JP2009192882A - Focus detection device and imaging apparatus - Google Patents

Focus detection device and imaging apparatus Download PDF

Info

Publication number
JP2009192882A
JP2009192882A JP2008034168A JP2008034168A JP2009192882A JP 2009192882 A JP2009192882 A JP 2009192882A JP 2008034168 A JP2008034168 A JP 2008034168A JP 2008034168 A JP2008034168 A JP 2008034168A JP 2009192882 A JP2009192882 A JP 2009192882A
Authority
JP
Japan
Prior art keywords
focus detection
light receiving
microlens
microlenses
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008034168A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kuwata
知由己 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008034168A priority Critical patent/JP2009192882A/en
Publication of JP2009192882A publication Critical patent/JP2009192882A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine an arrangement and the number of focus detection areas in a photographing screen without being restricted by a photodetector for detecting the position of a mirror. <P>SOLUTION: The focus detection device includes: a microlens array having a plurality of first microlenses arrayed in two dimensions; a photodetection portion array having a plurality of first photodetection portions arrayed in two dimensions to receive light transmitted through the respective microlenses; and a focus detecting arithmetic means of computing a focus adjustment state of an imaging optical system on the basis of outputs of photodetection portions receiving light transmitted through the imaging optical system and reflected by a mirror 12 through the microlens array by the photodetection portion array. The mirror 12 has an index 121a, and includes a pair of second microlenses 521A and 521B having different optical characteristics from the first microlenses and detecting light from the index 121a, and a pair of second photodetection portions 531A and 531B receiving light passed through the pair of second microlenses 521A and 521B. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は焦点検出装置と撮像装置に関する。   The present invention relates to a focus detection apparatus and an imaging apparatus.

撮影レンズを透過した光束を反射して焦点検出装置へ導くミラーを備えた自動焦点調節(AF)一眼レフレックスカメラにおいて、ミラーにマークを付し、このマークの位置を焦点検出装置の受光素子の出力信号に基づいて検出することにより、経年変化による合焦位置のずれを補正するようにしたカメラが知られている(例えば、特許文献1参照)。   In an automatic focusing (AF) single-lens reflex camera having a mirror that reflects a light beam that has passed through a photographing lens and guides it to a focus detection device, a mark is attached to the mirror, and the position of this mark is determined by the light receiving element of the focus detection device. There is known a camera that detects a focus position shift due to secular change by detecting an output signal (see, for example, Patent Document 1).

この出願の発明に関連する先行技術文献としては次のものがある。
特開2002−098884号公報
Prior art documents related to the invention of this application include the following.
Japanese Patent Laid-Open No. 2002-098884

しかしながら、上述した従来のカメラでは、ミラーの位置検出に用いる受光素子により撮影画面内における焦点検出領域の配置と数が制約を受けるという問題がある。   However, the above-described conventional camera has a problem that the arrangement and the number of focus detection areas in the photographing screen are limited by the light receiving element used for detecting the position of the mirror.

(1) 請求項1の発明は、複数の第1マイクロレンズを二次元状に配列したマイクロレンズアレイと、複数の第1受光部を二次元状に配列して各マイクロレンズを透過した光を受光する受光部アレイと、結像光学系を透過し、ミラーで反射した光をマイクロレンズアレイを介して受光部アレイで受光した受光部の出力に基づいて結像光学系の焦点調節状態を演算する焦点検出演算手段とを備えた焦点検出装置において、ミラーは指標を備え、第1マイクロレンズとは異なる光学特性を有して指標からの光を検出する一対の第2マイクロレンズと、一対の第2マイクロレンズをそれぞれ透過した光を受光する一対の第2受光部とを備える。
(2) 請求項2の発明は、請求項1に記載の焦点検出装置において、一対の第2マイクロレンズをマイクロレンズアレイに配置した複数の第1マイクロレンズの間に配置するとともに、一対の第2受光部を受光部アレイに配置した複数の第1受光部の間に配置する。
(3) 請求項3の発明は、請求項1または請求項2に記載の焦点検出装置において、指標をミラーのマイクロレンズアレイ側の端面に設けたものである。
(4) 請求項4の発明は、請求項1〜3のいずれか一項に記載の焦点検出装置において、第2マイクロレンズと当該第2マイクロレンズに対応する第2受光部との偏位量は、第1マイクロレンズと当該第1マイクロレンズに対応する複数の第1受光部との偏位量よりも大きい。
(5) 請求項5の発明は、請求項1〜4のいずれか一項に記載の焦点検出装置において、第2マイクロレンズの焦点距離は、第1マイクロレンズの焦点距離よりも長い。
(6) 請求項6の発明は、請求項3〜5のいずれか一項に記載の焦点検出装置において、第2受光部と、ミラーの前記指標が設けられている端面とが、第2マイクロレンズに関して共役になっている。
(7) 請求項7の発明は、請求項1〜6のいずれか一項に記載の焦点検出装置において、一対の第2受光部の出力に基づいて第1受光部の出力を補正することにより、焦点調節状態を補正する補正手段を備える。
(8) 請求項8の発明は、請求項1〜7のいずれか一項に記載の焦点検出装置を備える撮像装置である。
(1) The invention of claim 1 is a microlens array in which a plurality of first microlenses are arranged in a two-dimensional manner, and light transmitted through each microlens by arranging a plurality of first light receiving portions in a two-dimensional manner. Calculates the focus adjustment state of the imaging optical system based on the output of the light receiving unit that receives the light received by the light receiving unit array through the microlens array and the light that passes through the imaging optical system and reflected by the mirror And a pair of second microlenses for detecting light from the index having an optical characteristic different from that of the first microlens, and a pair of second microlenses for detecting the light from the index. And a pair of second light receiving portions that receive light respectively transmitted through the second microlenses.
(2) According to a second aspect of the present invention, in the focus detection apparatus according to the first aspect, the pair of second microlenses is disposed between the plurality of first microlenses disposed in the microlens array, and the pair of first microlenses is disposed. The two light receiving units are arranged between the plurality of first light receiving units arranged in the light receiving unit array.
(3) According to a third aspect of the present invention, in the focus detection device according to the first or second aspect, the index is provided on the end surface of the mirror on the microlens array side.
(4) According to a fourth aspect of the present invention, in the focus detection apparatus according to any one of the first to third aspects, a deviation amount between the second microlens and the second light receiving unit corresponding to the second microlens. Is larger than the amount of deviation between the first microlens and the plurality of first light receiving portions corresponding to the first microlens.
(5) According to a fifth aspect of the present invention, in the focus detection device according to any one of the first to fourth aspects, the focal length of the second microlens is longer than the focal length of the first microlens.
(6) According to a sixth aspect of the present invention, in the focus detection apparatus according to any one of the third to fifth aspects, the second light receiving unit and the end surface on which the index of the mirror is provided are the second micro. Conjugated with respect to the lens.
(7) According to a seventh aspect of the invention, in the focus detection apparatus according to any one of the first to sixth aspects, the output of the first light receiving unit is corrected based on the outputs of the pair of second light receiving units. And a correction means for correcting the focus adjustment state.
(8) The invention according to claim 8 is an imaging apparatus including the focus detection apparatus according to any one of claims 1 to 7.

本発明によれば、ミラーの位置検出に用いる受光素子による制約を受けずに、撮影画面内における焦点検出領域の配置と数を決定することができる。   According to the present invention, it is possible to determine the arrangement and the number of focus detection areas in the photographing screen without being restricted by the light receiving element used for detecting the position of the mirror.

本発明の焦点検出装置および撮像装置を、撮影レンズを透過した光束をファインダー光学系へ導く半透過部を有するメインミラーと、メインミラーの半透過部を透過した光束を焦点検出装置へ導くサブミラーとを備え、非撮影時はメインミラーとサブミラーを撮影光路内に設定して焦点検出とファインダー観察を可能にし、撮影時にはメインミラーとサブミラーを撮影光路から退避させて撮像素子への露光を可能にした自動焦点調節(AF)一眼レフレックス・デジタルスチルカメラに適用した一実施の形態を説明する。   A focus detection device and an imaging device according to the present invention include a main mirror having a semi-transmissive portion that guides a light beam that has passed through a photographing lens to a finder optical system, and a sub mirror that guides a light beam that has passed through the semi-transmissive portion of the main mirror to a focus detection device. When not shooting, the main mirror and sub mirror are set in the shooting optical path to enable focus detection and viewfinder observation, and during shooting, the main mirror and sub mirror are retracted from the shooting optical path to enable exposure to the image sensor. An embodiment applied to an automatic focusing (AF) single-lens reflex digital still camera will be described.

図1は一実施の形態の撮像装置の構成を示す断面図である。なお、図1では本願発明の焦点検出装置および撮像装置に係わる機器および装置以外の機器および装置については図示と説明を省略する。一実施の形態のカメラは、カメラボディ1にレンズ鏡筒2が着脱可能に装着され、レンズ鏡筒2は各種の交換レンズを内蔵したレンズ鏡筒に交換可能である。   FIG. 1 is a cross-sectional view illustrating a configuration of an imaging apparatus according to an embodiment. In FIG. 1, illustration and description of devices and apparatuses other than the devices and apparatuses related to the focus detection apparatus and the imaging apparatus of the present invention are omitted. In a camera according to an embodiment, a lens barrel 2 is detachably attached to a camera body 1, and the lens barrel 2 can be replaced with a lens barrel incorporating various interchangeable lenses.

カメラボディ1は、メインミラー11、サブミラー12、フィルター13、シャッター14、撮像素子15、焦点検出装置16、ペンタダハプリズム17、接眼レンズ18、電気接点19、ボディ駆動制御装置20などを備えている。フィルター13は、光学的ローパスフィルターと赤外線カットフィルターを合わせたものである。撮像素子15はCCDやCMOSなどから構成され、撮影レンズ21により結像された被写体像を電気信号に変換して出力する。焦点検出装置16は、撮影レンズ21の焦点調節状態、すなわちデフォーカス量を検出する。ボディ駆動制御装置20は不図示のマイクロコンピューター、ROM、RAM、A/Dコンバーターなどから構成され、カメラの各種演算、シーケンス制御、撮像素子の駆動制御などを行う。   The camera body 1 includes a main mirror 11, a sub mirror 12, a filter 13, a shutter 14, an image sensor 15, a focus detection device 16, a penta roof prism 17, an eyepiece lens 18, an electrical contact 19, a body drive control device 20, and the like. The filter 13 is a combination of an optical low-pass filter and an infrared cut filter. The imaging element 15 is composed of a CCD, a CMOS, or the like, and converts the subject image formed by the photographing lens 21 into an electrical signal and outputs it. The focus detection device 16 detects the focus adjustment state of the taking lens 21, that is, the defocus amount. The body drive control device 20 includes a microcomputer (not shown), a ROM, a RAM, an A / D converter, and the like, and performs various camera calculations, sequence control, image sensor drive control, and the like.

一方、レンズ鏡筒2は、撮影レンズ21(レンズ21a〜21e)、絞り22、レンズ駆動制御装置23などを備えている。レンズ駆動制御装置23は不図示のマイクロコンピューター、ROM、RAM、レンズ駆動用アクチュエーター、絞り駆動用アクチュエーターなどから構成され、撮影レンズ21の焦点調節や絞り22の開口調節などを行う。なお、カメラボディ1のボディ駆動制御装置20とレンズ鏡筒2のレンズ駆動制御装置23は、交換レンズ2のマウント部に設けられた電気接点19を介して電気的に接続されており、各種情報の授受を行う。   On the other hand, the lens barrel 2 includes a photographing lens 21 (lenses 21a to 21e), a diaphragm 22, a lens drive control device 23, and the like. The lens drive control device 23 includes a microcomputer (not shown), a ROM, a RAM, a lens drive actuator, an aperture drive actuator, and the like, and performs focus adjustment of the taking lens 21, aperture adjustment of the aperture 22, and the like. The body drive control device 20 of the camera body 1 and the lens drive control device 23 of the lens barrel 2 are electrically connected via an electrical contact 19 provided at the mount portion of the interchangeable lens 2, and various information Give and receive.

非撮影時には、図1に実線で示すように、メインミラー11とサブミラー12が撮影光路中に置かれ、撮影レンズ21を透過した被写体光の一部はメインミラー11、ペンタダハプリズム17、接眼レンズ18を介して撮影者の目へ導かれ、撮影者に被写体像が視認される。また、被写体光の残りの一部はメインミラー11、サブミラー12を介して焦点検出装置16へ導かれ、焦点検出装置16により撮影レンズ21の焦点調節状態、すなわちデフォーカス量が検出される。   At the time of non-photographing, as shown by a solid line in FIG. 1, the main mirror 11 and the sub mirror 12 are placed in the photographing optical path, and part of the subject light transmitted through the photographing lens 21 is the main mirror 11, penta roof prism 17, and eyepiece 18. The subject image is visually recognized by the photographer. The remaining part of the subject light is guided to the focus detection device 16 via the main mirror 11 and the sub mirror 12, and the focus detection device 16 detects the focus adjustment state of the photographing lens 21, that is, the defocus amount.

撮影時には、図1に破線で示すように、メインミラー11とサブミラー12が撮影光路中から待避し、撮像素子14による被写体像の撮影が行われる。撮像素子14から出力された被写体像信号は不図示の画像処理装置により処理され、被写体像が不図示のメモリカードなどの記録装置に記録される。   At the time of shooting, as indicated by a broken line in FIG. 1, the main mirror 11 and the sub mirror 12 are retracted from the shooting optical path, and a subject image is shot by the image sensor 14. The subject image signal output from the image sensor 14 is processed by an image processing device (not shown), and the subject image is recorded in a recording device such as a memory card (not shown).

図2は、一実施の形態の撮像装置に組み込まれている焦点検出光学系の構成を示す。撮影レンズ21は、撮像素子15(図1参照)の受光面15aに被写体像を結像する。撮影レンズ21を透過した被写体からの光束(焦点検出用光束)はサブミラー12(図1参照)の反射面12aで反射され、撮像素子受光面15aと共役な予定焦点面16aへ導かれ、予定焦点面16aにおいて被写体像が結像される。なお、この予定焦点面16aにおいて被写体像のピントが合うように、撮影レンズ21の焦点調節が行われる。   FIG. 2 shows a configuration of a focus detection optical system incorporated in the imaging apparatus according to the embodiment. The photographing lens 21 forms a subject image on the light receiving surface 15a of the image sensor 15 (see FIG. 1). The light beam (focus detection light beam) from the subject that has passed through the photographing lens 21 is reflected by the reflecting surface 12a of the sub mirror 12 (see FIG. 1), and is guided to the planned focal plane 16a conjugate with the imaging element light receiving surface 15a. A subject image is formed on the surface 16a. Note that the focus of the photographic lens 21 is adjusted so that the subject image is focused on the planned focal plane 16a.

焦点検出装置16は、マイクロレンズアレイ52と受光部アレイ53がカバーガラス54で蓋をしたパッケージ55の中に封入されている。   The focus detection device 16 is enclosed in a package 55 in which a microlens array 52 and a light receiving unit array 53 are covered with a cover glass 54.

なお、サブミラー12の下端(図1のA部)には予定焦点面16aと平行な面(以下、サブミラー端面という)12bが形成されており、このサブミラー端面12bにはサブミラー12の撮影光路中における静止位置の経年変化を検出するための指標が描かれている。この指標については詳細を後述する。   Note that a surface (hereinafter referred to as a submirror end surface) 12b parallel to the planned focal plane 16a is formed at the lower end of the submirror 12 (A portion in FIG. 1), and this submirror end surface 12b is in the imaging optical path of the submirror 12 An index for detecting the secular change of the stationary position is drawn. Details of this index will be described later.

また、像高の高い部分の焦点検出用光束を用いて焦点検出を行う場合には、光路中、具体的には予定焦点面16aの近傍から後述するマイクロレンズアレイ52の間にフィールドレンズ51を挿入し、像高の高い部分の光線を光軸方向から曲げるようにしてもよい。以下では、フィールドレンズ51を無視して説明する。   When focus detection is performed using a focus detection light beam at a high image height, the field lens 51 is placed in the optical path, specifically between the vicinity of the planned focal plane 16a and a microlens array 52 described later. It is also possible to insert and bend the light beam at a high image height from the optical axis direction. In the following description, the field lens 51 is ignored.

図3はマイクロレンズアレイ52と受光部アレイ53の正面図であり、図2のZ方向から見た図である。図3では、マイクロレンズアレイ52とその背後に配置される受光部アレイ53を重ねて描画するとともに、マイクロレンズ表面に設けられる遮光マスクの図示を省略している。受光部アレイ53はマイクロレンズアレイ52の背後のごく近傍に配置され、複数の受光部が配列されている。なお、この明細書ではマイクロレンズごとに複数の受光部を対応づけて配列する例を示すが、各マイクロレンズと無関係に複数の受光部を二次元状に配列してもよい。   FIG. 3 is a front view of the microlens array 52 and the light receiving unit array 53, and is a view seen from the Z direction of FIG. In FIG. 3, the microlens array 52 and the light receiving portion array 53 disposed behind the microlens array 52 are drawn in an overlapping manner, and a light shielding mask provided on the microlens surface is not shown. The light receiving portion array 53 is arranged in the very vicinity behind the microlens array 52, and a plurality of light receiving portions are arranged. In this specification, an example in which a plurality of light receiving units are arranged in association with each microlens is shown, but a plurality of light receiving units may be arranged two-dimensionally regardless of each microlens.

図3に示すように、この一実施の形態では、撮影レンズ21の焦点調節状態を検出するためのマイクロレンズと各マイクロレンズに対応する複数の受光部が、撮影画面の左右方向中央に5領域、中央上下に2領域、四隅のにそれぞれ2領域ずつ、合計15領域に対応して配置されている。上下左右の中央領域では、マイクロレンズごとの受光部列が撮影画面の上下方向と左右方向に配列されている。一方、四隅の領域では、マイクロレンズごとの受光部列が撮影画面のメリディオナル方向とサジタル方向に配列されている。   As shown in FIG. 3, in this embodiment, a microlens for detecting the focus adjustment state of the photographing lens 21 and a plurality of light receiving portions corresponding to each microlens are arranged in five regions in the center in the left-right direction of the photographing screen. In addition, two regions are arranged at the top and bottom of the center and two regions are arranged at the four corners, corresponding to a total of 15 regions. In the upper, lower, left, and right central regions, the light receiving unit rows for each microlens are arranged in the vertical direction and the horizontal direction of the shooting screen. On the other hand, in the four corner areas, the light receiving section rows for each microlens are arranged in the meridional direction and the sagittal direction of the shooting screen.

一方、撮影画面の上部左右に上述したサブミラー12の静止位置検出用の一対のマイクロレンズ521A、521Bと、それぞれのマイクロレンズ521A、521Bに対応する受光部列531A、531Bが配置されている。これらの一対のマイクロレンズ521A、521Bと一対の受光部列531A、531Bは、サブミラー端面12b(図2参照)に描かれた指標、すなわちサブミラー12の撮影光路中における静止位置の経年変化を検出するための指標からの光を受光し、サブミラー位置に応じた信号を出力する。   On the other hand, the above-described pair of microlenses 521A and 521B for detecting the stationary position of the sub mirror 12 and the light receiving section rows 531A and 531B corresponding to the respective microlenses 521A and 521B are arranged on the upper left and right of the photographing screen. The pair of microlenses 521A and 521B and the pair of light receiving section rows 531A and 531B detect the index drawn on the submirror end face 12b (see FIG. 2), that is, the secular change of the stationary position of the submirror 12 in the photographing optical path. The light from the indicator for receiving is received and a signal corresponding to the position of the submirror is output.

サブミラー位置検出用のマイクロレンズ521A、521Bは他のマイクロレンズと同時に基板上に加工される。また、サブミラー検出用の受光部列531A、531Bも他の受光部と同じ基板上に同時に加工される。これらのサブミラー検出用マイクロレンズ521A、521Bと受光部列531A、531Bを、マイクロレンズアレイ52と受光部アレイ53に付加するための製造工数の増加はほとんどない。   The sub-mirror position detection microlenses 521A and 521B are processed on the substrate simultaneously with other microlenses. In addition, the light receiving part rows 531A and 531B for detecting the sub mirror are simultaneously processed on the same substrate as the other light receiving parts. There is almost no increase in the number of manufacturing steps for adding these sub-mirror detection microlenses 521A and 521B and the light receiving section rows 531A and 531B to the microlens array 52 and the light receiving section array 53.

なお、これらのサブミラー位置検出用のマイクロレンズ521A、521Bおよび受光部列531A、531Bは、撮影レンズ21の焦点検出に支障がないように、上述した15領域に展開される通常の焦点検出用のマイクロレンズと受光部列の隙間に配置されている。   These sub-mirror position detection microlenses 521A and 521B and the light receiving section rows 531A and 531B are for normal focus detection developed in the above-described 15 regions so as not to hinder the focus detection of the photographing lens 21. It arrange | positions in the clearance gap between a micro lens and a light-receiving part row | line | column.

図4(a)は、図3に示す撮影画面右上隅の2つの領域のマイクロレンズおよび受光部列を示す。図3では図示を省略したが、図4(a)に示すように、マイクロレンズアレイ52の表面にはマイクロレンズ以外の部分を覆うように遮光マスク56が設けられている。図4(b)は、(a)図のA〜A断面を示す。マイクロレンズアレイ52の側面には遮光膜52aが塗装されている。また、マイクロレンズへの入射光のクロストークを防ぐために、各マイクロレンズの間の境界に沿って遮光隔壁57が設けられている。これらは、ガラス製のマイクロレンズアレイ52にエッチングあるいは機械加工で深溝を掘り、そこに遮光性樹脂を充填し硬化させて形成する。   FIG. 4A shows a microlens and a light receiving unit row in two regions at the upper right corner of the photographing screen shown in FIG. Although not shown in FIG. 3, as shown in FIG. 4A, a light shielding mask 56 is provided on the surface of the microlens array 52 so as to cover portions other than the microlenses. FIG.4 (b) shows the AA cross section of Fig.4 (a). A light shielding film 52 a is coated on the side surface of the microlens array 52. In order to prevent crosstalk of incident light to the microlens, a light shielding partition wall 57 is provided along the boundary between the microlenses. These are formed by digging deep grooves in the glass microlens array 52 by etching or machining, filling them with light-shielding resin, and curing them.

図5は、一実施の形態の焦点検出装置16による焦点検出方法を説明するための図である。なお、図5では遮光隔壁57(図4(b)参照)の図示を省略する。この一実施の形態では、1個のマイクロレンズとそのマイクロレンズに対応する受光部列の組を1個の画素と呼ぶ。図5では、各マイクロレンズごとに5個の受光部を有する画素が並んでいる。   FIG. 5 is a diagram for explaining a focus detection method by the focus detection device 16 according to the embodiment. In FIG. 5, the illustration of the light shielding partition 57 (see FIG. 4B) is omitted. In this embodiment, a set of one microlens and a light receiving section row corresponding to the microlens is referred to as one pixel. In FIG. 5, pixels having five light receiving portions are arranged for each microlens.

マイクロレンズアレイ52の各マイクロレンズによる受光部アレイ53の各受光部の像は、マイクロレンズの頂点よりわずかに被写体側の受光部像結像面16bに結び、この受光部像結像面16bは図2に示すカメラの予定焦点面16aの近傍になるように構成されている。   The image of each light receiving portion of the light receiving portion array 53 by each microlens of the microlens array 52 is connected to the light receiving portion image forming surface 16b slightly closer to the subject side than the vertex of the microlens, and this light receiving portion image forming surface 16b is It is configured to be in the vicinity of the planned focal plane 16a of the camera shown in FIG.

この一実施の形態の焦点検出装置16は、瞳分割型位相差検出方式による焦点検出装置である。すなわち、撮影レンズ21の瞳面上の一対の領域を通過した一対の焦点検出用光束により形成される一対の被写体像の位置ズレ量に基づいて、撮影レンズ21のデフォーカス量を検出する。具体的な焦点検出方法を以下に説明する。   The focus detection device 16 according to this embodiment is a focus detection device based on a pupil division type phase difference detection method. That is, the defocus amount of the photographing lens 21 is detected based on the positional deviation amount of the pair of subject images formed by the pair of focus detection light beams that have passed through the pair of regions on the pupil plane of the photographing lens 21. A specific focus detection method will be described below.

第1の焦点検出方法は、隣接する画素、または一つおきなどの画素の受光部アレイで検出した一対の被写体像の位置ズレ量に基づいてデフォーカス量を検出する方法である。図5に示すA列とB列の受光部アレイ上に結像された一対の被写体像は、受光部像結像面16b上のA’、B’で示す「マイクロレンズによる受光部アレイの逆投影像」の位置に、撮像レンズ21により結像される一対の被写体像に対応する。したがって、A列とB列の受光部アレイの出力に基づいて、受光部像結像面16b上の撮影レンズ21により結像された一対の被写体像の位置ズレ量を検出する。   The first focus detection method is a method of detecting a defocus amount based on a positional shift amount of a pair of subject images detected by a light receiving unit array of adjacent pixels or every other pixel. A pair of subject images formed on the light receiving unit arrays in the A row and the B row shown in FIG. 5 are "reverse of the light receiving unit array by the microlens" indicated by A 'and B' on the light receiving unit image forming surface 16b. It corresponds to a pair of subject images formed by the imaging lens 21 at the position of “projected image”. Therefore, based on the outputs of the light receiving unit arrays in the A and B rows, the positional deviation amount of the pair of subject images formed by the photographing lens 21 on the light receiving unit image forming surface 16b is detected.

第2の焦点検出方法は、連続して配置される画素の各受光部アレイの端からn番目どうしの受光部出力を繋げた波形が表す合成像と、(n+m)番目どうしの受光部出力を繋げた波形が表す合成像との位置ズレ量に基づいてデフォーカス量を検出する方法である。図5に示すように、連続して配置される画素の各受光部アレイの端から2番目の受光部cの出力を繋げた信号列に対応する像と、端から4番目の受光部dの出力を繋げた信号列に対応する像は、受光部像結像面16b上のC’とD’で示す「マイクロレンズによる受光部アレイの逆投影像」の位置に撮影レンズ21により結像される一対の被写体像に対応する。すなわち、受光部cを連ねた離散的受光部列Cと、受光部dを連ねた離散的受光部列Dの出力波形が表す合成像がそれぞれC’とD’の位置の被写体像に対応する。したがって、受光部列Cと受光部列Dの出力に基づいて、受光部像結像面16b上の撮影レンズ21により結像された一対の被写体像の位置ズレ量を検出する。   In the second focus detection method, a composite image represented by a waveform obtained by connecting n-th light-receiving unit outputs from the end of each light-receiving unit array of continuously arranged pixels and (n + m) -th light-receiving unit outputs are represented. In this method, the defocus amount is detected based on the amount of positional deviation from the composite image represented by the connected waveform. As shown in FIG. 5, the image corresponding to the signal sequence connecting the outputs of the second light receiving parts c from the ends of the respective light receiving part arrays of the pixels arranged in succession, and the fourth light receiving part d from the ends. An image corresponding to the signal sequence in which the outputs are connected is formed by the photographing lens 21 at a position of “back projection image of the light receiving portion array by the microlens” indicated by C ′ and D ′ on the light receiving portion image forming surface 16b. Corresponding to a pair of subject images. In other words, the composite images represented by the output waveforms of the discrete light receiving unit row C connected with the light receiving unit c and the discrete light receiving unit row D connected with the light receiving unit d correspond to subject images at positions C ′ and D ′, respectively. . Therefore, based on the outputs of the light receiving portion row C and the light receiving portion row D, the positional deviation amount of the pair of subject images formed by the photographing lens 21 on the light receiving portion image forming surface 16b is detected.

なお、第2の焦点検出方法の変形例として、図6に示すように、連続して配置される画素の各受光部アレイの端から1番目と2番目の受光部出力を加算した信号列、すなわち、合成受光部cが連なる受光部列Cの出力波形と、端から4番目と5番目の受光部出力を加算した信号列、すなわち、合成受光部dが連なる受光部列Dの出力波形に基づいて、画素結像面16b上の撮影レンズ21により結像された一対の被写体像の位置ズレ量を検出するようにしてもよい。つまり、隣接した複数の受光部の出力を合成して1個の受光部出力としてもよい。   As a modified example of the second focus detection method, as shown in FIG. 6, a signal sequence obtained by adding the first and second light receiving unit outputs from the ends of the respective light receiving unit arrays of continuously arranged pixels, That is, the output waveform of the light receiving unit row C connected with the combined light receiving unit c and the signal sequence obtained by adding the fourth and fifth light receiving unit outputs from the end, that is, the output waveform of the light receiving unit row D connected with the combined light receiving unit d. Based on this, the positional deviation amount of the pair of subject images formed by the photographing lens 21 on the pixel imaging surface 16b may be detected. That is, the outputs of a plurality of adjacent light receiving units may be combined into a single light receiving unit output.

図7は焦点検出装置16の詳細な構成を示すブロック図である。受光部アレイ53(図3参照)の出力はA/Dコンバーター54によりデジタル信号に変換され、いったんメモリ55に記憶される。マイクロコンピューター56はソフトウエア形態により合成信号列作成部56a、像ズレ演算部56bおよびフォーカス量算出部56cを備え、メモリ55から受光部アレイ53の出力データを読み出し、合成信号列作成部56aにより第1信号列{a(i)}=a(1),a(2),a(3),・・・と、第2信号列{b(i)}=b(1),b(2),b(3),・・・を作成する。   FIG. 7 is a block diagram showing a detailed configuration of the focus detection device 16. The output of the light receiving section array 53 (see FIG. 3) is converted into a digital signal by the A / D converter 54 and temporarily stored in the memory 55. The microcomputer 56 includes a composite signal sequence generation unit 56a, an image shift calculation unit 56b, and a focus amount calculation unit 56c in software form, reads out output data of the light receiving unit array 53 from the memory 55, and the composite signal sequence generation unit 56a 1 signal sequence {a (i)} = a (1), a (2), a (3),..., And second signal sequence {b (i)} = b (1), b (2) , B (3),.

ここで、上述した第1の焦点検出方法の場合は、信号列{a(i)}、{b(i)}は図5に示す隣接する画素A、Bの各受光部アレイの受光部出力の並びである。また、上述した第2の焦点検出方法の場合は、信号列{a(i)}、{b(i)}は図5に示す受光部列CとDの出力の並びである。   Here, in the case of the first focus detection method described above, the signal sequences {a (i)} and {b (i)} are the light receiving unit outputs of the light receiving unit arrays of the adjacent pixels A and B shown in FIG. It is a line of. Further, in the case of the second focus detection method described above, the signal sequences {a (i)} and {b (i)} are a sequence of outputs of the light receiving unit columns C and D shown in FIG.

こうして得られた第1信号列{a(i)}と第2信号列{b(i)}に基づいて、公知の方法により像ズレ演算を行い、デフォーカス量を算出する。2つの信号列{a(i)}、{b(i)}からデフォーカス量を算出する方法はよく知られており、まず第1信号列{a(i)}と第2信号列{b(i)}(i=1,2,3,・・・)から対応する一対の像の相関量C(N)を求める。
C(N)=Σ|a(i)−b(j)| ・・・(1)
(1)式において、j−i=Nであり、Nはシフト数である。また、Σはi=pL〜qLの総和演算を表す。
Based on the first signal sequence {a (i)} and the second signal sequence {b (i)} obtained in this way, an image shift calculation is performed by a known method to calculate a defocus amount. A method of calculating a defocus amount from two signal sequences {a (i)} and {b (i)} is well known. First, a first signal sequence {a (i)} and a second signal sequence {b (i)} The correlation amount C (N) of the corresponding pair of images is obtained from (i = 1, 2, 3,...).
C (N) = Σ | a (i) −b (j) | (1)
In the equation (1), j−i = N, and N is the number of shifts. Further, Σ represents a total operation of i = pL to qL.

(1)式により離散的に求められた相関量C(N)から次のようにしてシフト量を求める。ここで、相関量C(N)の中でシフト量N=N0のときに極小値を与える相関量をC0とし、シフト量(N0−1)における相関量をCr、シフト量(N0+1)における相関量をCfとする。相関量Cr、C0、Cfの並びから精密なシフト量Naを求める。
DL=0.5・(Cr−Cf) ・・・(2),
E=MAX{Cf−C0、Cr−C0) ・・・(3),
Na=N0+DL/E ・・・(4)
次に、シフト量Naに、焦点検出面の位置に応じた補正量(定数CONST)を加え、焦点検出面上での像ズレ量Δn=Na+CONSTを算出する。さらに、像ズレ量Δnに検出開角に依存した定数Kfを乗じ、デフォーカス量Dfを算出する。
Df=Kf・Δn ・・・(5)
The shift amount is obtained from the correlation amount C (N) obtained discretely by the equation (1) as follows. Here, among the correlation amounts C (N), the correlation amount giving a minimum value when the shift amount N = N0 is C0, the correlation amount in the shift amount (N0-1) is Cr, and the correlation amount in the shift amount (N0 + 1). Let the amount be Cf. A precise shift amount Na is obtained from the arrangement of the correlation amounts Cr, C0, and Cf.
DL = 0.5 · (Cr−Cf) (2),
E = MAX {Cf-C0, Cr-C0) (3),
Na = N0 + DL / E (4)
Next, a correction amount (constant CONST) corresponding to the position of the focus detection surface is added to the shift amount Na to calculate an image shift amount Δn = Na + CONST on the focus detection surface. Further, the defocus amount Df is calculated by multiplying the image shift amount Δn by a constant Kf depending on the detected opening angle.
Df = Kf · Δn (5)

図8は、マイクロレンズアレイ52と受光部アレイ53を図2のZ方向から見た図である。図8では、マイクロレンズアレイ52とその背後に配置される受光部アレイ53を重ねて描画するとともに、マイクロレンズ表面に設けられる遮光マスク56(図4参照)の図示を省略している。上述したように、この一実施の形態では撮影画面内の15領域の各領域ごとにマイクロレンズと受光部列を配置し、撮影レンズ21の焦点検出を行う。図9は、図8に示すマイクロレンズアレイ52と受光部アレイ53の右上隅の領域BとCの部分を拡大して示す。   FIG. 8 is a view of the microlens array 52 and the light receiving unit array 53 viewed from the Z direction in FIG. In FIG. 8, the microlens array 52 and the light receiving portion array 53 disposed behind the microlens array 52 are drawn in an overlapping manner, and the illustration of the light shielding mask 56 (see FIG. 4) provided on the microlens surface is omitted. As described above, in this embodiment, a microlens and a light receiving section row are arranged for each of the 15 areas in the shooting screen, and the focus of the shooting lens 21 is detected. FIG. 9 is an enlarged view of regions B and C in the upper right corner of the microlens array 52 and the light receiving unit array 53 shown in FIG.

撮影画面の四隅の領域では、撮影画面のメリディオナル方向とサジタル方向において撮影レンズ21の焦点検出を行う。例えば図8に示す領域Cでは、図9に示す線分Cm1、Cm2、・・上の画素列(マイクロレンズとそのマイクロレンズに対応する受光部列)の出力信号を用いて撮影画面のメリディオナル方向のコントラスト分布に応じた焦点検出を行うとともに、線分Cs1、Cs2、・・上の画素列の出力信号を用いて撮影画面のサジタル方向のコントラスト分布に応じた焦点検出を行う。   In the four corner areas of the shooting screen, focus detection of the shooting lens 21 is performed in the meridional direction and the sagittal direction of the shooting screen. For example, in the area C shown in FIG. 8, the meridional direction of the shooting screen using the output signals of the pixel rows (microlenses and light receiving portion rows corresponding to the microlenses) on the line segments Cm1, Cm2,. , And focus detection according to the contrast distribution in the sagittal direction of the imaging screen using the output signals of the pixel columns on the line segments Cs1, Cs2,.

また、領域Bにおいても、線分Bm1、Bm2、・・上の画素列の出力信号を用いて撮影画面のメリディオナル方向のコントラスト分布に応じた焦点検出を行うとともに、線分Bs1、Bs2、・・上の画素列の出力信号を用いて撮影画面のサジタル方向のコントラスト分布に応じた焦点検出を行う。なお、撮影画面の左上隅、右下隅、左下隅の各2領域においても同様に、撮影画面のメリディオナル方向とサジタル方向の焦点検出を行う。   Also in the region B, focus detection is performed according to the contrast distribution in the meridional direction of the photographing screen using the output signals of the pixel columns on the line segments Bm1, Bm2,... And the line segments Bs1, Bs2,. Focus detection is performed according to the contrast distribution in the sagittal direction of the shooting screen using the output signal of the upper pixel row. Similarly, in the two areas of the upper left corner, the lower right corner, and the lower left corner of the shooting screen, focus detection is performed in the meridional direction and the sagittal direction of the shooting screen.

一方、図8に示すA、D領域など、撮影画面の左右方向の中央の5領域と中央上下の2領域においては、画面の左右上下方向の画素列を用いて撮影画面のメリディオナル方向とサジタル方向の焦点検出を行う。   On the other hand, in the five areas at the center in the left-right direction and the two areas above and below the center, such as areas A and D shown in FIG. Focus detection is performed.

このように、撮影画面のメリディオナル方向とサジタル方向の焦点検出を行うのは、前者は撮影レンズ21の収差の補正が比較的容易に行え、後者は撮影レンズ21の収差による誤差が少なく、撮影レンズ21の瞳を通る一対の焦点検出用光束のケラレの影響が少ないことにある。   As described above, the focus detection in the meridional direction and the sagittal direction of the photographing screen is performed, the former can relatively easily correct the aberration of the photographing lens 21, and the latter has a small error due to the aberration of the photographing lens 21, and the photographing lens. This is because the influence of vignetting of a pair of focus detection light beams passing through 21 pupils is small.

図10は、図2のZ矢印と反対の方向にサブミラー端面12b(図1のA部および図2参照)を見た図であり、サブミラー端面12bに描かれた指標121を示す。上述したように、この指標121はサブミラー12の撮影光路中における静止位置の経年変化を検出するための指標であり、黒地121bに白線121aが塗装により描かれている。なお、この指標をサブミラー12に直接設けずに、サブミラー12と一体的に動くミラーホルダーなどに設けてもよい。   FIG. 10 is a view of the submirror end face 12b (see A part of FIG. 1 and FIG. 2) viewed in the direction opposite to the Z arrow in FIG. 2, and shows an index 121 drawn on the submirror end face 12b. As described above, this index 121 is an index for detecting the secular change of the stationary position in the photographing optical path of the sub mirror 12, and the white line 121a is drawn on the black background 121b by painting. Note that this index may not be provided directly on the sub-mirror 12 but may be provided on a mirror holder that moves integrally with the sub-mirror 12.

図11は、図2のY矢印方向からサブミラー12、マイクロレンズアレイ52および受光部アレイ53を見た図である。図10に示す指標121の白線121aに対して、マイクロレンズ521Aと受光部列531Aからなるサブミラー位置検出用画素と、マイクロレンズ521Bと受光部列531Bからなるサブミラー位置検出用画素とによって、上述した第1の焦点検出方法にしたがって図2のZ矢印方向の焦点検出を行う。ただし、上述した第1の焦点検出方法で説明したA列とB列の受光部列の間隔に比べ、サブミラー位置検出用受光部列531Aと531Bの間隔ははるかに広い。   FIG. 11 is a view of the sub mirror 12, the micro lens array 52, and the light receiving unit array 53 as seen from the direction of the arrow Y in FIG. With respect to the white line 121a of the index 121 shown in FIG. 10, the sub-mirror position detection pixel including the microlens 521A and the light-receiving unit row 531A and the sub-mirror position detection pixel including the micro-lens 521B and the light-receiving unit row 531B are described above. According to the first focus detection method, focus detection in the direction of the arrow Z in FIG. 2 is performed. However, the distance between the sub-mirror position detection light receiving section rows 531A and 531B is much larger than the distance between the light receiving section rows A and B described in the first focus detection method described above.

通常の焦点検出で使用する隣接する対の受光部列をサブミラー位置検出用受光部列として用いると、受光部アレイ53から指標121までの距離がながいため、デフォーカス量に対する受光部アレイ53上の像ずれの比率が小さくなり、焦点検出精度が低くなる。そこで、この一実施の形態ではサブミラー位置検出用の一対の受光部列の間隔を広くすることによって、十分な焦点検出精度を確保する。   When adjacent pairs of light receiving section rows used for normal focus detection are used as the light receiving section rows for sub mirror position detection, the distance from the light receiving section array 53 to the index 121 is short, and therefore, on the light receiving section array 53 with respect to the defocus amount. The ratio of image shift becomes small, and the focus detection accuracy becomes low. Therefore, in this embodiment, sufficient focus detection accuracy is ensured by widening the interval between the pair of light receiving section rows for detecting the sub mirror position.

サブミラー位置検出用の一対の画素、つまりマイクロレンズ521Aと受光部列531Aからなる画素およびマイクロレンズ521Bと受光部列531Bからなる画素と、通常の焦点検出用画素との違いは、第1に、マイクロレンズの中心と該マイクロレンズに対応する受光部列の中心とのシフト量(偏位量)が、焦点検出用画素に比べてサブミラー位置検出用画素の方が大きいことである。焦点検出用画素では、通常、撮影画面の中心、すなわち撮影レンズの光軸と交わる点から遠ざかるにしたがって上記シフト量が増加するが、この焦点検出用画素のシフトに比べてサブミラー位置検出用画素のシフト量は大きい。   The difference between a pair of sub-mirror position detection pixels, that is, a pixel made up of the microlens 521A and the light receiving section row 531A and a pixel made up of the microlens 521B and the light receiving section row 531B, and a normal focus detection pixel is as follows. The shift amount (deviation amount) between the center of the microlens and the center of the light receiving section row corresponding to the microlens is larger in the sub-mirror position detection pixel than in the focus detection pixel. In the focus detection pixel, the shift amount generally increases as the distance from the center of the shooting screen, that is, the point intersecting the optical axis of the shooting lens, is larger than the shift of the focus detection pixel. The shift amount is large.

第2に、撮像素子の像の共役状態が異なる。焦点検出用画素では、マイクロレンズに関して受光部列と焦点検出面16a近傍の面16b(図5参照)が共役である。これに対しサブミラー位置検出用画素では、受光部列と指標121の面がマイクロレンズに関してほぼ共役関係にある。   Second, the conjugate state of the image of the image sensor is different. In the focus detection pixel, the light receiving unit row and the surface 16b in the vicinity of the focus detection surface 16a (see FIG. 5) are conjugate with respect to the microlens. On the other hand, in the sub-mirror position detection pixel, the light receiving section row and the surface of the index 121 are substantially conjugate with respect to the microlens.

第3に、サブミラー位置検出用画素と焦点検出用画素とは一体的に形成されるので、図2のZ方向位置がほぼ同じになり、上記第2の違いから必然的に倍率が異なる。(受光部列の逆投影像/受光部列)の倍率を比較すると、焦点検出用画素に比べてサブミラー位置検出用画素の倍率は絶対値が大きい。例えば、焦点検出用画素の倍率18倍に対しサブミラー位置検出用画素の倍率は100倍になる。換言すれば、サブミラー位置検出用画素のマイクロレンズの焦点距離は、焦点検出用画素のマイクロレンズの焦点距離よりも長い。   Third, since the sub-mirror position detection pixel and the focus detection pixel are integrally formed, the positions in the Z direction in FIG. 2 are substantially the same, and the magnification is inevitably different from the second difference. Comparing the magnifications of the (back projected image of the light receiving unit row / light receiving unit row), the magnification of the sub mirror position detection pixel is larger than that of the focus detection pixel. For example, the magnification of the sub mirror position detection pixel is 100 times that of the focus detection pixel of 18 times. In other words, the focal length of the micro lens of the sub-mirror position detection pixel is longer than the focal length of the micro lens of the focus detection pixel.

この一実施の形態では、サブミラー位置検出用の指標121をサブミラー12の下端面12bに設けたので、指標121とサブミラー位置検出用画素の受光部列531A、531Bとの間の距離が短くなり、サブミラー位置検出用画素のマイクロレンズ521A、521Bの焦点距離を最小限とすることができる。なお、サブミラー位置検出用指標121の設置場所はサブミラー12の下端面12bに限定されず、例えばサブミラー12の反射面12aに設置してもよいし、上述したようにサブミラー12とともに動くホルダーなどに設置してもよい。   In this embodiment, since the index 121 for detecting the sub mirror position is provided on the lower end surface 12b of the sub mirror 12, the distance between the index 121 and the light receiving part rows 531A and 531B of the sub mirror position detecting pixels is shortened. The focal length of the micro lenses 521A and 521B of the sub mirror position detection pixel can be minimized. The installation location of the sub mirror position detection index 121 is not limited to the lower end surface 12b of the sub mirror 12. For example, the sub mirror position detection index 121 may be installed on the reflection surface 12a of the sub mirror 12, or may be installed on a holder that moves with the sub mirror 12 as described above. May be.

次に、サブミラー位置検出用画素の受光部出力に基づく指標位置の検出結果は、サブミラー12の静止位置の経年変化を示す。ボディ駆動制御装置20(図1参照)は、工場出荷時の指標位置と、使用中に検出された指標位置とを比較し、その差に応じた焦点補正値を予め記憶したテーブル参照、あるいは計算により求める。この補正値を用いて焦点検出用画素の受光部出力に基づく焦点検出結果を補正し、サブミラー12の撮影光路内における静止位置の経年変化に起因した焦点検出誤差のない撮影レンズ21の焦点検出結果を得る。   Next, the detection result of the index position based on the light receiving unit output of the sub mirror position detection pixel indicates the secular change of the stationary position of the sub mirror 12. The body drive control device 20 (see FIG. 1) compares the index position at the time of factory shipment and the index position detected during use, and refers to a table in which a focus correction value corresponding to the difference is stored in advance or calculated. Ask for. Using this correction value, the focus detection result based on the light receiving unit output of the focus detection pixel is corrected, and the focus detection result of the photographic lens 21 without the focus detection error due to the secular change of the stationary position in the photographic optical path of the sub mirror 12 is obtained. Get.

なお、工場出荷時の指標位置と使用中に検出された指標位置との差が予め設定した警報しきい値を超えたら、撮影者に警報するようにしてもよい。撮影者はこの警報を見て専門機関に点検修理を依頼することができる。   The photographer may be warned when the difference between the index position at the time of shipment from the factory and the index position detected during use exceeds a preset alarm threshold value. The photographer sees this warning and can request inspection and repair from a specialized organization.

この一実施の形態では、カメラボディ1内において、サブミラー端面12bに指標121を設けるとともに、マイクロレンズアレイ52と受光部アレイ53にサブミラー位置検出用画素(521A、531A)、(521B、531B)を設け、サブミラー12の静止位置の経年変化を検出する構成としたが、カメラの内部構造によっては被写体光の明るさだけでは指標121の識別が困難な場合がある。そのような構造のカメラでは指標121を照明するためにLEDなどの照明灯を設け、サブミラー位置検出時に点灯してもよい。   In this embodiment, in the camera body 1, an index 121 is provided on the submirror end face 12b, and submirror position detection pixels (521A, 531A), (521B, 531B) are provided in the microlens array 52 and the light receiving section array 53. However, depending on the internal structure of the camera, it may be difficult to identify the index 121 only with the brightness of the subject light. In the camera having such a structure, an illumination lamp such as an LED may be provided to illuminate the indicator 121 and may be turned on when the sub mirror position is detected.

なお、照明に近赤外光を用いると、照明時に光学ファインダーから観察される被写体像に迷光が重畳して見づらくなるのを防止できる。この場合、サブミラー位置検出用画素のみ、近赤外光をよく感知し、通常の焦点検出用画素では余り感知しない構成とすると、焦点検出時に撮影レンズ21の赤外収差による影響を抑制することができる上に、照明時に光学ファインダーから観察される被写体像に迷光が重畳して見づらくなるのを防止できるという利点がある。具体的には、焦点検出用画素とサブミラー位置検出用画素とで、分光透過率が異なる色吸収フィルターをマイクロレンズの下面、もしくは受光部上に形成すればよい。   Note that when near-infrared light is used for illumination, stray light can be prevented from being superimposed on a subject image observed from the optical viewfinder during illumination and difficult to see. In this case, if only the sub-mirror position detection pixel senses near infrared light well and the normal focus detection pixel does not sense much, the influence of the infrared aberration of the photographing lens 21 can be suppressed during focus detection. In addition, there is an advantage that stray light can be prevented from being superimposed on the subject image observed from the optical viewfinder during illumination and difficult to see. Specifically, color absorption filters having different spectral transmittances may be formed on the lower surface of the microlens or on the light receiving portion between the focus detection pixel and the sub-mirror position detection pixel.

上述した一実施の形態では、撮影レンズの焦点検出を優先するため、焦点検出用画素領域を配置した残りの部分にサブミラー位置検出用画素を配置する例を示したが、この配置に特に制約はない。   In the embodiment described above, in order to give priority to the focus detection of the photographing lens, the example in which the sub mirror position detection pixels are arranged in the remaining portion where the focus detection pixel area is arranged has been described. Absent.

上述した一実施の形態では、各マイクロレンズ下の複数の受光部をメリディオナル方向またはサジタル方向に配列する例を示したが、例えば図12に示すように複数の受光部を両方向に二次元状に展開してもよい。なお、図12では撮影画面の右上隅の領域におけるマイクロレンズと受光部の配列を示す。このような配置では、マイクロレンズの並び方向と垂直な方向に連なる複数の受光部の出力を合成し、上述した一実施の形態における一つの受光部出力として焦点検出演算に用いればよい。このような二次元状の受光部配列では、マイクロレンズの並び方向を図12のEs方向およびEm方向のいずれの方向とすることができ、同一画素を複数の方向の焦点検出に用いることができる。   In the above-described embodiment, an example in which a plurality of light receiving units under each microlens is arranged in the meridional direction or the sagittal direction has been described. For example, as illustrated in FIG. 12, the plurality of light receiving units are two-dimensionally arranged in both directions. May be deployed. FIG. 12 shows the arrangement of microlenses and light receiving portions in the upper right corner area of the shooting screen. In such an arrangement, the outputs of a plurality of light receiving units connected in a direction perpendicular to the arrangement direction of the microlenses may be combined and used for focus detection calculation as one light receiving unit output in the above-described embodiment. In such a two-dimensional light receiving section arrangement, the arrangement direction of the microlenses can be either the Es direction or the Em direction in FIG. 12, and the same pixel can be used for focus detection in a plurality of directions. .

さらに、受光部アレイ上の複数の受光部を、メリディオナル方向あるいはサジタル方向と無関係に、単に二次元状に配列してもよい。このような配列では、複数の受光部を一つのグループとして扱い、焦点検出を行う方向に沿って複数のグループを設定し、各グループ内の受光部出力を合成して上述した焦点検出演算を行えばよい。この構成の受光部アレイを用いる利点としては、一般に撮像用に用いられる撮像素子を流用できるか、あるいはそのような撮像素子と製造工程を共有した素子を用いることができる。また、マイクロレンズアレイと受光部アレイとを貼り合わせるときの位置合わせを簡略化できる。   Further, the plurality of light receiving portions on the light receiving portion array may be simply arranged in a two-dimensional manner regardless of the meridional direction or the sagittal direction. In such an arrangement, a plurality of light receiving units are handled as one group, a plurality of groups are set along the direction of focus detection, and the above-described focus detection calculation is performed by synthesizing the light receiving unit outputs in each group. Just do it. As an advantage of using the light receiving section array having this configuration, an image sensor generally used for imaging can be used, or an element sharing a manufacturing process with such an image sensor can be used. Further, it is possible to simplify the alignment when the microlens array and the light receiving unit array are bonded together.

一実施の形態の撮像装置の構成を示す断面図Sectional drawing which shows the structure of the imaging device of one embodiment 一実施の形態の撮像装置に組み込まれている焦点検出光学系の構成を示す図The figure which shows the structure of the focus detection optical system incorporated in the imaging device of one embodiment マイクロレンズアレイと受光部アレイの正面図Front view of microlens array and light receiving unit array 図3に示す撮影画面右上隅の2つの領域のマイクロレンズおよび受光部列を示す図The figure which shows the micro lens and light-receiving part row | line | column of two area | regions of the imaging | photography screen upper right corner shown in FIG. 一実施の形態の焦点検出装置による第1の焦点検出方法を説明するための図The figure for demonstrating the 1st focus detection method by the focus detection apparatus of one embodiment. 一実施の形態の焦点検出装置による第2の焦点検出方法を説明するための図The figure for demonstrating the 2nd focus detection method by the focus detection apparatus of one embodiment. 焦点検出装置の詳細な構成を示すブロック図Block diagram showing the detailed configuration of the focus detection device マイクロレンズアレイと受光部アレイを図2のZ方向から見た図The figure which looked at the micro lens array and the light-receiving part array from the Z direction of FIG. 図8に示すマイクロレンズアレイと受光部アレイの右上隅の領域を拡大した図The figure which expanded the area | region of the upper right corner of the micro lens array and light-receiving part array which are shown in FIG. 図2のZ矢印と反対の方向にサブミラー端面を見た図The figure which looked at the submirror end face in the direction opposite to the Z arrow in FIG. 図2のY矢印方向からサブミラー、マイクロレンズアレイおよび受光部アレイを見た図The figure which looked at the submirror, the micro lens array, and the light-receiving part array from the Y arrow direction of FIG. 受光部アレイの受光部配列の変形例を示す図The figure which shows the modification of the light-receiving part arrangement | sequence of a light-receiving part array

符号の説明Explanation of symbols

12;サブミラー、12a;反射面、12b;サブミラー端面、16;焦点検出装置、20;ボディ駆動制御装置、21;撮影レンズ、23;レンズ駆動制御装置、52;マイクロレンズアレイ、53;受光部アレイ、521A、521B;サブミラー位置検出用マイクロレンズ、531A、531B;サブミラー位置検出用受光部列、121;指標、121a;白線;121b;黒地 12; Submirror, 12a; Reflecting surface, 12b; Submirror end surface, 16; Focus detection device, 20; Body drive control device, 21; Shooting lens, 23; Lens drive control device, 52; Microlens array, 53; 521A, 521B; sub-mirror position detection microlens, 531A, 531B; sub-mirror position detection light receiving element row, 121; index, 121a; white line; 121b;

Claims (8)

複数の第1マイクロレンズを二次元状に配列したマイクロレンズアレイと、
複数の第1受光部を二次元状に配列して前記各マイクロレンズを透過した前記光を受光する受光部アレイと、
結像光学系を透過し、ミラーで反射した光を前記マイクロレンズアレイを介して前記受光部アレイで受光した前記受光部の出力に基づいて前記結像光学系の焦点調節状態を演算する焦点検出演算手段とを備えた焦点検出装置において、
前記ミラーは指標を備え、
前記第1マイクロレンズとは異なる光学特性を有して前記指標からの光を検出する一対の第2マイクロレンズと、
前記一対の第2マイクロレンズをそれぞれ透過した光を受光する一対の第2受光部とを備えることを特徴とする焦点検出装置。
A microlens array in which a plurality of first microlenses are arranged two-dimensionally;
A light receiving section array for receiving the light transmitted through each of the microlenses by arranging a plurality of first light receiving sections in a two-dimensional manner;
Focus detection that calculates the focus adjustment state of the imaging optical system based on the output of the light receiving unit that receives the light transmitted through the imaging optical system and reflected by the mirror by the light receiving unit array via the micro lens array In a focus detection device comprising a calculation means,
The mirror includes an indicator;
A pair of second microlenses having optical characteristics different from those of the first microlens and detecting light from the index;
A focus detection apparatus comprising: a pair of second light receiving units that receive light respectively transmitted through the pair of second microlenses.
請求項1に記載の焦点検出装置において、
前記一対の第2マイクロレンズを前記マイクロレンズアレイに配置した前記複数の第1マイクロレンズの間に配置するとともに、前記一対の第2受光部を前記受光部アレイに配置した前記複数の第1受光部の間に配置することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1,
The pair of second microlenses are arranged between the plurality of first microlenses arranged in the microlens array, and the pair of second light receiving units are arranged in the light receiving unit array. A focus detection device, which is disposed between the units.
請求項1または請求項2に記載の焦点検出装置において、
前記指標を前記ミラーの前記マイクロレンズアレイ側の端面に設けたことを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1 or 2,
A focus detection apparatus, wherein the index is provided on an end surface of the mirror on the microlens array side.
請求項1〜3のいずれか一項に記載の焦点検出装置において、
前記第2マイクロレンズと当該第2マイクロレンズに対応する前記第2受光部との偏位量は、前記第1マイクロレンズと当該第1マイクロレンズに対応する前記複数の第1受光部との偏位量よりも大きいことを特徴とする焦点検出装置。
In the focus detection apparatus according to any one of claims 1 to 3,
The amount of deviation between the second microlens and the second light receiving unit corresponding to the second microlens is the deviation between the first microlens and the plurality of first light receiving units corresponding to the first microlens. A focus detection device characterized by being larger than a unit amount.
請求項1〜4のいずれか一項に記載の焦点検出装置において、
前記第2マイクロレンズの焦点距離は、前記第1マイクロレンズの焦点距離よりも長いことを特徴とする焦点検出装置。
In the focus detection apparatus according to any one of claims 1 to 4,
The focus detection apparatus according to claim 1, wherein a focal length of the second microlens is longer than a focal length of the first microlens.
請求項3〜5のいずれか一項に記載の焦点検出装置において、
前記第2受光部と、前記ミラーの前記指標が設けられている端面とが、前記第2マイクロレンズに関して共役になっていることを特徴とする焦点検出装置。
In the focus detection apparatus according to any one of claims 3 to 5,
The focus detection apparatus, wherein the second light receiving unit and an end surface of the mirror on which the index is provided are conjugate with respect to the second microlens.
請求項1〜6のいずれか一項に記載の焦点検出装置において、
一対の前記第2受光部の出力に基づいて前記第1受光部の出力を補正することにより、前記焦点調節状態を補正する補正手段を備えることを特徴とする焦点検出装置。
In the focus detection apparatus according to any one of claims 1 to 6,
A focus detection apparatus comprising: a correction unit that corrects the focus adjustment state by correcting the output of the first light receiving unit based on the outputs of the pair of second light receiving units.
請求項1〜7のいずれか一項に記載の焦点検出装置を備えることを特徴とする撮像装置。   An imaging apparatus comprising the focus detection apparatus according to claim 1.
JP2008034168A 2008-02-15 2008-02-15 Focus detection device and imaging apparatus Pending JP2009192882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008034168A JP2009192882A (en) 2008-02-15 2008-02-15 Focus detection device and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008034168A JP2009192882A (en) 2008-02-15 2008-02-15 Focus detection device and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2009192882A true JP2009192882A (en) 2009-08-27

Family

ID=41074928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034168A Pending JP2009192882A (en) 2008-02-15 2008-02-15 Focus detection device and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2009192882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058379A (en) * 2010-09-07 2012-03-22 Toshiba Corp Solid-state image pickup device
JP2013228692A (en) * 2012-03-29 2013-11-07 Canon Inc Image capturing device and camera system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058379A (en) * 2010-09-07 2012-03-22 Toshiba Corp Solid-state image pickup device
JP2013228692A (en) * 2012-03-29 2013-11-07 Canon Inc Image capturing device and camera system
US9568606B2 (en) 2012-03-29 2017-02-14 Canon Kabushiki Kaisha Imaging apparatus for distance detection using high and low sensitivity sensors with inverted positional relations

Similar Documents

Publication Publication Date Title
US7767946B2 (en) Focus detection device and image pick-up device
US7745772B2 (en) Image forming state detection device
JP4788481B2 (en) Imaging state detection device, camera, and light receiving unit
JP2007121896A (en) Focus detector and optical system
JP2008152012A (en) Imaging element, focus detection device and imaging apparatus
JP2009151154A (en) Photodetector, focus detector and imaging apparatus
JP2006071950A (en) Optical equipment
JP5220375B2 (en) Imaging apparatus and imaging apparatus having the same
US7582854B2 (en) Focus detection apparatus for detecting a relative positional relationship between a pair of object images
JP2007316521A (en) Optoelectronic detector, optical characteristics detector and imaging apparatus
JP2009192882A (en) Focus detection device and imaging apparatus
JP2009294301A (en) Light receiving device and focus detector
JP2007148338A (en) Optical apparatus
JP4938922B2 (en) Camera system
JP2017219791A (en) Control device, imaging device, control method, program, and storage medium
JPH08286102A (en) Camera with focus detecting optical system
JP5701048B2 (en) Focus detection device
JP2009128843A (en) Focus detecting device and image pickup apparatus having the same
JP2007033652A (en) Focus detector and imaging apparatus having the same
JP5287450B2 (en) Focus detection apparatus and imaging apparatus
JP4323592B2 (en) Focus detection device
JP2018026604A (en) Imaging device and imaging device system
JP4335638B2 (en) Camera viewfinder lighting device
JP2006184321A (en) Focus detecting device and optical equipment equipped with focus detecting device
JP2011043670A (en) Focus detecting device and image pickup apparatus