opposing surface 30a of the jig 30 are kept in a parallel state, the treatment is performed.
  • the tool 30 is gradually brought closer to the substrate 50.
  • the surface emitting lasers 12 and 13 are pressed against the solder 53 simultaneously, and the space between the surface emitting lasers 12 and 13 and the substrate 50 is passed through the solder 53 in a molten state. And adhere.
  • the surface emitting laser 12 is thinner than the surface emitting laser 13. Therefore, as shown in FIG. 4, in the state where the surface emitting lasers 12 and 13 and the substrate 50 are in close contact with each other through the solder 53, the distance H6 between the surface emitting laser 12 and the substrate 50 is as follows. The distance H5 between the substrates 50 is larger.
  • the solder 53 since the thickness of the solder 53 is made thicker than before, the solder 53 can be appropriately interposed not only in the narrow interval H5 but also in the wide interval H6.
  • the solder 53 is cured while maintaining the above state.
  • the hardening of the solder 53 is gradually promoted as the temperature decreases. If it is desired to accelerate the hardening of the solder 53, the solder 53 may be forcibly cooled by a cooling mechanism (not shown).
  • the surface emitting lasers 12 and 13 can be fixed on the substrate 50 via the solder 53. Then, suction from the suction holes 30b and 30b of the jig 30 is stopped, the fixed state between the jig 30 and the surface emitting lasers 12 and 13 is released, and the jig 30 is removed.
  • the surface electrodes 31 and 32 of the surface emitting lasers 12 and 13 and the substrate side electrodes 55 and 56 formed on the surface of the substrate 50 are electrically connected by, for example, a wire 57 Connect (wire bonding).
  • back electrodes 33 and 34 of the surface emitting lasers 12 and 13 and the substrate-side electrodes 51 and 52 of the substrate 50 are also electrically connected by solder 53.
  • the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 can be formed at the same height when viewed from the reference surface.
  • the “same height” includes an error of about ⁇ 2 / im.
  • the jig 30 having the opposing surface 30a formed on the same plane C it is possible to easily and appropriately attach the surface emitting lasers 12 and 13 onto the substrate 50. Noh. That is, the same plane C that does not need to be adjusted individually for the height positions of the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 is maintained parallel to the reference surface (for example, the surface 54a shown in FIG. 3). However, the surface emitting lasers 12 and 13 need only be brought into close contact with the substrate 50 via the solder 53. Further, the height alignment of each light emitting surface 12b, 13b and the adhesion process of each surface emitting laser 12, 13 to the substrate 50 can be performed at the same time. Surface emitting lasers 12 and 13 are simultaneously placed on the substrate 50 Since it can be fixed, the manufacturing process can be simplified.
  • the reference planes at the height positions of the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 can be arbitrarily set depending on the optical design of the light emitting device.
  • the reference surface is the front surface 54a (the back surface of the substrate 50) 54a of the base 54 shown in FIG.
  • the surface emitting lasers 12 and 13 are fixed to the substrate 50 after adjusting the jig 30 so that the opposing surface 30a (same plane C) of the jig 30 and the surface 54a are parallel to each other. Is done.
  • the height from the surface 54a (reference surface) to each light emitting surface 12b, 13b becomes the same height, so that the optical design using the surface 54a reference surface (for example, surface emission with the surface 54a as a reference). It is possible to calculate the optimum distance from the light emitting surfaces 12b and 13b of the lasers 12 and 13 to the lens 16.
  • the optical design may be performed using the surface of the substrate 50 as a reference plane.
  • solder 53 which is a metal material, is used as the conductive adhesive in the steps of FIGS. 2 to 5, the surface emitting lasers 12, 13 and the substrate 50 (to be precise, the solder 53 and the The back surface electrodes 33 and 34 of the surface emitting lasers 12 and 13, the solder 53 and the substrate side electrodes 51 and 52 of the substrate 50, and the inside of the solder 53) are firmly bonded by metal bonding.
  • a conductive adhesive containing an organic component may be used as the conductive adhesive.
  • the jig 30 is removed and the pressing state in the direction of the substrate 50 by the jig 30 is released, or the height of the adhesive layer varies slightly due to environmental temperature changes, the light emission The height of the surfaces 12b and 13b from the reference surface may vary. For this reason, when using a conductive adhesive containing organic components, the above factors need to be considered.
  • the organic component when a conductive paste containing an organic component is used for the conductive adhesive, the organic component can be removed by heat treatment when the conductive adhesive is cured.
  • the conductive paste include metal resinates and those having metal particles and an organic vehicle (an organic solvent and a resin binder).
  • the organic component contained in the conductive paste is thermally decomposed and evaporated during the heat treatment.
  • the adhesive layer is finally formed of only metal, and a strong metal bond is formed between the surface emitting lasers 12 and 13 and the substrate 50.
  • the organic component is removed during the heat treatment, so the film thickness when the conductive adhesive is applied onto the substrate 50 and the heat treatment are used.
  • the film thickness of the subsequent adhesive layer varies greatly. Therefore, it is necessary to adjust the coating amount (film thickness) of the conductive adhesive in consideration of the film thickness reduction amount and the intervals H5 and H6 shown in FIG.
  • the conductive paste as described above even if several mass% of the organic component remains in the adhesive layer, as the conductive adhesive, for example, an anisotropic conductive paste ( Compared to the case of using ACP) or anisotropic conductive film (ACF), the film thickness variation of the adhesive layer when the jig 30 is removed can be reduced.
  • the method is for manufacturing one surface emitting laser array 14.
  • a large number of surface emitting lasers are fixed on a large substrate, and then the substrate is attached to each substrate. Cutting may be performed for each surface emitting laser array 14.
  • solder 53 is applied to the entire surface of the substrate-side electrodes 51 and 52 on the substrate 50.
  • solder 53 is applied to the entire surface of the substrate-side electrodes 51 and 52, as shown in FIG. 4, the solder 53 interposed between the surface emitting laser 13 having a large thickness and the substrate 50 has a thickness of The pressure is applied more than the solder 53 interposed between the thin surface emitting laser 12 and the substrate 50, and there is a possibility that excess solder 53 flows out from the periphery of the surface emitting laser 13 and adheres to an unexpected location.
  • the solder 53 and the surface emitting lasers 12, 13 are disposed between the solder 53 and the substrate 50.
  • a closed hole is easily formed between the two.
  • the holes are formed, the air existing in the holes is thermally expanded or compressed due to a change in environmental temperature or the like, so that the space between the solder 53 and the surface emitting lasers 12 and 13 and the solder 53 and the substrate 50 are increased. There is a risk of reducing the adhesion between the two.
  • a second embodiment as shown in FIGS. 7 and 8 can be considered.
  • a plurality of spherical solders 60 are scattered on the substrate-side electrodes 51 and 52 on the substrate 50.
  • the shape of the solder 60 is not limited to a spherical shape.
  • the surface emitting lasers 12 and 13 and the substrate 50 are interposed via the solder 60. Adhere closely. At this time, the solder 60 interposed between the thick surface emitting laser 13 and the substrate 50 is more crushed than the solder 60 interposed between the thin surface emitting laser 12 and the substrate 50.
  • solder 60 is cured in the state of FIG. 8, and the jig 30 is removed.
  • the solder 60 is scattered between the surface-emitting laser 13 and the substrate 50 even when the solder 60 is crushed by interspersing the solder 60. 0 can be avoided. Further, it is difficult to form a sealed hole between the surface emitting lasers 12 and 13 and the solder 60, or between the substrate 50 and the solder 60, and the adhesion between the surface emitting lasers 12 and 13 and the substrate 50 is strengthened. I can do it.
  • the size of the solder 60 may be different. Further, if at least one solder 60 is in close contact between the surface emitting laser 12 and the substrate 50 and between the surface emitting laser 13 and the substrate 50, conductivity can be ensured.
  • FIGS. 9 to 11 show a structure of a substrate side electrode suitable for the second embodiment.
  • the substrate-side electrode 51 is provided with a lattice-like groove 51a.
  • the groove 51a does not divide the electrode 51, and a part of the layer of the electrode 51 is left on the bottom surface of the groove 51a.
  • the substrate side electrode 52 is similarly provided with a groove, but only the substrate side electrode 51 will be described here.
  • a plurality of grooves 51a are provided in a straight line in the width direction (X direction in the drawing) and in the length direction (Y direction in the drawing) orthogonal to the width direction.
  • the shape of the groove 51a is not limited to the shape shown in FIGS. 9 and 11, but it is formed in a shape that can be removed from at least one side surface 5 lb of the electrode 51 (a shape that leads to the side surface 51b). Is preferred.
  • spherical solder 61 is scattered on the surface 51c (convex surface) of the electrode 51 excluding the groove 51a.
  • the solder 61 is melted, and the surface emitting laser 12 and the substrate 50 are brought into close contact with each other through the solder 61.
  • the solder 61 is crushed as shown in FIG.
  • the groove 51a is also excellent in solder wettability. Therefore, a part of the crushed solder 61 overflows from the surface 51c and escapes into the groove 51a. In this way, the groove 51a overflows It can function as an escape groove for the solder 61.
  • the groove 5 la also functions as an air escape groove when the solder 61 is crushed, so that a hole in which air is sealed is created between the solder 61 and the electrode 51.
  • the solder 61 is cured, and the surface emitting laser 12 is fixed on the substrate 50.
  • the electrode 51 is divided into a plurality of small electrodes 51d by forming the groove 51e.
  • solder 62 is scattered on the surface of each small electrode 51d. Next, the solder 62 is melted and the surface emitting laser 12 and the substrate 50 are brought into close contact with each other through the solder 62, and then the solder 62 is cured to fix the surface emitting laser 12 on the substrate 50. To do.
  • the surface of the substrate 50 is exposed in the groove 51e between the small electrodes 51d. Since the surface of the substrate 50 has poor solder wettability, the solder 62 hardly flows onto the substrate 50 when the solder 62 is crushed. (However, as in the case of the groove 51a, the groove 51e has a sufficient function as an air escape groove.)
  • the structure of the present electrode it is effective to use, for example, a solder adhesive containing solder and an organic component (resin) as the conductive adhesive.
  • a solder adhesive containing solder and an organic component (resin)
  • an organic component for example, a thermosetting resin is used, which is separated from the solder by heating to cause thermosetting.
  • the resin 65 mainly escapes into the groove 51e.
  • the solder 66 stays between the small electrode 51d and the back electrode 33 of the surface emitting laser 12, and the small electrode 51d and the back electrode. Adhere 33. In this way, the force S can be used to cause the groove 51e to function as a relief groove for the resin 65.
  • the light emitting surfaces 121) and 13b of the plurality of surface emitting lasers 12 and 13 attached to the surface emitting laser array 14 are formed at the same height when viewed from the reference surface. I can do it.
  • the same effect can be obtained even if grooves are formed in the back surface electrodes 33 and 34 of the force-emitting lasers 12 and 13 in which the grooves 51a and 51e are formed in the substrate 50. it can.
  • the light emitting surfaces 12b, 13 of the plurality of surface emitting lasers 12, 13 are provided.
  • the distances H7 and H8 between b and the principal point 16a of the lens 16 can be made equal. Accordingly, both the reproduction reference light 22 emitted from the surface emitting laser 12 and the reproduction reference light 71 emitted from the surface emitting laser 13 can be adjusted to parallel light by the lens 16. Therefore, even if the surface emitting lasers 12 and 13 for obtaining a wavelength capable of reproducing the hologram data 21 are switched, it is possible to obtain the reproduction reference beams 22 and 71 having a certain light intensity or more with parallel light. Program data 21 can be reproduced properly.
  • the reproduction reference light can be obtained as parallel light having a certain light intensity or more in a wide wavelength band. Therefore, it is possible to manufacture a hologram reproducing apparatus having an excellent hologram reproducing function.
  • the surface of the element of the surface emitting lasers 12 and 13 is clearly formed as an uneven surface and the surface of the element is not formed as a flat surface.
  • the light emitting surfaces 12b and 13b are positioned on the convex surface (outermost surface), the light emitting surfaces 12b and 13b may be brought into contact with the facing surface 30a of the jig 30.
  • the concave surface cannot be brought into contact with the facing surface 30a. Therefore, the convex surface which is the outermost surface of the surface emitting laser ( The light emitting surface is not positioned) and the opposed surface 30a of the jig 30 is brought into contact with the opposing surface 30a. In such a case, even if the manufacturing method of the present embodiment is used, the variation in the height dimension between the convex surface of each of the surface emitting lasers 12 and 13 and the surface of the concave portion is caused by the light emitting surface 12b of the surface emitting lasers 12 and 13. , 13b remains as a variation in height.
  • the variation in the height of the light emitting surfaces 12b and 13b is significantly reduced as compared with the conventional case. It is possible.
  • the variation of the height dimension at this time is about ⁇ 2 zm.
  • the surface emitting lasers 12 and 13 are attracted and fixed to the jig 30, the surface emitting lasers 12b and 13b of the surface emitting lasers 12 and 13 are set to the same height. It is necessary to fix the surface emitting lasers 12 and 13 to the jig 30 in a suitable state.
  • the conductive adhesive may be solder or a conductive paste containing an organic component.
  • the organic component is preferably removed by heat treatment during curing.
  • the hologram reproducing device 10 has been described as an example of use of the surface emitting laser array 14, but is not limited to the hologram reproducing device. This is applicable to applications where a plurality of surface emitting lasers are used and the surface of each surface emitting laser is required to have the same height.
  • the surface emitting laser is used as the “light emitting element”, it is not limited to the surface emitting laser.
  • a conductive adhesive such as the solder 53 of Fig. 3
  • it is easy to apply the conductive adhesive on the substrate side electrodes 51 and 52.
  • it may be applied to the back electrodes 33 and 34 of the surface emitting lasers 12 and 13, or may be applied to both the substrate side electrodes 51 and 52 and the back electrodes 33 and 34. Also good.
  • the form of the conductive adhesive is not particularly limited, such as a paste, a film, or a powder.
  • the method for forming the conductive adhesive on the substrate-side electrodes 51, 52 is not particularly limited, such as screen printing, an ink jet method, a sputtering method, or the like.
  • Two electrodes may be provided.
  • the surface emitting lasers 12 and 13 are fixed on the substrate 50 by forming small electrodes corresponding to the respective electrodes on the substrate 50 and bringing the electrodes' small electrodes into close contact with each other with a conductive adhesive. .
  • FIG. 1 is a conceptual diagram for reproducing hologram data from a recording medium by a hologram reproducing device.
  • FIG. 2 is a process diagram showing a method for manufacturing a light emitting device (surface emitting laser array) according to a first embodiment of the present invention. (Partial sectional view cut from the thickness direction),
  • FIG. 3 The next process diagram of FIG. 2 (partial sectional view cut from the thickness direction),
  • FIG. 4 The next process diagram of FIG. 3 (partial sectional view cut from the thickness direction),
  • FIG. 5 Next process diagram of FIG. 4 (partial sectional view cut from the thickness direction),
  • FIG. 6 is a partial plan view of the surface emitting laser and jig shown in FIG.
  • FIG. 7 is a process chart showing a second embodiment of the present invention.
  • FIG. 8 Process diagram following FIG.
  • FIG. 9 is a process diagram showing a manufacturing method using a substrate-side electrode suitable for the second embodiment (the substrate and the adhesion as seen from the direction of the arrow cut in the thickness direction along the line AA shown in FIG. 11) (Partial enlarged sectional view of the agent (solder)),
  • FIG. 10 is a process diagram subsequent to FIG. 9 (partially enlarged sectional view of the substrate, the surface emitting laser and the adhesive (solder) showing a state where the surface emitting laser and the substrate are joined after the process of FIG. 9);
  • FIG. 11 Partial enlarged plan view of the substrate and adhesive (solder) shown in FIG.
  • FIG. 12 is an enlarged plan view of a part of another electrode substrate and an adhesive (solder) suitable for the second embodiment as seen from directly above.
  • FIG. 13 is a partial sectional view of the substrate in which a surface emitting laser is bonded to the substrate shown in FIG. 12, the adhesive (solder), and the surface emitting laser cut in a thickness direction force;
  • FIG. 14 is a conceptual diagram for explaining the irradiation state of reproduction reference light when the surface-emitting laser array produced by the production method according to the present embodiment is incorporated in a hologram reproduction apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Holo Graphy (AREA)
  • Optical Head (AREA)

Abstract

[PROBLEMS] To provide a method of manufacturing a light-emitting device capable of, particularly, properly and easily positioning the light-emitting surfaces of light-emitting elements at the same height. [MEANS FOR SOLVING THE PROBLEMS] Surface emitting lasers (12, 13) are so secured by means of a tool (30) that the light-emitting surfaces (12b, 13b) of the surface emitting lasers (12, 13) are in contact with the facing flat surface (30a) of the tool (30). With the light emitting surfaces (12b, 13b) positioned at the same height, the jig (30) is moved near a base (50), and the surface emitting lasers (12, 13) are joined to the base (50) with molten solder (53). The solder (53) is hardened to secure the surface emitting lasers (12, 13) onto the base (50).

Description

発光装置の製造方法  Method for manufacturing light emitting device
技術分野  Technical field
[0001] 本発明は、例えばホログラム再生装置に使用される発光装置の製造方法に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a manufacturing method of a light emitting device used for a hologram reproducing device, for example.
[0002] 下記の特許文献に記載されているように、ホログラムデータの再生では、再生参照 光を、ホログラムデータが記録された記録媒体に入射させると、ブラッグ条件式により 、前記再生参照光が前記データの干渉縞で回折され、再生光が発せられる。そして 、前記再生光に含まれるホログラムデータの内容が、 CCDや CMOSセンサなどから なる撮像素子により読み出される。  [0002] As described in the following patent document, in reproduction of hologram data, when reproduction reference light is incident on a recording medium on which hologram data is recorded, the reproduction reference light is It is diffracted by the interference fringes of the data, and reproduced light is emitted. Then, the content of the hologram data contained in the reproduction light is read out by an imaging device such as a CCD or a CMOS sensor.
[0003] ところで下記の特許文献に記載されているように、前記再生参照光を発光する発光 装置には、例えば、複数の面発光レーザ (VCSEL :Vertical Cavity Surface E mitting Laser)が配置された面発光レーザアレイが使用される。  By the way, as described in the following patent document, the light emitting device that emits the reproduction reference light includes, for example, a surface on which a plurality of surface emitting lasers (VCSEL: Vertical Cavity Surface Emitting Laser) are arranged. A light emitting laser array is used.
[0004] このように複数の面発光レーザを用いる利点は、容易に且つ安価に、前記再生参 照光の波長帯域を広くできるためである。すなわち再生参照光の波長帯域の異なる 複数の面発光レーザを組み合わせることで、広範な波長帯域を得ることが可能であ る。このように広範な波長帯域を有する面発光レーザアレイであれば、複数のホログ ラムデータが波長多重にて広範な波長帯域で記録されてレ、る場合に、その波長帯域 の全域をカバーすることが可能である。よって適切に各ホログラムデータを再生する ことが出来る。  [0004] The advantage of using a plurality of surface emitting lasers in this way is that the wavelength band of the reproduction reference light can be widened easily and inexpensively. In other words, a wide range of wavelength bands can be obtained by combining a plurality of surface emitting lasers having different wavelength bands of the reproduction reference light. In the case of a surface emitting laser array having such a wide wavelength band, when a plurality of holographic data is recorded in a wide wavelength band by wavelength multiplexing, the entire wavelength band should be covered. Is possible. Therefore, each hologram data can be reproduced appropriately.
[0005] また、波長ひで記録されたホログラムデータが、例えば記録媒体の異方性熱膨張 等により、前記ホログラムデータを波長ひで再生できず前記波長ひと異なる波長 βで 再生しなければならない場合、上記の面発光レーザであれば、その波長を有する面 発光レーザに切り替えることで、適切に前記ホログラムデータを再生することが可能 である。  [0005] In addition, when hologram data recorded with a wavelength band cannot be reproduced with a wavelength band due to, for example, anisotropic thermal expansion of a recording medium, the hologram data must be reproduced with a different wavelength β. In the case of a surface emitting laser, it is possible to appropriately reproduce the hologram data by switching to a surface emitting laser having the wavelength.
特許文献 1 :特開 2005— 331864号公報 特許文献 2:特開 2006— 58726号公報 Patent Document 1: JP 2005-331864 A Patent Document 2: Japanese Unexamined Patent Publication No. 2006-58726
特許文献 2 :特開 2003— 233293号公報  Patent Document 2: JP 2003-233293 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしながら、面発光レーザの製造過程で、前記面発光レーザに厚さのばらつきが 生じた。 [0006] However, in the process of manufacturing the surface emitting laser, the surface emitting laser has a thickness variation.
[0007] 前記面発光レーザに厚さのばらつきが生じると以下の問題点が生じた。  [0007] When the surface emitting laser has a variation in thickness, the following problems occur.
[0008] 図 15に示すように、基板 1上に 2つの面発光レーザ 2, 3が設置されて、面発光レー ザアレイ 6が構成される。  As shown in FIG. 15, two surface emitting lasers 2 and 3 are installed on a substrate 1 to form a surface emitting laser array 6.
[0009] この面発光レーザアレイ 6と記録媒体 5との間には、レンズ 4が設けられている。この レンズ 4にて、前記面発光レーザ 2, 3から照射された再生参照光 2a, 3aが平行光に 調整される。 A lens 4 is provided between the surface emitting laser array 6 and the recording medium 5. With this lens 4, the reproduction reference beams 2a and 3a emitted from the surface emitting lasers 2 and 3 are adjusted to parallel beams.
[0010] ところで、前記面発光レーザ 2, 3の厚さは必ずしも同一ではないため、前記基板 1 から見た前記面発光レーザ 2, 3の発光面 (発光部の表面) 2b, 3bの高さは異なる。 つまり、前記面発光レーザ 2の発光面 2bと前記レンズ 4の主点 4aとの距離 HIと、前 記面発光レーザ 3の発光面 3bと前記レンズ 4の主点 4aとの距離 H2とは異なることと なる。  [0010] By the way, since the thicknesses of the surface emitting lasers 2 and 3 are not necessarily the same, the heights of the light emitting surfaces (surfaces of the light emitting portions) 2b and 3b of the surface emitting lasers 2 and 3 viewed from the substrate 1 are as follows. Is different. That is, the distance HI between the light emitting surface 2b of the surface emitting laser 2 and the principal point 4a of the lens 4 is different from the distance H2 between the light emitting surface 3b of the surface emitting laser 3 and the principal point 4a of the lens 4. It will be.
[0011] このため、図 15に示すように、例えば前記面発光レーザ 3の再生照射光 3aを平行 光となるように前記発光面 3bと前記レンズ 4の主点 4aとの距離を H2とした場合、前 記発光面 2bと主点 4aとの距離 HIが前記距離 H2よりも短力べなるため、もう一方の再 生参照光 2aは拡散光になる。逆に面発光レーザ 2の照射光 2aが平行光となるように 前期距離 HIを設定した場合、前記面発光レーザ 2の再生照射光 2aは集束光となつ てしまう。再生照射光が拡散光や集束光となった場合、前記ホログラムデータ 7全体 に再生照射光が平行光として照射されなくなる。その結果、ホログラムの各干渉縞に 対する再生照射光の入射角度が異なることとなり、前記ホログラムデータ 7を再生でき ないといった問題が生じる。  For this reason, as shown in FIG. 15, for example, the distance between the light emitting surface 3b and the principal point 4a of the lens 4 is H2 so that the reproduction irradiation light 3a of the surface emitting laser 3 becomes parallel light. In this case, since the distance HI between the light emitting surface 2b and the principal point 4a is shorter than the distance H2, the other reproduction reference light 2a is diffused light. On the contrary, when the distance HI is set so that the irradiation light 2a of the surface emitting laser 2 becomes parallel light, the reproduction irradiation light 2a of the surface emitting laser 2 becomes focused light. When the reproduction irradiation light is diffused light or focused light, the entire hologram data 7 is not irradiated with the reproduction irradiation light as parallel light. As a result, the incident angle of the reproduction irradiation light with respect to each interference fringe of the hologram is different, resulting in a problem that the hologram data 7 cannot be reproduced.
[0012] また、前記面発光レーザの厚さが同一である場合でも、前記面発光レーザを基板 上に固定するための前記面発光レーザと基板間に介在する接着層の厚さのばらつ きにより、面発光レーザの発光面の高さ位置がばらつくこともある。 [0012] Even when the surface emitting lasers have the same thickness, the thickness of the adhesive layer interposed between the surface emitting laser and the substrate for fixing the surface emitting laser on the substrate varies. As a result, the height position of the light emitting surface of the surface emitting laser may vary.
[0013] そこで本発明は上記従来の課題を解決するためのものであり、特に、適切且つ容 易に複数の発光素子の各各発光面の高さのばらつきを従来よりも抑制することが可 能な発光装置の製造方法を提供することを目的としてレ、る。  Therefore, the present invention is for solving the above-described conventional problems, and in particular, it is possible to suppress variation in height of each light emitting surface of a plurality of light emitting elements more appropriately and easily than before. The purpose is to provide a method for manufacturing an efficient light emitting device.
課題を解決するための手段  Means for solving the problem
[0014] 本発明は、基板上に複数の発光素子が設けられた発光装置の製造方法において 複数の前記発光素子の各発光面を前記基板上にて同一高さに合わせた状態で、 前記発光素子を前記基板上に接着剤を介して密着させ、 [0014] The present invention provides a method of manufacturing a light-emitting device in which a plurality of light-emitting elements are provided on a substrate, wherein the light-emitting surfaces of the plurality of light-emitting elements are aligned at the same height on the substrate. The element is adhered to the substrate via an adhesive,
その後、前記接着剤を硬化して、前記発光素子を前記基板上に固定することを特 徴とするものである。  Then, the adhesive is cured, and the light emitting element is fixed on the substrate.
[0015] これにより、複数の前記発光素子の厚さがばらついていても(少なくとも一つの発光 素子が、他の発光素子と異なる膜厚で形成されている)、適切且つ容易に前記発光 素子の各発光面を同一高さに合わせることが可能である。また、一度に、各発光素子 の発光面を同一高さに合わせた状態で、接着工程及び固定工程を行うので、各発 光素子を別々に接着固定せず、製造工程を簡略化できる。そして本発明の製造方 法にて製造された発光装置をホログラム再生装置に使用した場合、高精度な再生機 能を有するホログラム再生装置を製造できる。  [0015] Thereby, even if the thickness of the plurality of light emitting elements varies (at least one light emitting element is formed with a film thickness different from that of the other light emitting elements), the light emitting elements of the light emitting elements can be appropriately and easily formed. Each light emitting surface can be adjusted to the same height. In addition, since the bonding process and the fixing process are performed at a time with the light emitting surfaces of the respective light emitting elements being set to the same height, the manufacturing process can be simplified without individually bonding and fixing the light emitting elements. When the light emitting device manufactured by the manufacturing method of the present invention is used for a hologram reproducing device, a hologram reproducing device having a highly accurate reproducing function can be manufactured.
[0016] 本発明では、複数の前記発光素子を治具に取り付けて、各発光面を同一高さに合 わせ、前記同一高さを維持しながら前記発光素子を基板上に接着剤を介して密着さ せ、前記接着剤を硬化した後、前記治具を除去することが好ましい。これに各発光面 の高さ位置合わせ、さらにその後の接着剤への密着工程、及び固定工程を、前記治 具を用いて行うことが出来るので、高精度に前記発光素子を基板上に位置を合わせ て固定できるとともに、製造工程を簡略化できる。  [0016] In the present invention, a plurality of the light emitting elements are attached to a jig, the light emitting surfaces are made to have the same height, and the light emitting elements are placed on a substrate via an adhesive while maintaining the same height. It is preferable that the jig is removed after the adhesive is cured and the adhesive is cured. In addition, since the height alignment of each light emitting surface and the subsequent adhesion process to the adhesive and the fixing process can be performed using the jig, the light emitting element can be positioned on the substrate with high accuracy. They can be fixed together and the manufacturing process can be simplified.
[0017] また本発明では、以下の工程を有することが好ましい。  In the present invention, it is preferable to have the following steps.
(a) 前記各発光面と対向する対向面が同一平面として形成された前記治具を用 意し、前記対向面に複数の前記発光素子の各発光面を当接させることにより、前記 各発光素子の前記発光面を同一の平面上に保持する工程と、 (b) 上記状態を維持したまま、前記発光素子を前記治具に固定する工程と、(a) preparing the jig in which an opposing surface facing each light emitting surface is formed as the same plane, and bringing each light emitting surface of the plurality of light emitting elements into contact with the opposing surface; Holding the light emitting surface of the element on the same plane; (b) fixing the light emitting element to the jig while maintaining the state;
(c) 前記治具を前記基板上に対向させ、前記基板上の基準面と前記治具の対向 面とを平行状態に維持しながら、前記基板と前記発光素子間を前記接着剤を介して 密着させる工程と、 (c) The jig is opposed to the substrate, and the reference surface on the substrate and the opposed surface of the jig are maintained in a parallel state, while the substrate and the light emitting element are interposed via the adhesive. A process of adhering;
(d) 上記平行状態を維持しながら、前記接着剤を硬化して、前記発光素子を前記 基板上に固定する工程と、  (d) curing the adhesive while maintaining the parallel state, and fixing the light emitting element on the substrate;
上記した治具を用いることで、より簡単且つより高精度に、複数の前記発光素子の 各発光面が同一高さに調製された発光装置を製造できる。  By using the jig described above, it is possible to manufacture a light emitting device in which the light emitting surfaces of the plurality of light emitting elements are adjusted to the same height more easily and with higher accuracy.
[0018] また本発明は、基板上に複数の発光素子が設けられた発光装置の製造方法にお いて、 [0018] Further, the present invention provides a method for manufacturing a light emitting device in which a plurality of light emitting elements are provided on a substrate.
複数の前記発光素子の各発光面と対向する対向面が同一な平面状に形成された 治具を用意し、各発光素子を発光面側から前記治具の前記対向面に当接させて前 記治具に固定した状態で、前記発光素子を前記基板上に接着剤を介して密着させ その後、前記接着剤を硬化して、前記発光素子を前記基板上に固定し、さらに、前 記発光素子と前記治具間の固定状態を解除し、前記治具を除去することを特徴とす るものである。  Prepare a jig in which the opposed surfaces facing the respective light emitting surfaces of the plurality of light emitting elements are formed in the same plane, and bring each light emitting element into contact with the opposed surface of the jig from the light emitting surface side before In a state where the light-emitting element is fixed to the jig, the light-emitting element is brought into close contact with the substrate through an adhesive, and then the adhesive is cured to fix the light-emitting element onto the substrate. The fixed state between the element and the jig is released, and the jig is removed.
[0019] これにより、簡単且つ適切に、複数の前記発光素子の各発光面の高さのばらつき を従来より抑制できる。  [0019] Thereby, the variation in height of the light emitting surfaces of the plurality of light emitting elements can be more easily and appropriately suppressed than in the past.
[0020] また本発明では、前記発光素子の前記発光面との反対面、及び前記基板の表面 には、夫々、電極が設けられており、前記発光素子の反対面の電極と、前記基板表 面の電極の少なくとも一方には溝が形成され、前記溝を除く前記電極上に前記接着 剤を設けることが好ましい。さらに、前記溝により前記電極を小電極に分割形成したり 、前記溝を格子状に形成してもよい。この溝により、前記発光素子を前記基板上に密 着させた際に例えば余分な前記接着剤や空気を逃がすための逃げ溝として機能さ せることが出来る。  In the present invention, electrodes are provided on the surface opposite to the light emitting surface of the light emitting element and the surface of the substrate, respectively, and the electrode on the opposite surface of the light emitting element and the substrate surface are provided. It is preferable that a groove is formed in at least one of the electrodes on the surface, and the adhesive is provided on the electrode excluding the groove. Further, the electrodes may be divided into small electrodes by the grooves, or the grooves may be formed in a lattice shape. This groove can function as an escape groove for releasing, for example, excess adhesive and air when the light emitting element is adhered onto the substrate.
[0021] また本発明では、前記発光素子の前記発光面との反対面、及び前記基板の表面 には、夫々、電極が設けられており、前記接着剤には導電性接着剤を使用し、発光 素子側電極と基板側電極間を、前記導電性接着剤を介して導通接続させることが好 ましい。 In the present invention, electrodes are provided on the surface opposite to the light emitting surface of the light emitting element and the surface of the substrate, respectively, and a conductive adhesive is used as the adhesive. Light emission It is preferable that the element side electrode and the substrate side electrode are electrically connected via the conductive adhesive.
[0022] このとき、前記導電性接着剤には半田を用いることが好ましい。これにより、容易に 前記基板側電極と前記発光素子側電極間を導通接続させることが出来る。しかも半 田を用いた場合は、基板側電極と前記発光素子側電極間を金属結合にて強固に結 合でき、例えば前記治具を除去した際に、接着層の膜厚が変動したり、環境温度変 化等による熱収縮や熱膨張を極力抑えることができ、製造後に、前記発光素子の各 発光面の高さが変動することを適切に抑制できる。  At this time, it is preferable to use solder for the conductive adhesive. Thereby, the substrate side electrode and the light emitting element side electrode can be easily connected to each other. In addition, when using a solder, the substrate side electrode and the light emitting element side electrode can be firmly bonded by metal bonding, for example, when the jig is removed, the film thickness of the adhesive layer varies, Thermal contraction and thermal expansion due to environmental temperature changes and the like can be suppressed as much as possible, and fluctuations in the height of each light emitting surface of the light emitting element can be appropriately suppressed after manufacturing.
[0023] また本発明では、前記導電性接着剤には有機成分を含む導電性ペーストを用い、 前記導電性接着剤の硬化の際、加熱処理にて前記有機成分を除去することが好ま しい。硬化後においても有機成分が含まれると、例えば前記治具を除去した際に、接 着層の膜厚が変動したり、また製造後、環境温度変化等によって熱収縮や熱膨張が 起こりやすいが、前記有機成分を除去することで、製造後に、前記発光素子の各発 光面の高さが変動することを適切に抑制できる。  In the present invention, it is preferable that a conductive paste containing an organic component is used for the conductive adhesive, and the organic component is removed by heat treatment when the conductive adhesive is cured. If organic components are contained even after curing, for example, when the jig is removed, the thickness of the adhesive layer may fluctuate, and thermal shrinkage and thermal expansion may easily occur due to environmental temperature changes after manufacturing. By removing the organic component, it is possible to appropriately suppress the fluctuation of the height of each light emitting surface of the light emitting element after manufacturing.
[0024] また本発明では、前記接着剤を、各発光素子と基板間に点在させることが好ましい 。前記基板と前記発光素子間の全面を前記接着剤にて密着させると、前記基板と接 着剤間の界面や、前記発光素子と前記接着剤間の界面等に密閉された空孔が生じ やすい。かかる場合、環境温度変化等によって前記空孔内に存在する空気が熱収 縮や熱膨張を起こすことで前記基板と発光素子間の密着性が低下しやすい。また、 前記発光素子と基板間を密着させたときに余分な接着剤が前記発光素子の周囲に 広がる可能性もある。したがって前記接着剤を点在させることで、上記問題を解決す ることが出来る。  In the present invention, it is preferable that the adhesive is interspersed between each light emitting element and the substrate. When the entire surface between the substrate and the light emitting element is closely attached with the adhesive, air holes that are sealed at the interface between the substrate and the adhesive, the interface between the light emitting element and the adhesive, or the like are likely to be generated. . In such a case, the adhesion between the substrate and the light emitting element is likely to be lowered due to the thermal contraction or thermal expansion of the air present in the pores due to environmental temperature change or the like. In addition, when the light emitting element and the substrate are brought into close contact with each other, excess adhesive may spread around the light emitting element. Therefore, the above problem can be solved by interspersing the adhesive.
[0025] また、前記治具には吸引孔が設けられており、前記治具の対向面に前記発光素子 の発光面を当接させた後、吸引することにより前記発光素子を前記治具に固定して いる。これにより、容易に各発光素子を治具に固定、離脱させることができる。  [0025] In addition, the jig is provided with a suction hole, and the light emitting surface of the light emitting element is brought into contact with the opposing surface of the jig and then sucked to bring the light emitting element into the jig. It is fixed. Thereby, each light emitting element can be easily fixed to and detached from the jig.
発明の効果  The invention's effect
[0026] 本発明によれば、複数の発光素子の厚さがばらついていても、適切且つ容易に前 記発光素子の各発光面を同一高さに合わせることが可能である。したがって本発明 の製造方法にて製造された発光装置をホログラム再生装置に使用した場合、高精度 な再生機能を有するホログラム再生装置を製造できる。 [0026] According to the present invention, even if the thickness of the plurality of light emitting elements varies, it is possible to appropriately and easily match the light emitting surfaces of the light emitting elements to the same height. Therefore, the present invention When the light emitting device manufactured by this manufacturing method is used for a hologram reproducing device, a hologram reproducing device having a highly accurate reproducing function can be manufactured.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 図 1は、ホログラム再生装置によって記録媒体からホログラムデータを再生する概念 図である。  FIG. 1 is a conceptual diagram in which hologram data is reproduced from a recording medium by a hologram reproducing device.
図 2〜図 5は、本発明における第 1の実施形態を示す工程図(いずれも厚さ方向か ら切断した部分断面図)である。  2 to 5 are process diagrams (all partial sectional views cut from the thickness direction) showing the first embodiment of the present invention.
図 6は、図 2に示す面発光レーザ及び治具を真上から見た部分平面図である。 図 7、図 8は、本発明における発光装置の製造方法の第 2の実施形態を示す工程 図である。  FIG. 6 is a partial plan view of the surface emitting laser and jig shown in FIG. 2 as viewed from directly above. 7 and 8 are process drawings showing a second embodiment of the method for manufacturing a light emitting device according to the present invention.
図 9〜図 11は、第 2の実施形態に好適な基板の電極構造およびその製造方法を 示す図である。さらに言えば、図 9は、図 11に示す A— A線に沿って厚み方向に切 断し矢印方向から見た部分拡大断面図、図 10は図 9の工程後に前記面発光レーザ と基板とを接合した状態を示す部分拡大断面図、図 11は図 9に示す基板及び接着 剤を真上から見た部分拡大平面図である。  9 to 11 are views showing a substrate electrode structure suitable for the second embodiment and a manufacturing method thereof. Further, FIG. 9 is a partially enlarged cross-sectional view taken along the line AA shown in FIG. 11 and viewed from the direction of the arrow, and FIG. 10 shows the surface emitting laser, the substrate, and the substrate after the process of FIG. FIG. 11 is a partially enlarged plan view of the substrate and the adhesive shown in FIG. 9 as viewed from directly above.
図 12、図 13は、第 2の実施形態に好適な他の基板の電極構造を示す図である。さ らに言えば、図 12は、他の基板の電極及び接着剤(半田)を真上から見た部分拡大 平面図、図 13は、図 12に示す基板上に面発光レーザを接合させた状態で、 B_B 線に沿って厚み方向に切断し矢印方向から見た部分断面図である。  FIG. 12 and FIG. 13 are diagrams showing electrode structures of other substrates suitable for the second embodiment. In other words, Fig. 12 is a partially enlarged plan view of the electrodes and adhesive (solder) of another substrate viewed from directly above, and Fig. 13 is a surface emitting laser bonded on the substrate shown in Fig. 12. It is the fragmentary sectional view which cut | disconnected in the thickness direction along the B_B line | wire and was seen from the arrow direction in the state.
図 14は、上記第 1または第 2の実施形態によって製造された面発光レーザアレイを ホログラム再生装置に組み込んだ場合の再生参照光の照射状態を説明するための 概念図である。  FIG. 14 is a conceptual diagram for explaining the irradiation state of reproduction reference light when the surface emitting laser array manufactured according to the first or second embodiment is incorporated in a hologram reproduction apparatus.
[0028] 図 1に示すホログラム再生装置 10は、基板 50上に複数の面発光レーザ (発光素子 ) 12, 13が形成された面発光レーザアレイ 14と、レンズアレイ 17と、 CCDや CMOS センサなどからなる撮像素子 18と、ピンホールフィルタ 19と、記録媒体 20を設置する ための設置部(図示しなレ、)で構成される。  A hologram reproducing apparatus 10 shown in FIG. 1 includes a surface emitting laser array 14 in which a plurality of surface emitting lasers (light emitting elements) 12 and 13 are formed on a substrate 50, a lens array 17, a CCD, a CMOS sensor, and the like. The image pickup device 18, the pinhole filter 19, and an installation unit (not shown) for installing the recording medium 20 are configured.
[0029] 記録媒体 20には、図示しないホログラム記録装置によってホログラムデータ 21が記 録されている。前記ホログラムデータ 21は干渉縞として現れる。図 1では前記ホロダラ ムデータ 21は一つだけ図示されている力 実際には多数の前記ホログラムデータ 21 が波長多重や角度多重にて記録媒体 20に記録されている。 [0029] Hologram data 21 is recorded on the recording medium 20 by a hologram recording device (not shown). The hologram data 21 appears as interference fringes. Figure 1 shows the horodala. Only one hologram data 21 is shown. Actually, a large number of hologram data 21 are recorded on the recording medium 20 by wavelength multiplexing or angle multiplexing.
[0030] 今、図 1に示すホログラム再生装置の前記面発光レーザ 12から再生参照光 22を前 記記録媒体 20に向けて照射する。前記再生参照光 22の光径は、前記マイクロレン ズ 15にて広げられ、さらにコリメートレンズ 16にて平行光にされる。  Now, the reproduction reference beam 22 is irradiated toward the recording medium 20 from the surface emitting laser 12 of the hologram reproducing apparatus shown in FIG. The diameter of the reproduction reference beam 22 is expanded by the microlens 15 and further collimated by the collimator lens 16.
[0031] 前記再生参照光 22は前記記録媒体 20に照射角度 θ 1で照射される。前記再生参 照光 22が前記ホログラムデータ 21に照射されると、ブラッグ条件式を満たす干渉縞 では光が回折して、再生光(回折光) 23が前記記録媒体 20から前記撮像素子 18に 向けて放出される。このとき前記再生光 23は前記ピンホールフィルタ 19に設けられ たピンホール 19aを通って前記撮像素子 18に到達する。前記撮像素子 18では、前 記ホログラムデータ 21の内容が再生される。前記ピンホールフィルタ 19を設ける理由 は、前記再生参照光 22を前記記録媒体 20に照射したときに、前記記録媒体 20から 複数のホログラムデータの再生光が放射されたとき、そのうちの一つの再生光 23の みを適切に前記撮像素子 18にて受光させるために設けられたものである。前記ピン ホールフィルタ 19を設けることで、複数の前記ホログラムデータ 21を夫々適切に再生 することが可能である。  [0031] The reproduction reference beam 22 is applied to the recording medium 20 at an irradiation angle θ1. When the reproduction reference light 22 is irradiated onto the hologram data 21, the light is diffracted by the interference fringes satisfying the Bragg conditional expression, and the reproduction light (diffracted light) 23 is directed from the recording medium 20 toward the image sensor 18. Released. At this time, the reproduction light 23 reaches the image sensor 18 through a pinhole 19a provided in the pinhole filter 19. In the image sensor 18, the contents of the hologram data 21 are reproduced. The reason why the pinhole filter 19 is provided is that, when the reproduction reference light 22 is irradiated onto the recording medium 20, when the reproduction light of a plurality of hologram data is emitted from the recording medium 20, one of the reproduction lights 23 is provided in order for the image sensor 18 to receive light appropriately. By providing the pinhole filter 19, a plurality of the hologram data 21 can be appropriately reproduced.
[0032] 本発明における実施形態では、前記基板 50上に設置された複数の面発光レーザ 12, 13の発光面が本発光装置の光学設計上の基準面から見て同じ高さ位置に形 成されている。以下、本発明における実施形態における面発光レーザアレイ 14の製 造方法について説明する。  In the embodiment of the present invention, the light emitting surfaces of the plurality of surface emitting lasers 12 and 13 installed on the substrate 50 are formed at the same height as viewed from the reference plane in the optical design of the light emitting device. Has been. Hereinafter, a method for manufacturing the surface emitting laser array 14 in the embodiment of the present invention will be described.
[0033] 本発明の第 1の実施形態では、図 2に示すように、各面発光レーザ 12, 13の表面 側に発光部 12a, 13aが形成されており、当該発光部の露出している面が前記面発 光レーザ 12、 13の発光面 12b, 13bとなってレヽる。また前記発光面 12b, 13bには表 面電極 31 , 32が形成されている。さらに、前記面発光レーザ 12, 13の前記発光面 1 2b, 13bとは反対側の面、すなわち裏面 12c, 13cには裏面電極 (発光素子側電極) 33、 34が形成されている。  In the first embodiment of the present invention, as shown in FIG. 2, the light emitting portions 12a and 13a are formed on the surface sides of the surface emitting lasers 12 and 13, and the light emitting portions are exposed. The surfaces become the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13, respectively. Further, surface electrodes 31 and 32 are formed on the light emitting surfaces 12b and 13b. Further, back surface electrodes (light emitting element side electrodes) 33 and 34 are formed on the surfaces of the surface emitting lasers 12 and 13 opposite to the light emitting surfaces 12b and 13b, that is, on the back surfaces 12c and 13c.
[0034] なお、一般の面発光レーザの場合は、厳密には前記発光部 12a, 13aが露出して レ、る面(図 2の発光面 12b、 13b)とは反対側の面を"発光面"と言いこともある。しかし 本実施例においては、面発光レーザ 12, 13の発光部 12a, 13aが露出している面を 、各面発光レーザ 12, 13の"発光面"として説明を行う。 In the case of a general surface emitting laser, strictly speaking, the light emitting portions 12a and 13a are exposed and the surface opposite to the surface (the light emitting surfaces 12b and 13b in FIG. 2) is “light emitting”. Sometimes referred to as “face”. However In the present embodiment, the surface on which the light emitting portions 12a and 13a of the surface emitting lasers 12 and 13 are exposed will be described as the “light emitting surface” of each surface emitting laser 12 and 13.
[0035] 本実施形態では、前記発光部 12, 13の表面 (発光面)が平坦面となるように平面 加工されていることが好ましい。また前記発光部 12, 13の表面とその周囲の少なくと も一部の表面が平面加工されていることがより好ましぐさらに、図 2のように、前記面 発光レーザ 12, 13の表面全体が平面加工されていることが最も好ましい。図 2では、 前記表面電極 31 , 32の表面が前記発光面 12b、 13bと同一平面で形成されている 力 例えば表面電極 31, 32が発光部 12, 13の表面 (発光面)上に突出して設けら れてもよい。 In the present embodiment, it is preferable that the surface of the light emitting units 12 and 13 (light emitting surface) is processed to be a flat surface. In addition, it is more preferable that the surface of the light emitting units 12 and 13 and at least a part of the surface around the surface are processed into a flat surface. Further, as shown in FIG. It is most preferable that the surface is processed. In FIG. 2, the surfaces of the surface electrodes 31 and 32 are formed in the same plane as the light emitting surfaces 12b and 13b. For example, the surface electrodes 31 and 32 protrude on the surfaces (light emitting surfaces) of the light emitting portions 12 and 13. It may be provided.
[0036] なお以下の説明では、特に断らない限り、図 2のように、前記表面電極 31 , 32の表 面が前記発光面 12b、 13bと同一平面となるように平面加工された状態、すなわち前 記面発光レーザ 12, 13の表面全体を「発光面 12b, 13b」として説明する。  In the following description, unless otherwise specified, as shown in FIG. 2, the surface of the surface electrodes 31 and 32 is planarized so as to be flush with the light emitting surfaces 12b and 13b, ie, The entire surface of the surface emitting lasers 12 and 13 will be described as “light emitting surfaces 12b and 13b”.
[0037] 前記面発光レーザ 12の厚さ寸法は H3で、前記面発光レーザ 13の厚さ寸法は H4 であり、前記厚さ寸法 H3く H4となっている。ここで、厚さ寸法は、発光面 12b,13b から裏面電極 33, 34 (このとき、裏面電極 33,34の厚みを除いても良レ、)までの厚さ 寸法を指す。本実施形態では、前記厚さ寸法 H3, H4が異なる場合に、本発明の効 果が適切に発揮される。しかし、面発光レーザ 12, 13の厚さ寸法 H3, H4が同じ場 合でも、本実施形態の製造方法を用いることに何ら問題はないことは言うまでもない  [0037] The thickness of the surface emitting laser 12 is H3, and the thickness of the surface emitting laser 13 is H4, and the thicknesses are H3 and H4. Here, the thickness dimension refers to the thickness dimension from the light emitting surfaces 12b and 13b to the back electrodes 33 and 34 (in this case, the thickness of the back electrodes 33 and 34 may be excluded). In the present embodiment, when the thickness dimensions H3 and H4 are different, the effects of the present invention are appropriately exhibited. However, it goes without saying that there is no problem in using the manufacturing method of the present embodiment even if the thickness dimensions H3 and H4 of the surface emitting lasers 12 and 13 are the same.
[0038] 第一の実施形態では、まず前記面発光レーザ 12, 13の発光面 12b, 13bとの対向 面 30aが形成された治具 30を用意する。なお、この明細書において「治具」とは、前 記面発光レーザ 12, 13を、吸引力で吸着した状態で基板 50上の所定位置まで運 ぶための工具を言う。また治具 30の対向面 30aは、前記面発光レーザ 12, 13を治 具 30に吸着した際に、発光面 12b、 13bが同一平面 Cに並ぶように平面状に形成さ れている。前記治具 30の材質は特に限定されるものではなレ、が、前記治具 30の表 面 30c側から前記面発光レーザ 12、 13の発光面 12b, 13bが透けて見えるように、 透明あるいは半透明であることが好ましい。また本実施形態では、図 6に示すように 前記治具 30の平面形状は矩形状で、その平面面積は、各面発光レーザ 12, 13の 平面面積を足し合わせた面積よりも大きい。なお、前記治具 30の平面形状は特に限 定されるものではない。 In the first embodiment, first, a jig 30 is prepared in which a surface 30 a facing the light emitting surfaces 12 b and 13 b of the surface emitting lasers 12 and 13 is formed. In this specification, the “jig” refers to a tool for carrying the surface emitting lasers 12 and 13 to a predetermined position on the substrate 50 while being attracted by a suction force. The facing surface 30a of the jig 30 is formed in a flat shape so that the light emitting surfaces 12b and 13b are aligned on the same plane C when the surface emitting lasers 12 and 13 are attracted to the jig 30. The material of the jig 30 is not particularly limited, but is transparent or transparent so that the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 can be seen from the surface 30c side of the jig 30. It is preferable that it is translucent. Further, in the present embodiment, as shown in FIG. 6, the planar shape of the jig 30 is a rectangular shape, and the planar area of each surface emitting laser 12, 13 is It is larger than the total area of plane areas. The planar shape of the jig 30 is not particularly limited.
[0039] 前記治具 30には、前記面発光レーザ 12、 13の発光面 12b、 13bの一部と対向す る位置に吸引孔 30b、 30bが形成されるとともに、吸引機構(図示せず)がー体又は 別体で設けられている。そして、前記発光面 12b, 13bを前記治具 30の前記対向面 30aに当接させた状態で前記吸引孔 30b、 30bから空気を吸引することにより、前記 面発光レーザ 12、 13を前記前記治具 30の対向面 30aに吸着固定する。ただし固定 方法は別の方法であってもよい。  [0039] In the jig 30, suction holes 30b, 30b are formed at positions facing a part of the light emitting surfaces 12b, 13b of the surface emitting lasers 12, 13, and a suction mechanism (not shown) It is provided as a body or separate body. Then, by sucking air from the suction holes 30b and 30b in a state where the light emitting surfaces 12b and 13b are in contact with the facing surface 30a of the jig 30, the surface emitting lasers 12 and 13 are controlled by the treatment. It is fixed to the opposing surface 30a of the tool 30 by suction. However, another fixing method may be used.
[0040] 前記「当接」とは、ここでは前記発光面 12b, 13b全体と前記対向面 30aとが完全に 接触している場合のみならず、若干隙間がある場合も含む。すなわち、前記発光面 1 2b, 13bと前記対向面 30aの少なくとも一部が接触し、前記治具 30にて前記面発光 レーザ 12, 13が固定された状態であればよレ、。例えば、上記したように、前記表面 電極 31 , 32が前記発光面 12b, 13b上に突出して形成されている場合、前記発光 面 12b, 13bと、前記表面電極 31 , 32の表面間は段差が生じる。この場合、厳密に は、前記発光面 12b, 13全体と前記対向面 30aとが完全には接触せず隙間が生じる 力 力かる場合も本実施形態では「当接」した状態という。  Here, the “contact” includes not only the case where the entire light emitting surfaces 12b and 13b are completely in contact with the facing surface 30a, but also the case where there is a slight gap. That is, it is sufficient that at least a part of the light emitting surfaces 12b and 13b and the facing surface 30a are in contact with each other and the surface emitting lasers 12 and 13 are fixed by the jig 30. For example, as described above, when the surface electrodes 31 and 32 are formed to protrude on the light emitting surfaces 12b and 13b, there is a step between the light emitting surfaces 12b and 13b and the surfaces of the surface electrodes 31 and 32. Arise. In this case, strictly speaking, in the present embodiment, the light emitting surfaces 12b, 13 and the opposing surface 30a are not completely in contact with each other and a gap is generated.
[0041] そして、前記面発光レーザ 12、 13の各発光面 12b, 13bが対向面 30aに当接され た状態で、各面発光レーザ 12, 13が前記治具 30に固定される。  [0041] The surface emitting lasers 12 and 13 are fixed to the jig 30 in a state where the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 are in contact with the facing surface 30a.
[0042] なお、前記治具 30が透明あるいは半透明な部材でできている場合は、各面発光レ 一ザ 12, 13の前記治具 30への位置決めが容易となる。例えば、前記治具 30が透 明または半透明な場合、図 6のように前記治具 30の前記表面 30cあるいは前記対向 面 30aに位置決め用のマーク部 40を、また前記面発光レーザ 12、 13の発光面 12b , 13b上に位置決め用のマーク部 41をそれぞれ設ける。ここで、前記マーク部 40, 4 1が図示 Y方向(長さ方向)と平行な仮想線 D上及び図示 X方向(図示 Y方向と直交 する方向、幅方向)と平行な仮想線 E上に夫々一直線に並ぶように前記面発光レー ザ 12、 13を前記治具 30に対し位置決めする。これにより、前記面発光レーザ 12、 1 3を図示 X方向及び Y方向に正確に位置決めできる。  [0042] When the jig 30 is made of a transparent or translucent member, the surface emitting lasers 12 and 13 can be easily positioned on the jig 30. For example, when the jig 30 is transparent or translucent, a positioning mark portion 40 is provided on the surface 30c or the opposed surface 30a of the jig 30 as shown in FIG. Positioning mark portions 41 are provided on the light emitting surfaces 12b and 13b, respectively. Here, the mark portions 40, 41 are on the imaginary line D parallel to the Y direction (length direction) shown in the figure and on the imaginary line E parallel to the X direction (direction perpendicular to the Y direction shown in the figure, width direction). The surface emitting lasers 12 and 13 are positioned with respect to the jig 30 so that they are aligned in a straight line. Thereby, the surface emitting lasers 12 and 13 can be accurately positioned in the X direction and the Y direction shown in the drawing.
[0043] 次に図 3に示す工程では、基板 50を、基台 54上に設置する。前記基板 50の表面 には、前記面発光レーザ 12、 13と対向する位置に基板側電極 51 , 52が形成される とともに、前記基板側電極 51 , 52上に導電性接着剤として半田 53が塗布されている Next, in the step shown in FIG. 3, the substrate 50 is placed on the base 54. Surface of the substrate 50 Substrate-side electrodes 51 and 52 are formed at positions facing the surface-emitting lasers 12 and 13, and solder 53 is applied as a conductive adhesive on the substrate-side electrodes 51 and 52.
[0044] 前記半田 53には、特にすず(Sn)を主成分とする合金が好適に用いられる。この場 合、 Snは全半田粒子中の 50質量%以上、より好ましくは 90質量%以上を占める。 S nと合金を形成する金属としては、半田の融点の高低、あるいは電気伝導率の高低 の目的に応じて、金 (Au)、銀 (Ag)、銅(Cu)、ニッケル(Ni)、ビスマス(Bi)、アンチ モン(Sb)、亜鉛 (Zn)、インジウム(In)力、ら 1種あるいは 2種以上を選択することがで きる。例えば、金、銀、銅は電気伝導率が高いので、 Sn— Au、 Sn— Ag、 Sn— Cu、 Sn— Ag— Cu系合金等は、電気伝導率の高い半田を形成するが、融点が 200〜30 0°Cと高い。また、 Sn_Bi系合金からなる半田は融点が 60〜200°Cと低ぐ加工性 に優れており、基板や面発光レーザに熱損傷を与えにくい。また特に Sn_Biは、融 点が 140°C程度であって低融点半田としては最適である。 [0044] For the solder 53, an alloy mainly containing tin (Sn) is particularly preferably used. In this case, Sn accounts for 50% by mass or more, more preferably 90% by mass or more of the total solder particles. The metal that forms an alloy with Sn includes gold (Au), silver (Ag), copper (Cu), nickel (Ni), bismuth, depending on the purpose of the melting point of the solder or the electrical conductivity. One or more of (Bi), antimony (Sb), zinc (Zn), indium (In) force can be selected. For example, gold, silver, and copper have high electrical conductivity, so Sn—Au, Sn—Ag, Sn—Cu, Sn—Ag—Cu alloys, etc., form solder with high electrical conductivity, but have a melting point. It is as high as 200 to 300 ° C. In addition, the solder made of Sn_Bi alloy has excellent workability with a low melting point of 60-200 ° C, and hardly damages the substrate and the surface emitting laser. In particular, Sn_Bi has a melting point of about 140 ° C and is optimal as a low melting point solder.
[0045] 本実施形態では、前記半田 53には Sn— Auはんだが好適に使用される。  In the present embodiment, Sn—Au solder is preferably used for the solder 53.
図 3の工程に示すように、前記面発光レーザ 12, 13の厚みがばらついていると、半 田 53を介した前記面発光レーザ 12, 13と基板 50間の間隔に差が生じる。このため 、前記面発光レーザ 12、 13と基板 50間を適切に半田 53にて固定するために、前記 半田 53の塗布量 (膜厚)を、従来の半田接続で必要な膜厚と前記間隔の差を加味し た厚さ(10〜30 /i m程度)になるように設定する。  As shown in the process of FIG. 3, if the thickness of the surface emitting lasers 12 and 13 varies, a difference occurs in the distance between the surface emitting lasers 12 and 13 and the substrate 50 through the solder 53. For this reason, in order to properly fix the surface emitting lasers 12 and 13 and the substrate 50 with the solder 53, the coating amount (film thickness) of the solder 53 is set to the film thickness required for the conventional solder connection and the interval. Set the thickness to take into account the difference (approximately 10 to 30 / im).
[0046] そして、前記治具 30に固定された前記面発光レーザ 12、 13を、前記基板 50上に 対向させる。  Then, the surface emitting lasers 12 and 13 fixed to the jig 30 are opposed to the substrate 50.
[0047] 次に、前記半田 53をレーザ照射等により加熱して溶融した状態にする。そして上記 した各発光面 12b, 13bを同一高さ状態、すなわち高さの基準面である前記基台 54 の表面 54aと前記治具 30の対向面 30aとを平行な状態に保ちながら、前記治具 30 を徐々に前記基板 50に近付ける。  Next, the solder 53 is heated and melted by laser irradiation or the like. The light emitting surfaces 12b and 13b described above are in the same height state, that is, while the surface 54a of the base 54, which is a reference surface for the height, and the opposing surface 30a of the jig 30 are kept in a parallel state, the treatment is performed. The tool 30 is gradually brought closer to the substrate 50.
[0048] そして、図 4に示すように、各面発光レーザ 12, 13を前記半田 53に同時に押し当 て、前記面発光レーザ 12, 13と前記基板 50間を溶融状態の前記半田 53を介して 密着させる。 [0049] 本実施形態では、前記面発光レーザ 12のほうが、前記面発光レーザ 13に比べて 厚さが薄い。よって図 4のように各面発光レーザ 12, 13と基板 50間を半田 53を介し て密着させた状態では、前記面発光レーザ 12と前記基板 50間の間隔 H6は、前記 面発光レーザ 13と前記基板 50間の間隔 H5よりも大きくなる。しかし、本実施形態で は前記半田 53の厚みを従来よりも厚くしているため、狭い間隔 H5内のみならず、広 い間隔 H6内にも適切に前記半田 53を介在させることが出来る。 Then, as shown in FIG. 4, the surface emitting lasers 12 and 13 are pressed against the solder 53 simultaneously, and the space between the surface emitting lasers 12 and 13 and the substrate 50 is passed through the solder 53 in a molten state. And adhere. In the present embodiment, the surface emitting laser 12 is thinner than the surface emitting laser 13. Therefore, as shown in FIG. 4, in the state where the surface emitting lasers 12 and 13 and the substrate 50 are in close contact with each other through the solder 53, the distance H6 between the surface emitting laser 12 and the substrate 50 is as follows. The distance H5 between the substrates 50 is larger. However, in this embodiment, since the thickness of the solder 53 is made thicker than before, the solder 53 can be appropriately interposed not only in the narrow interval H5 but also in the wide interval H6.
[0050] そして、上記の状態を維持したまま、前記半田 53を硬化させる。前記半田 53の硬 化は温度が下がることで徐々に促進される。前記半田 53の硬化を早めたい場合は 図示しなレ、冷却機構にて強制的に前記半田 53を冷却してもよレ、。  Then, the solder 53 is cured while maintaining the above state. The hardening of the solder 53 is gradually promoted as the temperature decreases. If it is desired to accelerate the hardening of the solder 53, the solder 53 may be forcibly cooled by a cooling mechanism (not shown).
[0051] これにより前記面発光レーザ 12、 13を前記基板 50上に半田 53を介して固定でき る。そして前記治具 30の吸引孔 30b、 30bからの吸引を停止し、前記治具 30と前記 面発光レーザ 12, 13間の固定状態を解除して、前記治具 30を除去する。  Thus, the surface emitting lasers 12 and 13 can be fixed on the substrate 50 via the solder 53. Then, suction from the suction holes 30b and 30b of the jig 30 is stopped, the fixed state between the jig 30 and the surface emitting lasers 12 and 13 is released, and the jig 30 is removed.
[0052] そして図 5に示すように、前記面発光レーザ 12, 13の表面電極 31,32と、前記基板 50の表面に形成された基板側電極 55,56間を、例えばワイヤ 57にて導通接続する( ワイヤボンディング)。  Then, as shown in FIG. 5, the surface electrodes 31 and 32 of the surface emitting lasers 12 and 13 and the substrate side electrodes 55 and 56 formed on the surface of the substrate 50 are electrically connected by, for example, a wire 57 Connect (wire bonding).
[0053] また、前記面発光レーザ 12, 13の裏面電極 33、 34と基板 50の基板側電極 51, 5 2間も半田 53にて導通接続される。  Further, the back electrodes 33 and 34 of the surface emitting lasers 12 and 13 and the substrate-side electrodes 51 and 52 of the substrate 50 are also electrically connected by solder 53.
[0054] 上記した本実施形態の製造方法によれば、前記面発光レーザ 12, 13の各発光面 12b, 13bを基準面から見て同一高さにて形成できる。ここで前記「同一高さ」とは、 ± 2 /i m程度の誤差を含むものである。  According to the manufacturing method of the present embodiment described above, the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 can be formed at the same height when viewed from the reference surface. Here, the “same height” includes an error of about ± 2 / im.
[0055] 本実施形態では、対向面 30aが同一平面 Cで形成された治具 30を用いることで、 前記面発光レーザ 12, 13の基板 50上への取り付けを簡単且つ適切に行うことが可 能である。すなわち各面発光レーザ 12, 13の発光面 12b, 13bの高さ位置を個別に 調整する必要がなぐ前記同一平面 Cを基準面 (例えば図 3に示す表面 54a)に平行 にした状態を維持しながら、前記面発光レーザ 12, 13を基板 50上に半田 53を介し て密着させるだけでよい。また、各発光面 12b, 13bの高さ位置合わせと、各面発光 レーザ 12, 13の基板 50への密着工程を同時に行うことができるとともに、一度に半 田 53を冷却硬化させることにより、前記面発光レーザ 12、 13を同時に基板 50上に 固定出来るため、製造工程を簡略化できる。 In the present embodiment, by using the jig 30 having the opposing surface 30a formed on the same plane C, it is possible to easily and appropriately attach the surface emitting lasers 12 and 13 onto the substrate 50. Noh. That is, the same plane C that does not need to be adjusted individually for the height positions of the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 is maintained parallel to the reference surface (for example, the surface 54a shown in FIG. 3). However, the surface emitting lasers 12 and 13 need only be brought into close contact with the substrate 50 via the solder 53. Further, the height alignment of each light emitting surface 12b, 13b and the adhesion process of each surface emitting laser 12, 13 to the substrate 50 can be performed at the same time. Surface emitting lasers 12 and 13 are simultaneously placed on the substrate 50 Since it can be fixed, the manufacturing process can be simplified.
[0056] なお、前記面発光レーザ 12, 13の各発光面 12b, 13bの高さ位置の基準面は、本 発光装置の光学設計上の都合により任意に設定できる。例えば、本実施形態の場合 では、前記基準面は図 3に示す基台 54の表面(基板 50の裏面) 54aとしている。かか る場合、前記治具 30の対向面 30a (同一平面 C)と前記表面 54aとが平行となるよう に前記治具 30を調整した上で、面発光レーザ 12, 13が基板 50に固定される。これ によって、前記表面 54a (基準面)から各発光面 12b, 13bまでの高さが同一高さとな るため、前記表面 54a基準面とした光学設計 (例えば、前記表面 54aを基準として、 面発光レーザ 12, 13の発光面 12b、 13bからレンズ 16までの最適距離を計算する) を行うことが可能となる。なお、前記基板 50の表面を基準面として光学設計を行って も良い。  It should be noted that the reference planes at the height positions of the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13 can be arbitrarily set depending on the optical design of the light emitting device. For example, in the case of the present embodiment, the reference surface is the front surface 54a (the back surface of the substrate 50) 54a of the base 54 shown in FIG. In this case, the surface emitting lasers 12 and 13 are fixed to the substrate 50 after adjusting the jig 30 so that the opposing surface 30a (same plane C) of the jig 30 and the surface 54a are parallel to each other. Is done. As a result, the height from the surface 54a (reference surface) to each light emitting surface 12b, 13b becomes the same height, so that the optical design using the surface 54a reference surface (for example, surface emission with the surface 54a as a reference). It is possible to calculate the optimum distance from the light emitting surfaces 12b and 13b of the lasers 12 and 13 to the lens 16. The optical design may be performed using the surface of the substrate 50 as a reference plane.
[0057] 図 2〜図 5の工程では、導電性接着剤として金属材料である半田 53を使用している ため、前記面発光レーザ 12, 13と基板 50間(正確には、半田 53と前記面発光レー ザ 12, 13の裏面電極 33, 34間、前記半田 53と基板 50の基板側電極 51 , 52間、及 び半田 53内部)は金属結合で強固に結合されてレ、る。  [0057] Since the solder 53, which is a metal material, is used as the conductive adhesive in the steps of FIGS. 2 to 5, the surface emitting lasers 12, 13 and the substrate 50 (to be precise, the solder 53 and the The back surface electrodes 33 and 34 of the surface emitting lasers 12 and 13, the solder 53 and the substrate side electrodes 51 and 52 of the substrate 50, and the inside of the solder 53) are firmly bonded by metal bonding.
[0058] なお、導電性接着剤としては、有機成分を含む導電性接着剤を使用してもよレ、。但 しその場合は、前記治具 30を除去して前記治具 30による基板 50方向への押圧状 態を解除した時や環境温度変化によって接着層の高さが若干変動することにより、 前記発光面 12b, 13bの基準面からの高さが変動する可能性がある。このため、有機 成分を含む導電性接着剤を使用する場合は、上記の要素を考慮する必要がある。  [0058] As the conductive adhesive, a conductive adhesive containing an organic component may be used. However, in that case, when the jig 30 is removed and the pressing state in the direction of the substrate 50 by the jig 30 is released, or the height of the adhesive layer varies slightly due to environmental temperature changes, the light emission The height of the surfaces 12b and 13b from the reference surface may vary. For this reason, when using a conductive adhesive containing organic components, the above factors need to be considered.
[0059] 例えば、導電性接着剤に有機成分を含む導電性ペーストを用いた場合、前記導電 性接着剤の硬化の際に加熱処理して前記有機成分を除去することもできる。前記導 電性ペーストには、例えば金属レジネートや、金属粒子と有機ビヒクル (有機溶剤と樹 脂バインダー)とを有するものがある。この場合、当該導電性ペーストに含まれる前記 有機成分は、加熱処理の際に熱分解して蒸発する。これにより最終的に前記接着層 は金属だけで形成されることとなり、面発光レーザ 12, 13と基板 50間は強固な金属 結合となる。なお、金属レジネート等を使用する場合は、加熱処理時に有機成分が 除去されるため、導電性接着剤を前記基板 50上に塗布したときの膜厚と、加熱処理 後の接着層の膜厚とは大きく変動する。したがって膜厚減少量と、図 4に示す間隔 H 5, H6を考慮して、前記導電性接着剤の塗布量 (膜厚)を調整することが必要である [0059] For example, when a conductive paste containing an organic component is used for the conductive adhesive, the organic component can be removed by heat treatment when the conductive adhesive is cured. Examples of the conductive paste include metal resinates and those having metal particles and an organic vehicle (an organic solvent and a resin binder). In this case, the organic component contained in the conductive paste is thermally decomposed and evaporated during the heat treatment. As a result, the adhesive layer is finally formed of only metal, and a strong metal bond is formed between the surface emitting lasers 12 and 13 and the substrate 50. When using a metal resinate or the like, the organic component is removed during the heat treatment, so the film thickness when the conductive adhesive is applied onto the substrate 50 and the heat treatment are used. The film thickness of the subsequent adhesive layer varies greatly. Therefore, it is necessary to adjust the coating amount (film thickness) of the conductive adhesive in consideration of the film thickness reduction amount and the intervals H5 and H6 shown in FIG.
[0060] また、上記のような導電性ペーストを使用した場合、例え有機成分が前記接着層中 に数質量%残存したとしても、前記導電性接着剤として、例えば、異方性導電ペース ト (ACP)や異方性導電フィルム (ACF)を用いる場合に比べて前記治具 30を除去し たときの前記接着層の膜厚変動を小さくできる。 [0060] Further, when the conductive paste as described above is used, even if several mass% of the organic component remains in the adhesive layer, as the conductive adhesive, for example, an anisotropic conductive paste ( Compared to the case of using ACP) or anisotropic conductive film (ACF), the film thickness variation of the adhesive layer when the jig 30 is removed can be reduced.
[0061] なお図 2〜図 5の工程では、一つの面発光レーザアレイ 14を製造するための方法 であったが、大きな基板上に多数の面発光レーザを固定し、その後に前記基板を各 面発光レーザアレイ 14毎に切断してもよい。  [0061] In the steps of FIGS. 2 to 5, the method is for manufacturing one surface emitting laser array 14. However, a large number of surface emitting lasers are fixed on a large substrate, and then the substrate is attached to each substrate. Cutting may be performed for each surface emitting laser array 14.
[0062] ところで図 2の工程では、前記基板 50上の基板側電極 51 , 52上の全面に、半田 5 3を塗布していた。しかし、前記基板側電極 51 , 52上の全面に半田 53を塗布すると 、図 4に示すように、厚さ寸法の厚い面発光レーザ 13と基板 50間に介在する半田 53 は、厚さ寸法の薄い面発光レーザ 12と基板 50間に介在する半田 53よりも圧されるこ とになり、余分な半田 53が面発光レーザ 13の周囲から流れ出て思わぬ箇所に付着 する可能性がある。また、前記半田 53を介して前記基板 50と面発光レーザ 12, 13と を密着させたとき、前記半田 53と前記基板 50との間や、前記半田 53と前記面発光レ 一ザ 12, 13との間に密閉された空孔が形成されやすい。空孔が形成されると、この 空孔内に存在する空気が環境温度変化等により熱膨張や熱圧縮して前記半田 53と 前記面発光レーザ 12, 13間、及び前記半田 53と前記基板 50間の密着性を低下さ せる危険性がある。  In the process of FIG. 2, solder 53 is applied to the entire surface of the substrate-side electrodes 51 and 52 on the substrate 50. However, when solder 53 is applied to the entire surface of the substrate-side electrodes 51 and 52, as shown in FIG. 4, the solder 53 interposed between the surface emitting laser 13 having a large thickness and the substrate 50 has a thickness of The pressure is applied more than the solder 53 interposed between the thin surface emitting laser 12 and the substrate 50, and there is a possibility that excess solder 53 flows out from the periphery of the surface emitting laser 13 and adheres to an unexpected location. Further, when the substrate 50 and the surface emitting lasers 12 and 13 are brought into close contact with each other via the solder 53, the solder 53 and the surface emitting lasers 12, 13 are disposed between the solder 53 and the substrate 50. A closed hole is easily formed between the two. When the holes are formed, the air existing in the holes is thermally expanded or compressed due to a change in environmental temperature or the like, so that the space between the solder 53 and the surface emitting lasers 12 and 13 and the solder 53 and the substrate 50 are increased. There is a risk of reducing the adhesion between the two.
[0063] これらの問題点を解決する手段としては、図 7、 8に示すような第 2の実施形態が考 えられる。本実施形態では、前記基板 50上の基板側電極 51, 52上に複数の球状の 半田 60を点在させる。なお、前記半田 60の形状は、球状に限定されるものではない  As means for solving these problems, a second embodiment as shown in FIGS. 7 and 8 can be considered. In the present embodiment, a plurality of spherical solders 60 are scattered on the substrate-side electrodes 51 and 52 on the substrate 50. The shape of the solder 60 is not limited to a spherical shape.
[0064] 図 7に示すように、前記半田 60を前記基板側電極 51 , 52上に点在させた後、前記 半田 60を溶融する。 As shown in FIG. 7, after the solder 60 is scattered on the substrate side electrodes 51, 52, the solder 60 is melted.
[0065] そして図 8に示すように、前記半田 60を介して前記面発光レーザ 12, 13と基板 50 間を密着させる。このとき、厚さ寸法の厚い面発光レーザ 13と前記基板 50間に介在 する半田 60は、厚さ寸法の薄い面発光レーザ 12と基板 50間に介在する半田 60に 比べてより圧し潰される。 Then, as shown in FIG. 8, the surface emitting lasers 12 and 13 and the substrate 50 are interposed via the solder 60. Adhere closely. At this time, the solder 60 interposed between the thick surface emitting laser 13 and the substrate 50 is more crushed than the solder 60 interposed between the thin surface emitting laser 12 and the substrate 50.
そして図 8の状態にて前記半田 60を硬化させ、前記治具 30を除去する。  Then, the solder 60 is cured in the state of FIG. 8, and the jig 30 is removed.
[0066] 上記の電極構造では、前記半田 60を点在させることで、押し潰された状態でも半 田 60が前記面発光レーザ 13と前記基板 50間に適切に収まり、思わぬ箇所に半田 6 0が付着するのを回避できる。さらに前記面発光レーザ 12, 13と半田 60間や、前記 基板 50と前記半田 60間に密閉された空孔が形成されにくくなり、前記面発光レーザ 12, 13と基板 50間の密着性を強固に出来る。  [0066] In the above electrode structure, the solder 60 is scattered between the surface-emitting laser 13 and the substrate 50 even when the solder 60 is crushed by interspersing the solder 60. 0 can be avoided. Further, it is difficult to form a sealed hole between the surface emitting lasers 12 and 13 and the solder 60, or between the substrate 50 and the solder 60, and the adhesion between the surface emitting lasers 12 and 13 and the substrate 50 is strengthened. I can do it.
[0067] また図 7の工程では、前記半田 60の大きさが異なっていてもよい。また、前記面発 光レーザ 12と基板 50間、及び前記面発光レーザ 13と基板 50間で少なくとも一つの 半田 60が密着していれば、導電性を確保できる。  [0067] Further, in the step of FIG. 7, the size of the solder 60 may be different. Further, if at least one solder 60 is in close contact between the surface emitting laser 12 and the substrate 50 and between the surface emitting laser 13 and the substrate 50, conductivity can be ensured.
[0068] また第 2の実施形態に好適な基板側電極の構造を図 9〜図 11に示す。本構造で は、前記基板側電極 51に、格子状の溝 51aを設けている。この溝 51aは、前記電極 51を分断するものではなぐ前記溝 51aの底面には前記電極 51の層が一部残され ている。なお前記基板側電極 52にも同様に溝が設けられているが、ここでは前記基 板側電極 51のみ説明する。  In addition, FIGS. 9 to 11 show a structure of a substrate side electrode suitable for the second embodiment. In this structure, the substrate-side electrode 51 is provided with a lattice-like groove 51a. The groove 51a does not divide the electrode 51, and a part of the layer of the electrode 51 is left on the bottom surface of the groove 51a. The substrate side electrode 52 is similarly provided with a groove, but only the substrate side electrode 51 will be described here.
[0069] 溝 51aは、幅方向(図示 X方向)及び前記幅方向に直交する長さ方向(図示 Y方向 )に直線状で複数条設けられている。前記溝 51aの形状は図 9,図 11に示す形状に 限定されなレ、が、少なくとも前記電極 51のいずれか一の側面 5 lbから抜ける形状( 前記側面 51bにまで繋がる形状)で形成されることが好適である。  [0069] A plurality of grooves 51a are provided in a straight line in the width direction (X direction in the drawing) and in the length direction (Y direction in the drawing) orthogonal to the width direction. The shape of the groove 51a is not limited to the shape shown in FIGS. 9 and 11, but it is formed in a shape that can be removed from at least one side surface 5 lb of the electrode 51 (a shape that leads to the side surface 51b). Is preferred.
[0070] そして、前記溝 51aを除く前記電極 51の表面 51c (凸形状の表面)に、球状の半田 61を点在させる。  Then, spherical solder 61 is scattered on the surface 51c (convex surface) of the electrode 51 excluding the groove 51a.
[0071] その後、前記半田 61を溶融し、前記半田 61を介して前記面発光レーザ 12と基板 5 0を密着させる。このとき、図 10に示すように、前記半田 61は押し潰される。この電極 構造による実施形態では、前記溝 51aの底面には電極 51が残っているので、前記 溝 51a内も半田濡れ性に優れた状態にある。したがって、押し潰された半田 61の一 部は表面 51cから溢れ出し、前記溝 51a内に逃げる。このように前記溝 51aを溢れ出 した半田 61の逃げ溝として機能させることが出来る。またこの溝 5 laは、前記半田 61 を押し潰した際の空気の逃げ溝としても機能するため、前記半田 61と前記電極 51間 に空気が密閉された空孔ができに《なる。 Thereafter, the solder 61 is melted, and the surface emitting laser 12 and the substrate 50 are brought into close contact with each other through the solder 61. At this time, the solder 61 is crushed as shown in FIG. In the embodiment with this electrode structure, since the electrode 51 remains on the bottom surface of the groove 51a, the groove 51a is also excellent in solder wettability. Therefore, a part of the crushed solder 61 overflows from the surface 51c and escapes into the groove 51a. In this way, the groove 51a overflows It can function as an escape groove for the solder 61. The groove 5 la also functions as an air escape groove when the solder 61 is crushed, so that a hole in which air is sealed is created between the solder 61 and the electrode 51.
[0072] そして、前記半田 61を硬化して、前記面発光レーザ 12を前記基板 50上に固定す る。 Then, the solder 61 is cured, and the surface emitting laser 12 is fixed on the substrate 50.
[0073] さらに第 2の実施形態に好適な基板側電極の他の構造を図 12,図 13で説明する。  Further, another structure of the substrate side electrode suitable for the second embodiment will be described with reference to FIGS.
この構造では、前記溝 51eの形成によって、前記電極 51を複数の小電極 51dに分 割している。  In this structure, the electrode 51 is divided into a plurality of small electrodes 51d by forming the groove 51e.
[0074] そして、各小電極 51dの表面に、半田 62を点在させる。次に前記半田 62を溶融し 、前記半田 62を介して前記面発光レーザ 12と基板 50間を密着させた後、前記半田 62を硬化して、前記面発光レーザ 12を前記基板 50上に固定する。  [0074] Then, solder 62 is scattered on the surface of each small electrode 51d. Next, the solder 62 is melted and the surface emitting laser 12 and the substrate 50 are brought into close contact with each other through the solder 62, and then the solder 62 is cured to fix the surface emitting laser 12 on the substrate 50. To do.
[0075] ところで、この基板側電極の構造では、前記小電極 51d間の溝 51eには基板 50の 表面が露出している。前記基板 50の表面は半田濡れ性が悪いため、前記半田 62が 圧し潰されたとき、前記半田 62は前記基板 50上に流れにくい。 (ただし前記溝 51a の場合と同様に、溝 51eは空気の逃げ溝としての機能は十分持っている。 )  By the way, in this substrate side electrode structure, the surface of the substrate 50 is exposed in the groove 51e between the small electrodes 51d. Since the surface of the substrate 50 has poor solder wettability, the solder 62 hardly flows onto the substrate 50 when the solder 62 is crushed. (However, as in the case of the groove 51a, the groove 51e has a sufficient function as an air escape groove.)
[0076] このため、本電極の構造では、導電性接着剤として、例えば半田と有機成分 (樹脂 )を含む半田接着剤等を使用することが効果的である。有機成分としては例えば熱硬 化性樹脂が用いられ、加熱によって前記半田と分離して熱硬化が起こる。このとき、 図 13に示すように樹脂 65は主として前記溝 51e内に逃げる力 半田 66は、前記小 電極 51dと前記面発光レーザ 12の裏面電極 33間に留まり、前記小電極 51dと前記 裏面電極 33間を密着させる。このように前記溝 51eを樹脂 65の逃げ溝として機能さ せること力 Sできる。  Therefore, in the structure of the present electrode, it is effective to use, for example, a solder adhesive containing solder and an organic component (resin) as the conductive adhesive. As the organic component, for example, a thermosetting resin is used, which is separated from the solder by heating to cause thermosetting. At this time, as shown in FIG. 13, the resin 65 mainly escapes into the groove 51e. The solder 66 stays between the small electrode 51d and the back electrode 33 of the surface emitting laser 12, and the small electrode 51d and the back electrode. Adhere 33. In this way, the force S can be used to cause the groove 51e to function as a relief groove for the resin 65.
[0077] 以上のように上記の各実施形態によれば、面発光レーザアレイ 14に取り付けられる 複数の面発光レーザ 12, 13の発光面121), 13bを基準面から見て同一高さで形成 することが出来る。  As described above, according to each of the above embodiments, the light emitting surfaces 121) and 13b of the plurality of surface emitting lasers 12 and 13 attached to the surface emitting laser array 14 are formed at the same height when viewed from the reference surface. I can do it.
[0078] なお、上記各実施例では、上記基板 50に溝 51a、 51eを形成した力 面発光レー ザ 12, 13の裏面電極 33, 34に溝を形成しても同様の効果を得ることができる。  In each of the above embodiments, the same effect can be obtained even if grooves are formed in the back surface electrodes 33 and 34 of the force-emitting lasers 12 and 13 in which the grooves 51a and 51e are formed in the substrate 50. it can.
[0079] よって、図 14に示すように、複数の前記面発光レーザ 12, 13の各発光面 12b, 13 bとレンズ 16の主点 16a間の距離 H7, H8を等しくすることができる。したがって前記 面発光レーザ 12から放射される再生参照光 22、及び前記面発光レーザ 13から放射 される再生参照光 71を共に、前記レンズ 16にて平行光に調整できる。よって、前記 ホログラムデータ 21を再生可能な波長を得るベぐ前記面発光レーザ 12, 13を切り 替えても平行光で一定の光強度以上の再生参照光 22, 71を得ることができ、前記ホ ログラムデータ 21を適切に再生できる。以上により本実施形態により製造された面発 光レーザアレイ 14を用いて前記ホログラム再生装置 10を製造すれば、広範な波長 帯域にて再生参照光を一定の光強度以上の平行光で得ることができ、よってホログ ラム再生機能に優れたホログラム再生装置を製造できる。 Therefore, as shown in FIG. 14, the light emitting surfaces 12b, 13 of the plurality of surface emitting lasers 12, 13 are provided. The distances H7 and H8 between b and the principal point 16a of the lens 16 can be made equal. Accordingly, both the reproduction reference light 22 emitted from the surface emitting laser 12 and the reproduction reference light 71 emitted from the surface emitting laser 13 can be adjusted to parallel light by the lens 16. Therefore, even if the surface emitting lasers 12 and 13 for obtaining a wavelength capable of reproducing the hologram data 21 are switched, it is possible to obtain the reproduction reference beams 22 and 71 having a certain light intensity or more with parallel light. Program data 21 can be reproduced properly. As described above, if the hologram reproducing device 10 is manufactured using the surface emitting laser array 14 manufactured according to the present embodiment, the reproduction reference light can be obtained as parallel light having a certain light intensity or more in a wide wavelength band. Therefore, it is possible to manufacture a hologram reproducing apparatus having an excellent hologram reproducing function.
[0080] ところで、前記面発光レーザ 12, 13の素子表面が明らかに凹凸面として形成され、 前記素子表面を平坦ィヒ面で形成されていない場合がある。かかる場合、凸部表面( 最表面)に前記発光面 12b, 13bが位置していれば、この発光面 12b, 13bを、前記 治具 30の前記対向面 30aに当接させればよい。  By the way, there are cases where the surface of the element of the surface emitting lasers 12 and 13 is clearly formed as an uneven surface and the surface of the element is not formed as a flat surface. In this case, if the light emitting surfaces 12b and 13b are positioned on the convex surface (outermost surface), the light emitting surfaces 12b and 13b may be brought into contact with the facing surface 30a of the jig 30.
[0081] しかし、凹部表面に前記発光面 12b, 13bが位置している場合、前記対向面 30aに 前記凹部表面を当接させることができないため、面発光レーザの最表面である凸部 表面 (発光面は位置していない)を前記治具 30の前記対向面 30aに当接させることと なる。かかる場合、本実施形態の製造方法を用いても、各面発光レーザ 12、 13の凸 部表面と、凹部表面との間の高さ寸法のばらつきが、面発光レーザ 12, 13の発光面 12b, 13bの高さのばらつきとして残ってしまう。しかし、従来に比べて面発光レーザ 1 2, 13の高さ寸法 H3, H4のばらつき、及び各接着層の膜厚のばらつきが累積される ことによる発光面 12b、 13bの基準面からの高さの誤差はない。  However, when the light emitting surfaces 12b and 13b are located on the concave surface, the concave surface cannot be brought into contact with the facing surface 30a. Therefore, the convex surface which is the outermost surface of the surface emitting laser ( The light emitting surface is not positioned) and the opposed surface 30a of the jig 30 is brought into contact with the opposing surface 30a. In such a case, even if the manufacturing method of the present embodiment is used, the variation in the height dimension between the convex surface of each of the surface emitting lasers 12 and 13 and the surface of the concave portion is caused by the light emitting surface 12b of the surface emitting lasers 12 and 13. , 13b remains as a variation in height. However, the heights of the light emitting surfaces 12b and 13b from the reference surface due to the accumulation of variations in the height dimensions H3 and H4 of the surface emitting lasers 12 and 13 and the variation in the thickness of each adhesive layer compared to the conventional ones. There is no error.
[0082] したがって上記のように、面発光レーザ 12, 13の素子表面が明らかに凹凸面として 形成されている場合でも、従来に比べて発光面 12b, 13bの高さのばらつきを大幅に 小さくすることが可能である。このときの高さ寸法のばらつきは ± 2 z m程度である。  Therefore, as described above, even when the surface of the surface emitting lasers 12 and 13 is clearly formed as an uneven surface, the variation in the height of the light emitting surfaces 12b and 13b is significantly reduced as compared with the conventional case. It is possible. The variation of the height dimension at this time is about ± 2 zm.
[0083] なお、上記以上にばらつきが広い場合には、治具 30に各面発光レーザ 12、 13を 吸着固定する際に、前記面発光レーザ 12、 13の各発光面 12b, 13bを同一高さに 合わせた状態にして、治具 30に各面発光レーザ 12、 13を固定することが必要となる [0084] 上記の各実施形態では、基板 50上に設けられた面発光レーザ 12, 13は 2個であ つたが、さらに多くの面発光レーザが搭載されてもよい。かかる場合、少なくとも一個 の面発光レーザの膜厚が、他の面発光レーザの膜厚と異なる場合、本実施形態に おける製造方法を適用すると効果的である。 [0083] When the variation is wider than the above, when the surface emitting lasers 12 and 13 are attracted and fixed to the jig 30, the surface emitting lasers 12b and 13b of the surface emitting lasers 12 and 13 are set to the same height. It is necessary to fix the surface emitting lasers 12 and 13 to the jig 30 in a suitable state. [0084] In each of the above embodiments, there are two surface emitting lasers 12 and 13 provided on the substrate 50. However, more surface emitting lasers may be mounted. In such a case, when the film thickness of at least one surface emitting laser is different from the film thickness of other surface emitting lasers, it is effective to apply the manufacturing method according to this embodiment.
[0085] また図 7以降では、導電性接着剤を半田または有機成分を含む導電性ペーストで も良い。力かる導電性ペーストでは、硬化の際、加熱処理にて前記有機成分が除去 されることが好ましい。  In FIG. 7 and subsequent figures, the conductive adhesive may be solder or a conductive paste containing an organic component. In a strong conductive paste, the organic component is preferably removed by heat treatment during curing.
[0086] 本実施形態では、面発光レーザアレイ 14の一使用例としてホログラム再生装置 10 を説明したが、ホログラム再生装置に限定されるものではない。複数の面発光レーザ を使用し、各面発光レーザの発光面が同一高さであることが要求される用途であれ ば適用可能である。  In the present embodiment, the hologram reproducing device 10 has been described as an example of use of the surface emitting laser array 14, but is not limited to the hologram reproducing device. This is applicable to applications where a plurality of surface emitting lasers are used and the surface of each surface emitting laser is required to have the same height.
[0087] また「発光素子」として面発光レーザを用いたが、前記面発光レーザに限定されるも のではない。  Further, although the surface emitting laser is used as the “light emitting element”, it is not limited to the surface emitting laser.
[0088] また図 3の前記半田 53等の導電性接着剤の塗布工程であるが、前記導電性接着 剤を前記基板側電極 51, 52上に塗布することが簡単に導電性接着剤を塗布できて 好適であるが、前記面発光レーザ 12, 13の裏面電極 33, 34に塗布していてもよい し、前記基板側電極 51 , 52上及び前記裏面電極 33, 34の双方に塗布してもよい。  [0088] Further, in the process of applying a conductive adhesive such as the solder 53 of Fig. 3, it is easy to apply the conductive adhesive on the substrate side electrodes 51 and 52. Although it is preferable, it may be applied to the back electrodes 33 and 34 of the surface emitting lasers 12 and 13, or may be applied to both the substrate side electrodes 51 and 52 and the back electrodes 33 and 34. Also good.
[0089] また前記導電性接着剤の形態は、ペースト状、フィルム状、粉状等、特に限定され るものではない。  [0089] The form of the conductive adhesive is not particularly limited, such as a paste, a film, or a powder.
[0090] また前記導電性接着剤の基板側電極 51 , 52上への形成方法は、スクリーン印刷、 インクジェット方式、スパッタ法等、特に限定されない。  [0090] The method for forming the conductive adhesive on the substrate-side electrodes 51, 52 is not particularly limited, such as screen printing, an ink jet method, a sputtering method, or the like.
[0091] また、本実施形態では、前記面発光レーザ 12、 13の発光面 12b, 13bに表面電極 31 , 32が設けられていた力 前記面発光レーザ 12、 3の裏面 12c, 13cに夫々、 2つ の電極が設けられていてもよい。かかる場合、各電極毎に対応した小電極を基板 50 上に形成し、各電極'小電極間を導電性接着剤で密着させることにより、面発光レー ザ 12、 13を基板 50上に固定する。  Further, in the present embodiment, the force with which the surface electrodes 31 and 32 are provided on the light emitting surfaces 12b and 13b of the surface emitting lasers 12 and 13, respectively, on the back surfaces 12c and 13c of the surface emitting lasers 12 and 3, respectively. Two electrodes may be provided. In such a case, the surface emitting lasers 12 and 13 are fixed on the substrate 50 by forming small electrodes corresponding to the respective electrodes on the substrate 50 and bringing the electrodes' small electrodes into close contact with each other with a conductive adhesive. .
[0092] また、前記面発光レーザ 12, 13と基板 50間を半田等の導電性接着剤にて固定し た力 これは電極間を導通接続することが一つの理由である。よって前記面発光レー ザ 12, 13と基板 50間を導通接続する必要のない場合は、導電性接着剤以外の接 着剤を使用することが可能である。 [0092] Further, the force by which the surface-emitting lasers 12 and 13 and the substrate 50 are fixed with a conductive adhesive such as solder. This is because the electrodes are electrically connected. Therefore, the surface emitting laser If it is not necessary to connect the boards 12 and 13 to the board 50, it is possible to use an adhesive other than the conductive adhesive.
図面の簡単な説明  Brief Description of Drawings
[0093] [図 1]ホログラム再生装置によって記録媒体からホログラムデータを再生する概念図、 [図 2]本発明の第 1の実施形態における発光装置(面発光レーザアレイ)の製造方法 を示す工程図 (厚さ方向から切断した部分断面図)、  FIG. 1 is a conceptual diagram for reproducing hologram data from a recording medium by a hologram reproducing device. FIG. 2 is a process diagram showing a method for manufacturing a light emitting device (surface emitting laser array) according to a first embodiment of the present invention. (Partial sectional view cut from the thickness direction),
[図 3]図 2の次の工程図(厚さ方向から切断した部分断面図)、  [FIG. 3] The next process diagram of FIG. 2 (partial sectional view cut from the thickness direction),
[図 4]図 3の次の工程図(厚さ方向から切断した部分断面図)、  [FIG. 4] The next process diagram of FIG. 3 (partial sectional view cut from the thickness direction),
[図 5]図 4の次の工程図(厚さ方向から切断した部分断面図)、  [FIG. 5] Next process diagram of FIG. 4 (partial sectional view cut from the thickness direction),
[図 6]図 2に示す面発光レーザ及び治具を真上から見た部分平面図、  FIG. 6 is a partial plan view of the surface emitting laser and jig shown in FIG.
[図 7]本発明の第 2の実施形態を示す工程図、  FIG. 7 is a process chart showing a second embodiment of the present invention,
[図 8]図 7の次の工程図、  [FIG. 8] Process diagram following FIG.
[図 9]第 2の実施形態に好適な基板側電極を用いた製造方法を示す工程図(図 11に 示す A— A線に沿って厚み方向に切断し矢印方向から見た前記基板及び接着剤( 半田)の部分拡大断面図)、  FIG. 9 is a process diagram showing a manufacturing method using a substrate-side electrode suitable for the second embodiment (the substrate and the adhesion as seen from the direction of the arrow cut in the thickness direction along the line AA shown in FIG. 11) (Partial enlarged sectional view of the agent (solder)),
[図 10]図 9の次の工程図(図 9の工程後、前記面発光レーザと基板とを接合した状態 を示す前記基板、面発光レーザ及び接着剤(半田)の部分拡大断面図)、  FIG. 10 is a process diagram subsequent to FIG. 9 (partially enlarged sectional view of the substrate, the surface emitting laser and the adhesive (solder) showing a state where the surface emitting laser and the substrate are joined after the process of FIG. 9);
[図 11]図 9に示す基板及び接着剤(半田)を真上力も見た部分拡大平面図、  [FIG. 11] Partial enlarged plan view of the substrate and adhesive (solder) shown in FIG.
[図 12]第 2の実施形態に好適な他の電極基板及び接着剤(半田)を真上から見た部 分拡大平面図、  FIG. 12 is an enlarged plan view of a part of another electrode substrate and an adhesive (solder) suitable for the second embodiment as seen from directly above.
[図 13]図 12に示す基板上に面発光レーザを接合させた前記基板、前記接着剤(半 田)及び前記面発光レーザを厚さ方向力 切断した部分断面図、  FIG. 13 is a partial sectional view of the substrate in which a surface emitting laser is bonded to the substrate shown in FIG. 12, the adhesive (solder), and the surface emitting laser cut in a thickness direction force;
[図 14]本実施形態による製造方法によって製造された面発光レーザアレイをホロダラ ム再生装置に組み込んだ場合の再生参照光の照射状態を説明するための概念図、 [図 15]従来の各面発光レーザから照射される再生参照光の照射状態を示す概念図 符号の説明  FIG. 14 is a conceptual diagram for explaining the irradiation state of reproduction reference light when the surface-emitting laser array produced by the production method according to the present embodiment is incorporated in a hologram reproduction apparatus. FIG. Conceptual diagram showing the irradiation state of the reproduction reference beam emitted from the light emitting laser.
[0094] 10 ホログラム再生装置 、 13 面発光レーザ[0094] 10 Hologram reproduction device , 13 surface emitting laser
b、 13b 発光面 b, 13b Light emitting surface
面発光レーザアレイ  Surface emitting laser array
レンズアレイ  Lens array
撮像素子  Image sensor
ピンホールフィルタ  Pinhole filter
記録媒体  recoding media
ホログラムデータ  Hologram data
、 71 再生参照光 , 71 Playback reference light
再生光  Reproduction light
治具 jig
a 対向面 a Opposing surface
裏面電極 (発光素子側電極) 、 41 マーク部  Back electrode (light emitting element side electrode), 41 Mark
基板  Substrate
基板側電極 Substrate side electrode
a, e 溝 a, e groove
、 60、 61、 62、 66 半田 (導電性接着剤) 基台 , 60, 61, 62, 66 Solder (conductive adhesive) base
ワイヤ  Wire
樹脂  Resin
同一平面 Coplanar

Claims

請求の範囲 The scope of the claims
[1] 基板上に複数の発光素子が設けられた発光装置の製造方法にぉレ、て、  [1] A method for manufacturing a light emitting device in which a plurality of light emitting elements are provided on a substrate,
複数の前記発光素子の各発光面を前記基板上にて同一高さに合わせた状態で、 前記発光素子を前記基板上に接着剤を介して密着させ、  With the light emitting surfaces of the plurality of light emitting elements aligned at the same height on the substrate, the light emitting elements are adhered to the substrate via an adhesive,
その後、前記接着剤を硬化して、前記発光素子を前記基板上に固定することを特 徴とする発光装置の製造方法。  Thereafter, the adhesive is cured, and the light emitting element is fixed on the substrate.
[2] 複数の前記発光素子を治具に取り付けて、各発光面を同一高さに合わせ、前記同 一高さを維持しながら前記発光素子を基板上に接着剤を介して密着させ、前記接着 剤を硬化した後、前記治具を除去する請求項 1記載の発光装置の製造方法。  [2] A plurality of the light emitting elements are attached to a jig, the light emitting surfaces are set to the same height, and the light emitting elements are adhered to the substrate with an adhesive while maintaining the same height. 2. The method for manufacturing a light emitting device according to claim 1, wherein the jig is removed after the adhesive is cured.
[3] 以下の工程を有する請求項 2記載の発光装置の製造方法。  [3] The method for manufacturing a light-emitting device according to claim 2, comprising the following steps.
(a) 前記各発光面と対向する対向面が同一平面として形成された前記治具を用 意し、前記対向面に複数の前記発光素子の各発光面を当接させることにより、前記 各発光素子の前記発光面を同一の平面上に保持する工程と、  (a) preparing the jig in which an opposing surface facing each light emitting surface is formed as the same plane, and bringing each light emitting surface of the plurality of light emitting elements into contact with the opposing surface; Holding the light emitting surface of the element on the same plane;
(b) 上記状態を維持したまま、前記発光素子を前記治具に固定する工程と、  (b) fixing the light emitting element to the jig while maintaining the state;
(c) 前記治具を前記基板上に対向させ、前記基板上の基準面と前記治具の対向 面とを平行状態に維持しながら、前記基板と前記発光素子間を前記接着剤を介して 密着させる工程と、  (c) The jig is opposed to the substrate, and the reference surface on the substrate and the opposed surface of the jig are maintained in a parallel state, while the substrate and the light emitting element are interposed via the adhesive. A process of adhering;
(d) 上記平行状態を維持しながら、前記接着剤を硬化して、前記発光素子を前記 基板上に固定する工程と、  (d) curing the adhesive while maintaining the parallel state, and fixing the light emitting element on the substrate;
(e) 前記発光素子と前記治具間の固定状態を解除し、前記治具を除去する工程  (e) releasing the fixed state between the light emitting element and the jig and removing the jig
[4] 前記治具には吸引孔が設けられており、前記治具の対向面に前記発光素子の発光 面を当接させた後、吸引することにより前記発光素子を前記治具に固定することを特 徴とする請求項 3記載の製造方法。 [4] The jig is provided with a suction hole, and the light emitting surface of the light emitting element is brought into contact with the opposing surface of the jig, and then the light emitting element is fixed to the jig by suction. The manufacturing method according to claim 3, characterized by the above.
[5] 基板上に複数の発光素子が設けられた発光装置の製造方法にぉレ、て、  [5] A method for manufacturing a light-emitting device in which a plurality of light-emitting elements are provided on a substrate,
複数の前記発光素子の各発光面と対向する対向面が同一の平面状に形成された 治具を用意し、各発光素子を発光面側から前記治具の前記対向面に当接させて前 記治具に固定した状態とし、前記発光素子を前記基板上に接着剤を介して密着させ その後、前記接着剤を硬化して、前記発光素子を前記基板上に固定し、さらに、前 記発光素子と前記治具間の固定状態を解除し、前記治具を除去することを特徴とす る発光装置の製造方法。 Prepare a jig in which the opposed surfaces facing the respective light emitting surfaces of the plurality of light emitting elements are formed in the same plane, and bring each light emitting element into contact with the opposed surface of the jig from the light emitting surface side. The light emitting device is fixed on the jig, and the light emitting element is adhered to the substrate with an adhesive. Thereafter, the adhesive is cured, the light emitting element is fixed on the substrate, the fixing state between the light emitting element and the jig is released, and the jig is removed. Manufacturing method of light emitting device.
[6] 前記発光素子の前記発光面との反対面、及び前記基板の表面には、夫々、電極 が設けられており、前記反対面の電極と、前記基板表面の電極の少なくとも一方には 溝が形成され、前記溝を除く前記電極上に前記接着剤を設ける請求項 1ないし 6の レ、ずれかに記載の発光装置の製造方法。  [6] Electrodes are respectively provided on a surface opposite to the light emitting surface of the light emitting element and a surface of the substrate, and a groove is provided on at least one of the electrode on the opposite surface and the electrode on the substrate surface. 7. The method for manufacturing a light emitting device according to claim 1, wherein the adhesive is provided on the electrode excluding the groove.
[7] 前記発光素子の反対面の電極と基板表面の電極の少なくとも一方が、前記溝によ り複数の小電極に分割形成されており、前記溝を除く前記複数の小電極上に前記接 着剤を設ける請求項 6に記載の発光装置の製造方法。  [7] At least one of the electrode on the opposite surface of the light emitting element and the electrode on the substrate surface is divided into a plurality of small electrodes by the groove, and the contact is formed on the plurality of small electrodes excluding the groove. 7. The method for manufacturing a light emitting device according to claim 6, wherein an adhesive is provided.
[8] 前記溝が格子状に形成されていることを特徴とする請求項 6または 7記載の発光装 置の製造方法。  8. The method for manufacturing a light emitting device according to claim 6 or 7, wherein the grooves are formed in a lattice shape.
[9] 前記接着剤には導電性接着剤を使用することを特徴とする請求項 1、 2, 3、 5, 6、 [9] The conductive adhesive is used for the adhesive, 1, 2, 3, 5, 6,
7または 8のレ、ずれかに記載の発光装置の製造方法。 A method for manufacturing a light emitting device according to 7 or 8 above.
[10] 前記導電性接着剤には半田を用いる請求項 9記載の発光装置の製造方法。 10. The method for manufacturing a light emitting device according to claim 9, wherein solder is used for the conductive adhesive.
[11] 前記導電性接着剤には有機成分を含む導電性ペーストを用い、前記導電性接着 剤の硬化の際、加熱処理にて前記有機成分を除去する請求項 9記載の発光装置の 製造方法。 [11] The method for manufacturing a light-emitting device according to claim 9, wherein a conductive paste containing an organic component is used as the conductive adhesive, and the organic component is removed by a heat treatment when the conductive adhesive is cured. .
[12] 前記接着剤を、各発光素子と基板間に点在させる請求項 1,2, 3または 5のいずれ かに記載の発光装置の製造方法。  12. The method for manufacturing a light emitting device according to claim 1, wherein the adhesive is scattered between each light emitting element and the substrate.
[13] 前記治具には吸引孔が設けられており、前記治具の対向面に前記発光素子の発光 bの露出面を当接させた後、吸引することにより前記発光素子を前記治具に固定する ことを特徴とする請求項 5記載の製造方法。 [13] The jig is provided with a suction hole, the exposed surface of the light emitting element b is brought into contact with the opposing surface of the jig, and then sucked to attach the light emitting element to the jig. The manufacturing method according to claim 5, wherein the method is fixed to.
PCT/JP2007/061055 2006-06-06 2007-05-31 Method of manufacturing light-emitting device WO2007142108A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006157495A JP2009200064A (en) 2006-06-06 2006-06-06 Method of manufacturing light-emitting device
JP2006-157495 2006-06-06

Publications (1)

Publication Number Publication Date
WO2007142108A1 true WO2007142108A1 (en) 2007-12-13

Family

ID=38801366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061055 WO2007142108A1 (en) 2006-06-06 2007-05-31 Method of manufacturing light-emitting device

Country Status (2)

Country Link
JP (1) JP2009200064A (en)
WO (1) WO2007142108A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565966A (en) * 2010-12-10 2012-07-11 新科实业有限公司 Optical waveguide assembly and light transmission device using module
DE102011110166A1 (en) * 2011-08-12 2013-02-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for structuring a glassy material consisting of surface substrate and optical component
JP6166954B2 (en) * 2013-05-24 2017-07-19 スタンレー電気株式会社 Semiconductor light emitting element array and method for manufacturing semiconductor light emitting element array

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617385A (en) * 1979-07-20 1981-02-19 Tokyo Shibaura Electric Co Production of display device
JP2000049415A (en) * 1998-07-30 2000-02-18 Matsushita Electric Ind Co Ltd Nitride semiconductor laser element
JP2003347524A (en) * 2002-05-28 2003-12-05 Sony Corp Transferring method of element, arraying method of element, and manufacturing method of image display
JP2004214338A (en) * 2002-12-27 2004-07-29 Nichia Chem Ind Ltd Semiconductor light emitting device
JP2006085935A (en) * 2004-09-14 2006-03-30 Mitsubishi Electric Corp Manufacturing method of field emission device and field emission device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617385A (en) * 1979-07-20 1981-02-19 Tokyo Shibaura Electric Co Production of display device
JP2000049415A (en) * 1998-07-30 2000-02-18 Matsushita Electric Ind Co Ltd Nitride semiconductor laser element
JP2003347524A (en) * 2002-05-28 2003-12-05 Sony Corp Transferring method of element, arraying method of element, and manufacturing method of image display
JP2004214338A (en) * 2002-12-27 2004-07-29 Nichia Chem Ind Ltd Semiconductor light emitting device
JP2006085935A (en) * 2004-09-14 2006-03-30 Mitsubishi Electric Corp Manufacturing method of field emission device and field emission device

Also Published As

Publication number Publication date
JP2009200064A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
US7307816B1 (en) Flexure design and assembly process for attachment of slider using solder and laser reflow
US6796018B1 (en) Method of forming a slider/suspension assembly
US20050139249A1 (en) Thermoelectric module and a method of manufacturing the same
KR20020032274A (en) Semiconductor module and method of manufacturing thereof
JP2006120288A (en) Suspension substrate with circuit
EP2463809A1 (en) Electronic card with electric contact including an electronic unit and/or an antenna
WO2007142108A1 (en) Method of manufacturing light-emitting device
EP0044247B1 (en) Method of producing a carrier for electronic components for the interconnection of integrated-circuit chips
EP1084482B1 (en) Method for producing an integrated circuit card and card produced according to said method
EP0688050A1 (en) Assembly method for integrated circuit card and such obtained card
JP2006026692A (en) Method for removing unleaded solder from slider pad and magnetic disk device
CN101005192A (en) Semiconductor laser device, method for manufacturing the same and optical pickup apparatus
US20090127235A1 (en) Multi-beam laser bonding apparatus and bonding method using the same
JP3627916B2 (en) Manufacturing method of magnetic head device
US20090145650A1 (en) Screen mask, method for printing conductive bonding material, mounting method of mounting devices, and mounting substrate
US9514772B2 (en) Magnetic head device having suspension and spacer
JP2002367132A (en) Magnetic head, method of manufacturing magnetic head and method of peeling slider
JP4160889B2 (en) Manufacturing method of semiconductor device
FR2795199A1 (en) DEVICE AND METHOD FOR MANUFACTURING DEVICES COMPRISING AT LEAST ONE CHIP MOUNTED ON A SUPPORT
JP2003309314A (en) Integrated optical element and its manufacturing method
FR2786317A1 (en) Flush contact chip card production comprises etching connection terminal contact pads in a continuous metallic strip on which the chip is mounted
US7897892B2 (en) Method of bonding an optical component
US20040200889A1 (en) System and method for improving hard drive actuator lead attachment
JP2002050018A (en) Method for manufacturing magnetic head device, solder ball supply element, and its manufacturing method
JP2005072098A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744466

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 07744466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP