JP2009192697A - Method of forming electrophotograph - Google Patents

Method of forming electrophotograph Download PDF

Info

Publication number
JP2009192697A
JP2009192697A JP2008031721A JP2008031721A JP2009192697A JP 2009192697 A JP2009192697 A JP 2009192697A JP 2008031721 A JP2008031721 A JP 2008031721A JP 2008031721 A JP2008031721 A JP 2008031721A JP 2009192697 A JP2009192697 A JP 2009192697A
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
charging
electrophotographic
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008031721A
Other languages
Japanese (ja)
Inventor
Tomohito Ozawa
智仁 小澤
Hironori Owaki
弘憲 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008031721A priority Critical patent/JP2009192697A/en
Publication of JP2009192697A publication Critical patent/JP2009192697A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve both of a charging potential of an a-Si electrophotographic photoreceptor and a photomemory phenomenon even when a PS (process speed) is increased. <P>SOLUTION: A method of forming an electrophotograph is disclosed, comprising repetition of the following steps to form an electrophotograph. The steps are: a main charging step of charging the surface of an electrophotographic photoreceptor; followed by an electrostatic latent image forming step of forming an electrostatic latent image on the surface of the electrophotographic photoreceptor; a developing step of developing the electrostatic latent image into a toner image; a transferring step of transferring the toner image onto a recording medium; subsequently, a first discharging step of discharging the electrostatic latent image; then a sub-charging step of charging the surface of the electrophotographic photoreceptor; and a second discharging step of discharging the surface of the electrophotographic photoreceptor. The surface potential of the electrophotographic photoreceptor discharged in the second discharging step is higher than the surface potential of the electrophotographic photoreceptor discharged in the first discharging step. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複写機、プリンター、ファックス等の電子写真装置を用いた電子写真の形成方法に関するものである。   The present invention relates to an electrophotographic forming method using an electrophotographic apparatus such as a copying machine, a printer, and a fax machine.

基板上に非晶質材料の感光層を有する電子写真感光体が広く知られている。その一例として、金属等の基板上にCVD等の成膜技術により形成されたシリコン原子を母体とする非晶質材料を感光層としたアモルファスシリコン電子写真感光体が挙げられる。このアモルファスシリコン電子写真感光体は、表面硬度が高いことから耐摩耗性に優れているという特徴を持っている。そのため、アモルファスシリコン電子写真感光体を用いた高速な電子写真装置が製品化され、また、アモルファスシリコン電子写真感光体を高速回転させた高速電子写真装置による電子写真の形成方法についても数多くの提案がなされている。   An electrophotographic photosensitive member having a photosensitive layer made of an amorphous material on a substrate is widely known. As an example, there is an amorphous silicon electrophotographic photosensitive member in which an amorphous material based on silicon atoms formed on a substrate of metal or the like by a film forming technique such as CVD is used as a photosensitive layer. This amorphous silicon electrophotographic photosensitive member is characterized by excellent wear resistance due to its high surface hardness. Therefore, a high-speed electrophotographic apparatus using an amorphous silicon electrophotographic photosensitive member has been commercialized, and many proposals have also been made regarding a method for forming an electrophotographic image using a high-speed electrophotographic apparatus in which the amorphous silicon electrophotographic photosensitive member is rotated at a high speed. Has been made.

図7はアモルファスシリコン電子写真感光体(以下、単に電子写真感光体とも表記する)を用いた従来の電子写真装置の模式的な概略図である。図7を用いて従来の電子写真の形成方法を説明する。まず、電子写真感光体701を回転させ、電子写真感光体表面を帯電器702により均一に帯電させる。その後、静電潜像手段708により電子写真感光体表面に光を露光し、電子写真感光体表面に静電潜像形成した後、現像器714より供給されるトナーを用いて現像を行う。この結果、電子写真感光体表面にトナー像が形成される。そして、このトナー像を転写帯電器706により転写材712に転写し、電子写真感光体701から転写材712を分離して、トナー像を転写材に定着させる。   FIG. 7 is a schematic schematic view of a conventional electrophotographic apparatus using an amorphous silicon electrophotographic photosensitive member (hereinafter also simply referred to as an electrophotographic photosensitive member). A conventional electrophotographic forming method will be described with reference to FIG. First, the electrophotographic photosensitive member 701 is rotated, and the surface of the electrophotographic photosensitive member is uniformly charged by the charger 702. Thereafter, the electrostatic latent image means 708 exposes the surface of the electrophotographic photosensitive member to form an electrostatic latent image on the surface of the electrophotographic photosensitive member, and then development is performed using toner supplied from the developing unit 714. As a result, a toner image is formed on the surface of the electrophotographic photosensitive member. Then, the toner image is transferred to a transfer material 712 by a transfer charger 706, the transfer material 712 is separated from the electrophotographic photosensitive member 701, and the toner image is fixed to the transfer material.

一方、トナー像が転写された電子写真感光体表面に残留するトナーをクリーナー711により除去し、その後、電子写真感光体表面を露光することにより電子写真感光体中の静電潜像時の残キャリアを除電する。この一連のプロセスを繰り返すことで連続して画像形成が行われる。   On the other hand, the toner remaining on the surface of the electrophotographic photosensitive member to which the toner image is transferred is removed by a cleaner 711, and then the surface of the electrophotographic photosensitive member is exposed to expose residual carriers at the time of the electrostatic latent image in the electrophotographic photosensitive member. Remove the charge. Image formation is continuously performed by repeating this series of processes.

しかしながら、電子写真装置の高速化が進み、上述した従来の電子写真の形成方法では、
1.除電が不十分となり、静電潜像形成工程の露光時に発生した残キャリアが次のプロセス時に画像上に出現するフォトメモリが発生したり、また、
2.帯電時間が不十分なために、帯電工程で十分な帯電電位を印加することができなくなったり、
3.画像濃度が薄い画像が出力されたりする場合があった。
However, the speedup of the electrophotographic apparatus has progressed, and in the conventional electrophotographic forming method described above,
1. The static charge becomes insufficient, and a photo memory is generated in which the residual carrier generated during exposure in the electrostatic latent image forming process appears on the image during the next process.
2. Due to insufficient charging time, it becomes impossible to apply a sufficient charging potential in the charging process,
3. An image with a low image density may be output.

そのため、除電器を複数設けることによりフォトメモリを従来よりも緩和する技術や、帯電器を複数設けることにより、電子写真装置の高速化による画像濃度の低下が生じないように帯電電位を十分確保する技術等が多数開示されている。   For this reason, a technology that relaxes the photo memory by providing a plurality of static eliminators or a plurality of chargers ensures a sufficient charging potential so as not to cause a decrease in image density due to speeding up of the electrophotographic apparatus. Many technologies are disclosed.

例えば、セレン感光体の場合、特許文献1に静電潜像を形成する露光源から感光体の回転方向下流に向かって、第1除電器、補助帯電器、第2除電器、主帯電器を有する電子写真装置の電子写真の形成方法が開示されている。開示されている内容は、第1除電器で短波長の除電光を、また、第2除電器で長波長の除電光を用いることによりフォトメモリの発生を防止し、高解像度を実現可能な電子写真の形成方法である。   For example, in the case of a selenium photoconductor, in Patent Document 1, a first static eliminator, an auxiliary charger, a second static eliminator, and a main charger are arranged from an exposure source that forms an electrostatic latent image toward the downstream in the rotation direction of the photoconductor. An electrophotographic forming method for an electrophotographic apparatus is disclosed. What is disclosed is that an electronic device capable of realizing high resolution by preventing the generation of a photo memory by using a short-wave discharge light with a first discharger and a long-wave discharge light with a second discharger. This is a method of forming a photograph.

また、第1帯電器、第2帯電器(転写帯電器)、第1全面露光器、第2全面露光器及び制御装置を有し、第1全面露光器が主帯電器よりも、また、第2全面露光器が第2帯電器よりも有機感光体移動方向下流側に配置され、制御装置により画像形成に先立って、第1、第2帯電器及び第1、第2全面露光器を作動させ、2回の帯電及び全面露光を行う前処理が行われる。その後、第2帯電器の帯電極性を反対にし、また、第1全面露光器を転写同時露光器として、画像形成が行われる。このような画像形成前に前処理を行うことにより、帯電電位の低下を抑え、帯電電位の安定性向上を可能とした電子写真の形成方法に関する技術が特許文献2に開示されている。
特開平05−297785号公報 特開2003−295535号公報
In addition, the first charger, the second charger (transfer charger), the first entire exposure device, the second entire exposure device, and the control device, the first entire exposure device is more than the main charger, Two full-face exposure devices are arranged downstream of the second charger in the direction of movement of the organic photoreceptor, and the control device activates the first and second chargers and the first and second full-face exposure devices prior to image formation. A pretreatment is performed in which charging and entire exposure are performed twice. Thereafter, the charging polarity of the second charger is reversed, and image formation is performed using the first full-surface exposure device as a transfer simultaneous exposure device. Patent Document 2 discloses a technique relating to a method for forming an electrophotographic image that suppresses a decrease in charging potential and improves the stability of the charging potential by performing such pre-processing before image formation.
JP 05-297785 A JP 2003-295535 A

近年、電子写真装置が軽印刷領域へと市場を広げる一方で、エコロジーへの意識の高まりから、アモルファスシリコン(a−Siとも表記)電子写真感光体を用い、プロセススピード(PSとも表記)を従来よりも高速化し、且つ、高画質化することが求められている。   In recent years, while the market for electrophotographic devices has expanded to the light printing area, due to the growing awareness of ecology, amorphous silicon (also expressed as a-Si) electrophotographic photosensitive members have been used, and the process speed (also expressed as PS) has been conventionally increased. There is a demand for higher speed and higher image quality.

特許文献1に開示された技術は、除電光の波長を変えることにより、第1除電器及び第2除電器の除電光で発生するキャリアの発生位置を変化させている。これにより、静電潜像形成時に露光部と非露光部での膜中のキャリア密度の差を小さくすることに可能となるため、フォトメモリ(画像濃度ムラ)の改善が可能となる。   The technique disclosed in Patent Document 1 changes the generation position of carriers generated by the static elimination light of the first static elimination device and the second static elimination device by changing the wavelength of the static elimination light. This makes it possible to reduce the difference in carrier density in the film between the exposed area and the non-exposed area when forming the electrostatic latent image, so that photo memory (image density unevenness) can be improved.

一方、特許文献2に開示された技術は、1枚目の画像出力前に前処理として複数回の帯電及び全面露光を行うことにより、有機感光体の感光層内に存在する分子レベルの欠陥にトラップされたキャリアの除去を行っている。これにより、通常の1回の帯電及び全面露光にて前処理をするよりも1枚目の画像出力までの時間が短宿でき、且つ、1枚目の帯電電荷の低下を抑えることが可能となるため、帯電電位の向上が可能となる。   On the other hand, the technique disclosed in Patent Document 2 eliminates defects at the molecular level existing in the photosensitive layer of the organic photoreceptor by performing multiple times of charging and overall exposure as preprocessing before outputting the first image. The trapped carrier is removed. As a result, it is possible to reduce the time until the first image is output, compared to the case where the pre-processing is performed by normal one-time charging and overall exposure, and it is possible to suppress the decrease in the first charged charge. Therefore, the charging potential can be improved.

しかしながら、フォトメモリの改善と、帯電電位の向上と、を同時に解決することは困難であった。そのため、プロセススピードが高速化されるにつれ画像濃度ムラや、画像濃度低下がより顕著に表れてしまうという問題が発生する場合があった。   However, it has been difficult to solve the improvement of the photo memory and the improvement of the charging potential at the same time. Therefore, as the process speed is increased, there may be a problem that the image density unevenness and the image density decrease appear more remarkably.

特許文献1及び2に開示されている技術を用いても同様に、a−Si電子写真感光体を用いた電子写真装置では、PSが高速化された場合、画像濃度の低下と画像濃度ムラとを同時に改善することは困難であった。   Similarly, even when the techniques disclosed in Patent Documents 1 and 2 are used, in an electrophotographic apparatus using an a-Si electrophotographic photosensitive member, when PS is speeded up, image density lowering and image density unevenness are caused. It was difficult to improve simultaneously.

即ち、耐摩耗性の良いa−Si電子写真感光体を用い、PSが高速で、且つ、画像濃度ムラや、画像濃度低下の改善が行われた電子写真装置が望まれている。PSを高速化すると言うことは、実際は、a−Si電子写真感光体の回転速度を上げることである。   That is, there is a demand for an electrophotographic apparatus using an a-Si electrophotographic photosensitive member with good wear resistance, high PS, and improved image density unevenness and image density reduction. To increase the speed of PS actually means to increase the rotational speed of the a-Si electrophotographic photosensitive member.

この結果、a−Si電子写真感光体を用いた電子写真装置のPSを高速化すると、次のような課題が挙げられる。   As a result, when the speed of PS of an electrophotographic apparatus using an a-Si electrophotographic photosensitive member is increased, the following problems are raised.

第1に、a−Si電子写真感光体は、有機感光体に比べ比誘電率が大きいため、感光体の表面電位を所定の電位にするためには、有機感光体よりも多量な電荷を感光体表面に供給する必要がある。しかし、高速な電子写真プロセスにおいては、PSが速くなると、感光体の帯電器を通過する時間、即ち、帯電工程の時間が短くなり、帯電器から感光体表面に供給される電荷量が減少してしまう。その結果、帯電電位の低下により画像濃度低下を生じる場合があった。   First, since the a-Si electrophotographic photosensitive member has a relative dielectric constant larger than that of the organic photosensitive member, in order to set the surface potential of the photosensitive member to a predetermined potential, a larger amount of charge than the organic photosensitive member is exposed. It needs to be supplied to the body surface. However, in a high-speed electrophotographic process, when PS becomes faster, the time for passing through the photoreceptor charger, that is, the time for the charging process is shortened, and the amount of charge supplied from the charger to the photoreceptor surface is reduced. End up. As a result, there is a case where the image density is lowered due to the reduction of the charging potential.

第2に、a−Si電子写真感光体では、静電潜像形成時の露光で発生させたキャリアが、膜中の欠陥準位にトラップされてしまう。このトラップされたキャリアにより、帯電工程で、帯電された感光体表面の表面電荷を打ち消される場合がある。そのため、静電潜像形成部の電位が低下することにより、フォトメモリが発生する場合があった。フォトメモリが発生すると、画像の濃度のムラが発生するという問題があった。   Secondly, in the a-Si electrophotographic photosensitive member, carriers generated by exposure at the time of forming an electrostatic latent image are trapped in a defect level in the film. The trapped carrier may cancel the surface charge on the charged photoreceptor surface in the charging step. For this reason, a photo memory may occur due to a decrease in the potential of the electrostatic latent image forming unit. When a photo memory is generated, there is a problem that unevenness of image density occurs.

フォトメモリを改善するためには、静電潜像形成時の露光部でトラップされるキャリア密度と静電潜像形成時の非露光部でトラップされるキャリア密度の差が小さくなるように感光体全体に除電光を照射し、多量のキャリアを膜中で発生させる必要があった。しかし、高速な電子写真プロセスにおいては、除電光照射から帯電までの時間が短くなるため、帯電による感光体表面に供給される電荷と除電光で発生したキャリアとの結合確率が従来よりも高くなってしまう。その結果、静電潜像形成時の露光部と非露光部でのトラップされたキャリア密度の差がフォトメモリを改善する程まで小さくならず、画像濃度ムラが生じる場合があった。   In order to improve the photo memory, the photoconductor is designed so that the difference between the carrier density trapped in the exposed portion during electrostatic latent image formation and the carrier density trapped in the non-exposed portion during electrostatic latent image formation is reduced. It was necessary to irradiate the whole with static elimination light and generate a large amount of carriers in the film. However, in a high-speed electrophotographic process, since the time from charge removal to charge becomes shorter, the coupling probability between the charge supplied to the surface of the photoreceptor due to charge and the carrier generated by charge removal becomes higher than before. End up. As a result, the difference in trapped carrier density between the exposed portion and the non-exposed portion at the time of forming the electrostatic latent image is not so small as to improve the photo memory, and image density unevenness may occur.

そのため、除電光により膜中で発生するキャリア密度を上げる必要があるが、欠陥準位にトラップされるキャリア数は増加するものの、同時に、膜中には欠陥準位にトラップされるキャリア数よりも過剰なキャリアが残存してしまう。   Therefore, it is necessary to increase the density of carriers generated in the film by static elimination light, but the number of carriers trapped in the defect level increases, but at the same time, the number of carriers trapped in the defect level in the film is higher than the number of carriers trapped in the defect level. Excess carrier remains.

高速な電子写真プロセスにおいては、これら過剰キャリアが再結合するための時間が短くなるため、帯電工程直前での膜中のキャリア数が従来の電子写真プロセスよりも過剰となってしまう。そのため、これらキャリアが帯電中及び帯電後に感光体の表面電荷と結合してしまい、現像器位置では、従来よりも電位が低下し、その結果、画像濃度の低下が生じる場合があった。   In a high-speed electrophotographic process, the time required for these excess carriers to recombine is shortened, so that the number of carriers in the film immediately before the charging step becomes excessive as compared with the conventional electrophotographic process. For this reason, these carriers are combined with the surface charge of the photosensitive member during and after charging, and the potential at the developing device position is lower than that in the prior art. As a result, the image density may be lowered.

上述の現象は、PSが高速化されると顕著になり、特に、PSが500mm/sec以上になるとより顕著になることがわかった。   It has been found that the above-described phenomenon becomes prominent when the speed of PS is increased, and particularly, when PS becomes 500 mm / sec or more.

上述したように、a−Si電子写真感光体を用いた高速な電子写真装置では、
1.フォトメモリによる画像濃度ムラの向上と、
2.除電光により発生したキャリアによる帯電電位の減衰及び帯電時間の短縮に伴う帯電電位の低下による画像濃度低下の向上と、
を両立することが非常に困難であった。
As described above, in a high-speed electrophotographic apparatus using an a-Si electrophotographic photosensitive member,
1. Improving image density unevenness with photo memory,
2. Attenuation of charging potential due to carriers generated by static elimination light and improvement of image density reduction due to reduction of charging potential due to shortening of charging time,
It was very difficult to achieve both.

本発明の目的は、a−Si電子写真感光体を用いた高速な電子写真装置の、フォトメモリや表面電位の低下を改善することにより、画像濃度ムラや画像濃度低下を低減し、高画質化、環境性に対して良好な電子写真方法を提供することにある。   The object of the present invention is to improve image quality by reducing image density unevenness and image density reduction by improving reduction in photo memory and surface potential of a high-speed electrophotographic apparatus using an a-Si electrophotographic photosensitive member. An object of the present invention is to provide an electrophotographic method that is favorable for environmental performance.

本発明は、導電性基体上にシリコン原子を母体とする非晶質材料で構成された光導電層及び表面層を有する電子写真感光体の表面を帯電させる主帯電工程と、その後、電子写真感光体の表面に静電潜像を形成する静電潜像形成工程と、静電潜像をトナー像として現像する現像工程と、トナー像を記録媒体に転写する転写工程と、その後、静電潜像を除電する第1除電工程と、その後、
電子写真感光体の表面を帯電させる副帯電工程と、
電子写真感光体の表面の除電を行う第2除電工程と、を順次繰り返すことで電子写真を形成する電子写真の形成方法であって、
第2除電工程で除電された電子写真感光体の表面の電位が、第1除電工程で除電された電子写真感光体の表面の電位より高いことを特徴とする電子写真の形成方法である。
The present invention comprises a main charging step of charging a surface of an electrophotographic photosensitive member having a photoconductive layer and a surface layer made of an amorphous material having silicon atoms as a base on a conductive substrate, and thereafter, electrophotographic photosensitive An electrostatic latent image forming step for forming an electrostatic latent image on the surface of the body, a developing step for developing the electrostatic latent image as a toner image, a transfer step for transferring the toner image to a recording medium, and then an electrostatic latent image. A first charge eliminating step to remove the image, and then
A sub-charging step for charging the surface of the electrophotographic photosensitive member;
A method for forming an electrophotographic image by forming an electrophotographic image by sequentially repeating a second charge eliminating step for removing charge on the surface of the electrophotographic photosensitive member,
An electrophotographic forming method, wherein the surface potential of the electrophotographic photosensitive member neutralized in the second static elimination step is higher than the potential of the surface of the electrophotographic photosensitive member neutralized in the first static elimination step.

本発明の電子写真方法により、PSが高速化されても、a−Si電子写真感光体の帯電電位の向上及びフォトメモリの両方を同時に解決することが可能となった。   According to the electrophotographic method of the present invention, it is possible to solve both the improvement of the charging potential of the a-Si electrophotographic photosensitive member and the photo memory at the same time even if the speed of PS is increased.

発明者は、帯電電位の向上及びフォトメモリ両方を同時に解決することが困難である原因が、
1.静電潜像形成工程での露光部と非露光部とのキャリア密度の差を除電工程で均一にすることと、そして、
2.除電光で発生した過剰なキャリアを低減させ、帯電電荷との再結合を減少させることとの両立が難しいためであると考えた。
The inventor found that it was difficult to solve both the improvement of the charging potential and the photo memory at the same time.
1. Making the difference in carrier density between the exposed area and the non-exposed area in the electrostatic latent image forming process uniform in the static elimination process; and
2. It was thought that this was because it was difficult to achieve both the reduction of excess carriers generated by static elimination light and the reduction of recombination with charged charges.

そのため、超高速な電子写真プロセスにおいても良好な画像を連続して出力するためには、静電潜像形成工程や除電工程で感光体内に残留するキャリアを制御することが必要であると考えた。   Therefore, in order to continuously output a good image even in an ultra-high speed electrophotographic process, it was considered necessary to control carriers remaining in the photoconductor in the electrostatic latent image forming process and the charge eliminating process. .

そこで、除電器と帯電器(以下、第1除電器、主帯電器と表記する)との間に、副帯電器と第2除電器とを設けた。この構成にすることで、第1除電器の除電光の露光量を強くすることにより、静電潜像形成時に、露光部と非露光部とのキャリア密度の差の制御を行うことができる。その後、副帯電器により感光体表面に電荷を供給し、第1除電器による第1除電工程で発生した過剰なキャリアと表面電荷との結合により、電子写真感光体内の過剰なキャリア数の制御を行うことができる。更に、第2除電器による第2除電工程終了後の感光体の表面の電位を、第1除電器による第1除電工程終了後の電子写真感光体の表面の電位よりも高くなるように除電する。この結果、再度、静電潜像形成工程での露光部と非露光部とのキャリア密度の差の制御と、第2除電工程での過剰キャリアの制御を行うことができる。   Therefore, a sub-charger and a second charge remover are provided between the charge remover and the charger (hereinafter referred to as a first charge remover and a main charger). With this configuration, it is possible to control the difference in carrier density between the exposed portion and the non-exposed portion when forming an electrostatic latent image by increasing the exposure amount of the first charge remover. Thereafter, an electric charge is supplied to the surface of the photoreceptor by the sub-charger, and the excess number of carriers in the electrophotographic photosensitive member is controlled by the combination of the excess carriers generated in the first charge removal process by the first charge remover and the surface charge. It can be carried out. Further, the surface of the photoconductor after the second static elimination process by the second static eliminator is neutralized so as to be higher than the potential of the surface of the electrophotographic photosensitive member after the first static elimination process by the first static eliminator. . As a result, it is possible to control again the difference in carrier density between the exposed portion and the non-exposed portion in the electrostatic latent image forming step, and to control excess carriers in the second static elimination step.

このような感光体内に残留キャリアを制御する、つまり、電子写真感光体の表面電位を制御することにより、高速、且つ、連続して、電子写真装置により画像形成を行っても帯電電位の向上及びフォトメモリの改善が可能となることを見いだした。   By controlling the residual carrier in such a photoconductor, that is, by controlling the surface potential of the electrophotographic photoconductor, the charging potential can be improved even when image formation is performed by an electrophotographic apparatus at high speed and continuously. I found that photo memory could be improved.

本発明は、導電性基体上にシリコン原子を母体とする非晶質材料で構成された光導電層及び表面層を有する電子写真感光体の表面を帯電させる主帯電工程と、その後、電子写真感光体の表面に静電潜像を形成する静電潜像形成工程と、静電潜像をトナー像として現像する現像工程と、トナー像を記録媒体に転写する転写工程と、その後、静電潜像を除電する第1除電工程と、その後、
電子写真感光体の表面を帯電させる副帯電工程と、電子写真感光体の表面の除電を行う第2除電工程と、を順次繰り返すことで電子写真を形成する電子写真の形成方法であって、
第2除電工程で除電された電子写真感光体の表面の電位が、第1除電工程で除電された電子写真感光体の表面の電位より高いことを特徴とする電子写真の形成方法である。
The present invention comprises a main charging step of charging a surface of an electrophotographic photosensitive member having a photoconductive layer and a surface layer made of an amorphous material having silicon atoms as a base on a conductive substrate, and thereafter, electrophotographic photosensitive An electrostatic latent image forming step for forming an electrostatic latent image on the surface of the body, a developing step for developing the electrostatic latent image as a toner image, a transfer step for transferring the toner image to a recording medium, and then an electrostatic latent image. A first charge eliminating step to remove the image, and then
An electrophotographic forming method for forming an electrophotographic image by sequentially repeating a sub-charging step for charging the surface of the electrophotographic photosensitive member and a second static eliminating step for neutralizing the surface of the electrophotographic photosensitive member,
An electrophotographic forming method, wherein the surface potential of the electrophotographic photosensitive member neutralized in the second static elimination step is higher than the potential of the surface of the electrophotographic photosensitive member neutralized in the first static elimination step.

ここで、主帯電工程後の電子写真感光体の表面電位をV1(V)とし、副帯電工程後の電子写真感光体の表面電位をV2(V)とした時、V2/V1が、0.2以上、0.8以下であることが好ましい。   Here, when the surface potential of the electrophotographic photosensitive member after the main charging step is V1 (V) and the surface potential of the electrophotographic photosensitive member after the sub-charging step is V2 (V), V2 / V1 is 0. It is preferable that it is 2 or more and 0.8 or less.

更に、副帯電工程後の電子写真感光体の表面電位V2(V)と第2除電工程後の電子写真感光体の表面電位VL2(V)との電位差V2−VL2、副帯電工程後の電子写真感光体の表面電位V2(V)と第1除電工程後の電子写真感光体の表面電位VL1(V)との電位差V2−VL1について、
V2−VL2が、70V以上、270V以下で、且つ、V2−VL1が、100V以上、300V以下であることが好ましい。
Furthermore, the potential difference V2-VL2 between the surface potential V2 (V) of the electrophotographic photosensitive member after the sub-charging step and the surface potential VL2 (V) of the electrophotographic photosensitive member after the second charge eliminating step, the electrophotography after the sub-charging step. Regarding the potential difference V2-VL1 between the surface potential V2 (V) of the photoreceptor and the surface potential VL1 (V) of the electrophotographic photoreceptor after the first static elimination step,
It is preferable that V2-VL2 is 70 V or more and 270 V or less, and V2-VL1 is 100 V or more and 300 V or less.

更に、第1除電工程後の電子写真感光体の表面電位VL1(V)、第2除電工程後の電子写真感光体の表面電位VL2(V)については、VL2−VL1が、10V以上、60V以下であることが好ましい。   Further, regarding the surface potential VL1 (V) of the electrophotographic photosensitive member after the first static elimination step and the surface potential VL2 (V) of the electrophotographic photosensitive member after the second static elimination step, VL2-VL1 is 10 V or more and 60 V or less. It is preferable that

以下、本発明の実施の形態について図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(電子写真装置)
a−Si電子写真感光体を用いた高速出力可能な電子写真装置の構成を、図1に示す模式的な概略図を用いて説明する。
(Electrophotographic equipment)
The configuration of an electrophotographic apparatus capable of high-speed output using an a-Si electrophotographic photosensitive member will be described with reference to a schematic diagram shown in FIG.

電子写真装置は、a−Si電子写真感光体101の周囲に、
電子写真感光体101に静電潜像形成のための帯電を行う主帯電器102と、
静電潜像形成手段108により静電潜像の形成された電子写真感光体101に現像用トナーを供給するための現像器114と、
電子写真感光体表面のトナーを紙などの記録媒体となる転写材112に移行させるための転写帯電器106と、
転写材112へとトナーが移行した後、転写材112と電子写真感光体101を分離するための分離帯電器107と、
静電潜像を消去するために電子写真感光体表面を除電するための第1除電器104と、
第1除電器104で発生した過剰なキャリアを除去する副帯電器103と、
第1除電器104で消しきれなかったフォトメモリを消去するために再度除電を行う第2除電器105と、
電子写真感光体表面をクリーニングするためのクリーナー111と、が配設されている。また、分離後の転写材112は搬送手段113により送られる。
The electrophotographic apparatus is provided around the a-Si electrophotographic photosensitive member 101.
A main charger 102 for charging the electrophotographic photosensitive member 101 for forming an electrostatic latent image;
A developing device 114 for supplying developing toner to the electrophotographic photosensitive member 101 on which the electrostatic latent image is formed by the electrostatic latent image forming means 108;
A transfer charger 106 for transferring toner on the surface of the electrophotographic photosensitive member to a transfer material 112 serving as a recording medium such as paper;
A separation charger 107 for separating the transfer material 112 and the electrophotographic photosensitive member 101 after the toner is transferred to the transfer material 112;
A first static eliminator 104 for neutralizing the surface of the electrophotographic photosensitive member to erase the electrostatic latent image;
A sub-charger 103 that removes excess carriers generated in the first static eliminator 104;
A second static eliminator 105 that performs static erasure again to erase a photo memory that could not be erased by the first static eliminator 104;
A cleaner 111 for cleaning the surface of the electrophotographic photosensitive member is provided. Further, the separated transfer material 112 is sent by the conveying means 113.

更に、電子写真感光体101の内部には、不図示の感光体ヒーターが配設されていてもよく、この感光体ヒーターを用いることにより電子写真感光体101を加熱することが可能となる。図1は、電子写真感光体表面を均一にクリーニングするために、マグネットローラー109とクリーニングブレード110を用いて電子写真感光体表面のクリーニング工程を行っているが、いずれか一方のみでも差し支えない。   Further, a photoconductor heater (not shown) may be provided inside the electrophotographic photoconductor 101, and the electrophotographic photoconductor 101 can be heated by using this photoconductor heater. In FIG. 1, in order to uniformly clean the surface of the electrophotographic photosensitive member, the cleaning process of the surface of the electrophotographic photosensitive member is performed using the magnet roller 109 and the cleaning blade 110, but only one of them may be used.

このような電子写真装置を用いた画像形成は、例えば以下のように行われる。まず、電子写真感光体101を所定の速度で矢印の方向へ回転させ、主帯電器102を用いて電子写真感光体101の表面を一様に帯電させる主帯電工程。次に、帯電された電子写真感光体101の表面に静電潜像形成手段108により電子写真感光体101の表面に静電潜像を形成させる静電潜像形成工程。   Image formation using such an electrophotographic apparatus is performed as follows, for example. First, a main charging process in which the surface of the electrophotographic photosensitive member 101 is uniformly charged using the main charger 102 by rotating the electrophotographic photosensitive member 101 in the direction of the arrow at a predetermined speed. Next, an electrostatic latent image forming step of forming an electrostatic latent image on the surface of the electrophotographic photosensitive member 101 by the electrostatic latent image forming unit 108 on the charged surface of the electrophotographic photosensitive member 101.

静電潜像形成手段108は、主帯電装置102により帯電された電子写真感光体101の表面を露光し、電子写真感光体101の表面に電荷分布を生成させ静電潜像を形成するための光学系からなっている。   The electrostatic latent image forming unit 108 exposes the surface of the electrophotographic photosensitive member 101 charged by the main charging device 102, generates a charge distribution on the surface of the electrophotographic photosensitive member 101, and forms an electrostatic latent image. It consists of an optical system.

そして、電子写真感光体101表面に形成された静電潜像部が現像器114の設置部を通過する際に、現像器114によってトナーが電子写真感光体101の表面に供給される現像工程、静電潜像がトナー像として顕像化(現像)される現像工程。更に、このトナー像が電子写真感光体101の回転とともに転写帯電器106の設置部に到達し、ここで搬送ローラー113によって送られてくる転写材112に転写される。   A developing process in which toner is supplied to the surface of the electrophotographic photosensitive member 101 by the developing device 114 when the electrostatic latent image portion formed on the surface of the electrophotographic photosensitive member 101 passes through the installation portion of the developing device 114; A developing process in which the electrostatic latent image is visualized (developed) as a toner image. Further, the toner image reaches the installation portion of the transfer charger 106 with the rotation of the electrophotographic photosensitive member 101, and is transferred to the transfer material 112 sent by the transport roller 113 here.

転写終了後、分離帯電器107により転写材112を電子写真感光体101から分離させる。分離方法はベルト、爪などを用いた機械的方法により分離しても良い。転写材112を電子写真感光体101から分離した後、電子写真感光体101には残留電位が残っているため、その表面電位をゼロ若しくは殆どゼロとなるように第1除電器104により除電される第1除電工程。そして、クリーナー111により電子写真感光体101の表面の転写残トナーが除去される。その後、副帯電器103により電子写真感光体101の表面が帯電され副帯電工程、再度、第2除電器105により、表面電位が第1除電器104での除電時よりも高くなるように除電される第2除電工程を経て、1回の複写工程が終了される。   After the transfer is completed, the transfer material 112 is separated from the electrophotographic photosensitive member 101 by the separation charger 107. The separation method may be performed by a mechanical method using a belt, a nail or the like. After the transfer material 112 is separated from the electrophotographic photosensitive member 101, since the residual potential remains in the electrophotographic photosensitive member 101, the charge is removed by the first static eliminator 104 so that the surface potential becomes zero or almost zero. 1st static elimination process. Then, the transfer residual toner on the surface of the electrophotographic photosensitive member 101 is removed by the cleaner 111. Thereafter, the surface of the electrophotographic photosensitive member 101 is charged by the sub-charger 103, and is sub-charged. The second charge eliminator 105 again removes the charge so that the surface potential is higher than that at the first charge eliminator 104. One copy process is completed through the second static elimination process.

本発明の電子写真装置では、主帯電器102及び副帯電器103と、第1除電器104及び第2除電器105の配置は、静電潜像形成工程から電子写真感光体回転方向に対して下流側に、主帯電器102、第1除電器104、副帯電器103、第2除電器105の順に配置されている。   In the electrophotographic apparatus of the present invention, the arrangement of the main charger 102 and the sub charger 103, and the first charge remover 104 and the second charge remover 105 are arranged from the electrostatic latent image forming step to the electrophotographic photosensitive member rotating direction. On the downstream side, the main charger 102, the first charge remover 104, the sub-charger 103, and the second charge remover 105 are arranged in this order.

この理由としては、例えば、副帯電器103と、第2除電器105の配置を入れ替えてしまうと、副帯電器103で電子写真感光体101を帯電させる前に第1除電器104及び第2除電器105により感光体を除電する際に電子写真感光体内部に多量のキャリアが発生することになる。このような状態で副帯電器103により電子写真感光体101を帯電させても、電子写真感光体が高速で回転しているため、副帯電工程間で、第1及び第2除電工程で発生した過剰キャリアを消去しきれない場合がある。そのため、主帯電工程で、副帯電工程で消去しきれなかった残存キャリアにより帯電時及び帯電後に電子写真感光体の表面電位の低下が生じ、現像器位置での表面電位が低下してしまう場合があった。また、副帯電工程後でも上記残存キャリアの影響により激しく表面電位の低下してしまうことがあるため、主帯電工程での帯電電位を制御することが困難となり、現像器位置での表面電位の安定性が低下する場合がある。   This is because, for example, if the arrangement of the secondary charger 103 and the second static eliminator 105 is switched, the first static eliminator 104 and the second static eliminator 104 are charged before the secondary charger 103 charges the electrophotographic photosensitive member 101. A large amount of carriers are generated inside the electrophotographic photosensitive member when the electric charge is removed by the electric device 105. Even if the electrophotographic photosensitive member 101 is charged by the sub-charger 103 in such a state, the electrophotographic photosensitive member is rotated at a high speed, and thus occurs in the first and second static elimination steps between the sub-charging steps. There are cases where excess carriers cannot be erased. For this reason, in the main charging process, the surface potential of the electrophotographic photosensitive member may decrease during charging and after charging due to residual carriers that could not be erased in the sub charging process, and the surface potential at the position of the developing device may decrease. there were. In addition, since the surface potential may decrease drastically due to the residual carrier even after the sub-charging step, it becomes difficult to control the charging potential in the main charging step, and the surface potential at the developing unit is stabilized. May decrease.

そのため、電子写真感光体回転方向に対して下流側に、主帯電器102、第1除電器104、副帯電器103、第2除電器105の順に配置することにより、
1.高速に電子写真感光体が回転していても、第1除電工程での発生キャリアを副帯電工程で電子写真感光体表面に供給される電荷によりほぼ消去することが可能であり、更に、
2.第2除電工程にて再度電子写真感光体表面を全面露光して所定の表面電位に制御するため、主帯電工程では安定して所定の表面電位に制御することが可能となる。
Therefore, by disposing the main charger 102, the first charge remover 104, the sub-charger 103, and the second charge remover 105 in this order on the downstream side with respect to the electrophotographic photosensitive member rotation direction,
1. Even if the electrophotographic photosensitive member rotates at high speed, the generated carriers in the first static elimination process can be almost erased by the charge supplied to the surface of the electrophotographic photosensitive member in the sub-charging process.
2. Since the entire surface of the electrophotographic photosensitive member is again exposed and controlled to a predetermined surface potential in the second charge eliminating step, the main charging step can be stably controlled to the predetermined surface potential.

主帯電工程及び副帯電工程で用いられる帯電方式は、コロナ帯電、接触帯電等、どのような帯電方式であっても問題は無い。コロナ帯電方式を用いる場合、コロトロン又はスコロトロンのどちらでも構わないが、主帯電工程では所定の電位にあわせる必要があるためスコロトロンを用いることが好ましい。副帯電工程では、第1除電工程の影響により急激に表面電位を上げる場合にはコロトロンを、低電位でも良い場合には表面電位の安定性の点からスコロトロンを用いることが好ましい。   The charging method used in the main charging process and the sub charging process may be any charging system such as corona charging or contact charging. When the corona charging method is used, either a corotron or a scorotron may be used, but it is preferable to use a scorotron because it is necessary to adjust to a predetermined potential in the main charging step. In the sub-charging process, it is preferable to use corotron when the surface potential is suddenly increased due to the influence of the first static elimination process, and scorotron from the viewpoint of stability of the surface potential when a low potential is acceptable.

また、副帯電器103の配置位置は、第1除電器104と第2除電器105との間、且つ、転写帯電器106よりも電子写真感光体回転方向に対して下流側に配置されていれば良い。第1除電器104及び第2除電器105は、光により感光体表面の電荷の除電を行っている。光としては、発光ダイオード(LED)、半導体レーザー、ハロゲンランプ等により出力される光が一般的に使用される。   Further, the sub charger 103 is disposed between the first neutralizer 104 and the second neutralizer 105 and on the downstream side of the transfer charger 106 with respect to the electrophotographic photosensitive member rotation direction. It ’s fine. The first static eliminator 104 and the second static eliminator 105 neutralize the charge on the surface of the photoreceptor with light. As light, light output from a light emitting diode (LED), a semiconductor laser, a halogen lamp or the like is generally used.

第1除電器104と第2除電器105の配置は、上記順序になっていればよいが、電子写真感光体回転方向に対して下流側に配置されている主帯電器102から離して設置することが好ましい。理由は、除電から帯電までの時間が長くなるため、除電光で発生したキャリアの再結合数が増加し、膜中の残存キャリアが減少するため、帯電工程時に帯電電位への影響が低減されるからである。同時に、除電から帯電までの時間が長くなることにより、キャリアが欠陥準位にトラップされる確率が増加するため、フォトメモリを低減させることが可能となる。   The first static eliminator 104 and the second static eliminator 105 need only be arranged in the order described above, but are arranged apart from the main charger 102 arranged on the downstream side with respect to the electrophotographic photosensitive member rotation direction. It is preferable. The reason is that, since the time from static elimination to charging becomes longer, the number of carriers recombined generated by static elimination light increases and the number of remaining carriers in the film decreases, so the influence on the charging potential during the charging process is reduced. Because. At the same time, since the time from static elimination to charging becomes longer, the probability that carriers are trapped in the defect level increases, so that the photo memory can be reduced.

また、第1除電器104及び第2除電器105で用いる除電光の波長は、静電潜像形成工程で用いる光の波長と同等程度の波長を用いれば良い。しかしながら、静電潜像形成工程で用いる光の波長よりも第1除電工程で用いる除電光の波長を、また第1除電工程で用いる除電光の波長よりも第2除電工程で用いる除電光の波長を長波長にすることがより好ましい。この理由として、同程度の波長の除電光を用いるよりも長波長を用いる方が膜中への侵入距離が長くなるため、露光量を下げて膜中の発生キャリア数が少なくてもフォトメモリの向上が可能であるからである。同時に、第2除電工程での発生キャリア数が少なくなるため、再結合しきれなかった残存キャリアによる帯電電位への影響を低減させることが可能となる。   Further, the wavelength of the neutralizing light used in the first static eliminator 104 and the second static eliminator 105 may be approximately the same as the wavelength of the light used in the electrostatic latent image forming process. However, the wavelength of the static elimination light used in the first static elimination process is larger than the wavelength of the light used in the electrostatic latent image forming process, and the wavelength of the static elimination light used in the second static elimination process than the wavelength of the static elimination light used in the first static elimination process. Is more preferably a long wavelength. The reason for this is that, since the penetration distance into the film becomes longer when using a longer wavelength than when using static elimination light of the same wavelength, even if the exposure amount is reduced and the number of generated carriers in the film is small, the photo memory This is because improvement is possible. At the same time, since the number of carriers generated in the second static elimination step is reduced, it is possible to reduce the influence on the charging potential due to residual carriers that could not be recombined.

次に、電子写真感光体の電位制御について、図2を用いて説明する。図2は、横軸が時間、縦軸が電子写真感光体の表面電位を示している。第1除電器104による第1除電工程が終了直後の電位をVL1、副帯電器103による副帯電工程終了直後の電位をV2、第2除電器105による第2除電工程直後の電位をVL2、主帯電器102による主帯電工程直後の電位をV1とする。   Next, potential control of the electrophotographic photosensitive member will be described with reference to FIG. In FIG. 2, the horizontal axis represents time, and the vertical axis represents the surface potential of the electrophotographic photosensitive member. The potential immediately after the completion of the first static elimination process by the first static elimination device 104 is VL1, the potential immediately after the completion of the secondary electrification process by the secondary charger 103 is V2, and the potential immediately after the second static elimination process by the second static elimination device 105 is VL2. The potential immediately after the main charging process by the charger 102 is set to V1.

V1、V2、VL1及びVL2の測定方法は、電位プローブ等で電子写真感光体表面の表面電位を測定することで得ることができる。主及び副帯電工程後の電位は、電子写真感光体回転方向に対して下流側で、且つ帯電器の影響を受けない位置で測定することが好ましい。また、第1及び第2除電工程後の電位は、電子写真感光体回転方向に対して下流側で、且つ除電光の照射直後の表面電位を測定できる位置で測定することが好ましい。   The measuring method of V1, V2, VL1, and VL2 can be obtained by measuring the surface potential of the electrophotographic photosensitive member surface with a potential probe or the like. The potential after the main and sub charging steps is preferably measured at a position downstream of the electrophotographic photosensitive member rotation direction and not affected by the charger. Further, the potential after the first and second static elimination steps is preferably measured at a position downstream of the electrophotographic photosensitive member rotation direction and at a position where the surface potential immediately after the neutralization light irradiation can be measured.

図2は、第1除電工程から次の第1除電工程までの1サイクルの電子写真感光体の表面電位の状態を示している。電子写真感光体の表面電位は、第1除電工程終了後、VL1となり、副帯電工程終了後、V2となる。その後、電子写真感光体の表面電位は減少し、第2除電工程終了後、VL2となる。その後、主帯電工程終了後、電子写真感光体表面は帯電され、表面の電位がV1となる。その後、電子写真感光体の表面電位は徐々に下がっていき、次の第1除電工程により電子写真感光体の表面電位がVL1になる。   FIG. 2 shows the state of the surface potential of the electrophotographic photosensitive member for one cycle from the first static elimination step to the next first static elimination step. The surface potential of the electrophotographic photosensitive member becomes VL1 after the completion of the first static elimination process, and becomes V2 after the completion of the auxiliary charging process. Thereafter, the surface potential of the electrophotographic photosensitive member decreases and becomes VL2 after the second static elimination step. Thereafter, after completion of the main charging step, the surface of the electrophotographic photosensitive member is charged and the surface potential becomes V1. Thereafter, the surface potential of the electrophotographic photosensitive member gradually decreases, and the surface potential of the electrophotographic photosensitive member becomes VL1 in the next first charge eliminating step.

本発明では、第2除電工程による除電後の電子写真感光体表面の電位VL2を第1除電工程による除電後の電子写真感光体表面の電位VL1よりも高くすることを特徴としている。この理由を以下に示す。   The present invention is characterized in that the potential VL2 on the surface of the electrophotographic photosensitive member after static elimination in the second static elimination step is made higher than the potential VL1 on the surface of the electrophotographic photosensitive member after static elimination in the first static elimination step. The reason is shown below.

第1除電工程による除電の1つの目的は、静電潜像形成工程で形成された静電潜像の消去である。そのため、第1除電工程で用いる除電光と静電潜像形成工程時に使用される光が同じ波長の場合、第1除電工程では、静電潜像形成工程よりも強い光量で電子写真感光体全面を露光して多量のキャリアを膜中に発生させ、静電潜像形成工程での照射部と非照射部とのキャリア密度の差を小さくすることがフォトメモリの改善には必要である。よって、第1除電工程直後の電子写真感光体表面電位は、ゼロ若しくはほぼゼロ、又は、除電光量が増加しても表面電位が変化しない電位となる。けれども、このような強い露光を第1除電工程で行ったとしても、第1除電工程での発生キャリアによる再結合でのキャリア数の減少と、副帯電工程で電子写真感光体表面に供給される電荷との結合により、ほぼ第1除電工程で発生したキャリアを消去することが可能である。   One purpose of static elimination in the first static elimination step is to erase the electrostatic latent image formed in the electrostatic latent image formation step. Therefore, when the static elimination light used in the first static elimination step and the light used in the electrostatic latent image forming step have the same wavelength, the entire surface of the electrophotographic photosensitive member is stronger in the first static elimination step than the electrostatic latent image formation step. In order to improve the photo memory, it is necessary to generate a large amount of carriers in the film by exposing the substrate to reduce the difference in carrier density between the irradiated portion and the non-irradiated portion in the electrostatic latent image forming step. Therefore, the surface potential of the electrophotographic photosensitive member immediately after the first static elimination step is zero or almost zero, or a potential at which the surface potential does not change even when the amount of static elimination light increases. However, even if such strong exposure is performed in the first static elimination step, the number of carriers due to recombination due to the generated carriers in the first static elimination step is reduced, and the surface is supplied to the surface of the electrophotographic photosensitive member in the sub-charging step. The carriers generated in the first static elimination step can be erased by the coupling with the electric charge.

しかし、第2除電工程は主帯電工程の直前に行われるため、主帯電工程後の電子写真感光体表面電位が第2除電工程での発生キャリアに大きく影響を受ける。つまり、第2除電工程での発生キャリア数が多すぎると、現像器位置での感光体表面電位が低下してしまう。一方で、第2除電工程では、第1除電工程で消去しきれなかったフォトメモリを更に消去する必要があるため、ある程度の強い強度で露光することが求められる。   However, since the second static elimination step is performed immediately before the main charging step, the surface potential of the electrophotographic photosensitive member after the main charging step is greatly affected by the generated carriers in the second static elimination step. That is, if the number of generated carriers in the second static elimination process is too large, the photoreceptor surface potential at the developing unit position is lowered. On the other hand, in the second static elimination process, since it is necessary to further erase the photo memory that could not be erased in the first static elimination process, exposure with a certain degree of strength is required.

よって、主帯電工程後の電子写真感光体表面電位への影響の低減及びフォトメモリの消去が両立させるために、第1除電工程直後の電子写真感光体表面電位VL1よりも第2除電工程直後の電位VL2を高くすることが必要となる。   Therefore, in order to achieve both reduction of the influence on the surface potential of the electrophotographic photosensitive member after the main charging step and erasure of the photomemory, it is more immediately after the second discharging step than the electrophotographic photosensitive member surface potential VL1 immediately after the first discharging step. It is necessary to increase the potential VL2.

このような観点から、第2除電工程後の電子写真感光体の表面電位VL2と第1除電工程後の電子写真感光体の表面電位VL1との差VL2−VL1が、10V以上、60V以下になるように表面電位を制御することがより好ましい。   From this point of view, the difference VL2-VL1 between the surface potential VL2 of the electrophotographic photosensitive member after the second static elimination step and the surface potential VL1 of the electrophotographic photosensitive member after the first static elimination step is 10V or more and 60V or less. Thus, it is more preferable to control the surface potential.

また、主帯電工程後の電子写真感光体の表面電位V1と副帯電工程後の電子写真感光体の表面電位V2との比、V2/V1が、0.20以上、0.80以下となるように表面電位制を御することが好ましい。この理由を以下に示す。   Further, the ratio V2 / V1 between the surface potential V1 of the electrophotographic photosensitive member after the main charging step and the surface potential V2 of the electrophotographic photosensitive member after the sub-charging step is 0.20 or more and 0.80 or less. It is preferable to control the surface potential. The reason is shown below.

V2/V1が、0.80より大きい場合、副帯電工程時及び副帯電工程後に電子写真感光体には高電界がかかる。そのため、第1除電工程で生成されたキャリアの中で再結合せずに残存したキャリアは、副帯電工程で電子写真感光体表面に供給される電荷と結合し、消去することが可能である。その結果、主帯電工程後の表面電位は、第1除電工程での残存キャリアの影響で低下することが無いため、PSが速くなっても主帯電工程後の電子写真感光体表面電位を所望の電位にすることが可能となる。   When V2 / V1 is greater than 0.80, a high electric field is applied to the electrophotographic photosensitive member during and after the sub-charging process. Therefore, the carriers remaining without being recombined among the carriers generated in the first static elimination step are combined with the charges supplied to the surface of the electrophotographic photosensitive member in the sub-charging step, and can be erased. As a result, the surface potential after the main charging step does not decrease due to the influence of residual carriers in the first static elimination step. It becomes possible to make it a potential.

しかし、V2/V1が、0.80より大きい場合には、副帯電工程後の電子写真感光体表面に多くの電荷が存在している。そのため、第2除電工程にてフォトメモリを消去するためには、電子写真感光体表面の電荷を打ち消し、更に、静電潜像形成工程での露光部と非露光部とのキャリア密度の差を小さくする必要があるので、第2除電工程にて強露光を電子写真感光体に照射する必要がある。その結果、フォトメモリを消去できたとしても、第2除電工程で発生したキャリアが主帯電工程後の表面電位に影響し、現像器位置での電子写真感光体表面電位が低下するために所望の電位への制御が困難な場合がある。   However, when V2 / V1 is greater than 0.80, a large amount of charge exists on the surface of the electrophotographic photosensitive member after the sub-charging step. Therefore, in order to erase the photo memory in the second static elimination process, the charge on the surface of the electrophotographic photosensitive member is canceled, and further, the difference in carrier density between the exposed part and the non-exposed part in the electrostatic latent image forming process is determined. Since it is necessary to reduce the size, it is necessary to irradiate the electrophotographic photosensitive member with strong exposure in the second static elimination step. As a result, even if the photo memory can be erased, the carrier generated in the second static elimination process affects the surface potential after the main charging process, and the surface potential of the electrophotographic photosensitive member at the developing unit is lowered. It may be difficult to control the potential.

V2/V1が、0.20より小さい場合、副帯電工程後の電子写真感光体表面に存在する電荷が少ないため、静電潜像形成工程での露光部と非露光部とのキャリア密度の差を小さくするのに必要な第2除電工程での露光量を小さくすることができる。そのため、PSが速くなっても、第2除電工程での発生キャリアの影響による主帯電工程後の表面電位の低下を抑えつつ、フォトメモリを消去することが可能となる。   When V2 / V1 is smaller than 0.20, there is little charge present on the surface of the electrophotographic photosensitive member after the sub-charging process, so the difference in carrier density between the exposed area and the non-exposed area in the electrostatic latent image forming process. It is possible to reduce the exposure amount in the second static elimination step necessary to reduce the size. Therefore, even if the PS becomes faster, it is possible to erase the photo memory while suppressing a decrease in the surface potential after the main charging process due to the influence of the generated carriers in the second charge eliminating process.

しかし、V2/V1が、0.20より小さい場合には、副帯電工程時及び副帯電工程後に第1除電工程で生成されたキャリアの中で、再結合せずに残存したキャリアや膜中の欠陥準位にトラップされたキャリアにかかる電界が低くなってしまう。これにより、これらキャリアの移動速度が低下するため、副帯電工程で供給されたキャリアとの結合確率が低下してしまう。そのため、第1除電工程で発生したキャリアが主帯電工程時及び主帯電工程後に高電界がかかった際に、主帯電工程で供給された電荷と結合してしまうため、主帯電工程後の表面電位が低下する場合がある。その結果、フォトメモリを消去できたとしても、第1除電工程で発生したキャリアが主帯電工程後の表面電位に影響し、現像器位置での電子写真感光体表面電位が低下するために所望の電位への制御が困難な場合がある。   However, when V2 / V1 is smaller than 0.20, among the carriers generated in the first static elimination process at the time of the sub-charging process and after the sub-charging process, the remaining carriers without recombination and in the film The electric field applied to the carriers trapped in the defect level is lowered. As a result, the moving speed of these carriers decreases, and the coupling probability with the carriers supplied in the sub-charging process decreases. Therefore, the carrier generated in the first static elimination process is combined with the charge supplied in the main charging process when a high electric field is applied during the main charging process and after the main charging process. May decrease. As a result, even if the photo memory can be erased, the carrier generated in the first static elimination process affects the surface potential after the main charging process, and the surface potential of the electrophotographic photosensitive member at the developing unit is lowered. It may be difficult to control the potential.

更に、副帯電工程後の電子写真感光体の表面電位V2と第1除電工程後の電子写真感光体の表面電位VL1との差V2−VL1が、100V以上、300V以下となるように表面電位を制御することが好ましい。この理由を以下に示す。   Further, the surface potential is adjusted so that the difference V2-VL1 between the surface potential V2 of the electrophotographic photosensitive member after the sub-charging step and the surface potential VL1 of the electrophotographic photosensitive member after the first static elimination step is 100V or more and 300V or less. It is preferable to control. The reason is shown below.

V2−VL1が、100Vよりも小さい場合、上述したように、副帯電工程時及び副帯電工程後に第1除電工程で生成されたキャリアの中で、再結合せずに残存したキャリアや膜中の欠陥準位にトラップされたキャリアにかかる電界が低くなってしまう。これにより、これらキャリアの移動速度が低下するため、副帯電工程で供給されたキャリアとの結合確率が低下してしまう。その結果、第1除電工程で発生したキャリアが主帯電工程時及び主帯電工程後に高電界がかかった際に、主帯電工程で供給された電荷を消去してしまうため、主帯電工程後の表面電位が低下する場合がある。逆に、V2−VL1が300Vよりも大きい場合、上述したように、副帯電工程後の電子写真感光体表面に多くの電荷が存在するため、フォトメモリ向上のためには第2除電工程時の除電光の光量を強くする必要がある。その結果、フォトメモリを消去できたとしても、第2除電工程で発生したキャリアが主帯電工程後の表面電位に影響し、現像器位置での電子写真感光体表面電位が低下するために所望の電位への制御が困難な場合がある。   When V2-VL1 is smaller than 100V, as described above, among the carriers generated in the first static elimination process during and after the secondary charging process, the carriers remaining in the film without recombination and in the film The electric field applied to the carriers trapped in the defect level is lowered. As a result, the moving speed of these carriers decreases, and the coupling probability with the carriers supplied in the sub-charging process decreases. As a result, the carrier generated in the first charge removal process erases the charge supplied in the main charge process when a high electric field is applied during the main charge process and after the main charge process. The potential may decrease. On the contrary, when V2-VL1 is larger than 300V, as described above, a large amount of charge is present on the surface of the electrophotographic photosensitive member after the sub-charging process. It is necessary to increase the amount of static elimination light. As a result, even if the photo memory can be erased, the carrier generated in the second static elimination process affects the surface potential after the main charging process, and the surface potential of the electrophotographic photosensitive member at the developing unit is lowered. It may be difficult to control the potential.

また、副帯電工程後の電子写真感光体の表面電位V2と第2除電工程後の電子写真感光体の表面電位VL2との差V2−VL2が、70V以上、270V以下となるように表面電位を制御することが好ましい。この理由を以下に示す。   Further, the surface potential is set so that the difference V2-VL2 between the surface potential V2 of the electrophotographic photosensitive member after the sub-charging step and the surface potential VL2 of the electrophotographic photosensitive member after the second static elimination step is 70V or more and 270V or less. It is preferable to control. The reason is shown below.

V2が低いためにV2−VL2が、70Vよりも小さくなる場合、また、VL2が高いためにV2−VL2が、70Vよりも小さくなる場合であっても、第2除電工程にて発生するキャリア数が少ないため、主帯電工程後の表面電位に対する影響を少なくすることが可能となり、現像器位置での電子写真感光体表面電位を更に容易に所望の電位に制御することが可能となる。しかし、第2除電工程にて発生するキャリア数が少ないため、第2除電工程後に静電潜像形成工程の露光部と非露光部とのキャリア密度の差を更に小さくできない場合がある。そのため、第1除電工程後のフォトメモリが第2除電工程により除電しても更に良化しない場合がある。   Even if V2-VL2 is smaller than 70V because V2 is low, or even if V2-VL2 is smaller than 70V because VL2 is high, the number of carriers generated in the second static elimination step Therefore, the influence on the surface potential after the main charging step can be reduced, and the surface potential of the electrophotographic photosensitive member at the position of the developing device can be more easily controlled to a desired potential. However, since the number of carriers generated in the second static elimination step is small, the difference in carrier density between the exposed portion and the non-exposed portion in the electrostatic latent image forming step may not be further reduced after the second static elimination step. Therefore, the photo memory after the first static elimination process may not be further improved even if the second static elimination process is performed.

逆に、V2が高いためにV2−VL2が、270Vよりも大きくなる場合、また、VL2が低いためにV2−VL2が、270Vよりも大きくなる場合であっても、第2除電工程にて発生するキャリア数が多いため、第2除電工程後に静電潜像形成工程の露光部と非露光部とのキャリア密度の差を更に小さくすることが可能となり、フォトメモリは更に良くなる。しかし、第2除電工程で発生したキャリアが主帯電工程後の表面電位に影響し、現像器位置での電子写真感光体表面電位が低下するために所望の電位への制御が困難な場合がある。   Conversely, even if V2-VL2 is greater than 270V because V2 is high, or even if V2-VL2 is greater than 270V because VL2 is low, it occurs in the second static elimination process. Since the number of carriers to be performed is large, the difference in carrier density between the exposed portion and the non-exposed portion in the electrostatic latent image forming step can be further reduced after the second static elimination step, and the photomemory is further improved. However, the carrier generated in the second static elimination step affects the surface potential after the main charging step, and the surface potential of the electrophotographic photosensitive member at the position of the developing device is lowered, so that it may be difficult to control to the desired potential. .

これらのため、副帯電工程後の電子写真感光体の表面電位V2と第2除電工程後の電子写真感光体の表面電位VL2との差V2−VL2が、70V以上、270V以下となるように表面電位を制御することが好ましい。   For these reasons, the surface V so that the difference V2-VL2 between the surface potential V2 of the electrophotographic photosensitive member after the sub-charging step and the surface potential VL2 of the electrophotographic photosensitive member after the second static elimination step is 70 V or more and 270 V or less. It is preferable to control the potential.

(本発明に関るアモルファスシリコン電子写真感光体)
本発明では、基体上に少なくともシリコン原子を母体とした非晶質材料で構成された光導電層を有する電子写真感光体を用いることを特徴としている。図3に本発明に好適なa−Si電子写真感光体の模式的な概略断面図を示す。
(Amorphous silicon electrophotographic photosensitive member according to the present invention)
The present invention is characterized in that an electrophotographic photosensitive member having a photoconductive layer made of an amorphous material having at least silicon atoms as a base material on a substrate is used. FIG. 3 shows a schematic schematic cross-sectional view of an a-Si electrophotographic photosensitive member suitable for the present invention.

図3(a)に示す電子写真感光体は、円筒状基体301の上に、水素原子またはハロゲン原子を構成要素として含むアモルファスシリコン(以下、a−Si:H,Xとも表記する。)からなる光導電層302が設けられている。   The electrophotographic photosensitive member shown in FIG. 3A is made of amorphous silicon (hereinafter also referred to as a-Si: H, X) containing a hydrogen atom or a halogen atom as a constituent element on a cylindrical substrate 301. A photoconductive layer 302 is provided.

図3(b)に示す電子写真感光体は、円筒状基体301の上に、a−Si:H,Xからなる光導電性を有する光導電層302と、アモルファス炭化シリコン又はアモルファス炭素の表面層303が設けられて構成されている。   The electrophotographic photosensitive member shown in FIG. 3B has a photoconductive layer 302 having a photoconductivity made of a-Si: H, X and a surface layer of amorphous silicon carbide or amorphous carbon on a cylindrical substrate 301. 303 is provided.

図3(c)に示す電子写真感光体は、円筒状基体301の上に、窒素原子、酸素原子、およびホウ素原子を含むアモルファスシリコン電荷注入阻止層304と、a−Si:H,Xからなる光導電性を有する光導電層302と、アモルファス炭化シリコン又はアモルファス炭素の表面層303が設けられて構成されている。光導電層302と表面層303の界面に関しては、連続的に変化させ界面反射を抑制する界面制御を施しても良い。   The electrophotographic photosensitive member shown in FIG. 3C is composed of an amorphous silicon charge injection blocking layer 304 containing nitrogen atoms, oxygen atoms, and boron atoms on a cylindrical substrate 301, and a-Si: H, X. A photoconductive layer 302 having photoconductivity and a surface layer 303 of amorphous silicon carbide or amorphous carbon are provided. The interface between the photoconductive layer 302 and the surface layer 303 may be continuously changed to perform interface control that suppresses interface reflection.

図3(d)に示す電子写真用感光体は、円筒状基体301の上に、光導電層302が設けられている。この光導電層はa−Si:H,Xからなる電荷発生層305及び電荷輸送層306とからなり、その上にアモルファス炭化シリコン又はアモルファス炭素の表面層303が設けられている。電荷発生層305と表面層303の界面に関しては、連続的に変化させ界面反射を抑制する界面制御を施しても良い。   In the electrophotographic photoreceptor shown in FIG. 3D, a photoconductive layer 302 is provided on a cylindrical substrate 301. This photoconductive layer is composed of a charge generation layer 305 and a charge transport layer 306 made of a-Si: H, X, and an amorphous silicon carbide or amorphous carbon surface layer 303 is provided thereon. The interface between the charge generation layer 305 and the surface layer 303 may be continuously changed to perform interface control that suppresses interface reflection.

(実施例)
以下、実施例及び比較例により本発明を更に詳しく説明するが、本発明はこれらにより何ら制限されるものではない。
(Example)
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited at all by these.

(電子写真感光体作製)
アルミニウム製の円筒状基体(直径108mm、長さ358mm)をダイヤモンドミラクルバイトにより鏡面加工し、円筒状基体の表面を洗浄した。次に、図4に示すプラズマ処理装置を用いて、表1に示す条件で洗浄後の円筒状基体上に電荷注入阻止層、光導電層、表面層の順に成膜を行い、正帯電用a−Si電子写真感光体を作製した。このとき、13.56MHzの高周波電力を出力可能な高周波電源を用いた。
(Electrophotographic photosensitive member production)
A cylindrical substrate made of aluminum (diameter 108 mm, length 358 mm) was mirror-finished with a diamond miracle bite to clean the surface of the cylindrical substrate. Next, using the plasma processing apparatus shown in FIG. 4, a charge injection blocking layer, a photoconductive layer, and a surface layer are formed in this order on the cleaned cylindrical substrate under the conditions shown in Table 1, and the positive charging a A -Si electrophotographic photosensitive member was produced. At this time, a high frequency power source capable of outputting high frequency power of 13.56 MHz was used.

Figure 2009192697
Figure 2009192697

(電子写真装置を用いた評価装置)
評価装置として、キヤノン製デジタル電子写真装置iR−8500をベースとし、電子写真感光体の回転数変更時に通常の画像出力が可能に改造されたiR−8500改造機を用いた。
(Evaluation equipment using electrophotographic equipment)
As an evaluation apparatus, a remodeled iR-8500 based on a Canon digital electrophotographic apparatus iR-8500 and modified so that normal image output is possible when the rotational speed of the electrophotographic photosensitive member is changed was used.

iR−8500改造機の構成を、図5の模式的概略図に示す様に、a−Si電子写真感光体501の周囲に、電子写真感光体501の回転方向に対し、副帯電器503、第2除電器505、主帯電器502、静電潜像手段508、現像器514、転写帯電器506、分離帯電器507、第1除電器504、クリーナー511がこの順に配置されている。更に、電子写真感光体501の表面電位を測定するために、主帯電器502の下流に第1電位センサー515が、第1除電器504の下流に、第3電位センサー517が、副帯電器503の下流に第2電位センサー516が、第2除電器505の下流に第4電位センサー518が設けられている。   As shown in the schematic diagram of FIG. 5, the structure of the iR-8500 remodeling machine is arranged around the a-Si electrophotographic photosensitive member 501 with respect to the rotation direction of the electrophotographic photosensitive member 501, 2 A static eliminator 505, a main charger 502, an electrostatic latent image means 508, a developing unit 514, a transfer charger 506, a separation charger 507, a first static eliminator 504, and a cleaner 511 are arranged in this order. Further, in order to measure the surface potential of the electrophotographic photosensitive member 501, a first potential sensor 515 is disposed downstream of the main charger 502, a third potential sensor 517 is disposed downstream of the first neutralizer 504, and the sub charger 503. The second potential sensor 516 is provided downstream of the second neutralizer 405, and the fourth potential sensor 518 is provided downstream of the second static eliminator 505.

クリーナー511は、マグネットローラー509とクリーニングブレード510で構成されている。また、電子写真感光体表面のトナーを紙等の記録媒体となる転写材112に移行させるための転写帯電器106と、転写材112へとトナーが移行した後、転写材112と電子写真感光体101を分離するための分離帯電器107と、が現像器514と第1除電器504との間に設けられている。   The cleaner 511 includes a magnet roller 509 and a cleaning blade 510. Further, the transfer charger 106 for transferring the toner on the surface of the electrophotographic photosensitive member to the transfer material 112 serving as a recording medium such as paper, and the transfer material 112 and the electrophotographic photosensitive member after the toner has transferred to the transfer material 112. A separation charger 107 for separating 101 is provided between the developing unit 514 and the first static eliminator 504.

転写材512は、搬送手段513により搬送される。   The transfer material 512 is conveyed by the conveying means 513.

ここで、主帯電工程で用いる主帯電器502及び副帯電器503は、ワイヤー1本のスコロトロンを用い、主帯電器502及び副帯電器503のワイヤー及びグリットに、それぞれ高圧電源を接続した。主帯電器502及び副帯電器503は、グリット電位を850Vとし、帯電器のワイヤーへ供給する電流を制御して感光体の表面電位を制御した。副帯電器503の配置は、副帯電器503のワイヤー位置が主帯電器502のワイヤー位置から電子写真感光体回転方向上流側に60°の位置に設置した。   Here, as the main charger 502 and the sub charger 503 used in the main charging step, a single scorotron was used, and a high voltage power source was connected to the wire and grit of the main charger 502 and the sub charger 503, respectively. The main charger 502 and the sub charger 503 have a grit potential of 850 V, and control the current supplied to the charger wire to control the surface potential of the photoreceptor. The sub charger 503 is disposed at a position where the wire position of the sub charger 503 is 60 ° upstream from the wire position of the main charger 502 in the rotation direction of the electrophotographic photosensitive member.

また、第1除電器504で用いる除電光源には、波長660nmのLEDを用い、第1除電器504の配置は、電子写真感光体回転方向上流側で主帯電器502のワイヤーから125°の位置に設置した。また、第2除電器505で用いる除電光源も、波長660nmのLEDを用い、第2除電器505の配置は、電子写真感光体回転方向上流側で主帯電器502のワイヤーから30°の位置に設置した。第1除電器503及び第2除電器504は、各々DC電源に接続され、LEDへの印加電圧を変更して除電光の光量を変化させた。   Further, an LED having a wavelength of 660 nm is used as a static elimination light source used in the first static eliminator 504, and the first static eliminator 504 is disposed at a position 125 ° from the wire of the main charger 502 on the upstream side in the rotation direction of the electrophotographic photosensitive member. Installed. The neutralization light source used in the second static eliminator 505 is also an LED having a wavelength of 660 nm, and the second static eliminator 505 is arranged at a position 30 ° from the wire of the main charger 502 on the upstream side in the rotation direction of the electrophotographic photosensitive member. installed. The first static eliminator 503 and the second static eliminator 504 were each connected to a DC power source, and the voltage applied to the LEDs was changed to change the amount of static elimination light.

更に、主帯電器502による主帯電工程後の電子写真感光体表面電位を測定する第1電位センサー515は、主帯電器502の電子写真感光体の回転方向下流側で主帯電器502のワイヤーから20°の位置に設置した。また、副帯電器503による副帯電工程後の電子写真感光体の表面電位を測定する第2電位センサー516は、電子写真感光体の回転方向上流側で主帯電器502のワイヤーから40°の位置に設置した。更に、第1除電器504による第1除電工程後の電子写真感光体の表面電位を測定する第3電位センサー517は、電子写真感光体の回転方向上流側で主帯電器502のワイヤーから110°の位置に設置されている。また、第2除電器505による第2除電工程後の電子写真感光体の表面電位を測定する第4電位センサー518は、電子写真感光体回転の方向上流側で主帯電器502のワイヤーから20°の位置に設置した。各電位センサーは、表面電位計(TREK社製、Model344)に接続され、電子写真感光体の表面電位が測定される。   Further, the first potential sensor 515 for measuring the surface potential of the electrophotographic photosensitive member after the main charging step by the main charger 502 is connected to the main charger 502 from the wire of the main charger 502 on the downstream side in the rotation direction of the electrophotographic photosensitive member. It was installed at a position of 20 °. The second potential sensor 516 that measures the surface potential of the electrophotographic photosensitive member after the sub-charging step by the sub-charging device 503 is positioned 40 ° from the wire of the main charging device 502 on the upstream side in the rotation direction of the electrophotographic photosensitive member. Installed. Further, the third potential sensor 517 for measuring the surface potential of the electrophotographic photosensitive member after the first static elimination step by the first static eliminator 504 is 110 ° from the wire of the main charger 502 on the upstream side in the rotation direction of the electrophotographic photosensitive member. It is installed in the position. The fourth potential sensor 518 for measuring the surface potential of the electrophotographic photosensitive member after the second static eliminating step by the second static eliminator 505 is 20 ° from the wire of the main charger 502 upstream in the direction of rotation of the electrophotographic photosensitive member. It was installed in the position. Each potential sensor is connected to a surface potential meter (Model 344, manufactured by TREK), and the surface potential of the electrophotographic photosensitive member is measured.

(実施例1)
電子写真装置を用いた評価装置に電子写真感光体作製例で作製した電子写真感光体を設置し、PSを700mm/secとして画像を出力した。得られた画像について、帯電性及びフォトメモリを後述の帯電性の評価方法1及びフォトメモリの評価方法1により評価した。このとき、評価結果を表2に示す。
(Example 1)
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example was installed in an evaluation apparatus using an electrophotographic apparatus, and an image was output at PS of 700 mm / sec. With respect to the obtained image, the chargeability and the photomemory were evaluated by the chargeability evaluation method 1 and the photomemory evaluation method 1 described later. At this time, the evaluation results are shown in Table 2.

実施例1の画像出力条件を以下に示す。主帯電工程は、主帯電工程のワイヤー電流を1300μAで一定とした。副帯電工程は、副帯電工程のワイヤーへ供給する電流を制御して、副帯電工程後の電子写真感光体表面電位を200Vとした。   The image output conditions of Example 1 are shown below. In the main charging process, the wire current in the main charging process was constant at 1300 μA. In the secondary charging process, the current supplied to the wire in the secondary charging process was controlled so that the surface potential of the electrophotographic photosensitive member after the secondary charging process was 200V.

第1除電工程で用いる除電光は、iR−8500でPSが450mm/sec時に2.5μJのエネルギーを基準とした。そして、PSに応じて電子写真感光体表面への照射エネルギーが一定となるように調整した。   The charge removal light used in the first charge removal step was based on an energy of 2.5 μJ when iR-8500 and PS was 450 mm / sec. And according to PS, it adjusted so that the irradiation energy to the electrophotographic photoreceptor surface might become fixed.

また、潜像形成工程で用いる半導体レーザーは、iR−8500でPSが450mm/sec時に主帯電工程後の感光体表面電位を400Vに設定し、半導体レーザー照射後に400Vから50Vにするために必要なエネルギーを基準とした。そして、PSに応じて電子写真感光体表面への照射エネルギーが一定となるように調整した。   The semiconductor laser used in the latent image forming process is necessary to set the photoreceptor surface potential after the main charging process to 400 V when the PS is 450 mm / sec with iR-8500, and from 400 V to 50 V after the semiconductor laser irradiation. Based on energy. And according to PS, it adjusted so that the irradiation energy to the electrophotographic photoreceptor surface might become fixed.

更に、第2除電工程で用いる除電光は、評価装置でPSが450mm/sec時に、主帯電工程後の電子写真感光体表面電位を400Vに設定し、第1除電工程で用いる除電光のエネルギーを2.5μJで除電した後、副帯電工程後の電子写真感光体表面電位を200Vに設定し、第1除電工程で用いる除電光照射後に200Vから30Vにするために必要なエネルギーを基準とした。そして、PSに応じて電子写真感光体表面への照射エネルギーが一定となるように調整した。   Furthermore, the charge removal light used in the second charge removal step is set to 400V on the surface potential of the electrophotographic photosensitive member after the main charging step when the PS is 450 mm / sec by the evaluation device, and the charge removal light energy used in the first charge removal step is After removing the charge at 2.5 μJ, the surface potential of the electrophotographic photosensitive member after the sub-charging process was set to 200 V, and the energy required to change from 200 V to 30 V after the discharge light used in the first discharging process was used as a reference. And according to PS, it adjusted so that the irradiation energy to the electrophotographic photoreceptor surface might become fixed.

(比較例1)
電子写真装置を用いた評価装置に電子写真感光体製造例で作製した電子写真感光体を設置し、副帯電工程での帯電をoff及び第2除電工程の除電光の光量をoffにして、実施例1の条件で画像を出力した。得られた画像について、帯電性及びフォトメモリを実施例1と同様に評価した。このとき、評価結果を表2に示す。
(Comparative Example 1)
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example is installed in the evaluation apparatus using the electrophotographic apparatus, and the charging in the sub-charging process is turned off and the light quantity of the static eliminating light in the second static eliminating process is turned off. An image was output under the conditions of Example 1. The obtained image was evaluated for chargeability and photomemory in the same manner as in Example 1. At this time, the evaluation results are shown in Table 2.

(比較例2)
電子写真装置を用いた評価装置に電子写真感光体製造例で作製した電子写真感光体を設置し、第2除電工程の除電光の光量をoffにして、実施例1の条件で画像を出力し、得られた画像について、帯電性及びフォトメモリを実施例1と同様に評価した。このとき、評価結果は表2に示す。
(Comparative Example 2)
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example is installed in the evaluation apparatus using the electrophotographic apparatus, the amount of the static elimination light in the second static elimination step is turned off, and an image is output under the conditions of Example 1. The obtained images were evaluated for chargeability and photomemory in the same manner as in Example 1. At this time, the evaluation results are shown in Table 2.

(比較例3)
電子写真装置を用いた評価装置に電子写真感光体製造例で作製した電子写真感光体を設置し、副帯電工程での帯電をoffとし、第2除電工程の除電光の光量は実施例1で用いたLEDへの印加電圧に揃えて、実施例1の条件で画像を出力した。得られた画像について、帯電性及びフォトメモリを実施例1と同様に評価した。このときの、評価結果を表2に示す。
(Comparative Example 3)
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example is installed in the evaluation apparatus using the electrophotographic apparatus, the charging in the sub-charging process is turned off, and the amount of static elimination light in the second static elimination process is the same as in Example 1. An image was output under the conditions of Example 1 in accordance with the applied voltage to the used LED. The obtained image was evaluated for chargeability and photomemory in the same manner as in Example 1. The evaluation results at this time are shown in Table 2.

(帯電性の評価方法1)
評価する画像は、評価装置を23℃、45%の環境下に設置し、感光体ヒーターをoffにして出力した画像を用いて行った。
(Charging evaluation method 1)
An image to be evaluated was obtained by using an image output by setting the evaluation apparatus in an environment of 23 ° C. and 45% and turning off the photosensitive member heater.

帯電性の評価に用いたテストチャートは、全面が反射濃度1.1のA3黒色チャートを用い、以下に示す方法で実施した。   The test chart used for the evaluation of the chargeability was an A3 black chart having a reflection density of 1.1 on the entire surface, and was carried out by the following method.

テストチャートを原稿台におき、コピーをした時に得られたコピー画像の画像濃度を測定した。測定位置はA3のコピー画像中心付近で、反射濃度を5回測定し平均値を求めた。各条件で出力した画像から求めた反射濃度の平均値から、条件1に対する比率を求め比較した。画像濃度の測定は、画像濃度計(MacbethRD914)を用いて測定した。評価基準は次の通りであり、評価対象は、比較例1の電子写真装置を用いた評価装置条件でPSを450mm/secとした時の画像から求めた反射濃度の平均値とした。
◎‥比較例1の電子写真装置を用いた評価装置の条件でPS450mm/secで出力した画像より求めた反射濃度に対する比率が1.0以上で非常に良好。
○‥比較例1の電子写真装置を用いた評価装置の条件でPS450mm/secで出力した画像より求めた反射濃度に対する比率が0.9以上1.0未満で良好。
△‥比較例1の電子写真装置を用いた評価装置の条件でPS450mm/secで出力した画像より求めた反射濃度に対する比率が0.8以上0.9未満で実用上問題無し。
×‥比較例1の電子写真装置を用いた評価装置の条件でPS450mm/secで出力した画像より求めた反射濃度に対する比率が0.8未満で目視により濃度差が確認できる。
A test chart was placed on the platen and the image density of the copy image obtained when copying was measured. The measurement position was near the center of the A3 copy image, and the reflection density was measured five times to obtain an average value. From the average value of the reflection density obtained from the image output under each condition, the ratio to condition 1 was obtained and compared. The image density was measured using an image densitometer (MacbethRD914). The evaluation criteria are as follows, and the evaluation target was the average value of the reflection density obtained from the image when PS was 450 mm / sec under the evaluation apparatus conditions using the electrophotographic apparatus of Comparative Example 1.
A. The ratio to the reflection density obtained from an image output at PS 450 mm / sec under the conditions of the evaluation apparatus using the electrophotographic apparatus of Comparative Example 1 is very good at 1.0 or more.
○ The ratio to the reflection density obtained from the image output at PS 450 mm / sec under the conditions of the evaluation apparatus using the electrophotographic apparatus of Comparative Example 1 is 0.9 or more and less than 1.0.
Δ: The ratio to the reflection density obtained from the image output at PS 450 mm / sec under the conditions of the evaluation apparatus using the electrophotographic apparatus of Comparative Example 1 is 0.8 or more and less than 0.9, and there is no practical problem.
X: The density difference can be visually confirmed since the ratio to the reflection density obtained from the image output at PS 450 mm / sec under the conditions of the evaluation apparatus using the electrophotographic apparatus of Comparative Example 1 is less than 0.8.

(フォトメモリの評価方法1)
評価する画像は、評価装置を23℃、45%の環境下に設置し、感光体ヒーターをoffにして出力した画像を用いて行った。
(Photo memory evaluation method 1)
An image to be evaluated was obtained by using an image output by setting the evaluation apparatus in an environment of 23 ° C. and 45% and turning off the photosensitive member heater.

フォトメモリの評価に用いたテストチャートは、図6に示すような反射濃度0.8のハーフトーンで長辺の右端から20mmの位置の1ヶ所に、幅20mm×短辺の反射濃度1.1の黒線を有するA3のテストチャートで、以下に示す方法で評価を行った。   The test chart used for the evaluation of the photo memory is a halftone having a reflection density of 0.8 as shown in FIG. 6 and a reflection density of 1.1 mm having a width of 20 mm and a short side at one position 20 mm from the right end of the long side. Evaluation was performed by the following method using a test chart of A3 having a black line.

テストチャートを、黒線側を原稿先端として原稿台におき、コピーをした時に得られたコピー画像の画像濃度を測定した。測定位置は、A3のコピー画像における電子写真感光体の長手方向に対応するコピー画像の中心位置aで、上記黒線部の中央部から電子写真感光体回転方向に300mm離れた位置b及び340mm離れた位置cを測定した。測定された、340mm位置の反射濃度に対する300mm位置の反射濃度の比率を求めて比較した。画像濃度の測定は、画像濃度計(MacbethRD914)を用いて測定した。評価基準は次の通りである。   The test chart was placed on the platen with the black line side as the leading edge of the document, and the image density of the copy image obtained when copying was measured. The measurement position is the center position a of the copy image corresponding to the longitudinal direction of the electrophotographic photosensitive member in the A3 copy image, and the positions b and 340 mm apart from the central portion of the black line portion by 300 mm in the rotation direction of the electrophotographic photosensitive member. The measured position c was measured. The measured ratio of the reflection density at the 300 mm position to the reflection density at the 340 mm position was determined and compared. The image density was measured using an image densitometer (MacbethRD914). The evaluation criteria are as follows.

◎ : 340mm位置の反射濃度に対する300mm位置の反射濃度の比率が1.0以上1.05未満で非常に良好。   A: The ratio of the reflection density at the 300 mm position to the reflection density at the 340 mm position is 1.0 to less than 1.05, which is very good.

○ : 340mm位置の反射濃度に対する300mm位置の反射濃度の比率が1.05以上1.10未満で良好。   ○: The ratio of the reflection density at the 300 mm position to the reflection density at the 340 mm position is 1.05 or more and less than 1.10.

△ : 340mm位置の反射濃度に対する300mm位置の反射濃度の比率が1.10以上1.15未満で実用上問題無し。   Δ: The ratio of the reflection density at the 300 mm position to the reflection density at the 340 mm position is 1.10 or more and less than 1.15, and there is no practical problem.

× : 340mm位置の反射濃度に対する300mm位置の反射濃度の比率が1.1 5以上、目視で濃度差が確認できる。   X: The ratio of the reflection density at the 300 mm position to the reflection density at the 340 mm position is 1.15 or more, and the density difference can be visually confirmed.

Figure 2009192697
Figure 2009192697

表2の結果より、従来の電子写真プロセスである比較例1の構成でPSを速くすると、帯電電位の低下により画像濃度が低下し、フォトメモリによる画像濃度ムラの評価では反射濃度の比率が大きくなった。また、比較例2のように帯電工程を2ヶ所とした場合、PSが速くなっても帯電電位を十分確保できるために帯電性は良好であったが、フォトメモリによる画像濃度ムラの評価では反射濃度の比率が大きくなった。逆に、比較例3のように除電工程を2ヶ所とした場合は、PSが速くなっても十分な除電が行われるためフォトメモリによる画像濃度ムラが良好であったが、帯電電位の低下により画像濃度が低下してしまった。しかし、本発明の電子写真プロセスを用いて場合、PSを速くしても帯電電位が十分確保できるため帯電性は良好で、且つ、十分な除電が行われるためフォトメモリによる画像濃度ムラも良好であった。   From the results shown in Table 2, when PS is accelerated in the configuration of Comparative Example 1 which is a conventional electrophotographic process, the image density is lowered due to a decrease in charging potential, and the ratio of the reflection density is large in the evaluation of the image density unevenness by the photo memory. became. In addition, when the charging process was performed at two places as in Comparative Example 2, the charging potential was satisfactory because the charging potential could be sufficiently secured even when the PS speeded up, but in the evaluation of the image density unevenness by the photo memory, it was reflected. The concentration ratio increased. On the contrary, when there are two static elimination steps as in Comparative Example 3, the image density unevenness due to the photo memory is good because sufficient static elimination is performed even if the PS becomes faster. The image density has decreased. However, when the electrophotographic process of the present invention is used, the charging potential is sufficiently secured even if the PS is accelerated, so that the charging property is good, and since sufficient static elimination is performed, the image density unevenness due to the photo memory is also good. there were.

(実施例2)
電子写真装置を用いた評価装置に電子写真感光体製造例で作製した電子写真感光体を設置し、表3の条件となるように副帯電工程の帯電器ワイヤーへ供給する電流を制御して画像を出力した。得られた画像について、帯電性は後述の帯電性の評価方法2により、またフォトメモリは実施例1と同様に評価した。このとき、評価結果は表5に示す。また、第1から第4電位センサーで測定した表面電位(V1、V2、VL1、VL2)及び、V2/V1、V2−VL2、V2−VL1、VL2−VL1の測定結果及び主帯電工程で帯電ワイヤーに供給される電流量I1(μA)を表4に示す。
(Example 2)
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example is installed in an evaluation apparatus using an electrophotographic apparatus, and the current supplied to the charger wire in the sub-charging process is controlled so that the conditions shown in Table 3 are satisfied. Was output. For the obtained image, the chargeability was evaluated by the chargeability evaluation method 2 described later, and the photomemory was evaluated in the same manner as in Example 1. At this time, the evaluation results are shown in Table 5. Further, the surface potential (V1, V2, VL1, VL2) measured by the first to fourth potential sensors, the measurement results of V2 / V1, V2-VL2, V2-VL1, VL2-VL1, and the charging wire in the main charging step Table 4 shows the amount of current I1 (μA) supplied to.

Figure 2009192697
Figure 2009192697

実施例2の画像出力条件を以下に示す。全ての画像出力条件は、PSを700mm/secで一定とした。第1除電工程は、実施例1の基準に基づき調整を行った。第2除電工程は、表3の各条件において第2除電工程後の電位が30Vとなるように、LEDへの印加電圧を調整した。   The image output conditions of Example 2 are shown below. In all image output conditions, PS was fixed at 700 mm / sec. The first static elimination step was adjusted based on the criteria of Example 1. In the second static elimination step, the voltage applied to the LED was adjusted so that the potential after the second static elimination step was 30 V under each condition in Table 3.

(帯電性の評価方法2)
主帯電工程での帯電時に必要な帯電ワイヤーに供給される電流量により、電子写真プロセスでの帯電性を評価した。評価基準は次の通りである。
○ ‥ 主帯電工程での帯電時に必要な帯電電流が1400μA以下で非常に良好。
△ ‥ 主帯電工程での帯電時に必要な帯電電流が1400μA〜1600μA以下で実用上問題無し。
× ‥ 主帯電工程で1600μAより大きい帯電電流が必要であり、帯電での消費電力が大きすぎる。
(Chargeability evaluation method 2)
The chargeability in the electrophotographic process was evaluated by the amount of current supplied to the charging wire necessary for charging in the main charging process. The evaluation criteria are as follows.
○ …… The charging current required for charging in the main charging process is very good at 1400μA or less.
Δ: The charging current required for charging in the main charging process is 1400 μA to 1600 μA or less, and there is no practical problem.
X: A charging current larger than 1600 μA is required in the main charging step, and power consumption in charging is too large.

Figure 2009192697
Figure 2009192697

表4より、副帯電工程での帯電電位V2を変化させたところ、PSが速い条件であっても主帯電工程での消費電力及びフォトメモリによる画像濃度ムラは良好であった。しかしながら、V2/V1を、0.2以上、0.8以下とすることによりフォトメモリによる画像濃度ムラが良くなった。更に、V2−VL2が、70V以上270V以下で、且つ、V2−VL1が、100V以上300V以下にすることにより、主帯電工程での消費電力及びフォトメモリによる画像濃度ムラともに最も良好となった。   From Table 4, when the charging potential V2 in the sub-charging process was changed, the power consumption in the main charging process and the image density unevenness due to the photo memory were good even under the fast PS condition. However, when V2 / V1 is set to 0.2 or more and 0.8 or less, the image density unevenness due to the photo memory is improved. Furthermore, when V2-VL2 is 70 V or more and 270 V or less and V2-VL1 is 100 V or more and 300 V or less, both power consumption in the main charging step and image density unevenness due to the photo memory are the best.

(実施例3)
電子写真装置を用いた評価装置に電子写真感光体製造例で作製した電子写真感光体を設置し、表5の条件となるように第2除電工程のLEDへの印加電圧を調整して画像を出力し、得られた画像について、帯電性及びフォトメモリを実施例2と同様に評価した。このとき、評価結果は表7に示す。また、第1から第4電位センサーで測定した表面電位(V1、V2、VL1、VL2)及び、V2/V1、V2−VL2、V2−VL1、VL2−VL1の測定結果及び主帯電工程で帯電ワイヤーに供給される電流量I1(μA)を表7に示す。
(Example 3)
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example is installed in an evaluation apparatus using an electrophotographic apparatus, and an image is obtained by adjusting the voltage applied to the LED in the second static elimination process so that the conditions shown in Table 5 are satisfied. The chargeability and photomemory were evaluated in the same manner as in Example 2 for the output image. At this time, the evaluation results are shown in Table 7. Further, the surface potential (V1, V2, VL1, VL2) measured by the first to fourth potential sensors, the measurement results of V2 / V1, V2-VL2, V2-VL1, VL2-VL1, and the charging wire in the main charging step Table 7 shows the amount of current I1 (μA) supplied to.

Figure 2009192697
Figure 2009192697

実施例3の画像出力条件を以下に示す。全ての画像出力条件は、PSを700mm/secで一定とする。また、副帯電工程は、副帯電工程後の電位が150Vとなるように副帯電工程の帯電器ワイヤーへ供給する電流を制御し、第1除電工程は、実施例1の基準に基づき調整を行った。   The image output conditions of Example 3 are shown below. In all image output conditions, PS is constant at 700 mm / sec. In the sub-charging process, the current supplied to the charger wire in the sub-charging process is controlled so that the potential after the sub-charging process is 150 V, and the first charge eliminating process is adjusted based on the criteria of Example 1. It was.

(比較例4)
表6に示す条件以外は、実施例3と同様に画像を出力して得られた画像について、帯電性及びフォトメモリを実施例2と同様に評価した。このとき、評価結果は表7に示す。
(Comparative Example 4)
Except for the conditions shown in Table 6, the chargeability and photomemory of the image obtained by outputting the image in the same manner as in Example 3 were evaluated in the same manner as in Example 2. At this time, the evaluation results are shown in Table 7.

Figure 2009192697
Figure 2009192697

Figure 2009192697
Figure 2009192697

表7より、第2除電工程後での表面電位VL2を変化させたところ、PSが速い条件であってもVL1<VL2であれば、主帯電工程での消費電力及びフォトメモリによる画像濃度ムラは良好であった。更に、V2−VL2が70V以上とすることによりフォトメモリによる画像濃度ムラが良くなり、VL2−VL1が10V以上60V以下とすることで主帯電工程での消費電力及びフォトメモリによる画像濃度ムラが最も良好となった。   From Table 7, when the surface potential VL2 after the second static elimination process is changed, even if PS is fast, if VL1 <VL2, the power consumption in the main charging process and the image density unevenness due to the photo memory are It was good. Further, when V2-VL2 is set to 70 V or more, the image density unevenness due to the photo memory is improved, and when VL2-VL1 is set to 10 V or more and 60 V or less, the power consumption in the main charging process and the image density unevenness due to the photo memory are the most. It became good.

本発明に係わるa−Si電子写真感光体を用いた電子写真プロセスの模式的な概略説明図である。It is a typical schematic explanatory drawing of the electrophotographic process using the a-Si electrophotographic photoreceptor concerning this invention. 本発明に係わるa−Si電子写真感光体を用いた電子写真プロセスで行われる電位制御の説明図である。It is explanatory drawing of the electric potential control performed by the electrophotographic process using the a-Si electrophotographic photoreceptor concerning this invention. 本発明に係わるa−Si電子写真感光体の層構成を模式的に示す概略断面図である。1 is a schematic cross-sectional view schematically showing a layer configuration of an a-Si electrophotographic photosensitive member according to the present invention. RF帯を用いた高周波プラズマCVD法によるa−Si電子写真感光体製造装置の一例を示す模式的な概略構成図である。It is a typical schematic block diagram which shows an example of the a-Si electrophotographic photoreceptor manufacturing apparatus by the high frequency plasma CVD method using RF band. 実施例で用いたa−Si電子写真感光体を用いた電子写真プロセスの模式的な概略説明図である。It is a typical schematic explanatory drawing of the electrophotographic process using the a-Si electrophotographic photosensitive member used in the Example. 実施例で用いた画像濃度ムラの評価チャートである。It is an evaluation chart of the image density nonuniformity used in the Example. 従来の電子写真感光体を用いた電子写真プロセスの模式的な概略説明図である。It is a typical schematic explanatory drawing of the electrophotographic process using the conventional electrophotographic photoreceptor.

符号の説明Explanation of symbols

101、501、701 a−Si電子写真感光体
102、502、702 主帯電器
103、503 副帯電器
104、504、704 第1除電器
105、505 第2除電器
106、506、706 転写帯電器
107、507、707 分離帯電器
108、508、708 静電潜像手段
109、509、709 マグネットローラー
110、510、710 クリーニングブレード
111、511、711 クリーナー
112、512、712 転写材
113、513、713 搬送手段
114、514、714 現像器
300 電子写真感光体
301 円筒状基体
302 光導電層
303 表面層
304 電荷注入阻止層
305 電荷発生層
306 電荷輸送層
401 円筒状基体
402 反応容器
403 原料ガス導入管
404 ヒーター
405 基体保持部材
406 キャップ
407 マッチングボックス
408 高周波電源
515 第1電位センサー
516 第2電位センサー
517 第3電位センサー
518 第4電位センサー
101, 501, 701 a-Si electrophotographic photosensitive member 102, 502, 702 Main charger 103, 503 Sub-charger 104, 504, 704 First charge remover 105, 505 Second charge remover 106, 506, 706 Transfer charger 107, 507, 707 Separation charger 108, 508, 708 Electrostatic latent image means 109, 509, 709 Magnet roller 110, 510, 710 Cleaning blade 111, 511, 711 Cleaner 112, 512, 712 Transfer material 113, 513, 713 Conveying means 114, 514, 714 Developer 300 Electrophotographic photosensitive member 301 Cylindrical substrate 302 Photoconductive layer 303 Surface layer 304 Charge injection blocking layer 305 Charge generation layer 306 Charge transport layer 401 Cylindrical substrate 402 Reaction vessel 403 Source gas introduction tube 404 Heater 40 Substrate holding member 406 cap 407 matching box 408 high-frequency power source 515 first potential sensor 516 second potential sensor 517 third potential sensor 518 fourth potential sensor

Claims (4)

導電性基体上にシリコン原子を母体とする非晶質材料で構成された光導電層及び表面層を有する電子写真感光体の表面を帯電させる主帯電工程と、その後、前記電子写真感光体の表面に静電潜像を形成する静電潜像形成工程と、前記静電潜像をトナー像として現像する現像工程と、前記トナー像を記録媒体に転写する転写工程と、その後、前記静電潜像を除電する第1除電工程と、その後、前記電子写真感光体の表面を帯電させる副帯電工程と、
前記電子写真感光体の表面の除電を行う第2除電工程と、を順次繰り返すことで電子写真を形成する電子写真の形成方法であって、
前記第2除電工程で除電された前記電子写真感光体の表面の電位が、前記第1除電工程で除電された前記電子写真感光体の表面の電位より高いことを特徴とする電子写真の形成方法。
A main charging step of charging the surface of the electrophotographic photosensitive member having a photoconductive layer and a surface layer made of an amorphous material having silicon atoms as a base on a conductive substrate, and then the surface of the electrophotographic photosensitive member An electrostatic latent image forming step for forming an electrostatic latent image on the surface, a developing step for developing the electrostatic latent image as a toner image, a transfer step for transferring the toner image to a recording medium, and then the electrostatic latent image. A first charge eliminating step for discharging the image, and then a sub-charging step for charging the surface of the electrophotographic photosensitive member;
A method of forming an electrophotographic method of forming an electrophotography by sequentially repeating a second charge eliminating step for removing charge on the surface of the electrophotographic photosensitive member,
A method of forming an electrophotographic image, wherein a surface potential of the electrophotographic photosensitive member neutralized in the second neutralizing step is higher than a potential of the surface of the electrophotographic photosensitive member neutralized in the first neutralizing step. .
前記第2除電工程後の前記電子写真感光体の表面電位をVL2(V)とし、前記第1除電工程後の前記電子写真感光体の表面電位をVL1(V)とした時、
V2−VL2が、70V以上、270V以下で、且つ、V2−VL1が、100V以上、300V以下であることを特徴とする請求項1に記載の電子写真の形成方法。
When the surface potential of the electrophotographic photosensitive member after the second static elimination step is VL2 (V) and the surface potential of the electrophotographic photosensitive member after the first static elimination step is VL1 (V),
2. The method of forming an electrophotographic image according to claim 1, wherein V2-VL2 is 70 V or more and 270 V or less, and V2-VL1 is 100 V or more and 300 V or less.
VL2−VL1が、10V以上、60V以下であることを特徴とする請求項2に記載の電子写真の形成方法。   The method of forming an electrophotographic image according to claim 2, wherein VL2-VL1 is 10 V or more and 60 V or less. 前記主帯電工程後の前記電子写真感光体の表面電位をV1(V)とし、前記副帯電工程後の前記電子写真感光体の表面電位をV2(V)とした時、V2/V1が、0.2以上、0.8以下であることを特徴とする請求項1に記載の電子写真の形成方法。   When the surface potential of the electrophotographic photosensitive member after the main charging step is V1 (V) and the surface potential of the electrophotographic photosensitive member after the sub charging step is V2 (V), V2 / V1 is 0. 2. The method for forming an electrophotographic image according to claim 1, wherein the method is 2 or more and 0.8 or less.
JP2008031721A 2008-02-13 2008-02-13 Method of forming electrophotograph Pending JP2009192697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031721A JP2009192697A (en) 2008-02-13 2008-02-13 Method of forming electrophotograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031721A JP2009192697A (en) 2008-02-13 2008-02-13 Method of forming electrophotograph

Publications (1)

Publication Number Publication Date
JP2009192697A true JP2009192697A (en) 2009-08-27

Family

ID=41074787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031721A Pending JP2009192697A (en) 2008-02-13 2008-02-13 Method of forming electrophotograph

Country Status (1)

Country Link
JP (1) JP2009192697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031527A (en) * 2014-07-25 2016-03-07 株式会社リコー Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031527A (en) * 2014-07-25 2016-03-07 株式会社リコー Image forming apparatus

Similar Documents

Publication Publication Date Title
EP0010375A1 (en) Electrostatographic processing system
JP2006235559A (en) Image forming apparatus
JP2006276256A (en) Image forming apparatus and method for monitoring image defect suppression processing
JP2009192697A (en) Method of forming electrophotograph
JPS58200273A (en) Electrophotographic device
US8032059B2 (en) Apparatus and methods for suppressing photoreceptor image ghost
JP2005031110A (en) Image forming apparatus, printing apparatus and method for forming image
JP2010271602A (en) Image forming apparatus
JP4764725B2 (en) Image forming apparatus
JP2008299255A (en) Electrophotographic method
JP3875751B2 (en) Image forming method
US20080145080A1 (en) Inter-Page Belt Impedance Measurement
JP2001350385A (en) Image forming device
JP2018159767A (en) Image forming apparatus
JP2008083131A (en) Cleaning device for image forming apparatus
JP2010271364A (en) Image forming apparatus
JP2005031111A (en) Image forming apparatus, printing apparatus and method for forming image
CA1134899A (en) Xerographic process system with fuser assist
JPS5858561A (en) Electrostatic copying method by transfer of toner image
JP2003255668A (en) Image forming apparatus
JPH06130769A (en) Electrophotographic device and manufacture of amorphous silicon photosensitive body used for the device
JP2003280334A (en) Image forming apparatus
JP2001290338A (en) Electrophotographic device
JP2000162802A (en) Electrophotographic device
JPS6118975A (en) Electrophotographic method