JP2009196037A - Grinder and grinding control method - Google Patents

Grinder and grinding control method Download PDF

Info

Publication number
JP2009196037A
JP2009196037A JP2008040397A JP2008040397A JP2009196037A JP 2009196037 A JP2009196037 A JP 2009196037A JP 2008040397 A JP2008040397 A JP 2008040397A JP 2008040397 A JP2008040397 A JP 2008040397A JP 2009196037 A JP2009196037 A JP 2009196037A
Authority
JP
Japan
Prior art keywords
grinding
wheel
slab
grinding wheel
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008040397A
Other languages
Japanese (ja)
Other versions
JP5037383B2 (en
Inventor
Yoshiaki Miura
慶明 三浦
Sunao Iwata
直 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008040397A priority Critical patent/JP5037383B2/en
Publication of JP2009196037A publication Critical patent/JP2009196037A/en
Application granted granted Critical
Publication of JP5037383B2 publication Critical patent/JP5037383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem with a conventional grinder wherein a failure to grind occurs when the surface of a cast piece with an unequal width is automatically ground. <P>SOLUTION: This grinder 10 for grinding the surface of a cast piece with an unequal width comprises: a grinding wheel 32; a grinding wheel 32 moving part for moving the grinding wheel 32; a measuring part for measuring the profile of the surface of the cast piece with the unequal width; and a control part for calculating a first grinding path for linearly grinding the surface of the cast piece at a specified grinding angle using the grinding wheel 32 and a second grinding path for grinding the surface of the cast piece at an angle different from the specified grinding angle using the grinding wheel 32, linearly grinding the surface of the cast piece along the first grinding path using the grinding wheel 32 of the grinder 10, repeatedly performing the linear grinding by moving the grinding wheel 32 at intervals in the direction perpendicular to the linear direction, and so controlling as to grind the end of the surface of the cast piece as a remaining part after the linear grinding along the second grinding path using the grinding wheel 32. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本出願は、研削装置及び研削制御方法に関し、特に、鋳片に対して一定の研削角度の直線研削と研削残し端部研削とを組合わせて行う研削装置及び研削制御方法に関する。   The present application relates to a grinding apparatus and a grinding control method, and more particularly, to a grinding apparatus and a grinding control method for performing a combination of linear grinding with a constant grinding angle and unground grinding end grinding on a slab.

近年、製鋼工程において鋳片(連続鋳造された鉄鋼を一定の長さで切断した直方体の鋼材である)の表面を研削する研削装置は、手動制御による研削処理を必要とする研削残しを少なくすることで、研削工程の処理速度の向上を図ることが求められている。   In recent years, a grinding apparatus that grinds the surface of a slab (a rectangular steel material obtained by cutting continuously cast steel at a certain length) in a steelmaking process reduces the amount of grinding residue that requires a manually controlled grinding process. Therefore, it is required to improve the processing speed of the grinding process.

研削装置の研削砥石は、自動制御では往復直線移動により鋳片を研削していくため、鋳片Sが完全な矩形であれば研削残しは生じない。しかしながら、図8(a)に示すように、研削軌跡は直線であるため、完全な矩形形状ではない鋳片Sを、直線移動で鋳片を研削すると、図8(b)に示すように研削残しb1が存在する。研削砥石の角度を常に一定に保ったまま研削することで、鋳片Sの表面は一定のピッチで研削され仕上がりは良い。しかし、鋳片Sと砥石との角度を一定に保ったままだと、物理的に研削残しB1が存在してしまう。そのため、自動制御終了後、作業員が手動制御により研削砥石を移動して研削残しb1を研削する必要があり、この手動制御により鋳片研削処理工程の速度が低下するという問題が生じていた。   Since the grinding wheel of the grinding apparatus grinds the slab by reciprocating linear movement in automatic control, if the slab S is a perfect rectangle, no grinding residue is generated. However, as shown in FIG. 8 (a), the grinding locus is a straight line. Therefore, when the slab S that is not a complete rectangular shape is ground by linear movement, the slab is ground as shown in FIG. 8 (b). There is a remaining b1. By grinding with the angle of the grinding wheel always kept constant, the surface of the slab S is ground at a constant pitch and the finish is good. However, if the angle between the slab S and the grindstone is kept constant, the unground grinding B1 exists physically. Therefore, after completion of the automatic control, it is necessary for an operator to move the grinding wheel by manual control to grind the remaining grinding b1, and this manual control has caused a problem that the speed of the slab grinding process is reduced.

矩形形状ではない鋳片に対し可能な限り自動制御により研削を行うため、鋳片の研削表面を測定し、自動制御による研削領域を拡大化する研削装置が提案されている(下記特許文献1)。この研削装置では、図8(c)に示すように、研削残し部が最小になるように直線研削の向きを変えている。   In order to perform grinding by automatic control as much as possible for a slab that is not rectangular, a grinding apparatus that measures the grinding surface of the slab and enlarges the grinding area by automatic control has been proposed (Patent Document 1 below). . In this grinding apparatus, as shown in FIG. 8C, the direction of linear grinding is changed so that the remaining grinding portion is minimized.

特開2003−334746号公報JP 2003-334746 A

しかしながら、この提案されている研削装置は、研削残し部b2が小さくなっているものの、依然として研削残しを生じているため、作業員の手動制御による研削処理を必要とする。また、鋳片Sの形状によって、鋳片Sと砥石との角度が変わるため、研削品質が一定にならないという問題がある。   However, this proposed grinding apparatus requires a grinding process by manual control of an operator because the grinding remaining portion b2 is small, but a grinding residue is still generated. Moreover, since the angle between the slab S and the grindstone varies depending on the shape of the slab S, there is a problem that the grinding quality is not constant.

上述のような問題点に鑑み、研削残しを無くして、鋳片研削処理工程を全自動で行うことで、研削処理に要する時間を短縮する研削装置が求められている。   In view of the above-described problems, there is a demand for a grinding apparatus that reduces the time required for the grinding process by eliminating the grinding residue and performing the slab grinding process step fully automatically.

上記課題を解決するために、不等幅の鋳片表面を研削する研削装置であって、研削砥石と、研削砥石を移動させる研削砥石移動部と、不等幅の鋳片表面の輪郭を測定する測定部と、鋳片表面に対して研削砥石を用いて一定の研削角度で直線研削するための第1の研削軌跡、及び、一定の研削角度と異なる角度で研削砥石を用いて研削するための第2の研削軌跡を算出し、第1の研削軌跡に従い、鋳片表面を研削装置の研削砥石を用いて直線研削し、直線方向に直交する方向に一定間隔で研削砥石を移動して直線研削を繰り返し、第2の研削軌跡に従い、直線研削の研削残し部である鋳片表面の端部を研削砥石を用いて研削するように制御する制御部と、を有する研削装置が提供される。   In order to solve the above problems, a grinding apparatus for grinding a slab surface of unequal width, measuring a contour of a grinding wheel, a grinding wheel moving portion for moving the grinding wheel, and a slab surface of unequal width A first grinding trajectory for linear grinding at a constant grinding angle using a grinding wheel on a slab surface, and a grinding wheel at an angle different from the constant grinding angle The second grinding trajectory is calculated, and the slab surface is linearly ground using the grinding wheel of the grinding device according to the first grinding trajectory, and the grinding wheel is moved at a constant interval in a direction orthogonal to the linear direction. There is provided a grinding device having a control unit that repeats grinding and controls so as to grind an end portion of a slab surface, which is a remaining grinding portion of linear grinding, using a grinding wheel in accordance with a second grinding locus.

さらに、上記課題を解決するために、不等幅の鋳片表面を研削する研削装置を用いた研削制御方法であって、不等幅の鋳片表面の輪郭を測定し、鋳片表面に対して研削砥石を用いて一定の研削角度で直線研削するための第1の研削軌跡、及び、一定の研削角度と異なる角度で研削砥石を用いて研削するための第2の研削軌跡を算出し、第1の研削軌跡に従い、鋳片表面を研削装置の研削砥石を用いて直線研削し、直線方向に直交する方向に一定間隔で研削砥石を移動して直線研削を繰り返し、第2の研削軌跡に従い、直線研削の研削残し部である鋳片表面の端部を研削砥石を用いて研削する研削制御方法が提供される。   Furthermore, in order to solve the above-mentioned problem, a grinding control method using a grinding device for grinding a slab surface of unequal width, measuring the contour of the slab surface of unequal width, Calculating a first grinding trajectory for linear grinding at a constant grinding angle using a grinding wheel and a second grinding trajectory for grinding using a grinding wheel at an angle different from the constant grinding angle; According to the first grinding locus, the surface of the slab is linearly ground using the grinding wheel of the grinding device, and the grinding wheel is moved at regular intervals in a direction orthogonal to the linear direction, and linear grinding is repeated, and according to the second grinding locus. There is provided a grinding control method for grinding an end portion of a slab surface, which is a remaining grinding portion of linear grinding, using a grinding wheel.

上記第1及び第2の研削軌跡は、研削砥石が鋳片の表面から下部へ落ちる直前までの研削軌跡を含んでも良い。   The first and second grinding trajectories may include a grinding trajectory immediately before the grinding wheel falls from the surface of the slab to the lower part.

この研削制御方法又は研削装置は、不等幅の鋳片表面に対して、研削残し部についても自動で研削するようにしたので、研削残し部の手動研削を不要とし、研削処理の処理速度を向上することができる。   This grinding control method or grinding apparatus automatically grinds the remaining grinding portion on the surface of the slab of unequal width, so that manual grinding of the remaining grinding portion is not required and the processing speed of the grinding process is increased. Can be improved.

また、この研削制御方法又は研削装置は、鋳片表面の輪郭測定により、可能な限り一定の角度で鋳片の表面研削を行うようにしたので、自動研削においても、鋳片表面の大部分を一定の研削ピッチで研削し、質を高い研削を提供できる。   In addition, since this grinding control method or grinding apparatus performs surface grinding of the slab at a constant angle as much as possible by measuring the contour of the slab surface, even in automatic grinding, most of the slab surface is removed. Grinding at a constant grinding pitch can provide high quality grinding.

以下、図面を参照して、本願の研削装置の実施の形態を説明する。
図1は、研削装置10の概略を示す平面図である。図1を用いて、研削装置10の一例を説明する。以下では、図1の左右方向をX軸方向といい、図1の上下方向をY軸方向といい、図1の紙面直交方向をZ軸方向という。
Hereinafter, an embodiment of a grinding apparatus of the present application will be described with reference to the drawings.
FIG. 1 is a plan view showing an outline of the grinding apparatus 10. An example of the grinding apparatus 10 will be described with reference to FIG. In the following, the left-right direction in FIG. 1 is referred to as the X-axis direction, the up-down direction in FIG. 1 is referred to as the Y-axis direction, and the direction orthogonal to the plane of FIG.

研削装置10は、鋳片Sを搬送する2つのコンベア12、14上に配置される。鋳片Sは、研削装置により表面を研削されると、図1の右側から左側へ搬送される。
研削装置10は、研削砥石32、支柱34、砥石回転用モータ35、第1及び第2レーザ距離計42、43、支柱34と連結して研削砥石32をY軸方向に移動させるためのキャリッジ30、キャリッジ30を積載し且つ研削砥石32をX軸方向に移動させるための台車20、及び、制御装置70(図2参照)を有する。
The grinding device 10 is disposed on the two conveyors 12 and 14 that convey the slab S. When the surface of the slab S is ground by the grinding device, the slab S is conveyed from the right side to the left side in FIG.
The grinding apparatus 10 is connected to the grinding wheel 32, the support 34, the grinding wheel rotating motor 35, the first and second laser distance meters 42 and 43, and the support 34 to move the grinding wheel 32 in the Y-axis direction. And a carriage 20 for loading the carriage 30 and moving the grinding wheel 32 in the X-axis direction, and a control device 70 (see FIG. 2).

2つの鋳片Sは、コンベア12、14により図1の右側から左側へ搬送される。台車20は、2本のX軸レール16、18上を車輪で移動することにより、研削砥石32をX軸方向に移動させる。キャリッジ30は、台車20上のY軸レール53、54上を移動することで、研削砥石32をX軸方向に移動させる。
キャリッジ30には、鋳片Sの側面との距離を測定するための第1及び第2レーザ距離計42、43が取付けられている。第1及び第2レーザ距離計42、43は、後述するように、台車20をX軸方向に移動させながら、鋳片Sの側面との距離を測定するために用いられる。
The two slabs S are conveyed from the right side to the left side in FIG. The carriage 20 moves the grinding wheel 32 in the X-axis direction by moving the wheels on the two X-axis rails 16 and 18 with wheels. The carriage 30 moves the grinding wheel 32 in the X-axis direction by moving on the Y-axis rails 53 and 54 on the carriage 20.
First and second laser distance meters 42 and 43 for measuring the distance from the side surface of the slab S are attached to the carriage 30. The first and second laser distance meters 42 and 43 are used for measuring the distance from the side surface of the slab S while moving the carriage 20 in the X-axis direction, as will be described later.

図2は、研削装置10の概略を示すX軸左側からの側面図である。
台車20は、図2に示すサーボモータであるX軸用サーボモータ25によって駆動される。台車20の移動量は、X軸用エンコーダ26によって検出される。X軸用エンコーダ26は歯車を有しており、この歯車がX軸レール16に並行して設けられたラックと噛み合うことによって、台車20の移動量が測定される。X軸用エンコーダ26で測定された移動量のデータは、制御装置70に伝送される。また、キャリッジ30は、支柱57、58で支えられたレールビーム51、52上のY軸レール53、54上を、車輪55、56を用いてY軸方向に移動する。なお、X軸上の研削砥石32の動作精度は、Y軸での動作精度と比して要求が低いため、X軸用モータは、インバータ制御モータとしても良い。
FIG. 2 is a side view showing the outline of the grinding apparatus 10 from the left side of the X axis.
The carriage 20 is driven by an X-axis servomotor 25 which is a servomotor shown in FIG. The amount of movement of the carriage 20 is detected by the X-axis encoder 26. The X-axis encoder 26 has a gear, and the amount of movement of the carriage 20 is measured when the gear meshes with a rack provided in parallel with the X-axis rail 16. The movement amount data measured by the X-axis encoder 26 is transmitted to the control device 70. The carriage 30 moves in the Y-axis direction using the wheels 55 and 56 on the Y-axis rails 53 and 54 on the rail beams 51 and 52 supported by the support columns 57 and 58. Since the operation accuracy of the grinding wheel 32 on the X axis is less required than the operation accuracy on the Y axis, the X axis motor may be an inverter control motor.

図3は、研削装置10の概略を示すY軸下部側からの側面図である。
キャリッジ30は、Y軸レール53、54上を車輪55、56でY軸方向に移動可能に載置されている。Y軸用のモータは、サーボモータ61である。よって、キャリッジ30のY軸方向の細かい位置制御を精度良く実行可能である。キャリッジ30の移動量は、Y軸用エンコーダ63によって検出される。Y軸用エンコーダ63は歯車を有しており、この歯車がレールビーム51の内側側面に並行して設けられたラックと噛み合うことによって、キャリッジ30の移動量が測定される。このY軸用エンコーダ63で測定された移動量のデータも、制御装置70に伝送される。
FIG. 3 is a side view showing the outline of the grinding apparatus 10 from the lower side of the Y-axis.
The carriage 30 is placed on the Y-axis rails 53 and 54 so as to be movable in the Y-axis direction by wheels 55 and 56. The Y-axis motor is a servo motor 61. Therefore, fine position control of the carriage 30 in the Y-axis direction can be executed with high accuracy. The amount of movement of the carriage 30 is detected by the Y-axis encoder 63. The Y-axis encoder 63 has a gear, and when this gear meshes with a rack provided in parallel with the inner side surface of the rail beam 51, the movement amount of the carriage 30 is measured. The data of the movement amount measured by the Y-axis encoder 63 is also transmitted to the control device 70.

研削砥石32は、支柱34に取付けられている。支柱34は、Z軸用シリンダ38によってキャリッジ30に対して昇降可能に取付けられている。さらに、キャリッジ30には、この研削砥石32を、Vベルト33を介して回転させるための砥石回転用モータ35、研削時に研削砥石32を押付けるための研削押付用シリンダ36が設けられる。さらに、図3に示すように、Z軸用シリンダ38には、研削砥石32の高さを検出するためのZ軸用エンコーダ62が取付けられている。Z軸用エンコーダ62は歯車を有しており、この歯車が支柱34に沿って設けられたラックと噛み合うことによって支柱34の移動量が測定され、研削砥石32の高さが検出される。   The grinding wheel 32 is attached to the support column 34. The column 34 is attached to the carriage 30 by a Z-axis cylinder 38 so as to be movable up and down. Further, the carriage 30 is provided with a grinding wheel rotating motor 35 for rotating the grinding wheel 32 via a V belt 33 and a grinding pressing cylinder 36 for pressing the grinding wheel 32 during grinding. Further, as shown in FIG. 3, a Z-axis encoder 62 for detecting the height of the grinding wheel 32 is attached to the Z-axis cylinder 38. The Z-axis encoder 62 has a gear. When this gear meshes with a rack provided along the column 34, the amount of movement of the column 34 is measured, and the height of the grinding wheel 32 is detected.

また、研削砥石32の高さ位置は、支柱34の高さと独立して研削押付用シリンダ36によって上下する。そのため、Vベルト33の傾きから研削砥石32の高さ位置を検出するための圧着位置検出装置37が備え付けられる。制御装置70は、Z軸用エンコーダ62及び圧着位置検出装置37からの検出位置の両方を取得することで、研削砥石32のZ軸上の位置を演算することが可能となる。   Further, the height position of the grinding wheel 32 is raised and lowered by the grinding pressing cylinder 36 independently of the height of the column 34. Therefore, a crimping position detecting device 37 for detecting the height position of the grinding wheel 32 from the inclination of the V belt 33 is provided. The control device 70 can calculate the position of the grinding wheel 32 on the Z-axis by acquiring both the detection positions from the Z-axis encoder 62 and the crimping position detection device 37.

さらに、図示していないが、研削装置10には、研削時に発生する粉塵を収集するダクトが、研削砥石32に対向する位置に取付けられ、ダクトは、集塵機に接続されている。   Further, although not shown in the drawings, a duct for collecting dust generated during grinding is attached to the grinding apparatus 10 at a position facing the grinding wheel 32, and the duct is connected to a dust collector.

図4を用いて、制御装置70のハードウェア構成について説明する。
制御装置70は、互いにバス78で接続されたプロセッサ71、メモリやハードディスク等である記憶装置72、DVDドライブ等である外部記憶装置73、ディスプレイやプリンタ等である出力装置74、キーボード等である入力装置75、及び入出力インタフェース部76を有する。
入出力インタフェース部76は、X軸用サーボモータ25、Y軸用サーボモータ61、Z軸用シリンダ38、砥石回転用モータ35、砥石押付用シリンダ36、X軸用エンコーダ26、Y軸用エンコーダ63、Z軸用エンコーダ62、第1及び第2レーザ距離計42、43に接続されている。
The hardware configuration of the control device 70 will be described with reference to FIG.
The control device 70 includes a processor 71 connected to each other via a bus 78, a storage device 72 such as a memory and a hard disk, an external storage device 73 such as a DVD drive, an output device 74 such as a display and a printer, and an input such as a keyboard. A device 75 and an input / output interface unit 76 are included.
The input / output interface unit 76 includes an X-axis servomotor 25, a Y-axis servomotor 61, a Z-axis cylinder 38, a grindstone rotating motor 35, a grindstone pressing cylinder 36, an X-axis encoder 26, and a Y-axis encoder 63. Are connected to the Z-axis encoder 62 and the first and second laser distance meters 42 and 43.

プロセッサ71は、X軸用エンコーダ26、Y軸用エンコーダ63、Z軸用エンコーダ62、第1及び第2レーザ距離計42、43からの入力データを用いて、記憶装置72に格納された制御プログラムを実施することにより、X軸用サーボモータ25、Y軸用サーボモータ61、Z軸用シリンダ38、砥石回転用モータ35、砥石押付用シリンダ36の出力制御を行う。   The processor 71 uses the input data from the X-axis encoder 26, the Y-axis encoder 63, the Z-axis encoder 62, and the first and second laser distance meters 42 and 43 to store a control program stored in the storage device 72. Thus, output control of the X-axis servomotor 25, the Y-axis servomotor 61, the Z-axis cylinder 38, the grindstone rotating motor 35, and the grindstone pressing cylinder 36 is performed.

また、プロセッサ71は、第1及び第2レーザ距離計42、43のX軸方向の移動距離と、第1及び第2レーザ距離計42、43と鋳片側面間のY軸方向の距離をXY座標系で対応付けている。10mmピッチ程度で都度測定を実施する第1レーザ距離計42のX軸の位置座標と、測定したY軸座標を受信し、XY座標データとして記憶装置72に格納する。第2レーザ距離計43についても同様である。この結果、鋳片Sの輪郭の各部の位置がXY座標上で特定できる。   The processor 71 also determines the movement distance in the X-axis direction of the first and second laser distance meters 42 and 43 and the distance in the Y-axis direction between the first and second laser distance meters 42 and 43 and the slab side surface. Corresponding in the coordinate system. The X-axis position coordinates and the measured Y-axis coordinates of the first laser rangefinder 42 that measures each time at a pitch of about 10 mm are received and stored in the storage device 72 as XY coordinate data. The same applies to the second laser distance meter 43. As a result, the position of each part of the outline of the slab S can be specified on the XY coordinates.

図5を用いて、研削装置10の制御装置70による研削処理フローを説明する。
最初に、記憶装置72に格納された制御プログラムが起動する。制御プログラムにより、プロセッサ71は、鋳片Sの輪郭の測定処理を行う(ステップS101)。この処理では、プロセッサ71は、X軸用サーボモータ25を駆動して、台車20をX軸方向に移動させることで、台車20に取付けられた第1及び第2レーザ距離計42、43をX軸方向に移動させる。続いてプロセッサ71は、第1及び第2レーザ距離計42、43がX軸方向に所定距離移動する毎に鋳片Sの側面との距離を測定するように制御する。これにより、鋳片Sの輪郭がXY座標データとして記憶装置72に格納される。
The grinding process flow by the control device 70 of the grinding apparatus 10 will be described with reference to FIG.
First, the control program stored in the storage device 72 is activated. Based on the control program, the processor 71 performs a measurement process of the contour of the slab S (step S101). In this process, the processor 71 drives the X-axis servomotor 25 to move the carriage 20 in the X-axis direction, thereby moving the first and second laser distance meters 42 and 43 attached to the carriage 20 to X. Move in the axial direction. Subsequently, the processor 71 performs control so as to measure the distance from the side surface of the slab S every time the first and second laser rangefinders 42 and 43 move by a predetermined distance in the X-axis direction. Thereby, the outline of the slab S is stored in the storage device 72 as XY coordinate data.

次に、プロセッサ71は、研削砥石32の研削軌跡の算出処理を実行する(ステップS102)。算出された研削軌跡は、第1の研削軌跡と第2の研削軌跡に分けられる。
図6を用いて、第1及び第2の研削軌跡を説明する。第1の研削軌跡は図6(a)に示される。図示のように、第1の研削軌跡は、X軸の往復直線研削を、Y軸に少しずつずらしながら繰り返す研削軌跡である。
プロセッサ71は、研削開始点201から研削終了点202に到達するまで、研削砥石32の制御処理を実行する。
図6(a)の矢印211で示すように、研削砥石32は、鋳片Sに対して一定角度(45度)で研削することができる。そのため、鋳片表面の大部分を、第1の研削軌跡で研削することで、研削表面は一定の模様で構成され、品質の高い研削を行うことができる。
Next, the processor 71 executes a grinding locus calculation process of the grinding wheel 32 (step S102). The calculated grinding locus is divided into a first grinding locus and a second grinding locus.
The first and second grinding trajectories will be described with reference to FIG. The first grinding trajectory is shown in FIG. As illustrated, the first grinding trajectory is a grinding trajectory that repeats the reciprocating linear grinding of the X axis while gradually shifting to the Y axis.
The processor 71 executes control processing for the grinding wheel 32 until the grinding end point 202 is reached from the grinding start point 201.
As shown by an arrow 211 in FIG. 6A, the grinding wheel 32 can be ground with respect to the slab S at a constant angle (45 degrees). Therefore, by grinding the most part of the slab surface along the first grinding locus, the ground surface is formed in a constant pattern, and high quality grinding can be performed.

一方、第1の研削軌跡をトレースした研削は、図6(b)の研削残し部203ができてしまう。そのため、図6(c)に示す第2の研削軌跡は、鋳片の端部にある研削残し部203の研削を実行する。   On the other hand, the grinding that traces the first grinding locus results in the unground portion 203 of FIG. 6B. For this reason, the second grinding locus shown in FIG. 6C performs grinding of the unground grinding portion 203 at the end of the slab.

図7を用いて、第2の研削軌跡における研削砥石32の運動軌跡を説明する。(a)に示す運動軌跡では、研削砥石32が、X軸上を一定距離移動した後に、Y軸上を移動して、X軸上を移動するという動作を行うため、どうしても研削残しが生成してしまう。
一方、(b)に示すように、XY軸上の位置を両方同時に変位させることで、第1の研削軌跡における一定角度と異なる角度により鋳片の端部を移動させることができ、研削残し研削することができる。
The movement locus of the grinding wheel 32 in the second grinding locus will be described with reference to FIG. In the motion trajectory shown in (a), since the grinding wheel 32 moves on the X axis after moving a certain distance on the X axis, and moves on the X axis, a grinding residue is inevitably generated. End up.
On the other hand, as shown in (b), by simultaneously displacing both positions on the XY axes, the end portion of the slab can be moved by an angle different from the constant angle in the first grinding trajectory. can do.

図5のステップS103に戻ると、プロセッサ71は、第1の研削軌跡に従い、研削砥石32の研削制御を実行する。このとき、研削砥石32は、鋳片に対してX及びY軸を同時に変位させて研削することとなる。プロセッサ71は、X軸の往復研削では、X軸用サーボモータ25を移動制御し、Y軸の移動動作は、Y軸用サーボモータ61を移動制御する。この結果は、上記したように、図6(b)に示すような研削残し部201を生成する。   Returning to step S103 of FIG. 5, the processor 71 executes grinding control of the grinding wheel 32 in accordance with the first grinding locus. At this time, the grinding wheel 32 is ground by simultaneously displacing the X and Y axes with respect to the slab. The processor 71 controls the movement of the X-axis servomotor 25 in the reciprocal grinding of the X-axis, and controls the movement of the Y-axis servomotor 61 in the movement operation of the Y-axis. As a result, as shown in FIG. 6B, a grinding residue 201 as shown in FIG. 6B is generated.

次に、プロセッサ71は、第2の研削軌跡に従い、研削砥石32の研削制御を実行する。プロセッサ71は、研削砥石32を、研削開始点204から研削終了点205、研削開始点206から研削終了点207と移動させて、研削残し部201のある端部を研削する。この時の移動は、X軸用サーボモータ25及びY軸用サーボモータ61の両方を動作させることで行われる。
このように、第2の研削軌跡で研削砥石32を移動させることで、図6(d)に示すように、研削残し部203を研削することができる。そして、鋳片表面の全体研削処理は終了する。
Next, the processor 71 executes grinding control of the grinding wheel 32 according to the second grinding locus. The processor 71 moves the grinding wheel 32 from the grinding start point 204 to the grinding end point 205 and from the grinding start point 206 to the grinding end point 207 to grind the end portion with the unground portion 201. The movement at this time is performed by operating both the X-axis servomotor 25 and the Y-axis servomotor 61.
In this way, by moving the grinding wheel 32 along the second grinding locus, the unground portion 203 can be ground as shown in FIG. And the whole grinding process of the slab surface is complete | finished.

上記したように、研削残し部の研削を自動で行うことで、研削運動は、鋳片研削開始した後に、特に作業員による手動制御をすることなく完了する。そのため、したがって、研削装置10は、完全全自動の鋳片の表面研削が可能である。これにより、従来設備に見られたような、自動制御終了後の作業員の研削設備への乗り込みを必要としない、完全無人運転が可能となった。   As described above, by grinding the remaining grinding portion automatically, the grinding motion is completed without any manual control by the operator after starting the slab grinding. Therefore, the grinding apparatus 10 is capable of fully fully automatic surface grinding of a slab. As a result, completely unattended operation that does not require an operator to enter the grinding facility after the completion of automatic control, as found in conventional facilities, has become possible.

また、第1の研削軌跡として鋳片Sに対して可能な限りX軸移動により研削を行うことで、鋳片Sに対して一定角度(45度)で研削することができる。そして、研削残し部のみをXY軸移動により上記一定角度と異なる角度で研削することで、全自動研削においても、鋳片S表面の研削跡の大部分を一定の研削ピッチで研削することが可能となった。   Further, by grinding the slab S by moving the X axis as much as possible as the first grinding locus, the slab S can be ground at a constant angle (45 degrees). And, by grinding only the ungrinded part at an angle different from the above-mentioned fixed angle by moving the XY axis, it is possible to grind most of the grinding marks on the surface of the slab S at a fixed grinding pitch even in fully automatic grinding. It became.

また、鋳片Sは、研削装置10のコンベヤ12、14にクレーンで移動され、コンベヤ12、14を移動して研削装置10の研削作業が開始される。そのため、コンベヤ12、14への鋳片Sの移動及びコンベヤ12、14による研削装置10への鋳片Sの移動を検出する装置を有すれば、その移動検出にしたがって上記した研削処理が開始可能することができる。したがって、研削装置10に係る鋳片Sの表面研削処理を全自動化することも可能である。   Moreover, the slab S is moved to the conveyors 12 and 14 of the grinding apparatus 10 by a crane, and the conveyors 12 and 14 are moved to start the grinding operation of the grinding apparatus 10. Therefore, if there is a device for detecting the movement of the slab S to the conveyors 12 and 14 and the movement of the slab S to the grinding device 10 by the conveyors 12 and 14, the above-described grinding process can be started according to the movement detection. can do. Therefore, it is possible to fully automate the surface grinding process of the slab S related to the grinding apparatus 10.

また、本願の対象とする鋳片は、不等幅の鋳片に限定されず、X軸上の往復研削動作と、端部のXY平面での研削動作により研削可能な鋳片であれば、研削対象となる。   In addition, the slab to be the subject of the present application is not limited to a slab of unequal width, and if it is a slab that can be ground by reciprocating grinding operation on the X axis and grinding operation on the XY plane of the end, It becomes a grinding target.

以上説明した実施形態は典型例として挙げたに過ぎず、その変形及びバリエーションは当業者にとって明らかであり、当業者であれば本発明の原理及び請求の範囲に記載した発明の範囲を逸脱することなく上述の実施形態の種々の変形を行えることは明らかである。   The embodiments described above are merely given as typical examples, and variations and variations thereof will be apparent to those skilled in the art. Those skilled in the art will depart from the principles of the present invention and the scope of the invention described in the claims. Obviously, various modifications of the above-described embodiment can be made.

図1は、研削装置10の概略を示す平面図である。FIG. 1 is a plan view showing an outline of the grinding apparatus 10. 図2は、研削装置10の概略を示すX軸左側からの側面図である。FIG. 2 is a side view showing the outline of the grinding apparatus 10 from the left side of the X axis. 図3は、研削装置10の概略を示すY軸下部側からの側面図である。FIG. 3 is a side view showing the outline of the grinding apparatus 10 from the lower side of the Y-axis. 図4は、制御装置70のハードウェア構成を示す図である。FIG. 4 is a diagram illustrating a hardware configuration of the control device 70. 図5は、研削装置10の制御装置70による研削処理フローチャートである。FIG. 5 is a flowchart of a grinding process performed by the control device 70 of the grinding device 10. 図6は、第1及び第2の研削軌跡を示す図である。FIG. 6 is a diagram showing the first and second grinding trajectories. 図7は、第2の研削軌跡における研削砥石32の運動軌跡を示す図である。FIG. 7 is a diagram showing a motion locus of the grinding wheel 32 in the second grinding locus. 図8は、従来の研削軌跡を示す図である。FIG. 8 is a diagram showing a conventional grinding locus.

符号の説明Explanation of symbols

S 鋳片
10 研削装置
12、14 コンベヤ
16、18 X軸レール
20 台車
25 X軸用サーボモータ
30 キャリッジ
32 研削砥石
33 Vベルト
34、57、58 支柱
35 砥石回転用モータ
36 砥石押付用シリンダ
37 圧着位置検出装置
38 Z軸用シリンダ
42、43 第1及び第2レーザ距離計
51、52 レールビーム
53、54 Y軸レール
61 Y軸用サーボモータ
70 制御装置
S Slab 10 Grinding device 12, 14 Conveyor 16, 18 X-axis rail 20 Cart 25 X-axis servo motor 30 Carriage 32 Grinding wheel 33 V-belt 34, 57, 58 Strut 35 Grinding wheel rotation motor 36 Grinding wheel pressing cylinder 37 Crimping Position detection device 38 Z-axis cylinder 42, 43 First and second laser distance meters 51, 52 Rail beam 53, 54 Y-axis rail 61 Y-axis servo motor 70 Control device

Claims (4)

不等幅の鋳片表面を研削する研削装置であって、
研削砥石と、
前記研削砥石を移動させる研削砥石移動部と、
不等幅の鋳片表面の輪郭を測定する測定部と、
前記鋳片表面に対して研削砥石を用いて一定の研削角度で直線研削するための第1の研削軌跡、及び、該一定の研削角度と異なる角度で前記研削砥石を用いて研削するための第2の研削軌跡を算出し、かつ、
前記第1の研削軌跡に従い、前記鋳片表面を前記研削装置の研削砥石を用いて直線研削し、前記直線方向に直交する方向に一定間隔で前記研削砥石を移動して前記直線研削を繰り返し、前記第2の研削軌跡に従い、前記直線研削の研削残し部である前記鋳片表面の端部を前記研削砥石を用いて研削するように制御する制御部と、を有する研削装置。
A grinding device for grinding a slab surface of unequal width,
A grinding wheel,
A grinding wheel moving unit for moving the grinding wheel;
A measuring part for measuring the contour of the slab surface of unequal width;
A first grinding locus for linearly grinding the slab surface using a grinding wheel at a constant grinding angle, and a first grinding locus for grinding using the grinding wheel at an angle different from the constant grinding angle. 2 grinding trajectory, and
In accordance with the first grinding trajectory, the slab surface is linearly ground using a grinding wheel of the grinding device, the grinding wheel is moved at regular intervals in a direction orthogonal to the linear direction, and the linear grinding is repeated. And a control unit configured to control the end portion of the slab surface, which is a remaining grinding portion of the linear grinding, to be ground using the grinding wheel in accordance with the second grinding trajectory.
前記第1及び第2の研削軌跡は、前記研削砥石が前記鋳片の表面から下部へ落ちる直前までの研削軌跡を含む請求項1に記載の研削装置。   2. The grinding apparatus according to claim 1, wherein the first and second grinding trajectories include a grinding trajectory immediately before the grinding wheel is dropped from a surface of the slab to a lower portion. 不等幅の鋳片表面を研削する研削装置を用いた研削制御方法であって、
不等幅の鋳片表面の輪郭を測定し、
前記鋳片表面に対して研削砥石を用いて一定の研削角度で直線研削するための第1の研削軌跡、及び、該一定の研削角度と異なる角度で前記研削砥石を用いて研削するための第2の研削軌跡を算出し、
前記第1の研削軌跡に従い、前記鋳片表面を前記研削装置の研削砥石を用いて直線研削し、
前記直線方向に直交する方向に一定間隔で前記研削砥石を移動して前記直線研削を繰り返し、
前記第2の研削軌跡に従い、前記直線研削の研削残し部である前記鋳片表面の端部を前記研削砥石を用いて研削する研削制御方法。
A grinding control method using a grinding device for grinding a slab surface of unequal width,
Measure the contour of the unequal width slab surface,
A first grinding locus for linearly grinding the slab surface using a grinding wheel at a constant grinding angle, and a first grinding locus for grinding using the grinding wheel at an angle different from the constant grinding angle. 2 grinding trajectory,
According to the first grinding trajectory, the slab surface is linearly ground using a grinding wheel of the grinding device,
Moving the grinding wheel at regular intervals in a direction perpendicular to the linear direction and repeating the linear grinding,
A grinding control method for grinding an end portion of the slab surface, which is a remaining grinding portion of the linear grinding, using the grinding wheel in accordance with the second grinding locus.
前記第1及び第2の研削軌跡は、前記研削砥石が前記鋳片の表面から下部へ落ちる直前までの研削軌跡を含む請求項2に記載の方法。   The method according to claim 2, wherein the first and second grinding trajectories include a grinding trajectory until immediately before the grinding wheel falls from a surface of the slab to a lower portion.
JP2008040397A 2008-02-21 2008-02-21 Grinding apparatus and grinding control method Active JP5037383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008040397A JP5037383B2 (en) 2008-02-21 2008-02-21 Grinding apparatus and grinding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008040397A JP5037383B2 (en) 2008-02-21 2008-02-21 Grinding apparatus and grinding control method

Publications (2)

Publication Number Publication Date
JP2009196037A true JP2009196037A (en) 2009-09-03
JP5037383B2 JP5037383B2 (en) 2012-09-26

Family

ID=41140146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008040397A Active JP5037383B2 (en) 2008-02-21 2008-02-21 Grinding apparatus and grinding control method

Country Status (1)

Country Link
JP (1) JP5037383B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260118A (en) * 2009-04-30 2010-11-18 Nisshin Steel Co Ltd Method of grinding cast piece
KR101379027B1 (en) * 2012-06-13 2014-03-28 삼성중공업 주식회사 Automatic Grinding Carriage and Controlling Method for the Same
KR101391363B1 (en) * 2012-06-13 2014-05-27 삼성중공업 주식회사 Automatic Grinding Carriage Inhaling Dust
KR101400876B1 (en) 2012-05-29 2014-06-02 영남대학교 산학협력단 Grinding apparatus for surface texturing and the grinding method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228756A (en) * 1988-03-09 1989-09-12 Seiko Epson Corp Inner blank part data preparation method in automatic part program preparation
JPH07136929A (en) * 1993-11-12 1995-05-30 Kawasaki Steel Corp Grinder grinding method for slab surface trimming and grinder grinding device for slab surface trimming

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228756A (en) * 1988-03-09 1989-09-12 Seiko Epson Corp Inner blank part data preparation method in automatic part program preparation
JPH07136929A (en) * 1993-11-12 1995-05-30 Kawasaki Steel Corp Grinder grinding method for slab surface trimming and grinder grinding device for slab surface trimming

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260118A (en) * 2009-04-30 2010-11-18 Nisshin Steel Co Ltd Method of grinding cast piece
KR101400876B1 (en) 2012-05-29 2014-06-02 영남대학교 산학협력단 Grinding apparatus for surface texturing and the grinding method thereof
KR101379027B1 (en) * 2012-06-13 2014-03-28 삼성중공업 주식회사 Automatic Grinding Carriage and Controlling Method for the Same
KR101391363B1 (en) * 2012-06-13 2014-05-27 삼성중공업 주식회사 Automatic Grinding Carriage Inhaling Dust

Also Published As

Publication number Publication date
JP5037383B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP6484108B2 (en) Method for controlling shape measuring apparatus
KR102166641B1 (en) Self-diagnosis of machine and method for precision calibration of machine
JP5547948B2 (en) Grinding work compensation grinding method
KR20110009090A (en) Method and apparatus for machining glass substrate
JP5642819B2 (en) Wire electric discharge machine having taper angle correction function using contact detector and taper angle correction method
JP5037383B2 (en) Grinding apparatus and grinding control method
JP2016078177A (en) Machine tool
JP2018075707A (en) Self-propelled flaw removing device and flaw removing method
JP2012061570A (en) Machining method
KR20130075768A (en) Grinding disc and grinding method
KR101720302B1 (en) Apparatus and method for polishing edge of panel
JP2011093004A (en) Nc grinding device having on-board image measuring system
JP2002052444A (en) Surface grinding device and work grinding method
JP2005335036A (en) Cylindrical grinding device and method for measuring outer diameter of workpiece
JP4982174B2 (en) Grinder
JP7348037B2 (en) processing equipment
JP2007079837A (en) Head operation controller, control method and stage device
JP4980263B2 (en) Grinding apparatus and grinding control method
TWI511821B (en) Laser processing machine
JP3020800B2 (en) Grinding equipment for scratch removal
JP2007333442A (en) Shape measurement method
JPH08174415A (en) Automatic flaw eliminating device
JP2010042482A (en) Cylindrical grinding machine and screw grinding machine
JP3605832B2 (en) Polishing tool control device
JP2005246554A (en) Machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5037383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350