JP2009194093A - Cooling system of electronic equipment - Google Patents

Cooling system of electronic equipment Download PDF

Info

Publication number
JP2009194093A
JP2009194093A JP2008032096A JP2008032096A JP2009194093A JP 2009194093 A JP2009194093 A JP 2009194093A JP 2008032096 A JP2008032096 A JP 2008032096A JP 2008032096 A JP2008032096 A JP 2008032096A JP 2009194093 A JP2009194093 A JP 2009194093A
Authority
JP
Japan
Prior art keywords
refrigerant
cooling
heat exchanger
cooling tower
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008032096A
Other languages
Japanese (ja)
Other versions
JP4780479B2 (en
Inventor
Yasuhiro Kashirajima
康博 頭島
Hironari Kikuchi
宏成 菊池
Takumi Sugiura
匠 杉浦
Koji Watanabe
幸次 渡辺
Kenichi Nakajima
健一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008032096A priority Critical patent/JP4780479B2/en
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to PL09001786.4T priority patent/PL2091314T3/en
Priority to EP09001786.4A priority patent/EP2091314B1/en
Priority to EP12002922.8A priority patent/EP2503866B1/en
Priority to EP12002923.6A priority patent/EP2498024B1/en
Priority to EP12002924.4A priority patent/EP2498025A3/en
Priority to US12/368,360 priority patent/US7855890B2/en
Publication of JP2009194093A publication Critical patent/JP2009194093A/en
Priority to US12/945,345 priority patent/US8199504B2/en
Application granted granted Critical
Publication of JP4780479B2 publication Critical patent/JP4780479B2/en
Priority to US13/466,468 priority patent/US8839638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20827Liquid cooling with phase change within rooms for removing heat from cabinets, e.g. air conditioning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/041Details of condensers of evaporative condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently cool electronic equipment having a high calorific value and requiring a precise operation, e.g., a computer or a server, at a low running cost. <P>SOLUTION: A cooling system of electronic equipment includes server rooms 14A and 14B each provided with a plurality of servers 28, and evaporators 34 disposed closely to the servers 28 and cooling the servers 28 by evaporating refrigerant with heat generated from the servers 28, a cooling tower 38 disposed higher than the evaporators 34 and condensing the evaporated refrigerant by cooling the refrigerant with outside air and spray water, and a circulation line 40 for circulating the refrigerant naturally between the evaporators 34 and the cooling tower 38. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電子機器の冷却システムに係り、特に、コンピュータ及びサーバ等の精密動作が要求され且つそれ自体からの発熱量が大きな電子機器を効率的に冷却するための電子機器の冷却システムに関する。   The present invention relates to an electronic device cooling system, and more particularly to an electronic device cooling system for efficiently cooling an electronic device that requires precise operation of a computer, a server, and the like and generates a large amount of heat from itself.

近年、情報処理技術の向上やインタネット環境の発達に伴って、必要とされる情報処理量が増大しており、各種の情報を大量に処理するためのデータ処理センターがビジネスとして脚光をあびている。このデータ処理センターの例えばサーバルームには、コンピュータやサーバ等の電子機器が集約された状態で多数設置され、昼夜にわたって連続稼働されている。一般的に、サーバルームにおける電子機器の設置は、ラックマウント方式が主流になっている。ラックマウント方式は、電子機器を機能単位別に分割して収納するラック(筐体)を、キャビネットに段積みする方式であり、かかるキャビネットがサーバルームの床上に多数整列配置されている。これら情報を処理する電子機器は、処理速度や処理能力が急速に向上してきており電子機器からの発熱量も上昇の一途をたどっている。   In recent years, with the improvement of information processing technology and the development of the Internet environment, the amount of information processing required has increased, and a data processing center for processing a large amount of various types of information has attracted attention as a business. A large number of electronic devices such as computers and servers are gathered in a server room of this data processing center, for example, and are continuously operated day and night. In general, the rack mount method is the mainstream for installing electronic devices in a server room. The rack mount system is a system in which racks (casings) that divide and store electronic devices into functional units are stacked in a cabinet, and a large number of such cabinets are arranged and arranged on the floor of a server room. Electronic devices that process such information are rapidly increasing in processing speed and processing capacity, and the amount of heat generated from the electronic devices is steadily increasing.

一方、これらの電子機器は、動作に一定の温度環境が必要とされ、正常に動作するための温度環境が比較的低く設定されているため、電子機器が高温状態に置かれるとシステム停止等のトラブルを引き起こす。このため、サーバルーム内を冷房するための空調機を運転する空調動力も大幅に増加しているのが実情であり、企業経営におけるコスト削減の観点のみならず地球環境の保全の観点からも、空調動力の削減が急務となっている。   On the other hand, these electronic devices require a certain temperature environment for operation, and the temperature environment for normal operation is set to be relatively low. Cause trouble. For this reason, the fact is that the air conditioning power for operating the air conditioner for cooling the server room is also greatly increasing, not only from the viewpoint of cost reduction in corporate management, but also from the viewpoint of conservation of the global environment, There is an urgent need to reduce air conditioning power.

このような背景から、特許文献1や特許文献2にみられるように、電子機器を効率的に冷却するための技術が提案されている。特許文献1には、後部カバーと前部カバーと側面取付け式の冷却空気サブフレームとを電子機器に取り付けると共に、冷却空気サブフレーム内にファンと熱交換器を設けることにより、電子機器を介して冷風が閉ループで流れる流路を形成することが提案されている。   From such a background, as seen in Patent Document 1 and Patent Document 2, techniques for efficiently cooling electronic devices have been proposed. In Patent Document 1, a rear cover, a front cover, and a side-mounted cooling air subframe are attached to an electronic device, and a fan and a heat exchanger are provided in the cooling air subframe, so that It has been proposed to form a flow path through which cold air flows in a closed loop.

また、特許文献2には、内部に蒸発器とファンを搭載した電子機器収納用ラック群を備えた電算機室用空調システムにおいて、室外から取り入れられた冷却用空気を床下の内部空間に流動させ、蒸発器を通じて電子機器収納用ラックに収納された電子機器を冷却すると共に、電子機器収納用ラックの背面に搭載される凝縮器を冷却して電子機器収納用ラックの背面又は上方の空間を流動し、換気装置を介して室外に排出することが提案されている。また、特許文献3は、電子機器の冷却の発明ではないが、蒸発器と凝縮器との間で冷媒を自然循環させる技術が紹介されている。
特表2006−507676号公報 特開2004−232927号公報 特開2007−127315号公報
Further, in Patent Document 2, in a computer room air conditioning system including an electronic equipment storage rack group in which an evaporator and a fan are mounted, cooling air taken from outside flows into an internal space under the floor. The electronic device stored in the electronic device storage rack is cooled through the evaporator, and the condenser mounted on the back surface of the electronic device storage rack is cooled to flow in the space above or above the electronic device storage rack. However, it has been proposed to discharge to the outside through a ventilator. Moreover, although patent document 3 is not invention of cooling of an electronic device, the technique which circulates a refrigerant | coolant naturally between an evaporator and a condenser is introduced.
JP-T-2006-507676 JP 2004-232927 A JP 2007-127315 A

ところで、従来の電子機器の冷却システムは、電子機器の冷却を空調機による冷却のみならず、電子機器に直接取り付けた冷却器を併用することで、空調機の空調動力を削減する効果を期待できる。   By the way, the cooling system of the conventional electronic device can expect the effect of reducing the air-conditioning power of an air conditioner by using not only the cooling by an air conditioner but also the cooler directly attached to the electronic device. .

しかしながら、空調動力は削減される反面、電子機器に直接取り付けた冷却器の運転動力が加算されるため、トータル的な省エネの観点からみると未だ十分とは言えない。したがって、更なる省エネによるランニングコストの低減が要望されている。特には、電子機器に直接取り付けて冷却する点での省エネが要望されている。   However, while the air conditioning power is reduced, the operating power of the cooler directly attached to the electronic device is added, so that it is still not sufficient from the viewpoint of total energy saving. Accordingly, there is a demand for further reduction in running cost by energy saving. In particular, energy saving is demanded in that it is directly attached to an electronic device and cooled.

本発明はこのような事情に鑑みてなされたもので、コンピュータ及びサーバ等の精密動作が要求され且つそれ自体からの発熱量が大きな電子機器を、小さなランニングコストで効率的に冷却することができる電子機器の冷却システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and can efficiently cool an electronic device that requires precise operation such as a computer and a server and generates a large amount of heat from itself at a low running cost. An object is to provide a cooling system for electronic equipment.

請求項1に記載の発明は、前記目的を達成するために、複数の電子機器が配設された機器ルームと、前記電子機器に近接してそれぞれ設けられ、前記電子機器から発生する熱で冷媒を気化させることにより該電子機器を冷却する蒸発器と、前記蒸発器よりも高所に設けられ、外気と散水とにより前記冷媒を冷却して前記気化した冷媒を凝縮する冷却塔と、前記蒸発器と前記冷却塔との間で前記冷媒が自然循環する循環ラインと、を備えたことを特徴とする電子機器の冷却システムを提供する。   According to a first aspect of the present invention, in order to achieve the above object, a refrigerant is generated by heat generated from the electronic device and a device room in which a plurality of electronic devices are arranged, respectively, in proximity to the electronic device. An evaporator that cools the electronic device by vaporizing, a cooling tower that is provided at a higher position than the evaporator, cools the refrigerant by outside air and sprinkling, and condenses the vaporized refrigerant, and the evaporation And a circulation line through which the refrigerant naturally circulates between the cooling tower and the cooling tower.

本発明者は、近年、機器ルームに複数配設された電子機器からの発熱量が急激に上昇して、高温の熱(高温空気)が電子機器から発生することに着目した。そして、電子機器に近接してそれぞれ設けた蒸発器と、該蒸発器よりも高所に設けられ外気や散水で冷媒を冷却する冷却塔との間で、年間を通して長い期間、凝縮器(冷凍機から冷水を供給)や圧縮器を必要とせずに冷媒を自然循環させる循環ラインを構築できるとの知見を得た。   The present inventor has recently paid attention to the fact that the amount of heat generated from a plurality of electronic devices arranged in a device room increases rapidly, and high-temperature heat (high-temperature air) is generated from the electronic devices. A condenser (refrigerator) is provided for a long period of time throughout the year between an evaporator provided in the vicinity of each electronic device and a cooling tower provided at a higher position than the evaporator to cool the refrigerant with outside air or water spray. We obtained knowledge that it is possible to construct a circulation line that naturally circulates refrigerant without the need for cold water and a compressor.

即ち、請求項1によれば、電子機器(通常は、機器ルームの空気を取り入れて排気するファンを有する)から発生(排出)される高温の熱を高温状態のままで蒸発器を流れる冷媒と直接熱交換して、冷媒の蒸発を促進することにより、蒸発器よりも高所に設置された冷却塔へ蒸発した冷媒ガスを輸送する輸送動力を得ることができる。更には、蒸発器で蒸発した冷媒ガスが高温化することで、蒸発した冷媒ガスを凝縮して冷媒液体とするための冷却能力も小さくできる。したがって、凝縮器(冷凍機から冷水を供給)の代わりに外気や散水で冷媒を冷却する冷却塔を使用することが可能となる。冷却されて凝縮した冷媒液体は冷却塔よりも下方に位置する蒸発器に流下し、これにより蒸発器と冷却塔との間で冷媒が自然循環する循環ラインが構築される。   That is, according to claim 1, the refrigerant that flows through the evaporator while maintaining the high-temperature heat generated (discharged) from the electronic device (usually having a fan that takes in and exhausts air from the device room) By directly exchanging heat and promoting the evaporation of the refrigerant, it is possible to obtain transport power for transporting the evaporated refrigerant gas to a cooling tower installed higher than the evaporator. Furthermore, since the refrigerant gas evaporated by the evaporator is heated, the cooling capacity for condensing the evaporated refrigerant gas into a refrigerant liquid can be reduced. Therefore, it is possible to use a cooling tower that cools the refrigerant with outside air or water spray instead of the condenser (supplying cold water from the refrigerator). The cooled and condensed refrigerant liquid flows down to the evaporator located below the cooling tower, thereby constructing a circulation line in which the refrigerant naturally circulates between the evaporator and the cooling tower.

このように自然循環ラインを構築することで冷媒の輸送動力コストを必要としないと共に、循環ラインの冷却側を外気や散水で冷媒を冷却する冷却塔を使用することで、冷却のための熱源負荷を顕著に下げることができ、冷媒を冷却するためのランニングコストを大幅に削減することができる。   By constructing the natural circulation line in this way, the transportation power cost of the refrigerant is not required, and the cooling tower that cools the refrigerant with outside air or water spray is used on the cooling side of the circulation line, so that the heat source load for cooling is reduced. The running cost for cooling the refrigerant can be greatly reduced.

請求項2は請求項1において、前記冷媒を冷却する熱交換器と、前記循環ラインに接続された前記冷媒の流路であって、前記熱交換器が前記冷却塔に対して並列な関係を有するように設けられる並列ラインと、前記循環ラインから前記並列ラインに流す前記冷媒の冷媒量を制御する並列用制御機構と、を備えたことを特徴とする。   A second aspect of the present invention provides the heat exchanger for cooling the refrigerant according to the first aspect, and a flow path for the refrigerant connected to the circulation line, wherein the heat exchanger has a parallel relationship with the cooling tower. And a parallel control mechanism for controlling a refrigerant amount of the refrigerant flowing from the circulation line to the parallel line.

請求項2は、熱交換器が冷却塔に対して並列な関係を有するように配置したときの、冷却塔と熱交換器とに流す冷媒の制御を規定したものである。   The second aspect defines the control of the refrigerant flowing through the cooling tower and the heat exchanger when the heat exchanger is arranged so as to have a parallel relationship with the cooling tower.

請求項2によれば、冷媒の冷却を行う手段として、冷却塔の他に冷媒を冷却する熱交換器を、循環ラインに並列に接続して冷却塔と並列な関係を有するように構成し、並列用制御機構で熱交換器に流す冷媒量を制御するようにした。これにより、蒸発器で蒸発した冷媒ガスを凝縮するために必要な冷熱負荷に応じてランニングコストが最も小さくなるように、冷却塔と熱交換器とを効率的に活用することができる。   According to claim 2, as a means for cooling the refrigerant, in addition to the cooling tower, a heat exchanger for cooling the refrigerant is connected in parallel to the circulation line so as to have a parallel relationship with the cooling tower, The amount of refrigerant flowing to the heat exchanger was controlled by the parallel control mechanism. Thereby, the cooling tower and the heat exchanger can be efficiently utilized so that the running cost is minimized according to the cooling load required for condensing the refrigerant gas evaporated in the evaporator.

請求項3は請求項2において、前記並列用制御機構は、外気温度を測定する外気温度センサと、前記並列ラインに設けられ、前記蒸発器から戻る冷媒ガスが前記熱交換器に流れる冷媒量を調整する並列用バルブと、前記外気温度センサの測定結果から前記冷却塔で前記冷媒を冷却可能な能力を演算すると共に、該演算結果から前記並列用バルブの開度量を調整することにより、前記熱交換器に流す冷媒量を制御する並列用制御部と、を備えたことを特徴とする。   A third aspect of the present invention is the method according to the second aspect, wherein the parallel control mechanism includes an outside air temperature sensor that measures an outside air temperature, and an amount of refrigerant that is provided in the parallel line and that allows refrigerant gas returning from the evaporator to flow through the heat exchanger. By calculating the parallel valve to be adjusted and the ability to cool the refrigerant in the cooling tower from the measurement result of the outside air temperature sensor, and adjusting the opening amount of the parallel valve from the calculation result, And a parallel control unit that controls the amount of refrigerant flowing through the exchanger.

冷却塔の冷却能力は、外気温度に大きく依存している。したがって、請求項3のように構成することによって、外気温度の変動に応じて循環ラインを流れる冷媒の一部が自動的に熱交換器に流れるようにすることができるので、冷却塔の冷却能力の不足分のみを熱交換器で補足すればよい。これにより、ランニングコストを一層低減することができる。   The cooling capacity of the cooling tower greatly depends on the outside air temperature. Therefore, by configuring as in claim 3, a part of the refrigerant flowing through the circulation line can automatically flow to the heat exchanger according to the fluctuation of the outside air temperature. It is only necessary to supplement the shortage with a heat exchanger. Thereby, running cost can be further reduced.

要は、冷却塔が外気温度を有効利用できるように、冷却システムの運転者が夏期、中間期、冬期を設定すればよい。ここで、夏期を6〜7月、中間期の春期を3〜5月、中間期の秋期を9〜11月、冬期が12〜2月とすることが一般的であるが、前後に多少ずれることは問題でない。   In short, it is only necessary that the cooling system operator sets the summer, intermediate, and winter so that the cooling tower can effectively use the outside air temperature. Here, the summer season is generally from June to July, the middle spring season is from March to May, the middle autumn season is from September to November, and the winter season is from December to February. That is not a problem.

請求項4は請求項2において、前記並列用制御機構は、前記冷却塔出口での冷媒温度及び/又は冷媒圧力を測定する冷却塔出口センサと、前記並列ラインに設けられ、前記蒸発器から戻る冷媒ガスが前記熱交換器に流れる冷媒量を調整する並列用バルブと、前記冷却塔出口センサの測定結果が所定値になるように前記並列用バルブの開度量を調整して前記熱交換器に流す冷媒量を制御する並列用制御部と、を備えたことを特徴とする。   A fourth aspect of the present invention is the method according to the second aspect, wherein the parallel control mechanism is provided in a cooling tower outlet sensor for measuring a refrigerant temperature and / or a refrigerant pressure at the cooling tower outlet and the parallel line, and returns from the evaporator. A parallel valve that adjusts the amount of refrigerant flowing through the heat exchanger and a parallel valve that adjusts the opening of the parallel valve so that the measurement result of the cooling tower outlet sensor becomes a predetermined value. And a parallel control unit that controls the amount of refrigerant to flow.

請求項4は、並列用制御機構の別の態様であり、冷却塔出口に設けた冷却塔出口センサの冷媒温度又は冷媒圧力を測定することで、測定時点で冷却塔が有している冷却能力を把握することができる。したがって、測定結果に基づいて並列用バルブの開度量を調整して循環ラインを流れる冷媒の一部を自動的に熱交換器に流れるようにすることができるので、冷却塔の冷却能力の不足分のみを熱交換器で補足すればよい。これにより、ランニングコストを一層低減することができる。   Claim 4 is another aspect of the parallel control mechanism, and the cooling capacity of the cooling tower at the time of measurement is measured by measuring the refrigerant temperature or refrigerant pressure of the cooling tower outlet sensor provided at the outlet of the cooling tower. Can be grasped. Therefore, it is possible to adjust the opening amount of the parallel valve based on the measurement result so that a part of the refrigerant flowing through the circulation line automatically flows to the heat exchanger. Need only be supplemented with a heat exchanger. Thereby, running cost can be further reduced.

請求項5は請求項1において、前記冷媒を冷却する熱交換器と、前記循環ラインに接続された前記冷媒の流路であって、前記熱交換器が前記冷却塔に対して直列な関係を有するように設けられると共に、前記蒸発器から戻る冷媒が前記冷却塔を経由してから前記熱交換器に至るようにラインが構成された直列ラインと、前記熱交換器の冷却能力を制御する直列用制御機構と、を備えたことを特徴とする。   A fifth aspect of the present invention provides the heat exchanger for cooling the refrigerant according to the first aspect, and a flow path for the refrigerant connected to the circulation line, wherein the heat exchanger has a serial relationship with the cooling tower. A series line configured to have the refrigerant returning from the evaporator pass through the cooling tower and then reach the heat exchanger, and a series for controlling the cooling capacity of the heat exchanger. And a control mechanism.

請求項5は、熱交換器が冷却塔に対して直列な関係を有するように配置したときの、冷却塔と熱交換器とに流す冷媒の制御を規定したものである。   The fifth aspect defines the control of the refrigerant flowing through the cooling tower and the heat exchanger when the heat exchanger is arranged in series with the cooling tower.

請求項5によれば、蒸発器から戻る冷媒ガスは、先ず冷却塔で冷却されてから次に熱交換器に流れると共に、熱交換器の冷却能力を制御する直列用制御機構を設けたので、冷却塔での冷却能力の不足分のみを熱交換器で補足することができる。これにより、蒸発器で蒸発した冷媒ガスを凝縮するために必要な冷熱負荷に応じてランニングコストが最も小さくなるように、冷却塔と熱交換器とを効率的に活用することができる。この結果、ランニングコストの一層の低減を図ることができる。   According to claim 5, since the refrigerant gas returning from the evaporator is first cooled in the cooling tower and then flows to the heat exchanger, and the serial control mechanism for controlling the cooling capacity of the heat exchanger is provided. Only the lack of cooling capacity in the cooling tower can be supplemented with a heat exchanger. Thereby, the cooling tower and the heat exchanger can be efficiently utilized so that the running cost is minimized according to the cooling load required for condensing the refrigerant gas evaporated in the evaporator. As a result, the running cost can be further reduced.

請求項6は請求項5において、前記直列用制御機構は、前記熱交換器出口での冷媒温度及び/又は冷媒圧力を測定する熱交換出口センサと、前記熱交換器に流れる冷媒を冷却するための1次冷媒の冷媒量を調整する1次冷媒バルブと、前記熱交換出口センサの測定結果に基づいて前記1次冷媒バルブを制御する直列用制御部と、を備え、前記直列用制御部は、前記熱交換出口センサの測定結果が所定値になるように前記1次冷媒バルブを制御することを特徴とする。   A sixth aspect of the present invention is the method according to the fifth aspect, wherein the serial control mechanism cools the refrigerant flowing through the heat exchanger and a heat exchange outlet sensor that measures a refrigerant temperature and / or refrigerant pressure at the heat exchanger outlet. A primary refrigerant valve that adjusts a refrigerant amount of the primary refrigerant, and a series control unit that controls the primary refrigerant valve based on a measurement result of the heat exchange outlet sensor, and the series control unit includes: The primary refrigerant valve is controlled so that the measurement result of the heat exchange outlet sensor becomes a predetermined value.

ここで、所定値とは、循環ラインにおいて冷媒が自然循環するに必要な温度又は圧力を言う。   Here, the predetermined value refers to a temperature or pressure required for the natural circulation of the refrigerant in the circulation line.

請求項6によれば、熱交換出口センサの測定結果が所定値になるように管理することで、冷却塔から熱交換器に冷媒が順次流れる際に、熱交換器では冷却塔の冷却能力の不足分のみが補足されるように1次冷媒の熱量を制御することが可能となる。したがって、熱交換器で無駄な冷却エネルギーを必要としない。   According to claim 6, by managing the measurement result of the heat exchange outlet sensor to be a predetermined value, when the refrigerant sequentially flows from the cooling tower to the heat exchanger, the heat exchanger has the cooling capacity of the cooling tower. It becomes possible to control the heat quantity of the primary refrigerant so that only the shortage is supplemented. Therefore, useless cooling energy is not required in the heat exchanger.

これにより、夏期、中間期、冬期に関わらず、冷却塔の冷熱原である外気温度を有効活用することができるので、ランニングコストの低減を一層図ることができる。   As a result, the outdoor temperature, which is the cold source of the cooling tower, can be effectively utilized regardless of the summer, intermediate, and winter periods, and the running cost can be further reduced.

請求項7は請求項5又は6において、前記直列用制御機構は、前記冷却塔出口での冷媒温度及び/又は冷媒圧力を測定する冷却塔出口センサと、前記蒸発器から戻る冷媒ガスを前記熱交換器に流すことのできるバイパスラインと、前記バイパスラインを流れる冷媒ガス流量を調整するバイパスバルブと、前記冷却塔出口に設けられた調整バルブと、前記冷却塔出口センサの測定結果に基づいて前記バイパスバルブ及び前記調整バルブを制御する直列用制御部と、を備え、前記直列用制御部は、前記冷却塔出口センサの測定結果が所定値になるように前記バイパスバルブ及び前記調整バルブを制御することを特徴とする。   A seventh aspect of the present invention is the method according to the fifth or sixth aspect, wherein the serial control mechanism includes a cooling tower outlet sensor for measuring a refrigerant temperature and / or a refrigerant pressure at the cooling tower outlet, and a refrigerant gas returning from the evaporator as the heat. Based on the measurement result of the bypass line that can flow to the exchanger, the bypass valve that adjusts the flow rate of the refrigerant gas flowing through the bypass line, the adjustment valve that is provided at the cooling tower outlet, and the cooling tower outlet sensor A series control unit that controls the bypass valve and the adjustment valve, and the series control unit controls the bypass valve and the adjustment valve so that a measurement result of the cooling tower outlet sensor becomes a predetermined value. It is characterized by that.

ここで、所定値とは、循環ラインにおいて冷媒が自然循環するに必要な温度又は圧力を言う。   Here, the predetermined value refers to a temperature or pressure required for the natural circulation of the refrigerant in the circulation line.

請求項7によれば、外気温度が上昇して冷却塔の冷却能力が低下する例えば夏期には、蒸発器から戻る冷媒ガス全量が冷却塔を通過する状態では、冷媒ガス全量を冷媒が自然循環するのに必要な温度及び圧力まで冷却することができず、利用可能な冷却塔の冷却能力を充分利用できない。しかし、冷却塔出口センサの測定結果が所定値になるようにバイパスバルブ及び調整バルブを操作することで、冷却塔に流れる冷媒ガス流量を制御し、冷却塔出口では所定の温度及び圧力の冷媒が得られることになる。したがって、熱交換器で無駄な冷却エネルギーを必要としない。   According to the seventh aspect of the present invention, when the outside air temperature rises and the cooling capacity of the cooling tower decreases, for example, in the summer, when the total amount of refrigerant gas returning from the evaporator passes through the cooling tower, the refrigerant naturally circulates all the refrigerant gas. It is not possible to cool down to the temperature and pressure required to do so, and the cooling capacity of the available cooling towers cannot be fully utilized. However, by operating the bypass valve and the adjustment valve so that the measurement result of the cooling tower outlet sensor becomes a predetermined value, the flow rate of the refrigerant gas flowing to the cooling tower is controlled, and the refrigerant having a predetermined temperature and pressure is supplied to the cooling tower outlet. Will be obtained. Therefore, useless cooling energy is not required in the heat exchanger.

これにより、夏期、中間期、冬期の外気条件に関わらず、冷却塔の冷熱源である外気温度を有効利用することができるので、ランニングコストの低減を一層図ることができる。   This makes it possible to effectively use the outside air temperature, which is the cooling heat source of the cooling tower, regardless of the outside air conditions in the summer, intermediate and winter seasons, thereby further reducing the running cost.

請求項8は請求項6又は7において、前記直列用制御機構は、外気温度を測定する外気温度センサと、前記蒸発器から戻る冷媒ガスを前記熱交換器に流すことのできるバイパスラインと、前記バイパスラインを流れる冷媒ガス流量を調整するバイパスバルブと、を更に備え、前記直列用制御部は、前記夏期において、前記外気温度センサの測定結果が所定値以上に達したときには、前記調整バルブを全閉にすると共に前記バイパスバルブを全開として、前記冷却塔への冷媒ガスの戻りを遮断して全て前記熱交換器に導くことを特徴とする。   An eighth aspect of the present invention is the method according to the sixth or seventh aspect, wherein the serial control mechanism includes an outside temperature sensor that measures an outside temperature, a bypass line that allows a refrigerant gas returning from the evaporator to flow to the heat exchanger, A bypass valve that adjusts the flow rate of the refrigerant gas flowing through the bypass line, and the series control unit sets all the adjustment valves when the measurement result of the outside air temperature sensor reaches a predetermined value or more in the summer. The bypass valve is fully opened and the bypass gas is fully opened, and the return of the refrigerant gas to the cooling tower is blocked and all the refrigerant gas is led to the heat exchanger.

請求項8は、請求項6又は7の直列用制御機構の構成に、更に外気温度を加味して制御を行うようにしたものである。即ち、外気温度が高くなり、冷却塔の冷却能力が最も低下する例えば夏期においては、冷却塔を使用しても冷媒の冷却効果を殆ど得られないこともある。このときに冷却塔と熱交換器との両方を使用することはランニングコストの点で問題がある。したがって、予めこのような問題となる外気温度を把握しておき、測定される外気温度センサが所定値以上(把握した温度以上)になったら、調整バルブとバイパスバルブを制御して蒸発器から冷却塔に戻る冷媒ガスの流れを遮断して全て熱交換器に流れるようにする。これにより、冷却塔の冷却能力が最も低下する例えば夏期におけるランニングコストの低減を一層図ることができる。   According to an eighth aspect of the present invention, the control is performed by adding the outside air temperature to the configuration of the serial control mechanism of the sixth or seventh aspect. That is, for example, in summer when the outside air temperature becomes high and the cooling capacity of the cooling tower is most reduced, the cooling effect of the refrigerant may be hardly obtained even if the cooling tower is used. At this time, using both the cooling tower and the heat exchanger is problematic in terms of running cost. Therefore, the outside air temperature that causes such a problem is grasped in advance, and when the measured outside air temperature sensor exceeds a predetermined value (above the grasped temperature), the adjustment valve and the bypass valve are controlled to cool from the evaporator. The flow of the refrigerant gas returning to the tower is cut off so that it flows all through the heat exchanger. Thereby, the running cost can be further reduced, for example, in summer when the cooling capacity of the cooling tower is reduced most.

請求項9は請求項1〜8の何れか1において、前記機器ルーム内から吸い込んだ高温空気を冷却して前記機器ルーム内に戻す空調機と、前記循環ラインから分岐され、前記冷媒を前記空調機の冷却部との間で循環させる空調用循環ラインと、を備えたことを特徴とする。   A ninth aspect of the present invention provides the air conditioner according to any one of the first to eighth aspects, wherein the high-temperature air sucked from the equipment room is cooled and returned to the equipment room; And an air conditioning circulation line that circulates between the cooling section of the machine.

請求項9によれば、冷媒を冷却するためのランニングコストが小さな循環ラインの冷媒を、電子機器ルーム内を冷風で冷却するための空調機の冷熱源としても使用するようにした。これにより、空調機を運転するためのランニングコストをも低減することができる。   According to the ninth aspect of the present invention, the refrigerant in the circulation line having a low running cost for cooling the refrigerant is also used as a cold heat source of the air conditioner for cooling the inside of the electronic equipment room with the cold air. Thereby, the running cost for operating an air conditioner can also be reduced.

また、空調機と、電子機器を冷却する蒸発器とを併用することにより、従来の空調システム(特開2004−232927号公報に示される床吹き出し空調で機器ルーム全体の空気を循環して空調する方式)に比べ、機器ルームでの熱溜まり(局所的高温部位)の発生を抑制でき、全体を空調する空調機からの給気温度を高温化することが可能となる。よって、本発明では従来に比べて冷媒の気化(蒸発)温度が高くてよくなり、冷却塔の能力を十分に活用することができる。したがって、循環ラインの冷媒を空調機の冷却部に供給することは、空調機の省エネと、冷却塔の能力発揮の両方に寄与する。   Further, by using an air conditioner and an evaporator for cooling an electronic device in combination, a conventional air-conditioning system (floor blowing air-conditioning disclosed in Japanese Patent Application Laid-Open No. 2004-232927 circulates air in the entire equipment room for air conditioning. Compared with the system), it is possible to suppress the occurrence of heat accumulation (local high temperature part) in the equipment room, and it is possible to increase the supply air temperature from the air conditioner that air-conditions the whole. Therefore, in the present invention, the vaporization (evaporation) temperature of the refrigerant may be higher than in the prior art, and the capacity of the cooling tower can be fully utilized. Therefore, supplying the refrigerant in the circulation line to the cooling unit of the air conditioner contributes to both energy saving of the air conditioner and performance of the cooling tower.

請求項10は請求項9において、前記複数の電子機器を複数のグループにグループ分けすると共に、前記循環ラインの途中にグループ分けしたグループ数だけグループ用熱交換器を設け、前記循環ラインを、前記冷却塔及び/又は熱交換器と、前記グループ用熱交換器との間で冷媒が循環するメイン用循環ラインと、前記グループ用熱交換器と前記蒸発器及び/又は前記空調機の冷却部との間で冷媒が循環するグループ用循環ラインとで構成したことを特徴とする。   A tenth aspect of the present invention is the method according to the ninth aspect, wherein the plurality of electronic devices are grouped into a plurality of groups, and group heat exchangers are provided in the number of the groups grouped in the middle of the circulation line. A main circulation line through which a refrigerant circulates between a cooling tower and / or a heat exchanger and the group heat exchanger, a cooling unit for the group heat exchanger, the evaporator and / or the air conditioner, It is comprised with the circulation line for groups in which a refrigerant | coolant circulates between.

請求項10によれば、グループ分けした電子機器のグループごとに設けたグループ用熱交換器を介して、循環ラインを、冷却塔及び/又は熱交換器と、グループ用熱交換器との間で冷媒が循環するメイン用循環ラインと、グループ用熱交換器と蒸発器及び/又は前記空調機の冷却部との間で冷媒が循環するグループ用循環ラインとで構成することにより、互いのグループの運転を縁切りすることができる。   According to the tenth aspect, the circulation line is provided between the cooling tower and / or the heat exchanger and the group heat exchanger via the group heat exchanger provided for each group of the grouped electronic devices. By configuring the main circulation line through which the refrigerant circulates and the group circulation line through which the refrigerant circulates between the group heat exchanger and the evaporator and / or the cooling unit of the air conditioner, Driving can be cut off.

これにより、もし、1つのグループの例えば蒸発器に異常を生じたり、冷媒の流れが停止したりしても、他のグループに異常が波及することがない。したがって、機器ルームに配設された全ての電子機器の冷却に異常が発生することを防ぐことができる。   Thereby, even if an abnormality occurs in one group, for example, an evaporator, or the flow of the refrigerant stops, the abnormality does not spread to other groups. Therefore, it is possible to prevent an abnormality from occurring in the cooling of all electronic devices disposed in the device room.

尚、メイン用循環ラインとグループ用循環ラインとを流れる冷媒は、同じ種類のものでもよく、異なる種類のものでもよい。   The refrigerant flowing through the main circulation line and the group circulation line may be the same type or different types.

請求項11は請求項1〜10の何れか1において、前記循環ラインのうち前記蒸発器出口位置の冷媒ガス流路に設けられ、冷媒流量を調整する流量調整手段と、前記蒸発器から排出される空気温度を検出する温度センサと、前記流量調整手段を制御するコントローラと、を備え、前記コントローラは前記温度センサが所定値となるように前記流量調整手段を制御することを特徴とする。   An eleventh aspect according to any one of the first to tenth aspects is provided in a refrigerant gas flow path at the evaporator outlet position in the circulation line, and is discharged from the evaporator and a flow rate adjusting means for adjusting a refrigerant flow rate. And a controller for controlling the flow rate adjusting means, wherein the controller controls the flow rate adjusting means so that the temperature sensor becomes a predetermined value.

請求項11によれば、蒸発器出口側である冷媒ガス流路で冷媒流量を制御することにより、冷媒の気化(蒸発)温度を従来のように冷媒液体流路側で冷媒流量を制御する場合に比べて冷媒作動温度を高温化できる。これにより、気化(蒸発)温度の高温側への操作が可能となり、冷媒作動温度を高温化して熱源温度を高温化できる。したがって、気化(蒸発)温度の低温防止を達成できるので、蒸発器での結露防止に寄与する。   According to the eleventh aspect, when the refrigerant flow rate is controlled in the refrigerant liquid channel side as in the prior art by controlling the refrigerant flow rate in the refrigerant gas channel on the evaporator outlet side, In comparison, the refrigerant operating temperature can be increased. Thereby, operation to the high temperature side of vaporization (evaporation) temperature is attained, and refrigerant | coolant operating temperature can be made high and heat source temperature can be made high. Therefore, it is possible to prevent the vaporization (evaporation) temperature from being lowered, which contributes to prevention of condensation in the evaporator.

請求項12は請求項1〜11の何れか1において、前記電子機器はサーバであると共に、前記機器ルームはサーバルームであることを特徴とする。   A twelfth aspect according to any one of the first to eleventh aspects is characterized in that the electronic device is a server and the device room is a server room.

本発明は、精密動作が要求され且つそれ自体からの発熱量が大きな電子機器の全てに適用することができるが、電子機器がサーバで、機器ルームがサーバルームである場合に一層の効果を期待できるからである。   The present invention can be applied to all electronic devices that require precise operation and generate a large amount of heat from itself. However, when the electronic device is a server and the device room is a server room, a further effect is expected. Because it can.

以上説明したように、本発明に係る電子機器の冷却システムによれば、コンピュータ及びサーバ等の精密動作が要求され且つそれ自体からの発熱量が大きな電子機器を、小さなランニングコストで効率的に冷却することができる。   As described above, according to the electronic device cooling system of the present invention, an electronic device that requires precise operation of a computer and a server and generates a large amount of heat from itself can be efficiently cooled at a low running cost. can do.

以下、添付図面に従って本発明に係る電子機器の冷却システムの好ましい実施の形態について詳説する。尚、電子機器の一例として、サーバルームに配設されたサーバの例で説明する。   Hereinafter, preferred embodiments of a cooling system for an electronic device according to the present invention will be described in detail with reference to the accompanying drawings. Note that an example of a server disposed in a server room will be described as an example of an electronic device.

(第1の実施の形態)
図1は、本発明の第1の実施の形態の電子機器の冷却システム10を示した概念図である。
(First embodiment)
FIG. 1 is a conceptual diagram showing a cooling system 10 for an electronic device according to a first embodiment of the present invention.

図1に示すように、2階建ての建屋12内には、サーバルーム14A、14Bが1階と2階のそれぞれに形成される。そして、1階及び2階の床面20A,20Bの裏側には、それぞれ床下チャンバ22A,22Bが形成される。床面20A,20Bには、複数の吹出口(不図示)が配置され、後記する空調機78(図3参照)からの冷風は、床下チャンバ22A,22Bを通って床面20A,20Bからサーバルーム14A、14Bに吹き出される。吹出口は、各サーバ28の前面側近傍に配置されることが好ましく、これにより吹き出された冷風がサーバ28に供給されることで、サーバ28を効率良く冷却することができる。   As shown in FIG. 1, server rooms 14 </ b> A and 14 </ b> B are formed on the first floor and the second floor in the two-story building 12. Underfloor chambers 22A and 22B are formed on the back sides of the floor surfaces 20A and 20B on the first floor and the second floor, respectively. A plurality of air outlets (not shown) are arranged on the floor surfaces 20A and 20B, and cold air from an air conditioner 78 (see FIG. 3) described later passes from the floor surfaces 20A and 20B to the server through the underfloor chambers 22A and 22B. It is blown out into the rooms 14A and 14B. The air outlet is preferably disposed in the vicinity of the front side of each server 28, and the cold air blown out thereby is supplied to the server 28, whereby the server 28 can be efficiently cooled.

図2に示すように、サーバルーム14A、14Bにはサーバラック26が配設され、サーバラック26に複数のサーバ28が段積み状態で収納される。サーバラック26には、移動用キャスタ24を設けて、移動可能に配置することが好ましい。サーバ28は、ファン30を備えており、矢印32に示すようにサーバルーム14A、14Bの空気を吸い込んで排気することにより、サーバ28で発生した熱がサーバ28から排出される。尚、図1で示した2階建ての建屋12、サーバルーム14A、14Bの数、サーバルーム14A、14Bに配設されるサーバラック26の数、サーバラック26に段積みされるサーバ28の数等は一例であり、図1及び図2には限定されない。また、図1に示すように、サーバラック26に収納されたそれぞれのサーバ28には、蒸発器34が設けられる。尚、図1では、サーバ28と蒸発器34との関係が分かり易いように、サーバラック26ではなくサーバ28で図示してある。   As shown in FIG. 2, a server rack 26 is disposed in the server rooms 14A and 14B, and a plurality of servers 28 are stored in a stacked state in the server rack 26. The server rack 26 is preferably provided with a moving caster 24 so as to be movable. The server 28 includes a fan 30, and heat generated in the server 28 is exhausted from the server 28 by sucking and exhausting the air in the server rooms 14 </ b> A and 14 </ b> B as indicated by an arrow 32. Note that the number of the two-story building 12, the server rooms 14A and 14B, the number of server racks 26 arranged in the server rooms 14A and 14B, and the number of servers 28 stacked in the server rack 26 shown in FIG. Etc. are examples, and are not limited to FIGS. 1 and 2. Further, as shown in FIG. 1, each server 28 housed in the server rack 26 is provided with an evaporator 34. In FIG. 1, the server 28 is illustrated instead of the server rack 26 so that the relationship between the server 28 and the evaporator 34 can be easily understood.

図1に示すように、蒸発器34の内部には冷却コイル36が設けられ、冷却コイル36内を流れる冷媒液体がサーバ28から発生する高温空気で蒸発することにより周囲から気化熱を奪いガス化する。これにより、サーバ28自体やサーバ28から排出される高温空気を冷却する。   As shown in FIG. 1, a cooling coil 36 is provided inside the evaporator 34, and the refrigerant liquid flowing in the cooling coil 36 evaporates with high-temperature air generated from the server 28, thereby removing the heat of vaporization from the surroundings and gasifying. To do. Thereby, the high-temperature air discharged from the server 28 itself or the server 28 is cooled.

一方、建屋12の屋上には冷却塔38が設けられ、冷却塔38と前述したそれぞれの蒸発器34との間には、冷媒が自然循環する循環ライン40が形成される。即ち、冷却塔38内には、冷媒が流れる螺旋状配管41が収納されると共に螺旋状配管41の上方には、水を螺旋状配管41に散水する散水管42が設けられる。また、散水管42の上方にはファン44が設けられ、外気を冷却塔38側面開口から取り込んで上面開口から排出することで、散水される水と取り込まれた外気とのカウンタカレントを形成し、これにより外気を取り込み温度よりも低くなるように冷却する。   On the other hand, a cooling tower 38 is provided on the roof of the building 12, and a circulation line 40 through which the refrigerant naturally circulates is formed between the cooling tower 38 and each of the evaporators 34 described above. That is, in the cooling tower 38, a spiral pipe 41 through which a refrigerant flows is accommodated, and a sprinkling pipe 42 that sprinkles water into the spiral pipe 41 is provided above the spiral pipe 41. In addition, a fan 44 is provided above the sprinkling pipe 42, and by taking outside air from the side opening of the cooling tower 38 and discharging it from the top opening, a counter current is formed between the water to be sprinkled and the taken outside air. Thereby, outside air is taken in and cooled to be lower than the temperature.

蒸発器34に設けられた冷却コイル36と冷却塔38に設けられた螺旋状配管41との間は、蒸発器34でガス化した冷媒ガスを冷却塔38に戻すための戻し配管46(冷媒ガス配管)と、冷媒ガスを冷却塔38で冷却して凝縮することにより液化した冷媒液体を蒸発器34に供給する供給配管48(冷媒液体配管)とで連結される。   Between a cooling coil 36 provided in the evaporator 34 and a helical pipe 41 provided in the cooling tower 38, a return pipe 46 (refrigerant gas) for returning the refrigerant gas gasified by the evaporator 34 to the cooling tower 38. Piping) and a supply pipe 48 (refrigerant liquid pipe) for supplying the refrigerant liquid liquefied by cooling and condensing the refrigerant gas in the cooling tower 38 to the evaporator 34.

戻し配管46及び供給配管48は途中で枝分かれすることにより、1階又は2階の床下チャンバ22A,22Bを通って1階のサーバルーム14Aに配設されたサーバ28の蒸発器34と、2階のサーバルーム14Bに配設されたサーバ28の蒸発器34とに接続される。かかる構成において、近年のサーバ28からの発熱量の急速な上昇により、サーバ28から発生(排出)される高温の熱を高温状態のままで蒸発器34を流れる冷媒と直熱熱交換して冷媒の蒸発を促進することにより、蒸発器34よりも高所に設置された冷却塔38へ蒸発した冷媒ガスを輸送する輸送動力を得ることができる。使用される冷媒としては、フロン、あるいは代替フロンとしてのHFC(ハイドロフロロカーボン)等を使用することができる。また、大気圧よりも低い圧力で使用するならば、水を使用することも可能である。ここで、冷媒と表現する場合には、ガス状態の冷媒ガスと、液体状態の冷媒液体の両方を含むものであり、図1には、冷媒ガスの流れ方向を白矢印で示し、冷媒液体の流れ方向を黒矢印で示した。   The return pipe 46 and the supply pipe 48 are branched on the way, so that the evaporator 34 of the server 28 disposed in the server room 14A on the first floor through the underfloor chambers 22A and 22B on the first floor or the second floor, and the second floor. To the evaporator 34 of the server 28 disposed in the server room 14B. In such a configuration, due to the rapid increase in the amount of heat generated from the server 28 in recent years, the high-temperature heat generated (discharged) from the server 28 is directly heat-exchanged with the refrigerant flowing through the evaporator 34 in a high-temperature state, thereby generating By promoting the evaporation of the refrigerant, it is possible to obtain transport power for transporting the evaporated refrigerant gas to the cooling tower 38 installed at a higher position than the evaporator 34. As the refrigerant to be used, chlorofluorocarbon, HFC (hydrofluorocarbon) as an alternative chlorofluorocarbon, or the like can be used. In addition, water can be used if it is used at a pressure lower than atmospheric pressure. Here, the expression “refrigerant” includes both a gaseous refrigerant gas and a liquid refrigerant liquid. In FIG. 1, the flow direction of the refrigerant gas is indicated by white arrows, The direction of flow is indicated by black arrows.

これにより、蒸発器34と冷却塔38との間には、冷媒が自然循環するための循環ライン40が形成される。即ち、蒸発器34と冷却塔38と循環ライン40とにより、内部に冷媒を封入した無動力のヒートパイプが構築される。また、サーバ28からの発熱量が大きくなり高温の冷媒ガスを形成できることで、冷媒ガスを凝縮する冷却温度を高めに設定することができ、冷却塔38による冷却能力でも冷媒ガスを凝縮できる。凝縮した冷媒液体は、冷却塔38よりも下方に位置する蒸発器34に流下する。   Thereby, a circulation line 40 for natural circulation of the refrigerant is formed between the evaporator 34 and the cooling tower 38. That is, the evaporator 34, the cooling tower 38, and the circulation line 40 constitute a non-powered heat pipe in which a refrigerant is sealed. Further, since the amount of heat generated from the server 28 is increased and a high-temperature refrigerant gas can be formed, the cooling temperature for condensing the refrigerant gas can be set higher, and the refrigerant gas can be condensed even with the cooling capacity of the cooling tower 38. The condensed refrigerant liquid flows down to the evaporator 34 located below the cooling tower 38.

また、それぞれの蒸発器34には、サーバ28から排出された高温空気が蒸発器34で冷却された後の風の温度を測定する温度センサ50が設けられると共に、冷却コイル36の出口には、冷却コイル36に供給する冷媒の供給流量(冷媒流量)を調整するためのバルブ52(流量調整手段)が設けられる。そして、不図示のコントローラは、温度センサ50による測定温度に基づいてバルブ52の開度が自動調整される。これにより、蒸発器34で冷却された後の風の温度が設定温度よりも低くなり過ぎた場合には、バルブ52の開度が絞られて冷媒の供給流量が減少される。このように、冷媒の供給流量を必要以上に多くしないことで、冷媒を冷却するための冷却負荷を小さくすることができるので、冷却塔38での冷却だけでも十分な冷却能力を発揮できる。   Each evaporator 34 is provided with a temperature sensor 50 that measures the temperature of the wind after the high-temperature air discharged from the server 28 is cooled by the evaporator 34, and at the outlet of the cooling coil 36, A valve 52 (flow rate adjusting means) for adjusting the supply flow rate (refrigerant flow rate) of the refrigerant supplied to the cooling coil 36 is provided. A controller (not shown) automatically adjusts the opening of the valve 52 based on the temperature measured by the temperature sensor 50. As a result, when the temperature of the wind after being cooled by the evaporator 34 becomes too lower than the set temperature, the opening of the valve 52 is reduced and the supply flow rate of the refrigerant is reduced. Thus, since the cooling load for cooling a refrigerant | coolant can be made small by not increasing the supply flow rate of a refrigerant | coolant more than necessary, sufficient cooling capability can be exhibited only by the cooling in the cooling tower 38. FIG.

このことをもう少し詳しく述べると、サーバ28は、ファン30により、サーバルーム14A,14Bの空気をサーバ内に取り込んで加熱され、加熱された高温空気と蒸発器34での冷媒との間で熱交換され、冷却された風が温度センサ50で測定される。   More specifically, the server 28 takes in the air in the server rooms 14 </ b> A and 14 </ b> B by the fan 30 and is heated, and heat exchange is performed between the heated high-temperature air and the refrigerant in the evaporator 34. The cooled wind is measured by the temperature sensor 50.

一方、冷媒自然循環システムでは、従来の圧縮式空調システムとは異なり、気化(蒸発)温度より低い凝縮温度が必要になるため、蒸発温度を高く設定することができれば、凝縮温度、即ち冷却塔38で使用する外気の温度も高くすることができ、より高温の外気条件でも冷却塔38での冷却能力を利用できることになる。即ち、外気温度が比較的高い中間期(春期、秋期)においても冷却塔単独での冷却が可能となり、冷凍機68の運転を抑制してランニングコストの削減が可能となる。   On the other hand, unlike the conventional compression air conditioning system, the refrigerant natural circulation system requires a condensation temperature lower than the vaporization (evaporation) temperature. Therefore, if the evaporation temperature can be set high, the condensation temperature, ie, the cooling tower 38 can be set. In this case, the temperature of the outside air used can be increased, and the cooling capacity of the cooling tower 38 can be utilized even under a higher temperature outside air condition. That is, the cooling tower alone can be cooled even in the intermediate period (spring and autumn) when the outside air temperature is relatively high, and the operation of the refrigerator 68 can be suppressed to reduce the running cost.

また、建屋12の屋上には、冷却塔38の他に、該冷却塔38よりも冷却能力の大きな熱交換器54が設置され、この熱交換器54は循環ライン40から分岐された並列ライン64に設けられる。即ち、図1に示すように、戻り配管46と供給配管48のそれぞれから分岐された並列用戻り配管58と並列用供給配管60とが熱交換器54の2次側コイル62に接続される。これにより、熱交換器54は冷却塔38に対し、冷媒の流れにおいて並列な関係を有して配置されることになる。   In addition to the cooling tower 38, a heat exchanger 54 having a larger cooling capacity than the cooling tower 38 is installed on the roof of the building 12, and the heat exchanger 54 is a parallel line 64 branched from the circulation line 40. Is provided. That is, as shown in FIG. 1, the parallel return pipe 58 and the parallel supply pipe 60 branched from the return pipe 46 and the supply pipe 48 are connected to the secondary coil 62 of the heat exchanger 54. As a result, the heat exchanger 54 is arranged in parallel with the cooling tower 38 in the refrigerant flow.

また、熱交換器54の1次側コイル66は、冷凍機68からの冷水供給配管70と冷水戻り配管72に接続されると共に、冷水供給配管70には送液ポンプ74が設けられる。これにより、冷凍機68で製造された冷水(1次冷媒)が熱交換器54において冷媒(2次冷媒)と熱交換し、冷媒を冷却する。なお、冷凍機68と上記した冷却塔38とは別の冷却塔76とを接続し、冷凍機68の冷熱源とすることにより、冷凍機68の使用電力を削減できる。なお、冷却塔76の構造は、上記した冷却塔38と同様である。   The primary coil 66 of the heat exchanger 54 is connected to a chilled water supply pipe 70 and a chilled water return pipe 72 from the refrigerator 68, and a liquid feed pump 74 is provided in the chilled water supply pipe 70. Thereby, the cold water (primary refrigerant) manufactured by the refrigerator 68 exchanges heat with the refrigerant (secondary refrigerant) in the heat exchanger 54 to cool the refrigerant. In addition, the power consumption of the refrigerator 68 can be reduced by connecting the refrigerator 68 and the cooling tower 76 which is different from the cooling tower 38 described above to serve as a cooling heat source for the refrigerator 68. The structure of the cooling tower 76 is the same as that of the cooling tower 38 described above.

また、並列用戻り配管58には並列用バルブ59が設けられ、供給ライン48における冷却塔38の近くには閉止用バルブ61が設けられると共に、冷水が流れる冷水供給配管70にもバルブ69が設けられる。一方、冷却塔38の近傍に外気温度を測定する外気温度センサ63が設けられると共に、冷却塔出口(冷媒液体側)と熱交換器出口(冷媒液体側)には、それぞれ温度センサ65、67が設けられる。そして、それぞれの温度センサ63、65、67の測定結果は並列用制御部71に逐次入力され、測定結果に基づいて並列用制御部71が各バルブ59、61、69を制御する。これにより、並列用制御機構が形成される。尚、冷却塔出口と熱交換器出口に、温度センサ65、67を設けたが、配管内を流れる冷媒の圧力を測定する圧力センサ(図示せず)を設けることもでき、液温度センサ65、67と圧力センサの両方を設けてもよい。   In addition, the parallel return pipe 58 is provided with a parallel valve 59, a closing valve 61 is provided near the cooling tower 38 in the supply line 48, and a valve 69 is also provided in the cold water supply pipe 70 through which cold water flows. It is done. On the other hand, an outside air temperature sensor 63 for measuring the outside air temperature is provided in the vicinity of the cooling tower 38, and temperature sensors 65 and 67 are provided at the cooling tower outlet (refrigerant liquid side) and the heat exchanger outlet (refrigerant liquid side), respectively. Provided. The measurement results of the temperature sensors 63, 65, and 67 are sequentially input to the parallel control unit 71, and the parallel control unit 71 controls the valves 59, 61, and 69 based on the measurement results. Thereby, a parallel control mechanism is formed. Although the temperature sensors 65 and 67 are provided at the cooling tower outlet and the heat exchanger outlet, a pressure sensor (not shown) for measuring the pressure of the refrigerant flowing in the pipe may be provided. Both 67 and the pressure sensor may be provided.

ここで、並列用制御機構による制御方法の好ましい形態を説明する。   Here, the preferable form of the control method by the parallel control mechanism is demonstrated.

1つ目の制御方法は、並列用制御部71が、外気温度センサ63の測定結果から冷却塔38で冷媒を冷却可能な能力を演算すると共に、該演算結果から並列用バルブ59の開度量を調整することにより、熱交換器54に流す冷媒量を制御する。これにより、蒸発器34で蒸発した冷媒ガスを凝縮するために必要な冷熱負荷に応じてランニングコストが最も小さくなるように冷却塔38及び熱交換器54を効率的に使用することができる。   In the first control method, the parallel control unit 71 calculates the ability of the cooling tower 38 to cool the refrigerant from the measurement result of the outside temperature sensor 63, and the opening amount of the parallel valve 59 is calculated from the calculation result. By adjusting, the amount of the refrigerant flowing through the heat exchanger 54 is controlled. Thereby, the cooling tower 38 and the heat exchanger 54 can be used efficiently so that the running cost is minimized according to the cooling load necessary for condensing the refrigerant gas evaporated in the evaporator 34.

冷却塔38の冷却能力は、外気温度に大きく依存しているので、上記の如く制御することによって、外気温度の変動に応じて循環ライン40を流れる冷媒の一部が自動的に熱交換器54に流れるようにすることができるので、冷却塔38の冷却能力の不足分のみを熱交換器54で補足すればよい。これにより、ランニングコストを一層低減することができる。   Since the cooling capacity of the cooling tower 38 greatly depends on the outside air temperature, by controlling as described above, a part of the refrigerant flowing in the circulation line 40 is automatically heat exchanger 54 according to the fluctuation of the outside air temperature. Therefore, only the shortage of the cooling capacity of the cooling tower 38 needs to be supplemented by the heat exchanger 54. Thereby, running cost can be further reduced.

また、2つ目の制御方法は、並列用制御部71が、冷却塔出口の温度センサ65の測定結果が所定値になるように並列用バルブ59の開度量を調整して熱交換器54に流す冷媒量を制御する。これにより、冷却塔出口の冷媒温度を測定することで、測定時点で冷却塔38が有している冷却能力を把握することができる。したがって、測定結果に基づいて並列用バルブ59の開度量を自動調整することで、循環ライン40を流れる冷媒の一部を自動的に熱交換器54に流れるようにすることができるので、冷却塔38の冷却能力の不足分のみを熱交換器54で補足すればよい。これにより、ランニングコストを一層低減することができる。   In the second control method, the parallel control unit 71 adjusts the opening amount of the parallel valve 59 so that the measurement result of the temperature sensor 65 at the outlet of the cooling tower becomes a predetermined value. Control the amount of refrigerant flowing. Thereby, the cooling capacity which the cooling tower 38 has at the time of a measurement can be grasped | ascertained by measuring the refrigerant | coolant temperature of a cooling tower exit. Therefore, by automatically adjusting the opening amount of the parallel valve 59 based on the measurement result, a part of the refrigerant flowing through the circulation line 40 can be automatically flowed to the heat exchanger 54. Only the shortage of the cooling capacity of 38 may be supplemented by the heat exchanger 54. Thereby, running cost can be further reduced.

また、これらの制御方法を行う際に、熱交換器出口に設けた温度センサ67を測定することで、蒸発器34に供給する冷媒の温度が分かる。したがって、測定結果に基づいて冷水供給配管70のバルブ69の開度量を制御すれば、熱交換器54で必要以上に冷媒を冷却してしまうことも防止できる。更に、冷却塔38の冷却能力が最も低下する夏期においては、冷却塔38と熱交換器54との併用が却ってランニングコストの点で不利になることもあるので、このような場合には、外気温度センサ63の測定温度が所定値以上に達したら、閉止バルブ61を閉じることで、ランニングコストの一層の低減を図ることができる。   Moreover, when performing these control methods, the temperature of the refrigerant supplied to the evaporator 34 can be determined by measuring the temperature sensor 67 provided at the outlet of the heat exchanger. Therefore, if the opening degree of the valve 69 of the cold water supply pipe 70 is controlled based on the measurement result, it is possible to prevent the refrigerant from being cooled more than necessary by the heat exchanger 54. Furthermore, in the summer when the cooling capacity of the cooling tower 38 is the lowest, the combined use of the cooling tower 38 and the heat exchanger 54 may be disadvantageous in terms of running cost. When the temperature measured by the temperature sensor 63 reaches a predetermined value or more, the running cost can be further reduced by closing the closing valve 61.

このように、冷却塔38と熱交換器54との2つの冷却手段を持ち、それぞれの役割を分担することで、冷却システムの安定運転を保証することができると共に、冷媒を冷却するためのランニングコストを低減できる。   Thus, by having two cooling means of the cooling tower 38 and the heat exchanger 54 and sharing their respective roles, stable operation of the cooling system can be ensured and running for cooling the refrigerant is possible. Cost can be reduced.

(第2の実施の形態)
図3は、本発明の第2の実施の形態の電子機器の冷却システム100を示した概念図である。尚、第1の実施の形態と同じ部材及び構成について省略する。
(Second Embodiment)
FIG. 3 is a conceptual diagram showing a cooling system 100 for an electronic device according to the second embodiment of the present invention. The same members and configurations as those in the first embodiment are omitted.

第2の実施の形態の冷却システム100は、第1の実施の形態の冷却システム10の構成に、サーバルーム14A,14Bを冷却するための空調機78を設け、空調機78の冷熱源として循環ライン40の冷媒を使用するようにしたものである。   The cooling system 100 of the second embodiment is provided with an air conditioner 78 for cooling the server rooms 14A and 14B in the configuration of the cooling system 10 of the first embodiment, and circulates as a cooling heat source of the air conditioner 78. The refrigerant of line 40 is used.

即ち、図3に示すように、サーバルーム14A,14Bに隣接して機械室80A,80Bがそれぞれ設けられ、機械室80A,80Bに空調機78がそれぞれ設置される。また、サーバルーム14A,14Bと機械室80A,80Bとを仕切る隔壁82には、サーバルーム14A,14Bの空気を機械室80A,80Bを介して空調機78に吸い込む吸込ダクト79が貫通して配設され、吸込ダクト79の一端が空調機78の冷却部84に接続される。また、空調機の送風機86には、吹出ダクト81の一端が接続されると共に、他端が隔壁82を貫通して床下チャンバ22A,22Bに延設される。これにより、吸込ダクト79を介して空調機78に取り込まれた空気は、空調機78の冷却部84によって冷却され、送風機86によって吹出ダクト81を介して床下チャンバ22A,22Bに吹き出され、床面20A,20Bからサーバルーム14A,14Bに吹き出される。この場合、床面20A,20Bの吹出口(図示せず)は、サーバ28の前面近傍に冷風が吹き出されるように形成することが好ましい。尚、サーバ28の前面とは蒸発器34の反対側である。   That is, as shown in FIG. 3, machine rooms 80A and 80B are provided adjacent to the server rooms 14A and 14B, respectively, and air conditioners 78 are installed in the machine rooms 80A and 80B, respectively. Further, a suction duct 79 that sucks the air in the server rooms 14A and 14B into the air conditioner 78 through the machine rooms 80A and 80B penetrates the partition wall 82 that partitions the server rooms 14A and 14B and the machine rooms 80A and 80B. One end of the suction duct 79 is connected to the cooling unit 84 of the air conditioner 78. In addition, one end of the blowout duct 81 is connected to the blower 86 of the air conditioner, and the other end extends through the partition wall 82 and extends to the underfloor chambers 22A and 22B. As a result, the air taken into the air conditioner 78 via the suction duct 79 is cooled by the cooling unit 84 of the air conditioner 78, and blown out to the underfloor chambers 22 </ b> A and 22 </ b> B via the blowout duct 81 by the blower 86. 20A and 20B are blown out to the server rooms 14A and 14B. In this case, it is preferable to form the air outlets (not shown) of the floor surfaces 20 </ b> A and 20 </ b> B so that cold air is blown out near the front surface of the server 28. The front surface of the server 28 is the opposite side of the evaporator 34.

また、空調機78の冷却部84は、循環ライン40から分岐された空調用循環ライン88に接続される。即ち、空調用循環ライン88を構成する空調用供給配管88Aと空調用戻り配管88Bとが空調機78の冷却部84に接続される。   The cooling unit 84 of the air conditioner 78 is connected to an air conditioning circulation line 88 branched from the circulation line 40. That is, the air conditioning supply pipe 88 </ b> A and the air conditioning return pipe 88 </ b> B constituting the air conditioning circulation line 88 are connected to the cooling unit 84 of the air conditioner 78.

上記の如く構成された第2の実施の形態の冷却システムによれば、上記した第1の実施の形態の効果に加えて以下の効果を発揮することができる。   According to the cooling system of the second embodiment configured as described above, the following effects can be exhibited in addition to the effects of the first embodiment described above.

即ち、冷媒を冷却するためのランニングコストが小さな循環ライン40の冷媒を、サーバルーム14A,14Bを冷風で冷却するための空調機78の冷熱源として使用するようにした。これにより、空調機78を運転するためのランニングコストをも低減することができる。また、空調機78と、サーバ28を冷却する蒸発器34とを併用することにより、従来の空調システム(特開2004−232927号公報に示される床吹き出し空調で電子機器ルーム全体の空気を循環して空調する方式)に比べ、サーバルーム14A,14Bでの熱溜まり(局所的高温部位)の発生を抑制でき、全体を空調する空調機78からの給気温度を高温化することができる。よって、本発明では従来に比べて冷媒の気化(蒸発)温度が高くてよくなり、冷却塔38の能力を十分に活用することができる。   That is, the refrigerant in the circulation line 40 having a low running cost for cooling the refrigerant is used as a cold heat source for the air conditioner 78 for cooling the server rooms 14A and 14B with cold air. Thereby, the running cost for operating the air conditioner 78 can also be reduced. Further, by using the air conditioner 78 and the evaporator 34 that cools the server 28 together, the air in the entire electronic equipment room is circulated by the conventional air-conditioning system (floor blowing air-conditioning disclosed in JP-A-2004-232927). Compared to the air conditioning system), it is possible to suppress the occurrence of heat pools (local high temperature parts) in the server rooms 14A and 14B, and to increase the temperature of the supply air from the air conditioner 78 that air-conditions the whole. Therefore, in the present invention, the vaporization (evaporation) temperature of the refrigerant may be higher than in the prior art, and the capacity of the cooling tower 38 can be fully utilized.

したがって、循環ライン40の冷媒を空調機78の冷却部84に供給することは、空調機78の省エネと、冷却塔38の能力発揮の両方に寄与する。   Therefore, supplying the refrigerant in the circulation line 40 to the cooling unit 84 of the air conditioner 78 contributes to both energy saving of the air conditioner 78 and performance of the cooling tower 38.

(第3の実施の形態)
図4は、本発明の第3の実施の形態の電子機器の冷却システム200を示した概念図である。尚、第2の実施の形態と同じ部材及び構成について省略する。
(Third embodiment)
FIG. 4 is a conceptual diagram showing a cooling system 200 for an electronic device according to the third embodiment of the present invention. Note that the same members and configurations as those of the second embodiment are omitted.

第3の実施の形態の冷却システム200は、第2の実施の形態の冷却システム100の構成に加えて、蒸発器34を備えた複数のサーバ28をグループ分けすることにより、互いのグループを縁切りした状態で運転できるように構成したものである。   In the cooling system 200 of the third embodiment, in addition to the configuration of the cooling system 100 of the second embodiment, a plurality of servers 28 including the evaporator 34 are grouped to cut each other into groups. It is configured to be able to be operated in the state.

即ち、図4に示すように、蒸発器34を備えた複数のサーバ28を複数のグループにグループ分けする。図4の場合には、1階のサーバルーム14Aに設置されたサーバ28を一つのグループとし、2階のサーバルーム14Bに設置されたサーバ28を別のグループとしてグループ化した。尚、グループ分けの仕方は、上記に限定されず、更に細かくグループ分けすることもできる。   That is, as shown in FIG. 4, a plurality of servers 28 provided with the evaporator 34 are grouped into a plurality of groups. In the case of FIG. 4, the server 28 installed in the server room 14A on the first floor is grouped as one group, and the server 28 installed in the server room 14B on the second floor is grouped as another group. The grouping method is not limited to the above, and the grouping can be further finely divided.

そして、循環ライン40の途中にグループ分けしたグループ数である2基のグループ用熱交換器90を設けると共に、循環ライン40を、冷却塔38及び/又は熱交換器54と、グループ用熱交換器90との間で冷媒が循環するメイン用循環ライン40Aと、グループ用熱交換器90と蒸発器34との間で冷媒が循環するグループ用循環ライン40Bとで構成した。   In addition, two group heat exchangers 90 having the number of groups divided in the middle of the circulation line 40 are provided, and the circulation line 40 is connected to the cooling tower 38 and / or the heat exchanger 54 and the group heat exchanger. The main circulation line 40 </ b> A in which the refrigerant circulates between 90 and the group circulation line 40 </ b> B in which the refrigerant circulates between the group heat exchanger 90 and the evaporator 34.

また、第2の実施の形態では、空調機78の冷熱源として、循環ライン40を流れる冷媒を空調機78の冷却部84に直接供給するようにしたが、第3の実施の形態では、空調機78についても1階の機械室80Aに設置された空調機78と、2階の機械室80Bに設置された空調機78との2つのグループにグループ分けした。そして、それぞれの空調機78の冷却部84には、対応するグループのグループ用循環ライン40Bを接続するようにした。   In the second embodiment, the refrigerant flowing through the circulation line 40 is directly supplied to the cooling unit 84 of the air conditioner 78 as a cooling source of the air conditioner 78. In the third embodiment, the air conditioner 78 The machines 78 were also grouped into two groups: an air conditioner 78 installed in the machine room 80A on the first floor and an air conditioner 78 installed in the machine room 80B on the second floor. The group circulation line 40B of the corresponding group is connected to the cooling unit 84 of each air conditioner 78.

上記の如く構成された第3の実施の形態の冷却システム200によれば、上記した実施の形態2の効果に加えて以下の効果を発揮することができる。   According to the cooling system 200 of the third embodiment configured as described above, the following effects can be exhibited in addition to the effects of the second embodiment.

即ち、もし、1つのグループの例えば蒸発器34に異常を生じたり、冷媒の流れが停止したりしても、他のグループに異常が波及することがない。したがって、サーバルーム14A,14Bに配設された全てのサーバ28の冷却に異常が発生することを防ぐことができる。また、空調機78についてもグループ分けすることで、もし1つのグループにおいて冷媒の流れが停止する等の異常が発生しても、他のグループの空調機78の冷却部84に異常が波及することがない。   That is, if an abnormality occurs in one group, for example, the evaporator 34, or the flow of the refrigerant stops, the abnormality does not spread to other groups. Therefore, it is possible to prevent an abnormality from occurring in the cooling of all the servers 28 arranged in the server rooms 14A and 14B. In addition, by dividing the air conditioners 78 into groups, even if an abnormality such as the refrigerant flow stopping in one group occurs, the abnormality spreads to the cooling unit 84 of the air conditioners 78 of other groups. There is no.

(第4の実施の形態)
図5は、本発明の第4の実施の形態の電子機器の冷却システム300を示した概念図であり、冷却塔38と熱交換器54とが直列な配置関係になるように図1を変更したものである。尚、第1の実施の形態におけて、冷却塔38と熱交換器54とが並列な配置関係になるように設置した場合を説明したので、重複する部分は省略すると共に、同じ部材及び構成について同符号を付して説明する。
(Fourth embodiment)
FIG. 5 is a conceptual diagram showing an electronic device cooling system 300 according to a fourth embodiment of the present invention, and FIG. 1 is changed so that the cooling tower 38 and the heat exchanger 54 are arranged in series. It is a thing. In addition, in the first embodiment, the case where the cooling tower 38 and the heat exchanger 54 are installed so as to have a parallel arrangement relationship has been described. Will be described with the same reference numerals.

図5に示すように、蒸発器34で気化した冷媒ガスは、循環ライン40の戻り供給46を介して冷却塔38に至り、ここで冷却されて冷媒液体となった後、直列ライン73の復路配管75を介して熱交換器54に流れる。熱交換器54において、1次冷媒(冷水)との熱交換で更に冷却された冷媒液体は、直列ライン73の往路配管77を介して循環ライン40の供給配管48に流れる。これにより、熱交換器54は、冷却塔38に対して、冷媒の流れにおいて直列な関係に配置されることになる。   As shown in FIG. 5, the refrigerant gas vaporized in the evaporator 34 reaches the cooling tower 38 via the return supply 46 of the circulation line 40, where it is cooled to become a refrigerant liquid, and then returned to the series line 73. It flows to the heat exchanger 54 via the pipe 75. In the heat exchanger 54, the refrigerant liquid further cooled by heat exchange with the primary refrigerant (cold water) flows to the supply pipe 48 of the circulation line 40 via the forward pipe 77 of the series line 73. As a result, the heat exchanger 54 is arranged in series with respect to the cooling tower 38 in the refrigerant flow.

また、冷水供給配管70と冷却塔出口には、それぞれバルブ69及び調整バルブ87が設けられると共に、冷却塔38の近くに外気温度センサ63、冷却塔出口及び熱交換器出口にはそれぞれ温度センサ65、67が設けられる。更に、蒸発器34から戻る冷媒ガスを、熱交換器54に流すことができるバイパスライン83が設けられ、このバイパスライン83にバイパスバルブ85が設けられる。なお、バイパスライン83と上記した直列ラインとを区別するために、図5にはバイパスライン83を波形に記載した。そして、各温度センサ63、65、67の測定結果が直列用制御部89に入力されると共に、測定結果に基づいて直列用制御部89は各バルブ69、85、87を制御する。これにより、直列用制御機構が形成される。尚、図5では、冷却塔出口及び熱交換器出口にはそれぞれ温度センサ65、67を配置したが、配管中を流れる冷媒の圧力を測定する圧力センサを設けることもでき、温度センサと圧力センサの両方を設けてもよい。   Further, a valve 69 and a regulating valve 87 are provided at the cold water supply pipe 70 and the cooling tower outlet, respectively, and an outside air temperature sensor 63 near the cooling tower 38, and a temperature sensor 65 at the cooling tower outlet and the heat exchanger outlet, respectively. , 67 are provided. Further, a bypass line 83 that allows the refrigerant gas returning from the evaporator 34 to flow to the heat exchanger 54 is provided, and a bypass valve 85 is provided in the bypass line 83. In order to distinguish the bypass line 83 from the series line described above, the bypass line 83 is shown in the waveform in FIG. The measurement results of the temperature sensors 63, 65, and 67 are input to the series control unit 89, and the series control unit 89 controls the valves 69, 85, and 87 based on the measurement results. Thereby, a serial control mechanism is formed. In FIG. 5, the temperature sensors 65 and 67 are arranged at the cooling tower outlet and the heat exchanger outlet, respectively. However, a pressure sensor for measuring the pressure of the refrigerant flowing in the pipe can be provided. Both may be provided.

ここで、直列用制御機構による制御方法の好ましい形態を説明する。   Here, the preferable form of the control method by the control mechanism for series is demonstrated.

直列用制御部89は、冷却塔38の冷却能力が低下する夏期には、熱交換器54の冷却負荷が大きくなるが、熱交換出口センサの測定結果が所定値になるように管理することで、冷却塔38から熱交換器54に冷媒が順次流れる際に、熱交換器54では冷却塔38の冷却能力の不足分のみが補足されるように1次冷媒の熱量を制御することが可能となる。したがって、熱交換器54で無駄な冷却エネルギーを必要としない。   In the summer, when the cooling capacity of the cooling tower 38 decreases, the serial control unit 89 increases the cooling load of the heat exchanger 54, but manages so that the measurement result of the heat exchange outlet sensor becomes a predetermined value. When the refrigerant sequentially flows from the cooling tower 38 to the heat exchanger 54, the heat quantity of the primary refrigerant can be controlled so that the heat exchanger 54 supplements only the insufficient cooling capacity of the cooling tower 38. Become. Therefore, useless cooling energy is not required in the heat exchanger 54.

また、冷却塔38の冷却能力は外気温度により変動するため、夏期や中間期には、冷却塔38内の螺旋状配管41を流れる冷媒量が大き過ぎると冷媒を自然循環するために必要な温度まで冷却できない場合がある。したがって、バイパスラインに設けたバイパスバルブ85及び冷却塔出口に設けた調整バルブ87の開度を操作して冷却塔38への冷媒ガス流量を制御し、冷却塔出口の温度センサ65の測定結果が所定値になるように管理すればよい。これにより、夏期、中間期、冬期に関わらず、冷却塔38の冷熱原である外気温度を有効活用することができるので、ランニングコストの低減を一層図ることができる。   In addition, since the cooling capacity of the cooling tower 38 varies depending on the outside air temperature, if the amount of the refrigerant flowing through the spiral pipe 41 in the cooling tower 38 is too large in summer or intermediate period, the temperature necessary for natural circulation of the refrigerant. It may not be possible to cool down. Therefore, the flow rate of the refrigerant gas to the cooling tower 38 is controlled by operating the opening of the bypass valve 85 provided in the bypass line and the adjustment valve 87 provided at the cooling tower outlet, and the measurement result of the temperature sensor 65 at the cooling tower outlet is What is necessary is just to manage so that it may become a predetermined value. Accordingly, the outdoor temperature that is the cold source of the cooling tower 38 can be effectively utilized regardless of the summer, intermediate, and winter periods, and the running cost can be further reduced.

ここで、所定値とは、循環ラインにおいて冷媒が自然循環するに必要な温度又は圧力を言う。   Here, the predetermined value refers to a temperature or pressure required for the natural circulation of the refrigerant in the circulation line.

このように、本願発明の第4の実施の形態では、冷却塔38と熱交換器54とを直列配置した場合でも、蒸発器34から戻る冷媒ガスを先ず冷却塔38で冷却してから熱交換器54に通すことで、冷却塔38の冷却不足分のみを熱交換器54で補足すればよいので、冷却塔38において外気の冷熱を一年中を通じて有効活用できる。   As described above, in the fourth embodiment of the present invention, even when the cooling tower 38 and the heat exchanger 54 are arranged in series, the refrigerant gas returning from the evaporator 34 is first cooled by the cooling tower 38 and then subjected to heat exchange. Since only the insufficient cooling of the cooling tower 38 needs to be supplemented by the heat exchanger 54 by passing through the cooler 54, the cooling air of the outside air can be effectively utilized throughout the year in the cooling tower 38.

また、直列用制御機構更の好ましい態様としては、直列用制御部89が、夏期において、外気温度センサ63の測定結果が所定値以上に達したときには、調整バルブ87を全閉にすると共にバイパスバルブ85を全開として、蒸発器34から冷却塔38への冷媒ガスの戻りを遮断して全て熱交換器54に導くようにする。これにより、夏期におけるランニングコストの低減を一層図ることができる。   Further, as a further preferable aspect of the series control mechanism, when the series control unit 89 reaches a predetermined value or more in the summer, the adjustment valve 87 is fully closed and the bypass valve is closed. 85 is fully opened, the return of the refrigerant gas from the evaporator 34 to the cooling tower 38 is cut off, and all is led to the heat exchanger 54. Thereby, the running cost in summer can be further reduced.

尚、第4の実施の形態の冷却塔38と熱交換器54とを直列配置した構成に、上記した第2の実施の形態あるいは第3の実施の形態を組み合わせることもできる。   It should be noted that the second embodiment or the third embodiment described above can be combined with the configuration in which the cooling tower 38 and the heat exchanger 54 of the fourth embodiment are arranged in series.

(本発明のまとめ)
以上、本発明の電子機器の冷却システムによれば、コンピュータ及びサーバ等の精密動作が要求され且つそれ自体からの発熱量が大きな電子機器を、以下の理由により、小さなランニングコストで効率的に冷却することができる。
(Summary of the present invention)
As described above, according to the electronic device cooling system of the present invention, an electronic device that requires precise operation such as a computer and a server and generates a large amount of heat from itself can be efficiently cooled at a low running cost for the following reason. can do.

(A)冷媒自然循環方式を採用し、蒸発器34と冷却塔38との配置位置の高低差及び処理温度差を利用することで、冷媒(熱)の搬送動力がいらなくなる。冷媒自然循環方式では、蒸発器34から排出され、温度センサ50で測定される空気温度と、冷却塔38で冷媒を冷却する空気温度との差ΔTが5℃以上あれば作動し、無動力で冷媒を搬送できる。従来のセントラル空調方式の冷却システムでは、システムに要する全体動力の10%程度は冷媒を搬送するポンプ動力で占められており、この冷媒搬送(熱搬送ともいう)に要するポンプ動力を削減できる。   (A) Adopting the refrigerant natural circulation system and utilizing the difference in height between the positions of the evaporator 34 and the cooling tower 38 and the difference in processing temperature eliminates the need for refrigerant (heat) conveyance power. In the natural refrigerant circulation system, the system operates when the difference ΔT between the air temperature discharged from the evaporator 34 and measured by the temperature sensor 50 and the air temperature at which the refrigerant is cooled by the cooling tower 38 is 5 ° C. or more, and without power. Refrigerant can be conveyed. In a conventional central air-conditioning type cooling system, about 10% of the total power required for the system is occupied by pump power for transporting the refrigerant, and the pump power required for this refrigerant transport (also referred to as heat transport) can be reduced.

また、近年におけるサーバ28からの発熱量が急激に上昇して、高温の熱(高温空気)がサーバ28から発生することにより、従来にも増して上記のΔTが増加する。そして、このΔTの増加に従い熱搬送量(システムの熱処理量)が増加する。熱交換器54の仕様により熱搬送量は変化するが、ΔT=15℃でサーバ発熱量の半分程度(ΔT=30℃でサーバ全発熱量)の冷却が可能(サーバ発熱が15kWであれば、ΔT=15℃で7.5kW,ΔT=30℃で15kW全ての熱処理が可能)。サーバラック排気(蒸発器側の空気温度)は、通常40℃程度であり、外気温度が25℃(ΔT=15℃に相当)以下であれば、サーバ発熱の半分を外気のみで冷却、外気温度10℃(ΔT=30℃に相当)以下であればサーバ発熱の全量を外気で処理できる。例えば、東京では外気温度10℃以下の時間が約2600時間(全時間数の約30%)あり、外気温度10℃以下でのみ外気冷熱を利用した運転を行えば、熱源の熱負荷を従来よりも30%削減できる。また、外気温度10℃〜25℃の時間数は全時間数の約40%であり、この期間(中間期)も外気を利用してサーバ発熱全体の50%を外気処理で行えば、熱源の熱負荷を従来よりも50%削減できる。   Further, in recent years, the amount of heat generated from the server 28 is rapidly increased, and high-temperature heat (high-temperature air) is generated from the server 28, so that the above ΔT is increased compared to the conventional case. As the ΔT increases, the heat transfer amount (the heat treatment amount of the system) increases. Although the heat transfer amount varies depending on the specifications of the heat exchanger 54, it is possible to cool about half of the server heat generation at ΔT = 15 ° C. (when the server heat generation is 15 kW) A heat treatment of 7.5 kW at ΔT = 15 ° C. and 15 kW at ΔT = 30 ° C. is possible. Server rack exhaust (air temperature on the evaporator side) is usually about 40 ° C., and if the outside air temperature is 25 ° C. (corresponding to ΔT = 15 ° C.) or less, half of the server heat generation is cooled by outside air only. If the temperature is 10 ° C. (corresponding to ΔT = 30 ° C.) or less, the entire amount of server heat generation can be treated with the outside air. For example, in Tokyo, the time when the outside air temperature is 10 ° C. or less is about 2600 hours (about 30% of the total number of hours), and if the operation using the outside air cooling is performed only at the outside air temperature 10 ° C. or less, the heat load of the heat source is conventionally Can also be reduced by 30%. In addition, the number of hours of the outside air temperature of 10 ° C. to 25 ° C. is about 40% of the total number of hours, and during this period (intermediate period), if 50% of the server heat generation is performed by outside air treatment using outside air, Thermal load can be reduced by 50% compared to the conventional case.

(B)冷媒ガスの冷却に冷却塔38を採用し、冬期及び中間期(春、秋)の低温外気のもつ冷熱を有効利用することにより、熱源設備(従来であれば、パッケージエアコンの圧縮機)で製造する冷却熱量を低減できる。事実、従来のパッケージエアコンの効率:COP[製造する冷熱量(kW)/投入電力量(kW)]は、2〜2.5であるが、本発明の外気利用の冷却ではCOPが30以上になる。   (B) By adopting a cooling tower 38 for cooling the refrigerant gas and effectively using the cold heat of the low temperature outside air in the winter and intermediate periods (spring and autumn), the heat source equipment (in the past, the compressor of the packaged air conditioner) ) Can reduce the amount of cooling heat produced. In fact, the efficiency of a conventional packaged air conditioner: COP [Cooling energy to manufacture (kW) / Input power (kW)] is 2 to 2.5, but the cooling with the use of outside air according to the present invention increases the COP to 30 or more. Become.

(C)サーバ28に近接した蒸発器34を用いて、サーバ28ごとに局所冷却を行うことにより、局所的な熱溜まりを防止できる。   (C) A local heat accumulation can be prevented by performing local cooling for each server 28 using the evaporator 34 close to the server 28.

例えば、データ処理センター設備において、サーバラックに搭載されるサーバは正常に動作する空気温度条件が指定されており、サーバによって若干異なるが、吸い込み空気条件は25℃以下が一般的である。   For example, in a data processing center facility, an air temperature condition for normal operation is specified for a server mounted in a server rack, and the intake air condition is generally 25 ° C. or less although it varies slightly depending on the server.

一方、従来の床吹き出し方式の空調では、パッケージ空調機からの給気温度は18℃程度、空調機への戻り空気温度は26℃程度で運転されている。これは実際の運転では、サーバラック排気(通常40℃程度)と給気とが部分的に混合してサーバラックに吸い込まれるため、サーバラック吸い込み空気温度25℃を満足するには、給気温度が低温(実際の空気温度は18℃程度)でなければならないからである。   On the other hand, in the conventional floor blowing type air conditioning, the supply air temperature from the package air conditioner is about 18 ° C., and the return air temperature to the air conditioner is about 26 ° C. In actual operation, the server rack exhaust (usually about 40 ° C.) and the supply air are partially mixed and sucked into the server rack. Therefore, in order to satisfy the server rack suction air temperature of 25 ° C., the supply air temperature This is because the temperature must be low (the actual air temperature is about 18 ° C.).

これに対して、局所熱処理ユニット方式でサーバラックを冷却した場合には、出口空気温度25℃を満足するため、給気温度が低温でなくても、即ち18℃よりも高くてもサーバ吸い込み空気温度25℃を満足できるようになり、例えば給気温度23℃と従来の18℃と比べて5℃も高くすることが可能となる。通常、パッケージ空調方式の冷却システムでは給気温度を1℃高くすることで、上記した効率(COP)を3%程度向上させることができ、給気温度5℃の上昇により、COPを15%程度向上できる。   On the other hand, when the server rack is cooled by the local heat treatment unit method, the outlet air temperature of 25 ° C. is satisfied. Therefore, even if the supply air temperature is not low, that is, higher than 18 ° C., the server intake air The temperature 25 ° C. can be satisfied, and for example, the supply air temperature 23 ° C. can be increased 5 ° C. as compared with the conventional 18 ° C. Normally, in a package air-conditioning type cooling system, the efficiency (COP) can be improved by about 3% by raising the supply air temperature by 1 ° C. By increasing the supply air temperature by 5 ° C, the COP is about 15%. Can be improved.

かかる局所冷却による熱溜まりの防止に対して従来では、空調機78からサーバルーム14A,14Bに給気する空調エアを低温化することで、サーバ28等の電子機器への熱溜まりの影響を防止していた。しかし、このように給気温度を低温化すると、蒸発器34で気化される冷媒ガス温度が低くなり過ぎる。この結果、冷媒ガスを冷却して凝縮する冷媒手段の設定温度も低くしなくてはならず、冷却塔38のような冷却能力のそれほど大きくない冷却手段は使用できなくなる。   In order to prevent heat accumulation due to such local cooling, conventionally, air conditioning air supplied from the air conditioner 78 to the server rooms 14A and 14B is lowered in temperature, thereby preventing the effect of heat accumulation on the electronic devices such as the server 28. Was. However, when the supply air temperature is lowered in this way, the refrigerant gas temperature vaporized by the evaporator 34 becomes too low. As a result, the set temperature of the refrigerant means for cooling and condensing the refrigerant gas must be lowered, and a cooling means with a very low cooling capacity such as the cooling tower 38 cannot be used.

これに対して、本発明では、冷却塔38で冷却された冷媒を、空調機78の冷却部84に供給することで、給気温度が低くなり過ぎないようにできるので、冷却塔38のような冷却能力のそれほど大きくない冷却手段の使用が可能となる。また、給気温度を上昇させることができることにより、冷却システム全体のCOPを向上できる。この場合、冷却塔38で冷却された冷媒を、空調機78の冷却部84に供給する構成でも、熱溜まりの防止を十分行うことができ、全く問題ない。   On the other hand, in the present invention, the refrigerant cooled in the cooling tower 38 is supplied to the cooling unit 84 of the air conditioner 78 so that the supply air temperature does not become too low. Therefore, it is possible to use a cooling means having a large cooling capacity. Further, since the supply air temperature can be raised, the COP of the entire cooling system can be improved. In this case, even with a configuration in which the refrigerant cooled by the cooling tower 38 is supplied to the cooling unit 84 of the air conditioner 78, heat accumulation can be sufficiently prevented, and there is no problem at all.

また、本発明では、蒸発器34の上方に冷却塔38を配置して冷媒を自然循環するようにしたが、例えば循環ライン40の供給配管48及び分岐供給配管60に不図示の冷媒ポンプを設けることで、冷媒を自然循環せずに冷媒ポンプで搬送するように構成することも可能である。これにより、蒸発器34と冷却塔38との位置関係において、蒸発器34の上方に冷却塔38が配置されなくてもよくなり、蒸発器34と冷却塔38の配置に制約を受けずに自由に配置することができる。   In the present invention, the cooling tower 38 is disposed above the evaporator 34 so that the refrigerant is naturally circulated. However, for example, a refrigerant pump (not shown) is provided in the supply pipe 48 and the branch supply pipe 60 of the circulation line 40. Thus, the refrigerant can be transported by the refrigerant pump without being naturally circulated. As a result, in the positional relationship between the evaporator 34 and the cooling tower 38, the cooling tower 38 does not have to be arranged above the evaporator 34, and the arrangement of the evaporator 34 and the cooling tower 38 is not restricted and is free. Can be arranged.

尚、上記した第1〜第3の実施の形態における冷却システム10,100,200は、電子機器としてサーバ26の例で説明したが、本発明は、精密動作が要求され且つそれ自体からの発熱量が大きな電子機器の全てに適用することができる。   Although the cooling systems 10, 100, and 200 in the first to third embodiments described above have been described using the server 26 as an electronic device, the present invention requires precise operation and generates heat from itself. It can be applied to all electronic devices having a large amount.

本発明の電子機器の冷却システムの第1の実施の形態を説明する概念図1 is a conceptual diagram illustrating a first embodiment of an electronic device cooling system according to the present invention; サーバ及びサーバラックを説明する説明図Explanatory drawing explaining a server and a server rack 本発明の電子機器の冷却システムの第2の実施の形態を説明する概念図FIG. 3 is a conceptual diagram illustrating a second embodiment of a cooling system for an electronic device according to the present invention. 本発明の電子機器の冷却システムの第3の実施の形態を説明する概念図Schematic diagram for explaining a third embodiment of the cooling system for electronic equipment of the present invention 本発明の電子機器の冷却システムの第4の実施の形態を説明する概念図Conceptual diagram for explaining a fourth embodiment of a cooling system for electronic equipment according to the present invention.

符号の説明Explanation of symbols

10、100、200、300…冷却システム、12…建屋、14A…1階のサーバルーム、14B…2階のサーバルーム、16A… 1階の天井面、16B… 2階の天井面、20A…1階の床面、20B…2階の床面、22A…1階の床下チャンバ、22B…2階の床下チャンバ、24…キャスタ、26…サーバラック、28…サーバ、30…サーバのファン、32…高温空気、34…蒸発器、36…冷却コイル、38…冷却塔、40…循環ライン、40A…メイン循環ライン、40B…グループ用循環ライン、41…螺旋状配管、42…散水管、44…冷却塔のファン、46…戻り配管、48…供給配管、50…温度センサ、52…バルブ、54…熱交換器、58…並列用戻り配管、59…並列用バルブ、60…並列用供給配管、61…閉止用バルブ、62…2次側コイル、63…外気温度センサ、64…分岐循環ライン、65…冷却塔出口の温度センサ、66…1次側コイル、67…熱交換器出口の温度センサ、68…冷凍機、69…バルブ、70…冷水供給配管、71…並列用制御部、72…冷水戻り配管、74…送液ポンプ、75…復路配管、76…冷却塔、77…往路配管、78…空調機、79…吸込ダクト、80A…1階の機械室、80B…2階の機械室、81…吹出ダクト、82…隔壁、83…バイパスライン、84…空調機の冷却部、85…バイパスバルブ、86…空調機のファン、87…調整バルブ、88…空調用循環ライン、88A…空調用供給配管、88B…空調用戻り配管、89…直列用制御部、90…グループ用熱交換器   10, 100, 200, 300 ... cooling system, 12 ... building, 14A ... first floor server room, 14B ... second floor server room, 16A ... first floor ceiling surface, 16B ... second floor ceiling surface, 20A ... 1 Floor of floor, 20B ... Floor of 2nd floor, 22A ... Underfloor chamber of 1st floor, 22B ... Underfloor chamber of 2nd floor, 24 ... Casters, 26 ... Server rack, 28 ... Server, 30 ... Server fan, 32 ... Hot air, 34 ... evaporator, 36 ... cooling coil, 38 ... cooling tower, 40 ... circulation line, 40A ... main circulation line, 40B ... group circulation line, 41 ... spiral pipe, 42 ... sprinkling pipe, 44 ... cooling Tower fan, 46 ... return pipe, 48 ... supply pipe, 50 ... temperature sensor, 52 ... valve, 54 ... heat exchanger, 58 ... parallel return pipe, 59 ... parallel valve, 60 ... parallel supply pipe, 61 ... Stop valve, 62 ... secondary coil, 63 ... outside air temperature sensor, 64 ... branch circulation line, 65 ... temperature sensor at cooling tower outlet, 66 ... primary coil, 67 ... temperature sensor at heat exchanger outlet, 68 ... refrigerator, 69 ... valve, 70 ... cold water supply pipe, 71 ... parallel control section, 72 ... cold water return pipe, 74 ... liquid feed pump, 75 ... return pipe, 76 ... cooling tower, 77 ... forward pipe, 78 ... Air conditioner 79 ... Suction duct, 80A ... First floor machine room, 80B ... Second floor machine room, 81 ... Outlet duct, 82 ... Bulkhead, 83 ... Bypass line, 84 ... Cooling part of air conditioner, 85 ... Bypass valve 86 ... Air conditioning fan, 87 ... Adjusting valve, 88 ... Air conditioning circulation line, 88A ... Air conditioning supply pipe, 88B ... Air conditioning return pipe, 89 ... Series controller, 90 ... Group heat exchanger

Claims (12)

複数の電子機器が配設された機器ルームと、
前記電子機器に近接してそれぞれ設けられ、前記電子機器から発生する熱で冷媒を気化させることにより該電子機器を冷却する蒸発器と、
前記蒸発器よりも高所に設けられ、外気と散水とにより前記冷媒を冷却して前記気化した冷媒を凝縮する冷却塔と、
前記蒸発器と前記冷却塔との間で前記冷媒が自然循環する循環ラインと、を備えたことを特徴とする電子機器の冷却システム。
An equipment room with a plurality of electronic devices,
An evaporator that is provided near each of the electronic devices, and that cools the electronic device by evaporating a refrigerant with heat generated from the electronic device;
A cooling tower that is provided at a higher position than the evaporator, cools the refrigerant by outside air and sprinkling, and condenses the vaporized refrigerant;
An electronic device cooling system comprising: a circulation line through which the refrigerant naturally circulates between the evaporator and the cooling tower.
前記冷媒を冷却する熱交換器と、
前記循環ラインに接続された前記冷媒の流路であって、前記熱交換器が前記冷却塔に対して並列な関係を有するように設けられる並列ラインと、
前記循環ラインから前記並列ラインに流す前記冷媒の冷媒量を制御する並列用制御機構と、を備えたことを特徴とする請求項1の電子機器の冷却システム。
A heat exchanger for cooling the refrigerant;
A flow path of the refrigerant connected to the circulation line, the parallel line provided so that the heat exchanger has a parallel relationship with the cooling tower;
The electronic device cooling system according to claim 1, further comprising: a parallel control mechanism configured to control a refrigerant amount of the refrigerant flowing from the circulation line to the parallel line.
前記並列用制御機構は、
外気温度を測定する外気温度センサと、
前記並列ラインに設けられ、前記蒸発器から戻る冷媒ガスが前記熱交換器に流れる冷媒量を調整する並列用バルブと、
前記外気温度センサの測定結果から前記冷却塔で前記冷媒を冷却可能な能力を演算すると共に、該演算結果から前記並列用バルブの開度量を調整することにより、前記熱交換器に流す冷媒量を制御する並列用制御部と、を備えたことを特徴とする請求項2の電子機器の冷却システム。
The parallel control mechanism is:
An outside temperature sensor for measuring the outside temperature;
A parallel valve that is provided in the parallel line and adjusts the amount of refrigerant through which the refrigerant gas returning from the evaporator flows into the heat exchanger;
By calculating the ability of the cooling tower to cool the refrigerant from the measurement result of the outside air temperature sensor, and adjusting the opening amount of the parallel valve from the calculation result, the amount of refrigerant flowing to the heat exchanger is calculated. The electronic device cooling system according to claim 2, further comprising a parallel control unit that controls the electronic device cooling system.
前記並列用制御機構は、
前記冷却塔出口での冷媒温度及び/又は冷媒圧力を測定する冷却塔出口センサと、
前記並列ラインに設けられ、前記蒸発器から戻る冷媒ガスが前記熱交換器に流れる冷媒量を調整する並列用バルブと、
前記冷却塔出口センサの測定結果が所定値になるように前記並列用バルブの開度量を調整して前記熱交換器に流す冷媒量を制御する並列用制御部と、を備えたことを特徴とする請求項2の電子機器の冷却システム。
The parallel control mechanism is:
A cooling tower outlet sensor for measuring the refrigerant temperature and / or refrigerant pressure at the cooling tower outlet;
A parallel valve that is provided in the parallel line and adjusts an amount of refrigerant flowing from the evaporator to the heat exchanger.
A parallel control unit that controls the amount of refrigerant flowing through the heat exchanger by adjusting the opening amount of the parallel valve so that the measurement result of the cooling tower outlet sensor becomes a predetermined value. The electronic device cooling system according to claim 2.
前記冷媒を冷却する熱交換器と、
前記循環ラインに接続された前記冷媒の流路であって、前記熱交換器が前記冷却塔に対して直列な関係を有するように設けられると共に、前記蒸発器から戻る冷媒が前記冷却塔を経由してから前記熱交換器に至るようにラインが構成された直列ラインと、
前記熱交換器の冷却能力を制御する直列用制御機構と、を備えたことを特徴とする請求項1の電子機器の冷却システム。
A heat exchanger for cooling the refrigerant;
A flow path for the refrigerant connected to the circulation line, wherein the heat exchanger is provided in series with the cooling tower, and the refrigerant returning from the evaporator passes through the cooling tower. And a series line in which the line is configured to reach the heat exchanger,
The electronic apparatus cooling system according to claim 1, further comprising: a serial control mechanism that controls a cooling capacity of the heat exchanger.
前記直列用制御機構は、
前記熱交換器出口での冷媒温度及び/又は冷媒圧力を測定する熱交換出口センサと、
前記熱交換器に流れる冷媒を冷却するための1次冷媒の冷媒量を調整する1次冷媒バルブと、
前記熱交換出口センサの測定結果に基づいて前記1次冷媒バルブを制御する直列用制御部と、を備え、
前記直列用制御部は、
前記熱交換出口センサの測定結果が所定値になるように前記1次冷媒バルブを制御することを特徴とする請求項5の電子機器の冷却システム。
The serial control mechanism is:
A heat exchange outlet sensor for measuring the refrigerant temperature and / or refrigerant pressure at the heat exchanger outlet;
A primary refrigerant valve for adjusting a refrigerant amount of a primary refrigerant for cooling the refrigerant flowing through the heat exchanger;
A series control unit that controls the primary refrigerant valve based on a measurement result of the heat exchange outlet sensor,
The series control unit includes:
6. The electronic apparatus cooling system according to claim 5, wherein the primary refrigerant valve is controlled so that a measurement result of the heat exchange outlet sensor becomes a predetermined value.
前記直列用制御機構は、
前記冷却塔出口での冷媒温度及び/又は冷媒圧力を測定する冷却塔出口センサと、
前記蒸発器から戻る冷媒ガスを前記熱交換器に流すことのできるバイパスラインと、
前記バイパスラインを流れる冷媒ガス流量を調整するバイパスバルブと、
前記冷却塔出口に設けられた調整バルブと、
前記冷却塔出口センサの測定結果に基づいて前記バイパスバルブ及び前記調整バルブを制御する直列用制御部と、を備え、
前記直列用制御部は、
前記冷却塔出口センサの測定結果が所定値になるように前記バイパスバルブ及び前記調整バルブを制御することを特徴とする請求項5又は6の電子機器の冷却システム。
The serial control mechanism is:
A cooling tower outlet sensor for measuring the refrigerant temperature and / or refrigerant pressure at the cooling tower outlet;
A bypass line through which refrigerant gas returning from the evaporator can flow to the heat exchanger;
A bypass valve for adjusting the flow rate of the refrigerant gas flowing through the bypass line;
An adjustment valve provided at the cooling tower outlet;
A series control unit that controls the bypass valve and the regulating valve based on the measurement result of the cooling tower outlet sensor,
The series control unit includes:
The electronic device cooling system according to claim 5 or 6, wherein the bypass valve and the adjustment valve are controlled so that a measurement result of the cooling tower outlet sensor becomes a predetermined value.
前記直列用制御機構は、
外気温度を測定する外気温度センサと、
前記蒸発器から戻る冷媒ガスを前記熱交換器に流すことのできるバイパスラインと、
前記バイパスラインを流れる冷媒ガス流量を調整するバイパスバルブと、を更に備え、
前記直列用制御部は、
前記夏期において、前記外気温度センサの測定結果が所定値以上に達したときには、前記調整バルブを全閉にすると共に前記バイパスバルブを全開として、前記冷却塔への冷媒ガスの戻りを遮断して全て前記熱交換器に導くことを特徴とする請求項6又は7の電子機器の冷却システム。
The serial control mechanism is:
An outside temperature sensor for measuring the outside temperature;
A bypass line through which refrigerant gas returning from the evaporator can flow to the heat exchanger;
A bypass valve for adjusting a flow rate of the refrigerant gas flowing through the bypass line,
The series control unit includes:
In the summer, when the measurement result of the outside air temperature sensor reaches a predetermined value or more, the adjustment valve is fully closed and the bypass valve is fully opened to prevent the return of the refrigerant gas to the cooling tower. The electronic apparatus cooling system according to claim 6, wherein the electronic apparatus cooling system is led to the heat exchanger.
前記機器ルーム内から吸い込んだ高温空気を冷却して前記機器ルーム内に戻す空調機と、
前記循環ラインから分岐され、前記冷媒を前記空調機の冷却部との間で循環させる空調用循環ラインと、を備えたことを特徴とする請求項1〜8の何れか1の電子機器の冷却システム。
An air conditioner that cools the high-temperature air sucked from the equipment room and returns the air to the equipment room;
The cooling of an electronic device according to any one of claims 1 to 8, further comprising an air-conditioning circulation line that branches off from the circulation line and circulates the refrigerant between the air-cooling unit and the cooling unit. system.
前記複数の電子機器を複数のグループにグループ分けすると共に、前記循環ラインの途中にグループ分けしたグループ数だけグループ用熱交換器を設け、
前記循環ラインを、前記冷却塔及び/又は熱交換器と、前記グループ用熱交換器との間で冷媒が循環するメイン用循環ラインと、前記グループ用熱交換器と前記蒸発器及び/又は前記空調機の冷却部との間で冷媒が循環するグループ用循環ラインとで構成したことを特徴とする請求項9に記載の電子機器の冷却システム。
Grouping the plurality of electronic devices into a plurality of groups, and providing a group heat exchanger for the number of groups grouped in the middle of the circulation line,
The main circulation line through which the refrigerant circulates between the cooling tower and / or heat exchanger and the group heat exchanger, the group heat exchanger, the evaporator, and / or the circulation line. The electronic apparatus cooling system according to claim 9, wherein the electronic apparatus cooling system is configured with a group circulation line in which a refrigerant circulates between the cooling unit of the air conditioner.
前記循環ラインのうち前記蒸発器出口位置の冷媒ガス流路に設けられ、冷媒流量を調整する流量調整手段と、
前記蒸発器から排出される空気温度を検出する温度センサと、
前記流量調整手段を制御するコントローラと、を備え、
前記コントローラは前記温度センサが所定値となるように前記流量調整手段を制御することを特徴とする請求項1〜10の何れか1に記載の電子機器の冷却システム。
A flow rate adjusting means for adjusting a refrigerant flow rate, provided in a refrigerant gas flow path at the evaporator outlet position in the circulation line;
A temperature sensor for detecting the temperature of air discharged from the evaporator;
A controller for controlling the flow rate adjusting means,
The electronic device cooling system according to claim 1, wherein the controller controls the flow rate adjusting unit so that the temperature sensor becomes a predetermined value.
前記電子機器はサーバであると共に、前記機器ルームはサーバルームであることを特徴とする請求項1〜11の何れか1の電子機器の冷却システム。   The electronic device cooling system according to claim 1, wherein the electronic device is a server and the device room is a server room.
JP2008032096A 2008-02-13 2008-02-13 Electronic equipment cooling system Active JP4780479B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2008032096A JP4780479B2 (en) 2008-02-13 2008-02-13 Electronic equipment cooling system
EP09001786.4A EP2091314B1 (en) 2008-02-13 2009-02-09 Cooling system for electronic equipment
EP12002922.8A EP2503866B1 (en) 2008-02-13 2009-02-09 Cooling system for electronic equipment
EP12002923.6A EP2498024B1 (en) 2008-02-13 2009-02-09 Cooling system for electronic equipment
PL09001786.4T PL2091314T3 (en) 2008-02-13 2009-02-09 Cooling system for electronic equipment
EP12002924.4A EP2498025A3 (en) 2008-02-13 2009-02-09 Cooling system for electronic equipment
US12/368,360 US7855890B2 (en) 2008-02-13 2009-02-10 Cooling system for electronic equipment
US12/945,345 US8199504B2 (en) 2008-02-13 2010-11-12 Cooling system for electronic equipment
US13/466,468 US8839638B2 (en) 2008-02-13 2012-05-08 Cooling system for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008032096A JP4780479B2 (en) 2008-02-13 2008-02-13 Electronic equipment cooling system

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2010155621A Division JP4605488B2 (en) 2010-07-08 2010-07-08 Electronic equipment cooling system
JP2011102818A Division JP2011163758A (en) 2011-05-02 2011-05-02 Cooling system for electronic device
JP2011102817A Division JP2011155301A (en) 2011-05-02 2011-05-02 Cooling system for electronic apparatus

Publications (2)

Publication Number Publication Date
JP2009194093A true JP2009194093A (en) 2009-08-27
JP4780479B2 JP4780479B2 (en) 2011-09-28

Family

ID=40717125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008032096A Active JP4780479B2 (en) 2008-02-13 2008-02-13 Electronic equipment cooling system

Country Status (4)

Country Link
US (3) US7855890B2 (en)
EP (4) EP2498024B1 (en)
JP (1) JP4780479B2 (en)
PL (1) PL2091314T3 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165707A (en) * 2010-02-04 2011-08-25 Hitachi Plant Technologies Ltd Cooling system for electronic apparatus
JP2011171499A (en) * 2010-02-18 2011-09-01 Hitachi Plant Technologies Ltd Cooling method and cooling system of electronic apparatus
JP2011204154A (en) * 2010-03-26 2011-10-13 Hitachi Plant Technologies Ltd Cooling system of electronic apparatus
JP2011237887A (en) * 2010-05-06 2011-11-24 Hitachi Plant Technologies Ltd Cooling method and cooling system for electronic equipment
WO2012020752A1 (en) * 2010-08-10 2012-02-16 株式会社日立プラントテクノロジー Apparatus for operation of cooling system in abnormal state
WO2012029404A1 (en) * 2010-08-31 2012-03-08 日本電気株式会社 System for cooling electronic device
JP2012068008A (en) * 2010-08-23 2012-04-05 Takasago Thermal Eng Co Ltd Air conditioning system of facilities having plural stories and method of operating the same
JP2012107801A (en) * 2010-11-17 2012-06-07 Fujitsu Ltd Air conditioning system
JP2012243035A (en) * 2011-05-18 2012-12-10 Hitachi Plant Technologies Ltd Cooling system for electronic equipment
WO2013121772A1 (en) * 2012-02-14 2013-08-22 日本電気株式会社 Cooling device and cooling system
JP2014228194A (en) * 2013-05-22 2014-12-08 株式会社Nttファシリティーズ Apparatus cooling system
US10006646B2 (en) 2015-04-30 2018-06-26 Samsung Electronics Co., Ltd. Outdoor unit of air conditioner and control device for the outdoor unit
JP2020029979A (en) * 2018-08-22 2020-02-27 日比谷総合設備株式会社 Cold water manufacturing apparatus and air conditioning system
JP2020029980A (en) * 2018-08-22 2020-02-27 日比谷総合設備株式会社 Air conditioning system and cold water producing device for air conditioning system
US10813243B2 (en) 2014-08-27 2020-10-20 Nec Corporation Phase-change cooling device and phase-change cooling method
US11226130B2 (en) 2017-01-16 2022-01-18 Nec Corporation Valve control device, cooling device, and valve control method
JP7164068B1 (en) * 2022-03-29 2022-11-01 日本電気株式会社 Cooling device and cooling control method

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0704566A2 (en) * 2007-09-18 2009-05-12 Whirlpool Sa docking station for a computer
US8170724B2 (en) * 2008-02-11 2012-05-01 Cray Inc. Systems and associated methods for controllably cooling computer components
JP5017296B2 (en) * 2009-03-03 2012-09-05 株式会社東芝 Electronics
US7903404B2 (en) * 2009-04-29 2011-03-08 Hewlett-Packard Development Company, L.P. Data centers
SG171566A1 (en) * 2009-12-01 2011-06-29 Hitachi Plant Technologies Ltd Cooling method and cooling system of electronic device
DK2532215T3 (en) 2010-02-02 2021-07-26 Google Llc MIXED-WATER-BASED DATA CENTER COOLING
US8974274B2 (en) 2010-04-16 2015-03-10 Google Inc. Evaporative induction cooling
JP5610839B2 (en) * 2010-05-11 2014-10-22 株式会社日立製作所 Cooling system
JP5351097B2 (en) * 2010-06-18 2013-11-27 株式会社日立製作所 Refrigerant circulation device
EP2586281B1 (en) * 2010-06-23 2017-08-09 Inertech IP LLC Space-saving high-density modular data center and an energy-efficient cooling system
JP2012007865A (en) * 2010-06-28 2012-01-12 Hitachi Plant Technologies Ltd Cooling system
US20130205822A1 (en) * 2010-07-06 2013-08-15 Peter Heiland System and method for cooling a computer system
EP2413048B1 (en) * 2010-07-30 2013-06-05 Grundfos Management A/S Domestic water heating unit
CN101968245A (en) * 2010-11-02 2011-02-09 浙江大学 Water-cooled energy-saving machine room air conditioning system
CN102478936A (en) * 2010-11-30 2012-05-30 英业达股份有限公司 Server framework
CN103229006B (en) * 2010-12-22 2015-11-25 三菱电机株式会社 Supplying hot water air-conditioning set composite
WO2012124723A1 (en) * 2011-03-14 2012-09-20 富士電機株式会社 Outside air utilization air-conditioning system and air-conditioner thereof
JP5773708B2 (en) * 2011-03-31 2015-09-02 三菱重工業株式会社 Heat exchanger and method for estimating remaining life of heat exchanger
US9307674B2 (en) 2011-05-06 2016-04-05 International Business Machines Corporation Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component
US9027360B2 (en) 2011-05-06 2015-05-12 International Business Machines Corporation Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system
US9179574B2 (en) * 2011-05-24 2015-11-03 International Business Machines Corporation Cooling unit for container-type data center
US8857204B2 (en) * 2011-09-23 2014-10-14 R4 Ventures Llc Real time individual electronic enclosure cooling system
US8711563B2 (en) * 2011-10-25 2014-04-29 International Business Machines Corporation Dry-cooling unit with gravity-assisted coolant flow
US8687364B2 (en) * 2011-10-28 2014-04-01 International Business Machines Corporation Directly connected heat exchanger tube section and coolant-cooled structure
TWI445493B (en) * 2011-11-11 2014-07-11 Inventec Corp Heat dissipation system
CN202392893U (en) * 2011-11-15 2012-08-22 开利公司 Air conditioner terminal device, air-conditioning equipment and data center
US9043035B2 (en) 2011-11-29 2015-05-26 International Business Machines Corporation Dynamically limiting energy consumed by cooling apparatus
US9167721B2 (en) * 2011-11-29 2015-10-20 International Business Machines Corporation Direct facility coolant cooling of a rack-mounted heat exchanger
US10209003B2 (en) * 2012-02-21 2019-02-19 Thermal Corp. Electronics cabinet and rack cooling system and method
JP5930803B2 (en) * 2012-03-30 2016-06-08 日立アプライアンス株式会社 Air conditioning control system and air conditioning control method
US9278303B1 (en) 2012-05-29 2016-03-08 Google Inc. Managing data center airflow
US9313929B1 (en) 2012-05-29 2016-04-12 Google Inc. Managing data center airflow
JP5902053B2 (en) * 2012-06-28 2016-04-13 株式会社日立製作所 Cooling system and cooling method
WO2014011706A1 (en) 2012-07-09 2014-01-16 Inertech Ip Llc Transformerless multi-level medium-voltage uninterruptible power supply (ups) systems and methods
EP4177543A1 (en) 2012-10-09 2023-05-10 Inertech IP LLC Cooling systems and methods incorporating a plural in-series pumped liquid refrigerant trim evaporator cycle
CN103052304A (en) * 2012-12-14 2013-04-17 广州高澜节能技术股份有限公司 Server cabinet cooling system
DE102013111053A1 (en) * 2013-01-18 2014-07-24 Rittal Gmbh & Co. Kg Method for conditioning an IT environment or environment that contains heat generators
CN103968478B (en) * 2013-02-01 2018-02-23 Lg电子株式会社 Cooling system and its control method
TW201448720A (en) * 2013-06-14 2014-12-16 Hon Hai Prec Ind Co Ltd Container data center assembly
US20160174417A1 (en) * 2013-07-12 2016-06-16 Nec Corporation Cooling system and method for controlling refrigerant supply volume in cooling system
US9774190B2 (en) 2013-09-09 2017-09-26 Inertech Ip Llc Multi-level medium voltage data center static synchronous compensator (DCSTATCOM) for active and reactive power control of data centers connected with grid energy storage and smart green distributed energy sources
US10254021B2 (en) 2013-10-21 2019-04-09 Inertech Ip Llc Cooling systems and methods using two cooling circuits
US11306959B2 (en) 2013-11-06 2022-04-19 Inertech Ip Llc Cooling systems and methods using two circuits with water flow in series and counter flow arrangement
CN104684344A (en) * 2013-11-29 2015-06-03 国际商业机器公司 PCM (phase change material) cooling equipment, cooling system as well as method and unit for cooling system
US10111361B2 (en) * 2014-01-08 2018-10-23 Nautilus Data Technologies, Inc. Closed-loop cooling system and method
CN103939994A (en) * 2014-04-09 2014-07-23 北京德能恒信科技有限公司 Energy-saving air conditioner of machine room
CN105403067B (en) * 2014-09-11 2017-08-11 华北水利水电大学 One kind utilizes industrial exhaust heat condensed water demisting cooling tower
WO2016057854A1 (en) 2014-10-08 2016-04-14 Inertech Ip Llc Systems and methods for cooling electrical equipment
EP3210297B1 (en) 2014-10-21 2021-03-10 Inertech IP LLC Systems and methods for controlling multi-level diode-clamped inverters using space vector pulse width modulation (svpwm)
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum
CN204408824U (en) * 2014-12-18 2015-06-17 热流动力能源科技股份有限公司 Heat-exchange device
US10193380B2 (en) 2015-01-13 2019-01-29 Inertech Ip Llc Power sources and systems utilizing a common ultra-capacitor and battery hybrid energy storage system for both uninterruptible power supply and generator start-up functions
US10231357B2 (en) * 2015-03-20 2019-03-12 International Business Machines Corporation Two-phase cooling with ambient cooled condensor
US9439330B1 (en) * 2015-03-29 2016-09-06 Banqiu Wu 3D IC computer system
US10931190B2 (en) 2015-10-22 2021-02-23 Inertech Ip Llc Systems and methods for mitigating harmonics in electrical systems by using active and passive filtering techniques
JP6565611B2 (en) * 2015-11-04 2019-08-28 富士通株式会社 Information processing device
US10206312B2 (en) * 2015-12-21 2019-02-12 Dell Products, L.P. Liquid cooled rack information handling system having storage drive carrier for leak containment and vibration mitigation
CN105491862A (en) * 2016-01-20 2016-04-13 北京百度网讯科技有限公司 Liquid cooling device used for data center machine cabinet, liquid cooling machine cabinet and liquid cooling system
CN105491863A (en) * 2016-01-20 2016-04-13 北京百度网讯科技有限公司 Cooling device used for data center machine cabinet, machine cabinet and cooling system
CN105555106B (en) * 2016-02-29 2018-05-22 北京百度网讯科技有限公司 For the cooling device and cabinet of cabinet
FR3048640B1 (en) * 2016-03-11 2018-04-06 Alstom Transport Technologies TRACTION BOX OF A RAILWAY VEHICLE WITH COOLING SYSTEM, METHOD OF IMPLEMENTATION AND RAILWAY VEHICLE THEREFOR
US10492341B2 (en) * 2016-07-07 2019-11-26 Commscope Technologies Llc Modular data center
US11839062B2 (en) 2016-08-02 2023-12-05 Munters Corporation Active/passive cooling system
DE102016115175A1 (en) * 2016-08-16 2018-02-22 Rittal Gmbh & Co. Kg Cooling arrangement for the air conditioning of an IT environment and in particular for the data center air conditioning
CN106659083A (en) * 2016-12-28 2017-05-10 郑州云海信息技术有限公司 Cooling system for liquid-cooled server
JP6323892B1 (en) * 2017-03-06 2018-05-16 Necプラットフォームズ株式会社 Flow rate abnormality detection device, cooling system, flow rate abnormality detection method and program
CN107608484B (en) * 2017-08-11 2020-05-26 北京百度网讯科技有限公司 Cooling device and cooling method
JP2019091348A (en) * 2017-11-16 2019-06-13 富士通株式会社 Information processing device
CN107940643A (en) * 2017-11-24 2018-04-20 北京百度网讯科技有限公司 Cooling system for data center
US10782034B2 (en) * 2017-12-13 2020-09-22 RK Mechanical, Inc. System for conditioning an airflow using a portable closed loop cooling system
CN108055813B (en) * 2017-12-28 2020-09-29 北京百度网讯科技有限公司 Refrigerating system and refrigerating method of data center
EP3737902A4 (en) * 2018-01-12 2021-10-20 Schneider Electric IT Corporation System for head pressure control
CN108184322B (en) * 2018-01-22 2023-08-29 南京佳力图机房环境技术股份有限公司 VRV (virtual router v) machine room integrated heat dissipation system based on heat pipe and control method thereof
CN110118405A (en) * 2019-06-17 2019-08-13 广东新菱空调科技有限公司 A kind of cooling water system and its control method
US11116114B2 (en) * 2019-06-18 2021-09-07 Baidu Usa Llc Cooling system design for data centers
CN110243097B (en) * 2019-06-19 2023-08-18 珠海格力电器股份有限公司 Machine tool cooling unit and control method thereof
WO2021019676A1 (en) * 2019-07-30 2021-02-04 東芝三菱電機産業システム株式会社 Cooling device and cooling method
US10912229B1 (en) * 2019-08-15 2021-02-02 Baidu Usa Llc Cooling system for high density racks with multi-function heat exchangers
US11271259B2 (en) * 2019-09-04 2022-03-08 Baidu Usa Llc Airflow management for battery module cooling
CN110856430A (en) * 2019-12-03 2020-02-28 广州高澜节能技术股份有限公司 Drawer type heat exchange system of server
CN111372423B (en) * 2020-02-29 2021-10-15 苏州浪潮智能科技有限公司 FCT tool and external gas circuit formula cooling system thereof
CN111352489B (en) * 2020-02-29 2021-05-25 苏州浪潮智能科技有限公司 Flowing boiling immersion type liquid cooling device
US11555640B2 (en) * 2020-03-26 2023-01-17 Baidu Usa Llc Control and switch design for multiple phase change loops
CN114076341B (en) * 2020-08-12 2023-10-27 富联精密电子(天津)有限公司 Data center heat recovery system
US11910577B2 (en) * 2021-08-17 2024-02-20 Nvidia Corporation Staged cooling for secondary coolant in datacenter cooling systems
US11765865B2 (en) * 2021-08-26 2023-09-19 Baidu Usa Llc Data center system for various electronic rack architectures
SE2250290A1 (en) * 2022-01-06 2023-07-07 Munters Corp Active/passive cooling system with pumped refrigerant
DE102022114550B3 (en) * 2022-06-09 2023-10-12 P&L Gmbh & Co. Kg Cooling arrangement for cooling a machine and method therefor
CN115175521A (en) * 2022-06-30 2022-10-11 阿里巴巴(中国)有限公司 Dry cooler, control method of dry cooler, electronic device and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719523A (en) * 1991-01-31 1995-01-20 Sanki Eng Co Ltd Natural cooling air conditioner
JPH1019305A (en) * 1996-06-28 1998-01-23 Furukawa Electric Co Ltd:The Cooling system
JP2003166729A (en) * 2001-11-30 2003-06-13 Takasago Thermal Eng Co Ltd Air-conditioning system of communication unit and information processor room
JP2006258390A (en) * 2005-03-18 2006-09-28 Tokyo Gas Co Ltd Air-conditioning system

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301000A (en) * 1965-02-15 1967-01-31 Borg Warner Combination vapor compression and absorption refrigeration system
US4107942A (en) * 1977-03-31 1978-08-22 Fairman Stanley W Cooling system
JPS5640033A (en) 1979-09-07 1981-04-16 Fujitsu Ltd Cold water type cooling system utilizing open air for cooling water
US4393662A (en) * 1981-09-28 1983-07-19 Dirth George P Control system for refrigeration or air conditioning installation
US5156706A (en) * 1982-09-07 1992-10-20 Sephton Hugo H Evaporation of liquids with dispersant added
ES2033348T3 (en) * 1987-03-12 1993-03-16 Takenaka Komuten Co. Ltd. AIR CONDITIONING SYSTEM FOR BUILDINGS.
JPS6419305A (en) 1987-07-15 1989-01-23 Matsushita Electric Works Ltd Production of multi-layered thin film
JPH0197147A (en) 1987-10-08 1989-04-14 Senji Oigawa Heat generating motor
GB2213248B (en) * 1987-12-21 1991-11-27 Sanyo Electric Co Air-conditioning apparatus
JPH0792251B2 (en) * 1988-04-28 1995-10-09 三機工業株式会社 Air conditioning equipment
JPH01285725A (en) * 1988-05-09 1989-11-16 Mitsubishi Electric Corp Air-cooled cooling device
JPH086944B2 (en) 1990-02-14 1996-01-29 株式会社大林組 Water-cooled refrigerator for refrigerator
US5335508A (en) * 1991-08-19 1994-08-09 Tippmann Edward J Refrigeration system
JPH05126422A (en) * 1991-11-07 1993-05-21 Matsushita Refrig Co Ltd Apparatus for cooling and heating
JP3307915B2 (en) 1995-08-31 2002-07-29 三菱電機株式会社 Cooling device
JPH11257883A (en) * 1998-03-16 1999-09-24 Hitachi Plant Eng & Constr Co Ltd Dual heat source refrigerant natural circulation type cooling system
US6085532A (en) * 1999-02-05 2000-07-11 American Standard Inc. Chiller capacity control with variable chilled water flow compensation
US6185946B1 (en) * 1999-05-07 2001-02-13 Thomas B. Hartman System for sequencing chillers in a loop cooling plant and other systems that employ all variable-speed units
US6848267B2 (en) * 2002-07-26 2005-02-01 Tas, Ltd. Packaged chilling systems for building air conditioning and process cooling
CA2298754A1 (en) 2000-02-11 2001-08-11 Joseph Antoine Michel Grenier Cooling system with variable capacity condenser
IT1317633B1 (en) * 2000-03-16 2003-07-15 Rc Group Spa REFRIGERATOR GROUP WITH FREE-COOLING, SUITABLE TO OPERATE EVEN VARIABLE CONPORTA, SYSTEM AND PROCEDURE.
WO2001072099A2 (en) * 2000-03-21 2001-09-27 Liebert Corporation Method and apparatus for cooling electronic enclosures
JP4558177B2 (en) 2000-11-20 2010-10-06 高砂熱学工業株式会社 Air conditioning system for communication equipment room, etc.
US6601397B2 (en) * 2001-03-16 2003-08-05 Copeland Corporation Digital scroll condensing unit controller
US6532754B2 (en) * 2001-04-25 2003-03-18 American Standard International Inc. Method of optimizing and rating a variable speed chiller for operation at part load
US6446448B1 (en) * 2001-06-26 2002-09-10 Chi-Yi Wang Cooling tower for automatically adjusting flow rates of cooling water and cooling air with variations of a load
US7061763B2 (en) * 2002-01-29 2006-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Cabinet cooling
WO2003087681A1 (en) * 2002-03-29 2003-10-23 Daikin Industries, Ltd. Heat source unit of air conditioner and air conditioner
US6938433B2 (en) * 2002-08-02 2005-09-06 Hewlett-Packard Development Company, Lp. Cooling system with evaporators distributed in series
US6786056B2 (en) * 2002-08-02 2004-09-07 Hewlett-Packard Development Company, L.P. Cooling system with evaporators distributed in parallel
JP4311924B2 (en) 2002-10-11 2009-08-12 株式会社大気社 Cooling heat source equipment using free cooling
US6775137B2 (en) 2002-11-25 2004-08-10 International Business Machines Corporation Method and apparatus for combined air and liquid cooling of stacked electronics components
JP2004232927A (en) 2003-01-29 2004-08-19 Ntt Power & Building Facilities Inc Rack for storing electronic equipment, air conditioner for computer room, and air conditioner system for computer room
JP2005042963A (en) 2003-07-25 2005-02-17 Hitachi Metals Ltd Cooling device
US8261565B2 (en) * 2003-12-05 2012-09-11 Liebert Corporation Cooling system for high density heat load
US7032398B2 (en) * 2004-02-27 2006-04-25 Toromont Industries Ltd. Energy management system, method, and apparatus
JP4318567B2 (en) 2004-03-03 2009-08-26 三菱電機株式会社 Cooling system
US7385581B2 (en) * 2004-03-11 2008-06-10 Matsushita Electric Industrial Co., Ltd. Driving voltage control device, display device and driving voltage control method
US20060010893A1 (en) * 2004-07-13 2006-01-19 Daniel Dominguez Chiller system with low capacity controller and method of operating same
US7385810B2 (en) * 2005-04-18 2008-06-10 International Business Machines Corporation Apparatus and method for facilitating cooling of an electronics rack employing a heat exchange assembly mounted to an outlet door cover of the electronics rack
WO2007018994A2 (en) * 2005-08-04 2007-02-15 Liebert Corporation Electronic equipment cabinet with integrated, high capacity, cooling system, and backup ventilation system
US7340912B1 (en) * 2005-10-06 2008-03-11 Yoho Sr Robert W High efficiency heating, ventilating and air conditioning system
JP4693596B2 (en) 2005-11-02 2011-06-01 株式会社竹中工務店 Refrigerant natural circulation cooling system
JP4547630B2 (en) 2006-02-10 2010-09-22 株式会社日立プラントテクノロジー Air temperature control method and control system
ITPD20060186A1 (en) * 2006-05-12 2007-11-13 Blue Box Srl REFRIGERATOR WITH FREE COOLING
CA2653817C (en) * 2006-06-01 2012-10-16 Google Inc. Modular computing environments
DK2032907T3 (en) * 2006-06-01 2018-07-02 Google Llc Hot cooling for electronics
US20070283716A1 (en) * 2006-06-08 2007-12-13 Joseph Marsala Pumped refrigerant loop cooling system for cooling High thermal density heat loads
US7890215B2 (en) * 2006-12-22 2011-02-15 Duncan Scot M Optimized control system for cooling systems
GB2446454B (en) * 2007-02-07 2011-09-21 Robert Michael Tozer Cool design data centre
US7511959B2 (en) * 2007-04-25 2009-03-31 Hewlett-Packard Development Company, L.P. Scalable computing apparatus
US7477514B2 (en) * 2007-05-04 2009-01-13 International Business Machines Corporation Method of facilitating cooling of electronics racks of a data center employing multiple cooling stations
US7900468B2 (en) * 2007-07-11 2011-03-08 Liebert Corporation Method and apparatus for equalizing a pumped refrigerant system
US7963118B2 (en) * 2007-09-25 2011-06-21 International Business Machines Corporation Vapor-compression heat exchange system with evaporator coil mounted to outlet door of an electronics rack
US7864530B1 (en) * 2007-09-28 2011-01-04 Exaflop Llc Changing data center cooling modes
JP2009109086A (en) 2007-10-30 2009-05-21 Kenchiku Setsubi Sekkei Kenkyusho:Kk Air conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719523A (en) * 1991-01-31 1995-01-20 Sanki Eng Co Ltd Natural cooling air conditioner
JPH1019305A (en) * 1996-06-28 1998-01-23 Furukawa Electric Co Ltd:The Cooling system
JP2003166729A (en) * 2001-11-30 2003-06-13 Takasago Thermal Eng Co Ltd Air-conditioning system of communication unit and information processor room
JP2006258390A (en) * 2005-03-18 2006-09-28 Tokyo Gas Co Ltd Air-conditioning system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165707A (en) * 2010-02-04 2011-08-25 Hitachi Plant Technologies Ltd Cooling system for electronic apparatus
JP2011171499A (en) * 2010-02-18 2011-09-01 Hitachi Plant Technologies Ltd Cooling method and cooling system of electronic apparatus
JP2011204154A (en) * 2010-03-26 2011-10-13 Hitachi Plant Technologies Ltd Cooling system of electronic apparatus
JP2011237887A (en) * 2010-05-06 2011-11-24 Hitachi Plant Technologies Ltd Cooling method and cooling system for electronic equipment
CN103154624A (en) * 2010-08-10 2013-06-12 株式会社日立工业设备技术 Apparatus for operation of cooling system in abnormal state
WO2012020752A1 (en) * 2010-08-10 2012-02-16 株式会社日立プラントテクノロジー Apparatus for operation of cooling system in abnormal state
JP2012037185A (en) * 2010-08-10 2012-02-23 Hitachi Plant Technologies Ltd Apparatus for operation of cooling system in abnormal state
CN103154624B (en) * 2010-08-10 2015-11-25 株式会社日立工业设备技术 The rotating device during exception of cooling system
JP2012068008A (en) * 2010-08-23 2012-04-05 Takasago Thermal Eng Co Ltd Air conditioning system of facilities having plural stories and method of operating the same
WO2012029404A1 (en) * 2010-08-31 2012-03-08 日本電気株式会社 System for cooling electronic device
CN103081581A (en) * 2010-08-31 2013-05-01 日本电气株式会社 System for cooling electronic device
JP5857964B2 (en) * 2010-08-31 2016-02-10 日本電気株式会社 Electronic equipment cooling system
CN103081581B (en) * 2010-08-31 2015-08-26 日本电气株式会社 For the system of cooling electronic device
JP2012107801A (en) * 2010-11-17 2012-06-07 Fujitsu Ltd Air conditioning system
JP2012243035A (en) * 2011-05-18 2012-12-10 Hitachi Plant Technologies Ltd Cooling system for electronic equipment
CN104115579B (en) * 2012-02-14 2016-10-12 日本电气株式会社 Cooling device and cooling system
AU2013219731B2 (en) * 2012-02-14 2015-05-14 Nec Corporation Cooling apparatus and cooling system
JPWO2013121772A1 (en) * 2012-02-14 2015-05-11 日本電気株式会社 Cooling device and cooling system
CN104115579A (en) * 2012-02-14 2014-10-22 日本电气株式会社 Cooling device and cooling system
US9459031B2 (en) 2012-02-14 2016-10-04 Nec Corporation Cooling apparatus and cooling system
WO2013121772A1 (en) * 2012-02-14 2013-08-22 日本電気株式会社 Cooling device and cooling system
JP2014228194A (en) * 2013-05-22 2014-12-08 株式会社Nttファシリティーズ Apparatus cooling system
US10813243B2 (en) 2014-08-27 2020-10-20 Nec Corporation Phase-change cooling device and phase-change cooling method
US10006646B2 (en) 2015-04-30 2018-06-26 Samsung Electronics Co., Ltd. Outdoor unit of air conditioner and control device for the outdoor unit
US11226130B2 (en) 2017-01-16 2022-01-18 Nec Corporation Valve control device, cooling device, and valve control method
JP2020029979A (en) * 2018-08-22 2020-02-27 日比谷総合設備株式会社 Cold water manufacturing apparatus and air conditioning system
JP2020029980A (en) * 2018-08-22 2020-02-27 日比谷総合設備株式会社 Air conditioning system and cold water producing device for air conditioning system
JP7164068B1 (en) * 2022-03-29 2022-11-01 日本電気株式会社 Cooling device and cooling control method
WO2023187998A1 (en) * 2022-03-29 2023-10-05 日本電気株式会社 Cooling apparatus and cooling control method

Also Published As

Publication number Publication date
US8199504B2 (en) 2012-06-12
EP2498024A2 (en) 2012-09-12
EP2503866A3 (en) 2014-08-20
US7855890B2 (en) 2010-12-21
PL2091314T3 (en) 2016-10-31
JP4780479B2 (en) 2011-09-28
EP2503866B1 (en) 2017-09-20
EP2091314A2 (en) 2009-08-19
US20110056223A1 (en) 2011-03-10
EP2498024B1 (en) 2017-09-20
EP2503866A2 (en) 2012-09-26
EP2091314A3 (en) 2011-11-02
US20120218711A1 (en) 2012-08-30
EP2498025A2 (en) 2012-09-12
US20090201645A1 (en) 2009-08-13
EP2498024A3 (en) 2014-08-27
EP2498025A3 (en) 2014-08-27
US8839638B2 (en) 2014-09-23
EP2091314B1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP4780479B2 (en) Electronic equipment cooling system
JP5024675B2 (en) Electronic device cooling system and cooling method
EP3295089B1 (en) Systems and methods for managing conditions in enclosed space
US9404679B2 (en) Cooling system and cooling method
NL2006727C2 (en) Cooling method and cooling system for electronic device.
CN101677091B (en) Device and method for promotion of cooling electronic device rack by using a vapor compression system
JP6002369B2 (en) Server rack cooling system
JP5676966B2 (en) Cooling system
JP5041343B2 (en) Electronic equipment cooling system
JP5041342B2 (en) Electronic equipment cooling system
JP2009216295A (en) Cooling system of electronic device and its operating method
JP2009231529A (en) Cooling system for electronic device
JP2009193244A (en) Cooling system for electronic equipment
JP2011155301A (en) Cooling system for electronic apparatus
JP2011171499A (en) Cooling method and cooling system of electronic apparatus
JP2010160533A (en) Server storage device
JP2011163758A (en) Cooling system for electronic device
JP2009194094A (en) Cooling system of electronic equipment
JP4605488B2 (en) Electronic equipment cooling system
JP5913841B2 (en) Server rack cooling system
JP2012146331A (en) Cooling system for electronic equipment
JP2012059276A (en) Cooling system for electronic apparatus
JP2012142026A (en) Cooling system for electronic apparatus
US20220074632A1 (en) Outdoor unit of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250