JP2009192313A - Beam detection member and beam detector using it - Google Patents

Beam detection member and beam detector using it Download PDF

Info

Publication number
JP2009192313A
JP2009192313A JP2008032008A JP2008032008A JP2009192313A JP 2009192313 A JP2009192313 A JP 2009192313A JP 2008032008 A JP2008032008 A JP 2008032008A JP 2008032008 A JP2008032008 A JP 2008032008A JP 2009192313 A JP2009192313 A JP 2009192313A
Authority
JP
Japan
Prior art keywords
detection member
film
ppm
polycrystalline diamond
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008032008A
Other languages
Japanese (ja)
Other versions
JP5015026B2 (en
Inventor
Takeshi Tachibana
武史 橘
Yoshihiro Yokota
嘉宏 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008032008A priority Critical patent/JP5015026B2/en
Publication of JP2009192313A publication Critical patent/JP2009192313A/en
Application granted granted Critical
Publication of JP5015026B2 publication Critical patent/JP5015026B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a beam detection member and a beam detector using it, capable of exciting visible light more efficiently from a radiation light beam, a soft X-ray beam or the like in the range from high energy to low energy, and detecting its position or an intensity distribution highly accurately and stably for a long period, and manufacturable at lower cost than a conventional detection device. <P>SOLUTION: In the beam detection member 2 for detecting the position or the intensity of a beam 7, a beam irradiation part 6 for irradiating the beam 7 comprises a polycrystal diamond film 4 containing boron (B) averagely 10-150 ppm, and the boron (B) concentration in the polycrystal diamond 4 has an uneven concentration distribution in the film thickness direction of the polycrystal diamond film 4. The beam detector 1 is constituted of such a beam detection member 2 and excitation light observation means 3, 3a for observing excited excitation light 8, 8a. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シンクロトロン放射光設備等で発生する高エネルギー放射光等のビームをビーム照射部に照射することにより、このビーム光の位置・強度等の検出を行うビーム検出部材及びそれを用いたビーム検出器に関するものである。   The present invention uses a beam detection member for detecting the position and intensity of the beam light by irradiating the beam irradiation unit with a beam such as high-energy radiation generated in a synchrotron radiation facility or the like, and the same. The present invention relates to a beam detector.

近年、医療、材料、エレクトロニクス分野等の研究開発において、ビーム状の紫外線からX線まで発生させるシンクトロン放射光設備等が広く活用されてきている。このような目に見えないビームの位置や強度を正確に把握することは重要であるが、容易ではない。更に、放射光のエネルギーは高いので、誤って非照射対象物や実験者に高エネルギー光を照射したり、また、実験者が気づかない間に間接的に多量のX線が照射されたりする危険性がある。   In recent years, synchrotron radiation facilities that generate beam-like ultraviolet rays to X-rays have been widely used in research and development in the fields of medicine, materials, electronics, and the like. Although it is important to accurately grasp the position and intensity of such an invisible beam, it is not easy. Furthermore, since the energy of the radiated light is high, there is a risk that a non-irradiated object or an experimenter will be accidentally irradiated with high energy light, or that a large amount of X-rays may be irradiated indirectly while the experimenter is not aware. There is sex.

そのため、放射光ビームの位置や強度を簡便に測定するビーム検出器やビーム検出方法が必要とされている。紫外線やX線ビームの位置等を把握するために一般的に用いられる蛍光板の類は、放射光ビームのエネルギーが大きくなると蛍光板自体が損なわれるので、本目的には使用不可能である。   Therefore, there is a need for a beam detector and a beam detection method that simply measure the position and intensity of the emitted light beam. Fluorescent screens generally used for grasping the positions of ultraviolet rays and X-ray beams cannot be used for this purpose because the fluorescent screen itself is damaged when the energy of the radiated light beam increases.

紫外線やX線ビームの位置等を把握するための従来例に係るビーム検出器またはビーム検出方法としては、表面半分と裏面半分に光電膜を形成したモニター板に、X線ビームが照射されると光電膜から電子(光電子)が放出され、各面から放出された電子量を2次電子倍増管で測定する方法(特許文献1参照)や、金属電極が両面に配置され中心に穿孔のある円盤状の気相合成ダイヤモンド板に、放射光が照射されると光電子が放出されるので、光電子電流をモニターすることにより放射光ビームの中心位置を推定する方法(特許文献2参照)等が提案されている。   As a conventional beam detector or beam detection method for grasping the position of an ultraviolet ray or an X-ray beam, an X-ray beam is applied to a monitor plate on which a photoelectric film is formed on the front half and the back half. A method in which electrons (photoelectrons) are emitted from a photoelectric film and the amount of electrons emitted from each surface is measured with a secondary electron multiplier (see Patent Document 1), or a disk in which metal electrodes are arranged on both surfaces and have a perforation in the center Photoelectrons are emitted when radiated light is irradiated onto a gas-phase synthetic diamond plate, a method for estimating the center position of a radiated light beam by monitoring the photoelectron current (see Patent Document 2), etc. has been proposed. ing.

しかしながら、前記従来例に係るビーム検出器や検出方法は、前者は2次元的なビーム位置(y座標)は決定出来ず、後者は放射光ビームの位置を予め知らなければ、放射光ビーム位置のモニターが出来ないという自己矛盾を抱えていた。   However, in the beam detector and detection method according to the conventional example, the former cannot determine the two-dimensional beam position (y coordinate), and the latter does not know the position of the emitted light beam in advance unless the position of the emitted light beam is known in advance. I had a self-contradiction that I couldn't monitor.

この様な問題点に対し、本発明者等は、既に、ビーム位置検出部材にX線透過性と熱伝導度・耐熱性に優れる多結晶ダイヤモンドを適用し、放射光X線ビームの位置及び強度を測定可能なビーム検出部材及びそれを用いたビーム検出器を提案した(特許文献3参照)。この提案は、それまでは不可能であった放射光X線ビームの位置及び強度を簡便に測定出来る優れた発明であるが、ビーム検出部材におけるより高効率の可視光励起という点からは改良の余地がある。
特開平7-318657号公報 特開平8-279624号公報 特開2007−262381号公報
In response to such problems, the present inventors have already applied polycrystalline diamond having excellent X-ray transparency, thermal conductivity, and heat resistance to the beam position detection member, and the position and intensity of the synchrotron radiation X-ray beam. Proposed a beam detection member capable of measuring the above and a beam detector using the same (see Patent Document 3). This proposal is an excellent invention that can easily measure the position and intensity of a synchrotron X-ray beam, which was impossible before, but there is room for improvement in terms of more efficient visible light excitation in the beam detection member. There is.
Japanese Patent Laid-Open No. 7-318657 JP-A-8-279624 JP 2007-262381 A

本発明は係る問題点に鑑み、その後も継続して研究開発を進めた結果、新たな知見を得てなされたものであって、高エネルギーから低エネルギーに至るまでの放射光ビームや、軟X線ビーム等をより効率的に可視光励起し、その位置及び強度分布を高精度で長期間安定して検出することが可能で、従来の検出装置よりも低コストで製造し得るビーム検出部材及びそれを用いたビーム検出器を提供することにある。   In view of such problems, the present invention has been made by continuing research and development, and as a result, has gained new knowledge, including a synchrotron radiation beam ranging from high energy to low energy, and soft X A beam detection member capable of exciting a line beam or the like more efficiently with visible light and detecting its position and intensity distribution stably with high accuracy for a long period of time, and can be manufactured at a lower cost than a conventional detection device, and the same It is to provide a beam detector using the.

前記目的を達成するために、本発明の請求項1に係るビーム検出部材が採用した手段は、ビームの位置や強度を検出するためのビーム検出部材であって、ビームが照射されるビーム照射部が、ホウ素(B)を平均10〜150ppm含む多結晶ダイヤモンド膜からなり、この多結晶ダイヤモンド中のホウ素濃度は、前記多結晶ダイヤモンドの膜厚方向に不均一な濃度分布を持つことを特徴とするものである。   In order to achieve the above object, the means employed by the beam detection member according to claim 1 of the present invention is a beam detection member for detecting the position and intensity of the beam, and a beam irradiation unit to which the beam is irradiated Is composed of a polycrystalline diamond film containing an average of 10 to 150 ppm of boron (B), and the boron concentration in the polycrystalline diamond has a non-uniform concentration distribution in the film thickness direction of the polycrystalline diamond. Is.

本発明の請求項2に係るビーム検出部材が採用した手段は、前記多結晶ダイヤモンド中のホウ素(B)濃度が、膜厚方向に150ppm以上の部分及び10ppm以下の部分を有することを特徴とするものである。   The means employed by the beam detection member according to claim 2 of the present invention is characterized in that the boron (B) concentration in the polycrystalline diamond has a portion of 150 ppm or more and a portion of 10 ppm or less in the film thickness direction. Is.

本発明の請求項3に係るビーム検出部材が採用した手段は、請求項2に記載のビーム検出部材において、前記多結晶ダイヤモンド中のホウ素(B)濃度が150ppm以上及び10ppm以下の部分の、前記多結晶ダイヤモンドの膜厚方向に占める体積比率が33%以上かつ66%以下であることを特徴とするものである。   The means adopted by the beam detecting member according to claim 3 of the present invention is the beam detecting member according to claim 2, wherein the boron (B) concentration in the polycrystalline diamond is 150 ppm or more and 10 ppm or less. The volume ratio of the polycrystalline diamond in the film thickness direction is 33% or more and 66% or less.

本発明の請求項4に係るビーム検出部材が採用した手段は、請求項1乃至3のうちの何れか一つの項に記載のビーム検出部材において、前記ダイヤモンド膜の少なくとも一部が基板で保持されると共に、前記多結晶ダイヤモンドの膜厚が3〜30μmであることを特徴とするものである。   According to a fourth aspect of the present invention, there is provided the beam detecting member employed in the beam detecting member according to any one of the first to third aspects, wherein at least a part of the diamond film is held by the substrate. In addition, the polycrystalline diamond has a thickness of 3 to 30 μm.

本発明の請求項5に係るビーム検出部材が採用した手段は、請求項1乃至4のうちの何れか一つの項に記載のビーム検出部材において、前記多結晶ダイヤモンド膜をなすダイヤモンド粒子の平均粒子径が10μm以下であることを特徴とするものである。   The means employed by the beam detection member according to claim 5 of the present invention is the beam detection member according to any one of claims 1 to 4, wherein the average particle of the diamond particles forming the polycrystalline diamond film is The diameter is 10 μm or less.

本発明の請求項6に係るビーム検出器が採用した手段は、ビームの位置や強度を検出するためのビーム検出部材を備えたビーム検出器において、請求項1乃至5のうちの何れか一つの項に記載のビーム検出部材と、前記ビーム照射部にビームが照射されると可視光が励起され、この励起光を観測する励起光観測手段とを備え、この励起光観測手段によって観測された励起光により、前記ビームの位置や強度を検出することを特徴とするものである。   The means employed by the beam detector according to claim 6 of the present invention is a beam detector provided with a beam detection member for detecting the position and intensity of the beam, according to any one of claims 1 to 5. And the excitation light observing means for observing the excitation light when the beam irradiating part is irradiated with the beam. The excitation observed by the excitation light observing means The position and intensity of the beam are detected by light.

本発明の請求項1に係るビーム検出部材によれば、ビームの位置や強度を検出するためのビーム検出部材であって、ビームが照射されるビーム照射部が、ホウ素(B)を平均10〜150ppm含む多結晶ダイヤモンド膜からなり、この多結晶ダイヤモンド中のホウ素(B)濃度は、前記多結晶ダイヤモンドの膜厚方向に不均一な濃度分布を持つので、ビームが照射されたとき励起される励起光が、内部で吸収されることなく高強度な励起光として外部に取り出せる。   According to the beam detection member according to claim 1 of the present invention, the beam detection member for detecting the position and intensity of the beam, wherein the beam irradiation unit irradiated with the beam has an average of 10 to 10 boron (B). It consists of a polycrystalline diamond film containing 150 ppm, and the boron (B) concentration in the polycrystalline diamond has a non-uniform concentration distribution in the film thickness direction of the polycrystalline diamond, so that excitation excited when the beam is irradiated Light can be extracted outside as high-intensity excitation light without being absorbed inside.

また、多結晶ダイヤモンドの結晶格子において、原子半径が炭素に較べて小さなホウ素が炭素を置換して存在すると、前記ダイヤモンド膜の内部応力が低減されるが、この様な作用は、ホウ素がダイヤモンド中で均一な場合よりも、分布のあるほうがより顕著に顕れる。   In addition, in the crystal lattice of polycrystalline diamond, when boron having a smaller atomic radius than carbon substitutes for carbon, the internal stress of the diamond film is reduced. The distribution is more prominent than the uniform case.

更に、本発明の請求項2に係るビーム検出部材によれば、前記多結晶ダイヤモンド中のホウ素(B)濃度が、膜厚方向に150ppm以上の部分及び10ppm以下の部分を有するので、ホウ素濃度150ppm以上の部分で高効率に励起された可視光が、ホウ素濃度10ppm以下の部分で効率よく透過して、前記ダイヤモンド膜の外部に取り出すことが出来る。   Furthermore, according to the beam detection member according to claim 2 of the present invention, the boron (B) concentration in the polycrystalline diamond has a portion of 150 ppm or more and a portion of 10 ppm or less in the film thickness direction. Visible light excited with high efficiency in the above portion can be efficiently transmitted through the portion having a boron concentration of 10 ppm or less and extracted outside the diamond film.

また更に、本発明の請求項3に係るビーム検出部材によれば、前記多結晶ダイヤモンド中のホウ素(B)濃度が150ppm以上及び10ppm以下の部分の、前記多結晶ダイヤモンドの膜厚方向に占める体積比率が33%以上かつ66%以下であるので、ビームが照射されたとき励起される励起光強度が更に大きくなる。   Furthermore, according to the beam detection member of claim 3 of the present invention, the volume of the portion of the polycrystalline diamond in which the boron (B) concentration is 150 ppm or more and 10 ppm or less in the film thickness direction of the polycrystalline diamond. Since the ratio is 33% or more and 66% or less, the intensity of excitation light that is excited when the beam is irradiated is further increased.

本発明の請求項4に係るビーム検出部材によれば、前記ダイヤモンド膜の少なくとも一部が基板で保持されるので、多結晶ダイヤモンドが自立膜構造を有し、この自立膜部分に放射光ビームが照射されるので、高強度のビームに対しても破損しない。特に基板がシリコンの場合は、熱伝導に優れるだけでなく、加工が容易で、前記基板の平坦性と放射光ビーム7に対する垂直度の確保が容易となる。同時に、前記多結晶ダイヤモンドの膜厚が3〜30μmであるので、放射光ビームが散乱や回折を生じることなく透過し得る   According to the beam detection member of claim 4 of the present invention, since at least a part of the diamond film is held by the substrate, the polycrystalline diamond has a self-supporting film structure, and the synchrotron radiation beam is applied to the self-supporting film portion. Because it is irradiated, it will not break even for high-intensity beams. In particular, when the substrate is silicon, not only is it excellent in heat conduction, but it is easy to process, and it is easy to ensure the flatness of the substrate and the perpendicularity to the radiation beam 7. At the same time, since the polycrystalline diamond has a film thickness of 3 to 30 μm, the radiated light beam can be transmitted without causing scattering or diffraction.

そして、本発明の請求項5に係るビーム検出部材によれば、前記多結晶ダイヤモンド膜をなすダイヤモンド粒子の平均粒子径が10μm以下であるので、適正サイズの発光領域と適切な発光輝度を有する高品質な透過放射光ビームが得られる。   According to the beam detection member of claim 5 of the present invention, since the average particle diameter of the diamond particles forming the polycrystalline diamond film is 10 μm or less, a light emitting region of an appropriate size and a high emission luminance having an appropriate light emission luminance. A quality transmitted radiation beam is obtained.

一方、本発明の請求項6に係るビーム検出器によれば、ビームの位置や強度を検出するためのビーム検出部材を備えたビーム検出器において、請求項1乃至5のうちの何れか一つの項に記載のビーム検出部材と、前記ビーム照射部にビームが照射されると可視光が励起され、この励起光を観測する励起光観測手段とを備え、この励起光観測手段によって観測された励起光により、前記ビームの位置や強度を検出するので、放射光ビームを直接多結晶ダイヤモンド膜に照射し、多結晶ダイヤモンド膜からの発光位置とその強度分布を前記励起光観測手段によりモニターすることによって、ビーム位置と強度分布を決定することが出来る。   On the other hand, according to the beam detector according to claim 6 of the present invention, in the beam detector provided with the beam detection member for detecting the position and intensity of the beam, any one of claims 1 to 5 is provided. And the excitation light observing means for observing the excitation light when the beam irradiating part is irradiated with the beam. The excitation observed by the excitation light observing means Since the position and intensity of the beam are detected by light, a radiation beam is directly applied to the polycrystalline diamond film, and the emission position from the polycrystalline diamond film and its intensity distribution are monitored by the excitation light observation means. The beam position and intensity distribution can be determined.

先ず、本発明の実施の形態1に係るビーム検出部材及びそれを用いたビーム検出器について、添付図1〜3を参照しながら以下に説明する。図1は本発明の実施の形態1に係るビーム検出部材の表面を模式的に示した模式的斜視図、図2は本発明の実施の形態1に係るビーム検出部材の裏面を模式的に示した模式的斜視図である。また、添付図3は本発明の実施の形態1に係るビーム検出部材を用いたビーム検出器の全体構成を模式的に示した模式的断面図である。   First, a beam detection member and a beam detector using the same according to Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic perspective view schematically showing the surface of a beam detection member according to Embodiment 1 of the present invention, and FIG. 2 schematically shows the back surface of the beam detection member according to Embodiment 1 of the present invention. It is a typical perspective view. FIG. 3 is a schematic cross-sectional view schematically showing the overall configuration of the beam detector using the beam detection member according to Embodiment 1 of the present invention.

本発明の実施の形態1に係るビーム検出部材2は、添付図1及び2に示す通り、基板5の裏面に多結晶ダイヤモンド(C)膜4が形成され、前記基板5はその周縁部のみをリング状の枠として構成されている。そして、前記多結晶ダイヤモンド膜(以下、単にダイヤモンド膜あるいは多結晶ダイヤモンドともいう)4からなり、少なくともビーム7が照射されるビーム照射部6には、ホウ素(B)が平均10〜150ppmドープされているのが好ましい。そして、前記ビーム照射部6における多結晶ダイヤモンド4中のホウ素濃度は、前記多結晶ダイヤモンド4の膜厚方向に不均一な濃度分布を持っているのが良い。   As shown in FIGS. 1 and 2, the beam detection member 2 according to Embodiment 1 of the present invention has a polycrystalline diamond (C) film 4 formed on the back surface of a substrate 5, and the substrate 5 has only its peripheral portion. It is configured as a ring-shaped frame. The beam irradiating section 6 which is made of the polycrystalline diamond film (hereinafter also simply referred to as diamond film or polycrystalline diamond) 4 and irradiated with at least the beam 7 is doped with 10 to 150 ppm of boron (B) on average. It is preferable. The boron concentration in the polycrystalline diamond 4 in the beam irradiation section 6 preferably has a non-uniform concentration distribution in the film thickness direction of the polycrystalline diamond 4.

そして、前記ビーム検出部材2は、放射光ビーム7が照射されると通過するビーム照射部6の領域の基板は除去されており、多結晶ダイヤモンド膜4が、図3に示す如く自立構造をなしている。このような構造は、例えば基板5としてシリコンを用い、除去すべき領域を残して耐酸性材料でシリコン基板をマスクし、これをフッ硝酸溶液でエッチングすることにより作成することができる。   In the beam detecting member 2, the substrate in the region of the beam irradiating portion 6 that passes when the radiated light beam 7 is irradiated is removed, and the polycrystalline diamond film 4 has a self-standing structure as shown in FIG. ing. Such a structure can be formed by using silicon as the substrate 5, for example, masking the silicon substrate with an acid-resistant material while leaving a region to be removed, and etching it with a hydrofluoric acid solution.

前記多結晶ダイヤモンド膜4の膜厚は、例えば、ビーム照射部6では薄く、その他の基板5上では厚く被膜するのが好ましい。このような多結晶ダイヤモンド膜4の膜厚分布は、ダイヤモンド膜4の選択成長技術を応用して実現できる。前述の如く、前記ダイヤモンド膜4の厚さをビーム照射部6では薄く、その他は厚くする理由は、ビーム照射部6の温度上昇を抑制するためである。   It is preferable that the polycrystalline diamond film 4 has a thin film thickness, for example, on the beam irradiation unit 6 and a thick film on the other substrate 5. Such a film thickness distribution of the polycrystalline diamond film 4 can be realized by applying a selective growth technique of the diamond film 4. As described above, the reason why the thickness of the diamond film 4 is thin in the beam irradiation unit 6 and the others are thick is to suppress the temperature rise of the beam irradiation unit 6.

本発明に係るビーム検出部材2は、図1及び図2に示した様な単純な構成であるので、従来例に係る特許文献1,2で提示された複雑な製作プロセスを必要とするビーム検出部材と比べて、製造コストは大幅に低減出来る。   Since the beam detection member 2 according to the present invention has a simple configuration as shown in FIGS. 1 and 2, the beam detection that requires the complicated manufacturing process presented in Patent Documents 1 and 2 according to the conventional example. Compared with the member, the manufacturing cost can be greatly reduced.

そして、前記多結晶ダイヤモンド膜4にホウ素(B)原子を取り込むことによって、図3を用いて後述するように、放射光ビーム7を照射させた際、照射スポット7aから十分な強度を有する可視光(波長500〜600nmの範囲に強度ピークがある)が励起され、励起光8,8aとして発光されるのである。   Then, by incorporating boron (B) atoms into the polycrystalline diamond film 4, visible light having sufficient intensity from the irradiation spot 7a when irradiated with the radiation beam 7 as will be described later with reference to FIG. (There is an intensity peak in the wavelength range of 500 to 600 nm) is excited and emitted as excitation light 8 and 8a.

前記ビーム照射部6における多結晶ダイヤモンド膜4中の平均ホウ素濃度が10〜150ppmの範囲であるのが好ましい理由は後に詳細に述べるが、定性的には、ホウ素濃度が10ppm未満であると可視光を発するホウ素の密度が低いために観測される励起光強度が不十分となり、一方、ホウ素濃度が150ppmを超えると、ダイヤモンド4中の励起光吸収が顕著となって、外部に取り出される励起光が弱くなるためである。   The reason why the average boron concentration in the polycrystalline diamond film 4 in the beam irradiation section 6 is preferably in the range of 10 to 150 ppm will be described in detail later, but qualitatively, if the boron concentration is less than 10 ppm, visible light is visible. The excitation light intensity observed due to the low density of boron that emits becomes insufficient. On the other hand, when the boron concentration exceeds 150 ppm, the absorption of excitation light in the diamond 4 becomes remarkable, and the excitation light extracted outside This is because it becomes weaker.

また、前記ダイヤモンド膜4中のホウ素濃度が、膜厚方向に不均一な分布を持ち、150ppm以上の部分と10ppm以下の部分とを有すること、また更には、そのような部分が膜厚方向に占める割合が33%以上かつ66%以下であることが好ましい。前記多結晶ダイヤモンド膜4中に含まれるホウ素が、膜厚方向に上記の如く不均一な濃度分布を有することは、主に下記の2つの理由から重要である。   Further, the boron concentration in the diamond film 4 has a non-uniform distribution in the film thickness direction, and has a portion of 150 ppm or more and a portion of 10 ppm or less, and furthermore, such a portion is in the film thickness direction. The occupying ratio is preferably 33% or more and 66% or less. It is important mainly for the following two reasons that the boron contained in the polycrystalline diamond film 4 has a non-uniform concentration distribution in the film thickness direction as described above.

(1)先ず、1つ目の理由は高効率の光励起が得られるからである。即ち、部分的に150ppm以上の濃度でホウ素を含むダイヤモンド4が、10ppm以下の濃度でホウ素を含む部分と共存すると、前者部分で高効率に励起された可視光が、後者の部分を効率よく透過してダイヤモンドの外部に取り出すことができる。 (1) First, the first reason is that highly efficient photoexcitation can be obtained. That is, when diamond 4 partially containing boron at a concentration of 150 ppm or more coexists with a portion containing boron at a concentration of 10 ppm or less, visible light excited with high efficiency in the former part efficiently transmits the latter part. Can be taken out of the diamond.

(2)2つ目の理由は膜応力の改善を図れるからである。即ち、多結晶ダイヤモンド4の結晶格子において、原子半径が炭素に較べて小さなホウ素が炭素を置換して存在すると、ダイヤモンド4の内部応力が低減される。但し、この様な作用は、ホウ素がダイヤモンド4中で均一な場合よりも、分布のある方がより顕著に顕れる。ビーム検出部材2が湾曲したり不規則に変形していると、ビーム照射部6の位置が不安定となり、検出されるビーム位置の測定誤差の大きな要因となるため、膜応力を抑制することは重要である。 (2) The second reason is that the film stress can be improved. That is, in the crystal lattice of polycrystalline diamond 4, when boron having a smaller atomic radius than carbon is substituted for carbon, the internal stress of diamond 4 is reduced. However, such an action is more prominent when the distribution is present than when the boron is uniform in the diamond 4. If the beam detection member 2 is curved or irregularly deformed, the position of the beam irradiation unit 6 becomes unstable, which causes a large measurement error of the detected beam position. is important.

本発明者等は、ビーム検出部材2に用いる多結晶ダイヤモンド4の成膜時のジボラン流量と基板温度を変えて種々の試料を作製し、同一条件でビームを照射した場合の励起光強度を比較した。その結果、前記多結晶ダイヤモンド4中のホウ素濃度が150ppm以上及び10ppm以下の部分の、前記多結晶ダイヤモンド4の膜厚方向に占める体積比率が33%以上かつ66%以下であることの重要性を見出したのである。   The inventors made various samples by changing the diborane flow rate and the substrate temperature at the time of film formation of the polycrystalline diamond 4 used for the beam detection member 2, and compared the excitation light intensity when the beam was irradiated under the same conditions. did. As a result, it is important that the volume ratio in the film thickness direction of the polycrystalline diamond 4 in the portion where the boron concentration in the polycrystalline diamond 4 is 150 ppm or more and 10 ppm or less is 33% or more and 66% or less. I found it.

尚、前記ホウ素濃度の分布が150ppm以上の部分と10ppm以下の部分とは、前記ダイヤモンド膜4の膜厚方向の各1箇所に限定するものではなく、何箇所あっても良い。また、前記ダイヤモンド膜4の表面または裏面の何れか片面は、光透過の観点から、ホウ素濃度が10ppm以下の低濃度であるのが好ましい。そして更に、前記ダイヤモンド膜4の表面及び裏面の両面共に、ホウ素濃度が10ppm以下の低濃度であるのが、ダイヤモンド膜4の内側で励起された可視光が前記両面で反射されて内部に閉じ込められず透過するので、より好ましい。   The portion where the boron concentration distribution is 150 ppm or more and the portion where the boron concentration is 10 ppm or less are not limited to one place in the film thickness direction of the diamond film 4, and may be any number. Further, it is preferable that either one of the front surface and the back surface of the diamond film 4 has a low boron concentration of 10 ppm or less from the viewpoint of light transmission. Further, both of the front and back surfaces of the diamond film 4 have a low boron concentration of 10 ppm or less. Visible light excited inside the diamond film 4 is reflected by the both surfaces and confined inside. Therefore, it is more preferable.

前記ダイヤモンド膜4には、局部的にホウ素のない部分があっても良い。ホウ素のない部分は、可視光の励起には寄与しないが、可視光は透過するためである。一方、前記ダイヤモンド膜4の膜厚方向において、前述の「ホウ素濃度の分布が150ppm以上の部分」におけるホウ素の最大許容濃度は1000ppmであり、好ましくは800ppm、より好ましくは600ppmである。ホウ素が1000ppmを超えて存在すると、ダイヤモンドが縮退(半金属化)して、可視光透過率が大幅に低下するため、前記ダイヤモンド膜4の内部で励起された励起光が取り出し難くなるためである。   The diamond film 4 may have a portion having no boron locally. This is because the portion without boron does not contribute to excitation of visible light, but transmits visible light. On the other hand, in the film thickness direction of the diamond film 4, the maximum allowable concentration of boron in the above-mentioned “portion where the boron concentration distribution is 150 ppm or more” is 1000 ppm, preferably 800 ppm, more preferably 600 ppm. If boron exceeds 1000 ppm, the diamond is degenerated (semi-metallized) and the visible light transmittance is greatly reduced, so that it is difficult to extract the excitation light excited inside the diamond film 4. .

前記多結晶ダイヤモンド膜4の表面は研磨加工して平坦化できる。この様な研磨加工方法としては、水にアルミナやシリカ、チタニア等の砥粒を分散させた研磨液に浸漬し、ダイヤモンド4を擦過しながらその表面を研磨する化学機械研磨方法や、酸素分圧と内部温度が制御可能な真空室内において、鉄、ニッケル、コバルト、銅の酸化金属体をダイヤモンド表層部の炭素によって還元しつつダイヤモンド4を研磨する方法等がある。また、前記表面平坦度は、触針段差計やレーザ光の干渉・位相差を利用した顕微鏡によって簡単に測定できる。   The surface of the polycrystalline diamond film 4 can be flattened by polishing. Such polishing methods include a chemical mechanical polishing method in which the surface is polished while being dipped in a polishing liquid in which abrasive grains such as alumina, silica, and titania are dispersed in water, and the diamond 4 is scraped. In a vacuum chamber in which the internal temperature can be controlled, there is a method of polishing the diamond 4 while reducing a metal oxide of iron, nickel, cobalt, or copper with carbon in the diamond surface layer. The surface flatness can be easily measured with a stylus profilometer or a microscope utilizing interference / phase difference of laser light.

前記多結晶ダイヤモンド膜4を形成するダイヤモンド粒子の平均粒子径は出来る限り小さく、少なくとも10μm以下であるのが好ましい。この様なダイヤモンド粒子径によって、適正サイズの発光領域および適切な発光輝度と高品質の透過放射光ビームが得られる。前記ダイヤモンド膜4の内部で励起された可視光は、多結晶ダイヤモンド膜4の内部に存在する微細な結晶粒界によって散乱されながら膜外部に取り出される。   The average particle diameter of the diamond particles forming the polycrystalline diamond film 4 is as small as possible, and is preferably at least 10 μm or less. With such a diamond particle diameter, an appropriately sized light emission region, appropriate light emission luminance, and a high quality transmitted radiation beam can be obtained. Visible light excited inside the diamond film 4 is taken out of the film while being scattered by fine crystal grain boundaries existing inside the polycrystalline diamond film 4.

多結晶ダイヤモンド4の粒径が大きいと、検出されるビーム照射スポット7aが、真のビーム径よりも拡がってしまうため、位置検出の精度が低下してしまう。よって、多結晶ダイヤモンド膜4を形成するダイヤモンド粒子の平均粒子径は、少なくとも10μm以下の細かいものが好ましい。ここでいう平均粒子径とは、多結晶ダイヤモンド膜4の表面を電子顕微鏡で撮影した画像において、粒子と粒子の界面に顕れた粒界の平均間隔(平均距離)として求めたものである。   If the polycrystalline diamond 4 has a large particle size, the detected beam irradiation spot 7a expands beyond the true beam diameter, so that the accuracy of position detection decreases. Therefore, the diamond particles forming the polycrystalline diamond film 4 preferably have a fine average particle size of at least 10 μm. The average particle diameter here is obtained as an average interval (average distance) of grain boundaries appearing at the interface between particles in an image obtained by photographing the surface of the polycrystalline diamond film 4 with an electron microscope.

この様に、本発明に係るビーム検出部材2は、放射線に耐久性のあるダイヤモンド膜4を用いて構成されているため、放射光の他にも、電子線、加速放射線粒子等の高エネルギービームの測定にも適用することができる。尚、高強度の放射光ビームに対して使用する際には、ビーム照射部6以外の多結晶ダイヤモンド膜4および基板5に、熱伝導率が大きく加工性に優れたアルミニウム等の金属膜を被覆し、この部分を水冷治具と接合して、前記ダイヤモンド膜4の局所的な温度上昇とそれに起因する変形を防ぐことも出来る。   Thus, since the beam detection member 2 according to the present invention is configured using the diamond film 4 that is durable to radiation, in addition to the emitted light, a high-energy beam such as an electron beam or acceleration radiation particles is used. It can also be applied to the measurement. When used for a high-intensity synchrotron radiation beam, the polycrystalline diamond film 4 and the substrate 5 other than the beam irradiation unit 6 are coated with a metal film such as aluminum having high thermal conductivity and excellent workability. In addition, this portion can be joined with a water cooling jig to prevent a local temperature rise and deformation caused by the diamond film 4.

尚、本発明のビーム検出部材2は、図3に示す如く前記ダイヤモンド4の一部が基板5で保持されるのが好ましい。多結晶ダイヤモンド4が自立膜構造を有し、この自立膜部分に放射光ビーム7が照射されるので、高強度のビーム7に対しても破損しない。特に基板5がシリコンの場合は、熱伝導に優れるだけでなく、加工が容易で、前記基板5の平坦性と放射光ビーム7に対する垂直度の確保が容易となる。また、前記多結晶ダイヤモンド4の膜厚は、ビーム透過率の観点から3〜30μmであるのが好ましく、前記膜表面の平均粗度が30〜100nmであると、ビーム照射スポット7aに照射された放射光ビーム7が散乱あるいは回折せずに透過する。   In the beam detection member 2 of the present invention, it is preferable that a part of the diamond 4 is held by the substrate 5 as shown in FIG. Since the polycrystalline diamond 4 has a self-supporting film structure, and the synchrotron radiation beam 7 is applied to the self-supporting film portion, the high-intensity beam 7 is not damaged. In particular, when the substrate 5 is silicon, not only is it excellent in heat conduction, but it is easy to process, and it is easy to ensure the flatness of the substrate 5 and the perpendicularity to the emitted light beam 7. Further, the film thickness of the polycrystalline diamond 4 is preferably 3 to 30 μm from the viewpoint of beam transmittance, and when the average roughness of the film surface is 30 to 100 nm, the beam irradiation spot 7a is irradiated. The radiation beam 7 is transmitted without being scattered or diffracted.

そして、本発明の実施の形態に係る放射光検出器1は、図3に示す如く、上述した様な本発明の実施の形態に係るビーム検出部材2と、放射光ビーム7の照射側に配置された励起光観測手段3とを備えている。前記ビーム検出部材2のビーム照射部6を構成する多結晶ダイヤモンド膜4に放射光ビーム7が照射されると可視光が励起され、この励起光8aがビーム照射スポット7aから全方位に均等に発光する。   The radiation detector 1 according to the embodiment of the present invention is arranged on the irradiation side of the beam detection member 2 according to the embodiment of the present invention as described above and the radiation beam 7 as shown in FIG. The excitation light observation means 3 is provided. When the polycrystalline diamond film 4 constituting the beam irradiating part 6 of the beam detecting member 2 is irradiated with the radiated light beam 7, the visible light is excited, and the excited light 8a is uniformly emitted from the beam irradiated spot 7a in all directions. To do.

そこで例えば、前記ビーム検出部材2の裏側への励起光8aをを励起光観測手段3により観測することにより、前記ビーム光7の照射スポット7aの位置や強度の検出を行うことが出来るのである。前記励起光観測手段3には、通常の光学カメラやデジタルカメラ、あるいは紫外線CCDカメラ、ビデオカメラ等を用いることができる。   Therefore, for example, by observing the excitation light 8a to the back side of the beam detection member 2 with the excitation light observation means 3, the position and intensity of the irradiation spot 7a of the beam light 7 can be detected. As the excitation light observation means 3, a normal optical camera, digital camera, ultraviolet CCD camera, video camera, or the like can be used.

本発明に係るビーム検出部材2は、熱伝導率の高いダイヤモンドを用いて構成されているため、放射光ビームスポット7aの局所的過熱が無い。また、ダイヤモンドは原子番号の小さい(即ち電子数の少ない)炭素で構成されているため、放射光7との相互作用が小さく、殆ど吸収が無いことも特徴である。従って、本発明に係るビーム検出部材2を試料の放射光ビーム7入射側と透過側に設置して、放射光ビーム7の位置と強度変化を測定することも可能である。   Since the beam detection member 2 according to the present invention is configured using diamond having high thermal conductivity, there is no local overheating of the radiation beam spot 7a. Further, since diamond is composed of carbon having a small atomic number (that is, having a small number of electrons), the interaction with the emitted light 7 is small and there is almost no absorption. Therefore, it is also possible to measure the position and intensity change of the radiation light beam 7 by installing the beam detection member 2 according to the present invention on the incident side and transmission side of the radiation light beam 7 of the sample.

また、本発明に係るビーム検知部材2は、放射線に耐久性のあるダイヤモンド膜4を用いて構成されているため、放射光の他にも、電子線、加速放射線粒子等の高エネルギービームの測定にも適用することができる。特に、多結晶ダイヤモンド膜4を、自立膜構造とすることにより、大電流の電子線に対しても破損のない検出部として使用できる。   In addition, since the beam detection member 2 according to the present invention is configured using the diamond film 4 that is resistant to radiation, measurement of high energy beams such as electron beams and accelerated radiation particles in addition to the radiation light. It can also be applied to. In particular, when the polycrystalline diamond film 4 has a self-supporting film structure, it can be used as a detection unit that is not damaged even by a high-current electron beam.

尚、本発明に係るビーム検出部材2の典型的な実施形態として図1,2に示したが、本発明においては、原則的に、多結晶ダイヤモンド膜4に放射光ビーム7が照射され、励起された発光(可視光や紫外光)現象が起これば良いので、必ずしも多結晶ダイヤモンド膜4を自立膜構造とする必要は無い。また、基板5は、シリコン基板以外に、高融点金属やセラミックスを用いることも出来るし、シリコン基板等の基板と多結晶ダイヤモンド膜との間に二酸化珪素の薄膜を介在させたものでも良い。このような変形例は、本発明の範囲である。   1 and 2 show typical embodiments of the beam detecting member 2 according to the present invention. However, in the present invention, in principle, the polycrystalline diamond film 4 is irradiated with the radiation beam 7 and excited. The polycrystalline diamond film 4 is not necessarily required to have a self-supporting film structure as long as the emitted light emission (visible light or ultraviolet light) phenomenon occurs. In addition to the silicon substrate, the substrate 5 may be made of a refractory metal or ceramics, or may be a silicon dioxide thin film interposed between a substrate such as a silicon substrate and a polycrystalline diamond film. Such modifications are within the scope of the present invention.

<実験例>
以下の手順により、図1〜3に示す様な多結晶ダイヤモンド膜4を形成されたビーム検出部材2及びこれを用いたビーム検出器1を作製した。先ず、25mm径のシリコン基板5を、基板温度約800℃で5体積%メタンと95体積%水素の混合プラズマに20分間曝して、シリコン基板5の表面を炭化した。次いで、前記基板5に−150Vのバイアス電圧を20分間印加して、基板5全面にダイヤモンド核を形成した。
<Experimental example>
The beam detection member 2 formed with the polycrystalline diamond film 4 as shown in FIGS. 1 to 3 and the beam detector 1 using the same were manufactured by the following procedure. First, the surface of the silicon substrate 5 was carbonized by exposing the silicon substrate 5 having a diameter of 25 mm to a mixed plasma of 5 volume% methane and 95 volume% hydrogen at a substrate temperature of about 800 ° C. for 20 minutes. Next, a −150 V bias voltage was applied to the substrate 5 for 20 minutes to form diamond nuclei on the entire surface of the substrate 5.

その後、前記バイアス電圧の印加を止め、続いて2体積%メタン、98体積%水素の混合ガスにジボラン(B)ガスを0.1〜50ppm添加して、マイクロ波プラズマCVD法によりダイヤモンド成膜し、シリコン基板5全面に膜厚35〜40μmの多結晶ダイヤモンド4を得た。このダイヤモンド膜4中にはジボランガスの添加量に応じて、平均で0.2〜1100ppmのホウ素がドープされていることが二次イオン質量分析法で確認された。 Thereafter, the application of the bias voltage was stopped, and then 0.1 to 50 ppm of diborane (B 2 H 6 ) gas was added to a mixed gas of 2% by volume methane and 98% by volume hydrogen, and diamond was formed by microwave plasma CVD. A polycrystalline diamond 4 having a film thickness of 35 to 40 μm was obtained on the entire surface of the silicon substrate 5. It was confirmed by secondary ion mass spectrometry that the diamond film 4 was doped with 0.2 to 1100 ppm of boron on average depending on the amount of diborane gas added.

ダイヤモンド4の表面を化学機械的に研磨平坦化した上で、多結晶ダイヤモンド膜4を約120℃の王水中で表面洗浄した。その後、シリコン基板5の裏面をフッ硝酸に溶け難いポリイミド膜で保護し、フッ硝酸に浸漬して、放射光ビームが透過するビーム照射部(およそ10mm径)6のシリコンをエッチング除去した。作製したビーム検出部材2を保持台に設置し、励起光観測手段3,3aとしてカラーCCDカメラを用いてビーム検出器1を構成した。   The surface of the diamond 4 was polished and flattened by chemical mechanical polishing, and the polycrystalline diamond film 4 was cleaned in aqua regia at about 120 ° C. Thereafter, the back surface of the silicon substrate 5 was protected with a polyimide film that was hardly dissolved in hydrofluoric acid, and immersed in hydrofluoric acid, the silicon in the beam irradiation part (approximately 10 mm diameter) 6 through which the radiation beam was transmitted was removed by etching. The produced beam detection member 2 was placed on a holding stand, and the beam detector 1 was configured using a color CCD camera as the excitation light observation means 3 and 3a.

前記ビーム検出部材2のビーム照射部6に、エネルギーが5〜60keVの放射光ビーム7を照射したところ、放射光ビーム7が透過した照射スポット7aにおいて明瞭な青緑色の励起光8,8aが観察された。放射光7の加速電圧・ビーム電流を変化させて測定を行ったところ、放射光7のエネルギーに比例して、励起光8,8aの強度が変化した。同時に、観測される励起光8,8aの強度には、ダイヤモンド膜4中の平均ホウ素濃度に対して図4の様な依存性があり、ビーム検出部材2のダイヤモンド膜4はホウ素を10〜150ppm含むことが好ましいことが判明した。   When the beam irradiation part 6 of the beam detecting member 2 is irradiated with a radiated light beam 7 having an energy of 5 to 60 keV, clear blue-green excitation lights 8 and 8a are observed at an irradiation spot 7a through which the radiated light beam 7 is transmitted. It was done. When the measurement was performed by changing the acceleration voltage and beam current of the emitted light 7, the intensity of the excitation light 8 and 8a changed in proportion to the energy of the emitted light 7. At the same time, the intensity of the observed excitation lights 8 and 8a has a dependence as shown in FIG. 4 with respect to the average boron concentration in the diamond film 4, and the diamond film 4 of the beam detection member 2 contains 10 to 150 ppm of boron. It has been found preferable to include.

図4は、ダイヤモンド膜中の平均ホウ素濃度に対する励起光強度の測定結果を示す図である。ここで、ホウ素濃度は、二次イオン質量分析法を用いて測定し、平均ホウ素濃度とは、前記ダイヤモンド膜4の厚さ方向に沿って測定して得られた各ホウ素濃度の算術平均値として求めたものである。また、励起光強度は、シリコンフォトダイオードを用いて測定した。   FIG. 4 is a diagram showing the measurement result of the excitation light intensity with respect to the average boron concentration in the diamond film. Here, the boron concentration is measured using secondary ion mass spectrometry, and the average boron concentration is an arithmetic average value of each boron concentration obtained by measuring along the thickness direction of the diamond film 4. It is what I have sought. The excitation light intensity was measured using a silicon photodiode.

<実施例1>
上記実験例と同様の手順で、ホウ素をドープしたダイヤモンド膜4を基板2上に形成して、ビーム検出部材2及びこれを用いたビーム検出器1を作製した。多結晶ダイヤモンド1中にホウ素をドープするために、原料ガスに水素希釈したジボランやトリメチルホウ素(B(CH)を添加して、厚さが10〜25μm、ダイヤモンド粒子の平均粒子径が10μm以下の多結晶ダイヤモンド4を得た。この時、ホウ素を含むガスの流量と、基板2の温度を700〜850℃の範囲で変化させて、ダイヤモンド膜4中のホウ素濃度を、実験例の様に均一ではなく膜厚方向に不均一な分布を付けて作製した。
<Example 1>
A diamond film 4 doped with boron was formed on the substrate 2 in the same procedure as in the above experimental example, and the beam detection member 2 and the beam detector 1 using the same were manufactured. In order to dope boron into the polycrystalline diamond 1, diborane or trimethylboron (B (CH 3 ) 3 ) diluted with hydrogen is added to the source gas, the thickness is 10 to 25 μm, and the average particle size of the diamond particles is A polycrystalline diamond 4 of 10 μm or less was obtained. At this time, the flow rate of the gas containing boron and the temperature of the substrate 2 are changed in the range of 700 to 850 ° C., so that the boron concentration in the diamond film 4 is not uniform as in the experimental example but in the film thickness direction. It was made with various distributions.

前記ダイヤモンド4の膜深さに対するホウ素濃度の分布を、二次イオン質量分析法で測定した結果を図5に示す。この試料中には、平均で50ppmのホウ素が取り込まれていたが、それは深さ方向に一様ではなく、0.1〜800ppmの範囲で分布を持っていた。また、ダイヤモンド膜4の表面側は、ホウ素濃度が10ppm以下の低濃度とした。この様なホウ素ドープダイヤモンド試料から、上記実験例と同様の方法で、シリコン基板5の一部をエッチング処理して、ビーム検出部材2とした。   FIG. 5 shows the result of measuring the boron concentration distribution with respect to the film depth of the diamond 4 by secondary ion mass spectrometry. In this sample, 50 ppm of boron was taken in on average, but it was not uniform in the depth direction and had a distribution in the range of 0.1 to 800 ppm. Further, the surface side of the diamond film 4 was set to a low concentration with a boron concentration of 10 ppm or less. A part of the silicon substrate 5 was etched from such a boron-doped diamond sample in the same manner as in the above experimental example to obtain a beam detection member 2.

この様なビーム検出部材2に、エネルギー15keVのX線ビームを照射したところ、照射スポット7aの多結晶ダイヤモンド膜4領域から、青緑色の励起光8,8aが観察された。また、照射するX線ビームの強度を変化させて観察したところ、強度に比例して照射スポット7aの輝度が変化した。但し、実験例で作製した平均ホウ素濃度50ppmで膜中の濃度が一定のダイヤモンド膜と比較すると、4倍の励起光強度が観測された。   When such a beam detection member 2 was irradiated with an X-ray beam having an energy of 15 keV, blue-green excitation lights 8 and 8a were observed from the polycrystalline diamond film 4 region of the irradiation spot 7a. Further, when the intensity of the irradiated X-ray beam was changed and observed, the luminance of the irradiation spot 7a was changed in proportion to the intensity. However, when compared with a diamond film having an average boron concentration of 50 ppm and a constant concentration in the film produced in the experimental example, four times the excitation light intensity was observed.

即ち、前記ダイヤモンド4の膜深さに対するホウ素濃度分布が不均一であって、膜厚方向に150ppm以上の濃度でホウ素を含む部分と10ppm以下の濃度で含む部分が共存すると、前者部分で高効率に励起された可視光が、後者の部分を効率よく透過してダイ   That is, when the boron concentration distribution with respect to the film depth of the diamond 4 is non-uniform and a portion containing boron at a concentration of 150 ppm or more and a portion containing a concentration of 10 ppm or less coexist in the film thickness direction, high efficiency is achieved in the former portion. The visible light excited by the

<実施例2>
次に、実施例1の結果を踏まえて、多結晶ダイヤモンド4中のホウ素濃度分布を変えて、ビーム検出部材2を作製し、その励起光強度を比較した。先ず、20mm×20mmのシリコン基板5に平均粒子径5〜50nmの微小ダイヤモンドを含む水溶液を塗布した後、乾燥させてダイヤモンド核形成促進処理を施した。
<Example 2>
Next, based on the results of Example 1, the boron concentration distribution in the polycrystalline diamond 4 was changed to produce the beam detection member 2, and the excitation light intensities thereof were compared. First, an aqueous solution containing fine diamond having an average particle diameter of 5 to 50 nm was applied to a silicon substrate 5 of 20 mm × 20 mm, and then dried and subjected to diamond nucleus formation promoting treatment.

この基板5をプラズマCVD装置に設置し、5体積%メタン、5体積%水素、90体積%のアルゴンの混合ガスにジボラン(B)ガスを0.1〜50ppm添加して、ダイヤモンド成膜し、基板5全面に、膜厚が35〜40μm、ダイヤモンド粒子の平均粒子径が10μm以下の多結晶ダイヤモンド4を得た。前記成膜過程において、ジボランガスの流量を変えて、膜厚方向のホウ素濃度分布を制御した。 The substrate 5 is placed in a plasma CVD apparatus, and 0.1 to 50 ppm of diborane (B 2 H 6 ) gas is added to a mixed gas of 5% by volume methane, 5% by volume hydrogen, and 90% by volume argon to form a diamond composition. A polycrystalline diamond 4 having a film thickness of 35 to 40 μm and an average particle diameter of diamond particles of 10 μm or less was obtained on the entire surface of the substrate 5. In the film formation process, the flow rate of diborane gas was changed to control the boron concentration distribution in the film thickness direction.

得られたダイヤモンド4は測定困難な程度の細かな結晶粒の集合体から構成され、その表面は平坦であり、別段の研磨工程は省略した。この微結晶ダイヤモンド4を約120℃の王水中で表面洗浄した。その後、シリコン基板5の裏面をフッ硝酸に溶け難いポリイミド膜で保護し、フッ硝酸に浸漬して、ビーム照射部(およそ10mm径)6のシリコンをエッチング除去した。   The obtained diamond 4 was composed of an aggregate of fine crystal grains that were difficult to measure, the surface thereof was flat, and a separate polishing step was omitted. The surface of this microcrystalline diamond 4 was washed in aqua regia at about 120 ° C. Thereafter, the back surface of the silicon substrate 5 was protected with a polyimide film that is difficult to dissolve in hydrofluoric acid, and immersed in hydrofluoric acid, the silicon in the beam irradiation portion (approximately 10 mm diameter) 6 was removed by etching.

作製したビーム検出部材2を保持台に設置し、励起光観測手段3,3aとしてカラーCCDカメラを用いてビーム検出器1を構成した。ビーム検出部材2に、エネルギーが5〜60keVの放射光ビーム7を照射したところ、放射光ビーム7が透過した照射スポット7aにおいて明瞭な青緑色の励起光8aが観察された。放射光7の加速電圧・ビーム電流を変化させて測定を行ったが、放射光7のエネルギーに比例して、励起光8aの強度が変化した。   The produced beam detection member 2 was placed on a holding stand, and the beam detector 1 was configured using a color CCD camera as the excitation light observation means 3 and 3a. When the beam detecting member 2 was irradiated with a radiated light beam 7 having an energy of 5 to 60 keV, clear blue-green excitation light 8a was observed at an irradiation spot 7a through which the radiated light beam 7 was transmitted. The measurement was performed by changing the acceleration voltage and the beam current of the emitted light 7, but the intensity of the excitation light 8a changed in proportion to the energy of the emitted light 7.

同時に、観測される励起光強度には、微結晶ダイヤモンド4中のホウ素濃度が150ppm以上及び10ppm以下の部分の、前記ダイヤモンド4の膜圧方向に占める体積割合に対して図6に示す様な依存性があり、ビーム検出部材2の微結晶ダイヤモンド4では、励起光強度の点から、ホウ素濃度が150ppm以上及び10ppm以下の部分を33〜66体積%含むことが好ましいことが判明した。   At the same time, the observed excitation light intensity depends on the volume ratio in the film pressure direction of the diamond 4 in the portion where the boron concentration in the microcrystalline diamond 4 is 150 ppm or more and 10 ppm or less as shown in FIG. Therefore, it was found that the microcrystalline diamond 4 of the beam detection member 2 preferably contains 33 to 66% by volume of a boron concentration of 150 ppm or more and 10 ppm or less from the viewpoint of excitation light intensity.

本発明に係るビーム検出部材は、耐放射線性に優れたダイヤモンド膜とシリコン基板等の基板で構成されているため、他の材料のように短時間で性能が劣化することがない。また、多結晶ダイヤモンド膜中にホウ素原子を制御してドープすることにより、放射光ビーム照射スポットから十分な強度を有する励起光が観察され、通常のビデオカメラ等の励起光観測手段を用いてビーム検出器を構成し、鮮明なスポット像が撮影できる。   Since the beam detection member according to the present invention is composed of a diamond film having excellent radiation resistance and a substrate such as a silicon substrate, the performance does not deteriorate in a short time unlike other materials. In addition, by controlling and doping boron atoms in the polycrystalline diamond film, excitation light having sufficient intensity is observed from the irradiated spot of the synchrotron radiation beam, and the beam is emitted using an excitation light observation means such as a normal video camera. A detector can be configured to capture a clear spot image.

以上説明した通り、本発明に係るビーム検出部材及びこれを用いたビーム検出器は、ビーム検出部材において、可視光の励起効率が向上し得る。そのため、前記検出部材を構成する多結晶ダイヤモンドの膜厚が小さくとも、可視光検出器で検出するのに十分な励起光強度が確保出来る。そして、ビーム検出部材の多結晶ダイヤモンド膜中のホウ素濃度が特定されたので、放射光X線ビームの透過性が向上するばかりでなく、それに伴って検出部材の熱負荷が低下するために、より高強度(高エネルギー密度)のビームにも適用範囲が拡大する。放射光施設を例にとると、より上流側(光源に近い側)でのビーム検出や、次世代の放射光ビーム(自由電子X線レーザビーム)にも対応できることを意味する。   As described above, the beam detection member according to the present invention and the beam detector using the same can improve the excitation efficiency of visible light in the beam detection member. Therefore, even if the polycrystalline diamond constituting the detection member has a small film thickness, it is possible to ensure sufficient excitation light intensity for detection by the visible light detector. And since the boron concentration in the polycrystalline diamond film of the beam detection member is specified, not only the transmission of the synchrotron radiation X-ray beam is improved, but the thermal load of the detection member is reduced accordingly, The range of application is expanded to high-intensity (high energy density) beams. Taking a synchrotron radiation facility as an example, this means that it can cope with beam detection on the upstream side (side near the light source) and the next generation synchrotron radiation beam (free electron X-ray laser beam).

本発明の実施の形態1に係るビーム検出部材の表面を模式的に示した模式的斜視図である。It is the typical perspective view which showed typically the surface of the beam detection member which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るビーム検出部材の裏面を模式的に示した模式的斜視図である。It is the typical perspective view which showed typically the back surface of the beam detection member which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るビーム検出部材を用いたビーム検出器の全体構成を模式的に示した模式的断面図である。It is the typical sectional view showing typically the whole beam detector composition using the beam detection member concerning Embodiment 1 of the present invention. 本発明の実施例に係り、ダイヤモンド膜中の平均ホウ素濃度に対する励起光強度の測定結果を示す図である。It is a figure which shows the measurement result of the excitation light intensity with respect to the Example of this invention with respect to the average boron density | concentration in a diamond film. 本発明の実施例に係り、ダイヤモンド膜の膜深さに対するホウ素濃度分布の測定結果を示す図である。It is a figure which concerns on the Example of this invention and shows the measurement result of the boron concentration distribution with respect to the film depth of a diamond film. 本発明の実施例に係り、ダイヤモンド膜中のホウ素濃度が150ppm以上及び10ppm以下の部分の、前記ダイヤモンド4の膜圧方向に占める体積割合に対する励起光強度の測定結果を示す図である。It is a figure which concerns on the Example of this invention and is a figure which shows the measurement result of the excitation light intensity with respect to the volume ratio to which the boron concentration in a diamond film occupies 150 ppm or more and 10 ppm or less in the film | membrane pressure direction of the said diamond 4.

符号の説明Explanation of symbols

1…ビーム検出器, 2…ビーム検出部材,
3,3a…励起光観測手段,
4…(多結晶)ダイヤモンド膜, 5…基板, 6…ビーム照射部,
7…放射光ビーム, 7a…(ビーム)照射スポット,
8,8a…励起光
1 ... Beam detector, 2 ... Beam detection member,
3, 3a ... excitation light observation means,
4 ... (polycrystalline) diamond film, 5 ... substrate, 6 ... beam irradiation part,
7 ... synchrotron radiation beam, 7a ... (beam) irradiation spot,
8, 8a ... Excitation light

Claims (6)

ビームの位置や強度を検出するためのビーム検出部材であって、ビームが照射されるビーム照射部が、ホウ素(B)を平均10〜150ppm含む多結晶ダイヤモンド膜からなり、この多結晶ダイヤモンド中のホウ素(B)濃度は、前記多結晶ダイヤモンドの膜厚方向に不均一な濃度分布を持つことを特徴とするビーム検出部材。   A beam detection member for detecting the position and intensity of a beam, and a beam irradiation portion irradiated with the beam is formed of a polycrystalline diamond film containing 10 to 150 ppm of boron (B) on average. The boron (B) concentration has a non-uniform concentration distribution in the film thickness direction of the polycrystalline diamond. 前記多結晶ダイヤモンド中のホウ素(B)濃度が、膜厚方向に150ppm以上の部分及び10ppm以下の部分を有することを特徴とする請求項1に記載のビーム検出部材。   2. The beam detection member according to claim 1, wherein a concentration of boron (B) in the polycrystalline diamond has a portion of 150 ppm or more and a portion of 10 ppm or less in the film thickness direction. 前記多結晶ダイヤモンド中のホウ素(B)濃度が150ppm以上及び10ppm以下の部分の、前記多結晶ダイヤモンドの膜厚方向に占める体積比率が33%以上かつ66%以下であることを特徴とする請求項2に記載のビーム検出部材。   The volume ratio of the portion of the polycrystalline diamond in which the boron (B) concentration is 150 ppm or more and 10 ppm or less in the film thickness direction of the polycrystalline diamond is 33% or more and 66% or less. 3. The beam detection member according to 2. 前記ダイヤモンド膜の少なくとも一部が基板で保持されると共に、前記多結晶ダイヤモンドの膜厚が3〜30μmであることを特徴とする請求項1乃至3のうちの何れか一つの項に記載のビーム検出部材。   4. The beam according to claim 1, wherein at least a part of the diamond film is held by a substrate, and the thickness of the polycrystalline diamond is 3 to 30 μm. 5. Detection member. 前記多結晶ダイヤモンド膜をなすダイヤモンド粒子の平均粒子径が10μm以下であることを特徴とする請求項1乃至4のうちの何れか一つの項に記載のビーム検出部材。   The beam detection member according to any one of claims 1 to 4, wherein an average particle diameter of diamond particles forming the polycrystalline diamond film is 10 µm or less. ビームの位置や強度を検出するためのビーム検出部材を備えたビーム検出器において、請求項1乃至5のうちの何れか一つの項に記載のビーム検出部材と、前記ビーム照射部にビームが照射されると可視光が励起され、この励起光を観測する励起光観測手段とを備え、この励起光観測手段によって観測された励起光により、前記ビームの位置や強度を検出することを特徴とするビーム検出器。   6. A beam detector comprising a beam detection member for detecting the position and intensity of a beam, wherein the beam is irradiated to the beam detection member according to claim 1 and the beam irradiation unit. And the excitation light observation means for observing the excitation light, and detecting the position and intensity of the beam by the excitation light observed by the excitation light observation means. Beam detector.
JP2008032008A 2008-02-13 2008-02-13 Beam detection member and beam detector using the same Expired - Fee Related JP5015026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008032008A JP5015026B2 (en) 2008-02-13 2008-02-13 Beam detection member and beam detector using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008032008A JP5015026B2 (en) 2008-02-13 2008-02-13 Beam detection member and beam detector using the same

Publications (2)

Publication Number Publication Date
JP2009192313A true JP2009192313A (en) 2009-08-27
JP5015026B2 JP5015026B2 (en) 2012-08-29

Family

ID=41074470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008032008A Expired - Fee Related JP5015026B2 (en) 2008-02-13 2008-02-13 Beam detection member and beam detector using the same

Country Status (1)

Country Link
JP (1) JP5015026B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181759A (en) * 2012-02-29 2013-09-12 Daishinku Corp Scintillator element holding module and radiation light generator using scintillator element holding module
JP2021089267A (en) * 2020-06-03 2021-06-10 五郎 五十嵐 Metal container for sealing radioactive material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348489A (en) * 1986-08-19 1988-03-01 Toshiba Corp Radiation detector
JPS63113387A (en) * 1986-10-31 1988-05-18 Toshiba Corp Radiation detector
JPH08220242A (en) * 1995-02-13 1996-08-30 Japan Atom Energy Res Inst Conductive light emitting body to diagnose ion beam
JPH08297166A (en) * 1995-04-26 1996-11-12 Rikagaku Kenkyusho Radiation beam position monitor and position detecting method
JP2006090873A (en) * 2004-09-24 2006-04-06 Kobe Steel Ltd Electron beam transmission window, its manufacturing method, and electron beam irradiation apparatus
JP2007047007A (en) * 2005-08-09 2007-02-22 Kobe Steel Ltd Beam position monitor and beam position measuring method
WO2007099973A1 (en) * 2006-03-02 2007-09-07 Kabushiki Kaisha Kobe Seiko Sho Beam detecting member and beam detector using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348489A (en) * 1986-08-19 1988-03-01 Toshiba Corp Radiation detector
JPS63113387A (en) * 1986-10-31 1988-05-18 Toshiba Corp Radiation detector
JPH08220242A (en) * 1995-02-13 1996-08-30 Japan Atom Energy Res Inst Conductive light emitting body to diagnose ion beam
JPH08297166A (en) * 1995-04-26 1996-11-12 Rikagaku Kenkyusho Radiation beam position monitor and position detecting method
JP2006090873A (en) * 2004-09-24 2006-04-06 Kobe Steel Ltd Electron beam transmission window, its manufacturing method, and electron beam irradiation apparatus
JP2007047007A (en) * 2005-08-09 2007-02-22 Kobe Steel Ltd Beam position monitor and beam position measuring method
WO2007099973A1 (en) * 2006-03-02 2007-09-07 Kabushiki Kaisha Kobe Seiko Sho Beam detecting member and beam detector using it
JP2007262381A (en) * 2006-03-02 2007-10-11 Kobe Steel Ltd Beam detecting member and beam detector using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181759A (en) * 2012-02-29 2013-09-12 Daishinku Corp Scintillator element holding module and radiation light generator using scintillator element holding module
JP2021089267A (en) * 2020-06-03 2021-06-10 五郎 五十嵐 Metal container for sealing radioactive material

Also Published As

Publication number Publication date
JP5015026B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5096747B2 (en) Beam detection member and beam detector using the same
Baldacchini et al. Soft x-ray submicron imaging detector based on point defects in LiF
EP3462474B1 (en) Transmitting-type target and x-ray generation tube provided with transmitting-type target
Fukumoto et al. Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors
Pianetta et al. Total reflection x‐ray fluorescence spectroscopy using synchrotron radiation for wafer surface trace impurity analysis
JPS5851520A (en) Electron device producing process
JP2011181894A (en) Defect repair apparatus, and method for euv mask
Dolgov et al. Extreme ultraviolet (EUV) source and ultra-high vacuum chamber for studying EUV-induced processes
JP2008198913A (en) Checking method for semiconductor substrate and checking device for semiconductor substrate
JP5015026B2 (en) Beam detection member and beam detector using the same
Gheorghiu et al. Fabrication of micrometre-sized periodic gratings in free-standing metallic foils for laser–plasma experiments
Matsumoto et al. High-throughput production of LuAG-based highly luminescent thick film scintillators for radiation detection and imaging
Vaughan et al. High-resolution 22–52 keV backlighter sources and application to X-ray radiography
Baur et al. Aluminum impurities in silicon: Investigation of x-ray Raman scattering in total reflection x-ray fluorescence spectroscopy
Faenov et al. Using LiF crystals for high-performance neutron imaging with micron-scale resolution
Liu et al. Single photon emitters in hexagonal boron nitride fabricated by focused helium ion beam
Tremsin et al. The latest developments of high-gain Si microchannel plates
US11029421B2 (en) Fluorescent nitrogen-vacancy diamond sensing sheet, manufacturing method and uses thereof, sensor, and lithography apparatus
JPWO2013141400A1 (en) Porous glass plate and detector for electron amplification
Bhuyan et al. Effect of high energy ion irradiation on silicon substrate in a pulsed plasma device
JP2015064603A (en) Euv mask correction device
Frassetto Plasma Production via 6 ns Pulsed Laser at 1064 and 532 nm wavelengths on Nanostructured Targets
JP2004349118A (en) Method and device for detecting end point of electron beam processor
WO2022123260A1 (en) Apparatus and method
Krajewska et al. Mechanical defects in the “p-TRISO”-particle covering layers obtained through the ion implantation process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5015026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees