JP2009192221A - Deterioration evaluator and deterioration evaluation method - Google Patents

Deterioration evaluator and deterioration evaluation method Download PDF

Info

Publication number
JP2009192221A
JP2009192221A JP2008029901A JP2008029901A JP2009192221A JP 2009192221 A JP2009192221 A JP 2009192221A JP 2008029901 A JP2008029901 A JP 2008029901A JP 2008029901 A JP2008029901 A JP 2008029901A JP 2009192221 A JP2009192221 A JP 2009192221A
Authority
JP
Japan
Prior art keywords
deterioration
heterogeneity
objects
degradation
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008029901A
Other languages
Japanese (ja)
Other versions
JP5064259B2 (en
Inventor
Kiyoshi Kobayashi
潔司 小林
Kazuya Aoki
一也 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Pasco Corp
Original Assignee
Kyoto University
Pasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Pasco Corp filed Critical Kyoto University
Priority to JP2008029901A priority Critical patent/JP5064259B2/en
Publication of JP2009192221A publication Critical patent/JP2009192221A/en
Application granted granted Critical
Publication of JP5064259B2 publication Critical patent/JP5064259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deterioration evaluator and a deterioration evaluation method for evaluating the deterioration process of an object, including unobservable or hard-to-observe heterogeneous factors. <P>SOLUTION: When the state of soundness determined by an administrator having inspected a plurality of objects is inputted through an input device, a data-receiving part 10 is used to receive it as inspection data. A deterioration characteristic calculating part 12 is used to calculate the average value Aveθ<SP>k</SP><SB>i</SB>of the deterioration characteristics θ<SB>i</SB>(1<SB>k</SB>) of the object, based on the data on the soundness of the plurality of objects received by the receiving part 10. A heterogeneity parameter calculating part 16 is used to calculate a heterogeneity parameter ε<SP>k</SP>for each of the unobservable or hard-to-observe heterogeneous factors, causing deviation in the deterioration characteristics θ<SB>i</SB>(1<SB>k</SB>). A benchmark part 18 is used to evaluate the effect of the heterogeneous factors on the deterioration characteristics by using the heterogeneity parameters, while an output part 20 outputs the evaluation results. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、劣化評価装置及び劣化評価方法に関する。   The present invention relates to a deterioration evaluation apparatus and a deterioration evaluation method.

橋梁、道路等のアセットマネジメントでは、維持補修に伴うライフサイクル費用の低減化を図るための最適補修戦略を求めることが重要な課題となっている。このため、従来より、橋梁、道路等の土木施設について、定量的に劣化予測を行う方法が種々提案されている。   In asset management of bridges, roads, etc., it is an important issue to seek an optimal repair strategy for reducing the life cycle cost associated with maintenance and repair. For this reason, conventionally, various methods for quantitatively predicting deterioration of civil engineering facilities such as bridges and roads have been proposed.

例えば、下記特許文献1には、橋梁を構成する部材の健全度を定量的にかつ客観的に評価し、長期的な劣化を予測する橋梁の維持管理計画支援システムが開示されている。
特開2006−177080号公報
For example, Patent Literature 1 below discloses a bridge maintenance management plan support system that quantitatively and objectively evaluates the soundness of members constituting a bridge and predicts long-term deterioration.
JP 2006-177080 A

しかし、上記従来の技術においては、土木施設等が設置されている環境条件や施工時における品質等の相異に基づく、観測不可能または観測困難な異質性要因によって生じる劣化過程の差異を評価することができないという問題があった。   However, in the above conventional technology, the difference in degradation process caused by heterogeneity factors that are unobservable or difficult to observe is evaluated based on the environmental conditions in which civil engineering facilities are installed and the difference in quality during construction. There was a problem that I could not.

本発明は、上記従来の課題に鑑みなされたものであり、その目的は、観測不可能または観測困難な異質性要因を含めて対象物の劣化過程を評価することができる劣化評価装置及び劣化評価方法を提供することにある。   The present invention has been made in view of the above-described conventional problems, and a purpose of the present invention is to provide a deterioration evaluation apparatus and a deterioration evaluation that can evaluate a deterioration process of an object including a heterogeneity factor that is unobservable or difficult to observe. It is to provide a method.

上記目的を達成するために、請求項1記載の複数対象物の劣化評価装置の発明は、複数の対象物の健全度に基づき、観測可能な劣化要因毎に前記複数の対象物の劣化特性を算出する劣化特性算出手段と、前記劣化特性に偏差を生じさせる観測不可能または観測困難な異質性要因毎に前記劣化特性の偏差の指標である異質性パラメータを算出する異質性パラメータ算出手段と、を備えることを特徴とする。   In order to achieve the above-mentioned object, the invention of the multiple object degradation evaluation apparatus according to claim 1 provides the degradation characteristics of the multiple objects for each observable degradation factor based on the soundness of the multiple objects. A deterioration characteristic calculation means for calculating, a heterogeneity parameter calculation means for calculating a heterogeneity parameter that is an indicator of the deviation of the deterioration characteristics for each unobservable or difficult to observe heterogeneity factor that causes a deviation in the deterioration characteristics; It is characterized by providing.

請求項2記載の発明は、請求項1記載の複数対象物の劣化評価装置が、さらに前記異質性パラメータの大小関係に基づき前記異質性要因が前記劣化特性に及ぼす影響を評価するベンチマーキング手段を備えることを特徴とする。   According to a second aspect of the present invention, there is provided the benchmarking means for the deterioration evaluation apparatus for a plurality of objects according to the first aspect to further evaluate the influence of the heterogeneity factor on the deterioration characteristic based on the magnitude relationship of the heterogeneity parameters. It is characterized by providing.

請求項3記載の発明は、請求項1又は請求項2に記載の複数対象物の劣化評価装置において、前記劣化特性算出手段が、前記複数の対象物の劣化過程の同時生起確率密度を表す対数尤度関数を最大にする最尤推定値として前記劣化特性を求めることを特徴とする。   The invention according to claim 3 is the logarithm representing the co-occurrence probability density of the deterioration process of the plurality of objects in the deterioration evaluation apparatus for the plurality of objects according to claim 1 or claim 2. The deterioration characteristic is obtained as a maximum likelihood estimation value that maximizes the likelihood function.

請求項4記載の発明は、請求項1から請求項3のいずれか一項に記載の複数対象物の劣化評価装置において、前記異質性パラメータ算出手段が、前記異質性要因を有する対象物が生じる同時生起確率密度を表す部分対数尤度を求め、これを条件付きで最大化した際の最適解として前記異質性パラメータを求めることを特徴とする。   According to a fourth aspect of the present invention, in the apparatus for evaluating deterioration of a plurality of objects according to any one of the first to third aspects, the heterogeneity parameter calculating means generates an object having the heterogeneity factor. A partial log likelihood representing the co-occurrence probability density is obtained, and the heterogeneity parameter is obtained as an optimum solution when the condition is maximized conditionally.

請求項5記載の発明は、請求項2から請求項4のいずれか一項に記載の複数対象物の劣化評価装置において、前記劣化評価装置が更に出力手段を有し、前記ベンチマーキング手段は、横軸に経過時間、縦軸に健全度をとり、個々の対象物における劣化特性を相対的に表す劣化曲線を作成し、前記出力手段は、前記異質性パラメータの値に基づいて作成した個々の劣化曲線を出力することを特徴とする。   The invention according to claim 5 is the multiple object deterioration evaluation apparatus according to any one of claims 2 to 4, wherein the deterioration evaluation apparatus further includes an output unit, and the benchmarking unit includes: Taking the elapsed time on the horizontal axis and the soundness on the vertical axis, creating a degradation curve that relatively represents the degradation characteristics of each object, and the output means creates individual curves created based on the values of the heterogeneity parameters. A deterioration curve is output.

請求項6記載の複数対象物の劣化評価方法の発明は、複数の対象物の劣化速度を取得し、前記劣化速度に基づき、観測可能な劣化要因毎に前記複数の対象物の劣化特性を算出し、前記劣化特性に偏差を生じさせる観測不可能または観測困難な異質性要因毎に前記劣化特性の偏差の指標である異質性パラメータを算出することを特徴とする。   The invention of the degradation evaluation method for multiple objects according to claim 6 acquires the degradation rates of the multiple objects, and calculates the degradation characteristics of the multiple objects for each observable degradation factor based on the degradation rates. In addition, a heterogeneity parameter that is an index of the deviation of the degradation characteristic is calculated for each heterogeneity factor that is unobservable or difficult to observe that causes a deviation in the degradation characteristic.

請求項1の発明によれば、観測不可能または観測困難な異質性要因を含めて対象物の劣化過程を評価することができる。   According to the first aspect of the present invention, it is possible to evaluate the deterioration process of an object including a heterogeneity factor that cannot be observed or is difficult to observe.

請求項2及び請求項5の発明によれば、異質性要因が劣化特性に及ぼす影響を容易に評価することができる。   According to the inventions of claims 2 and 5, the influence of the heterogeneity factor on the deterioration characteristics can be easily evaluated.

請求項3及び請求項4の発明によれば、劣化特性及び異質性パラメータを適切に算出することができる。   According to the third and fourth aspects of the invention, the deterioration characteristic and the heterogeneity parameter can be appropriately calculated.

請求項6の発明によれば、観測不可能または観測困難な異質性要因を含めて対象物の劣化過程を評価することができる複数対象物の劣化評価方法を提供できる。   According to the invention of claim 6, it is possible to provide a deterioration evaluation method for a plurality of objects that can evaluate the deterioration process of the object including heterogeneity factors that are not observable or difficult to observe.

以下、本発明を実施するための最良の形態(以下、実施形態という)を、図面に従って説明する。   Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings.

図1には、本発明にかかる劣化評価装置の一実施形態の機能ブロック図が示される。図1において、劣化評価装置はコンピュータ上に実現され、データ受付部10、劣化特性算出部12、異質性要因格納部14、異質性パラメータ算出部16、ベンチマーキング部18及び出力部20を含んで構成されている。   FIG. 1 shows a functional block diagram of an embodiment of a deterioration evaluation apparatus according to the present invention. In FIG. 1, the deterioration evaluation apparatus is realized on a computer, and includes a data reception unit 10, a deterioration characteristic calculation unit 12, a heterogeneity factor storage unit 14, a heterogeneity parameter calculation unit 16, a benchmarking unit 18, and an output unit 20. It is configured.

データ受付部10は、中央処理装置(例えばCPUを用いることができる)とCPUの処理動作を制御するプログラムとを含んで実現され、対象物の管理者が入力装置から入力する、橋梁、道路等の土木施設その他の対象物の健全度に関するデータ(観測値)を受け付ける。上記入力装置は、例えばキーボード、ポインティングデバイス等により構成してもよく、適宜なディスクドライブ装置により構成してもよく、さらにUSB(ユニバーサルシリアルバス)ポート、ネットワークポート等の適宜な通信インターフェースで構成してもよい。また、上記健全度とは、対象物が新規建設後の経年によって劣化が進行し、発揮するべき機能または性能が低下した状態を、劣化の度合いを複数の段階に分類したレーティングで表現したものをいう。   The data receiving unit 10 is realized by including a central processing unit (for example, a CPU can be used) and a program for controlling the processing operation of the CPU, and a bridge, road, etc. input from the input device by the manager of the object Receive data (observed values) on the soundness of civil engineering facilities and other objects. The input device may be configured with, for example, a keyboard, a pointing device, or the like, may be configured with an appropriate disk drive device, and further configured with an appropriate communication interface such as a USB (Universal Serial Bus) port or a network port. May be. In addition, the soundness level represents a state in which deterioration of a target object has progressed over time after new construction and the function or performance to be reduced is expressed by a rating in which the degree of deterioration is classified into multiple stages. Say.

図2には、上記健全度の例が示される。図2は、橋梁部材の中でも直接輪荷重が作用し、維持管理上の重要部材であるRC床版について、ニューヨーク市が策定した目視検査の7段階のレーティング評価基準である。図2において、レーティングは、新設状態を表す「1」が最良であり、以降目視により得られるRC床版の状態が劣化する程度に応じて「7」まで設定されている。従って、本例ではレーティングの数値が大きいほどRC床版が劣化していることを示している。   FIG. 2 shows an example of the soundness level. FIG. 2 is a seven-stage rating evaluation standard for visual inspection established by New York City for RC floor slabs, which are important members for maintenance, because direct wheel loads act on bridge members. In FIG. 2, “1” representing the newly installed state is the best, and “7” is set according to the extent to which the state of the RC floor slab obtained by visual observation deteriorates thereafter. Therefore, in this example, the larger the rating value, the more deteriorated the RC floor slab.

図1に戻り、劣化特性算出部12は、CPUとCPUの処理動作を制御するプログラムとを含んで実現され、上記データ受付部10が受け付けた複数の対象物の健全度に関するデータに基づき、観測可能な劣化要因毎に複数の対象物の劣化特性を算出する。ここで、観測可能な劣化要因とは、例えば橋梁や道路の場合では、交通量、設置場所の気象条件、材料、建設年次等の定量化が可能な劣化要因である。また、劣化特性とは、建設時からある時間が経過したときに上記レーティングが1段階劣化する確率を表す確率密度関数をいう。この確率密度関数をハザード関数と呼び、詳細を後述する。   Returning to FIG. 1, the deterioration characteristic calculation unit 12 is realized by including a CPU and a program for controlling the processing operation of the CPU, and based on data on the soundness level of a plurality of objects received by the data reception unit 10. The deterioration characteristics of a plurality of objects are calculated for each possible deterioration factor. Here, the observable deterioration factor is a deterioration factor that can be quantified, for example, in the case of a bridge or a road, such as traffic volume, weather conditions at the installation site, material, and construction year. The deterioration characteristic is a probability density function representing the probability that the rating deteriorates by one step when a certain time has elapsed since construction. This probability density function is called a hazard function and will be described in detail later.

異質性要因格納部14は、RAM(ランダムアクセスメモリ)及びハードディスク装置等のコンピュータが読み取り可能な記憶装置並びにこれらをCPUにより制御するためのプログラムにより構成され、劣化特性に偏差を生じさせる観測不可能または観測困難な異質性要因を格納する。ここで、異質性要因には、例えば施工時の条件や、RC床版等の特性値が等しい橋梁における個々の橋梁特有の要因等の定量的観測が不可能または困難な要因が含まれる。これらの異質性要因は、対象物と関連付けて格納されている。   The heterogeneity factor storage unit 14 includes a computer-readable storage device such as a RAM (Random Access Memory) and a hard disk device, and a program for controlling them by the CPU, and cannot be observed to cause a deviation in deterioration characteristics. Or store heterogeneity factors that are difficult to observe. Here, the heterogeneity factor includes factors that are impossible or difficult to quantitatively observe, such as factors specific to individual bridges in bridges having the same characteristic values such as construction conditions and RC slabs. These heterogeneity factors are stored in association with the object.

異質性パラメータ算出部16は、CPUとCPUの処理動作を制御するプログラムとを含んで実現され、異質性要因格納部14に格納された異質性要因毎に、上記劣化特性の偏差の指標である異質性パラメータ(ε)を算出する。なお、上記異質性要因は、異質性要因格納部14から取得する代わりに、管理者が指定する構成としてもよい。異質性パラメータについては後述する。 The heterogeneity parameter calculation unit 16 is realized including a CPU and a program for controlling the processing operation of the CPU, and is an index of the deviation of the deterioration characteristic for each heterogeneity factor stored in the heterogeneity factor storage unit 14. The heterogeneity parameter (ε k ) is calculated. Note that the heterogeneity factor may be specified by an administrator instead of being acquired from the heterogeneity factor storage unit 14. The heterogeneity parameter will be described later.

ベンチマーキング部18は、CPUとCPUの処理動作を制御するプログラムとを含んで実現され、上記異質性パラメータ算出部16が算出した異質性パラメータの大小関係に基づき上記異質性要因が劣化特性に及ぼす影響を評価する。ここで、評価方法の例としては、例えば個々の対象物についての劣化特性を相対的に表す劣化曲線を作成する等の方法がある。   The benchmarking unit 18 is realized including a CPU and a program for controlling the processing operation of the CPU, and the heterogeneity factor affects the deterioration characteristics based on the magnitude relationship of the heterogeneity parameters calculated by the heterogeneity parameter calculation unit 16. Assess the impact. Here, as an example of the evaluation method, for example, there is a method of creating a degradation curve that relatively represents degradation characteristics of individual objects.

出力部20は、CPUとCPUの処理動作を制御するプログラムとを含んで実現され、ディスプレイ等の表示装置や印刷装置等のデータ出力手段にベンチマーキング部18が行った評価結果を出力する。   The output unit 20 is realized including a CPU and a program for controlling the processing operation of the CPU, and outputs an evaluation result performed by the benchmarking unit 18 to a data output unit such as a display device such as a display or a printing device.

次に、上記劣化特性算出部12が行う、観測可能な劣化要因毎に複数の対象物の劣化特性を算出する処理を説明する。   Next, a process performed by the deterioration characteristic calculation unit 12 for calculating deterioration characteristics of a plurality of objects for each observable deterioration factor will be described.

図3には、橋梁等の対象物の劣化過程の説明図が示される。図3において、横軸は対象物の新設時点からの経過時間τであり、縦軸は健全度である。なお、本例では、健全度を表す状態(レーティング)を状態変数i(iは整数)で表し、これがi,i+1,i+2の3段階で示されている。また、管理者は、交通量や材料等の特定の劣化要因のもとで、2つの時点τ,τにおいて対象物の点検を行い、健全度を確認している。 FIG. 3 shows an explanatory diagram of a deterioration process of an object such as a bridge. In FIG. 3, the horizontal axis is the elapsed time τ from when the object is newly established, and the vertical axis is the soundness level. In this example, the state (rating) indicating the soundness is represented by a state variable i (i is an integer), and this is shown in three stages i, i + 1, and i + 2. In addition, the manager checks the object at two time points τ A and τ B based on specific deterioration factors such as traffic volume and materials, and confirms the soundness level.

図3の場合、4種類の劣化過程の例が示されている。パス1は、2つの点検間隔(τからτの間)で劣化が進行せず、2回の点検で当該対象物の健全度として状態iが観測されている。また、パス2とパス3では、それぞれ時刻τ及びτにおいて、健全度が状態iからi+1に劣化し、2回目の点検時点(τ)で状態i+1が観測されている。さらに、パス4では、時刻τ及びτにおいて、それぞれ健全度がiからi+1へ、i+1からi+2へ変化している。以上に述べた各場合において、管理者は2回の点検時における健全度を観測することが可能であるが、健全度が実際に変化した時刻(τ,τ,τ,τ)を観測することはできない。このため、健全度の推移(劣化過程)の推定に確率過程(マルコフ劣化モデル)を導入する。 In the case of FIG. 3, examples of four types of deterioration processes are shown. In pass 1, the deterioration does not proceed at two inspection intervals (between τ A and τ B ), and the state i is observed as the soundness level of the object in two inspections. In pass 2 and pass 3, the soundness deteriorates from state i to i + 1 at times τ 4 and τ 3 , respectively, and state i + 1 is observed at the second inspection time point (τ B ). Furthermore, in pass 4, the soundness level changes from i to i + 1 and from i + 1 to i + 2 at times τ 1 and τ 2 , respectively. In each case described above, the administrator can observe the soundness level at the time of two inspections, but the time when the soundness actually changes (τ 1 , τ 2 , τ 3 , τ 4 ). Cannot be observed. For this reason, a stochastic process (Markov degradation model) is introduced to estimate the transition of the soundness (degradation process).

図3に示された劣化過程をマルコフ劣化モデルとし、上記時刻τで観測された対象物の健全度を状態変数h(τ)、時刻τで観測された対象物の健全度を状態変数h(τ)として表現した場合、時刻τで観測された健全度h(τ)=iであったときに、将来時点であるτにおける点検時に健全度h(τ)=jとなる条件付推移確率(マルコフ推移確率)を、
Pr[h(τ)=j|h(τ)=i]=πij
と表現する。このような推移確率を健全度の組合せ(i,j)に対して求めると、マルコフ推移確率行列は、

Figure 2009192221
と表現できる。なお、補修がなされない場合には劣化が改善されることはないので、i>jではπij=0となる。また、推移確率の定義より、
Figure 2009192221
である。 The degradation process shown in FIG. 3 is a Markov degradation model, the state of health of the object observed at time τ A is the state variable h (τ A ), and the state of health of the object observed at time τ B is the state. when expressed as a variable h (τ B), the time tau a soundness h (tau a) observed in = when a there was i, soundness h during inspection in tau B is a future time (tau B) = The conditional transition probability (Markov transition probability) of j is
Pr [h (τ B ) = j | h (τ A ) = i] = π ij
It expresses. When such transition probabilities are obtained for the combination of soundness (i, j), the Markov transition probability matrix is
Figure 2009192221
Can be expressed as Note that if no repair is performed, the deterioration is not improved, so that π ij = 0 when i> j. From the definition of transition probability,
Figure 2009192221
It is.

図4には、上記マルコフ推移確率の定式化方法の説明図が示される。図4において、時刻τi−1で健全度がi−1からiに推移し、時刻τで健全度がiからi+1に推移したとする。ここで、時刻τi−1を初期時点(y=0)とする時間軸を設定する。このとき、時刻τは上記時間軸上でyとなり、時刻τはyとなる。また、当該対象物の健全度がiに留まる期間長(健全度iの寿命)は、図4に示されるように、ζ=yとなる。健全度iの寿命ζは確率変数であり、確率密度関数f(ζ)、分布関数F(ζ)に従うとして、

Figure 2009192221
が成立する。さらに、初期時点y=0(時刻τi−1)から点検時点yまでに健全度がiのまま推移する確率は、
Pr{ζ≧y}=F’(ζ)=1−F(ζ
と定義できる。ここで、健全度が時点yまで状態iで推移し、かつ期間[y,y+Δy)中に状態i+1に劣化する条件付確率は、
Figure 2009192221
と表現できる。この確率密度λ(y)をハザード関数と呼ぶ。健全度の状態数−1個のハザード関数を定義することができる。なお、ハザード関数の値が小さいほど劣化速度が小さいことを意味する。 FIG. 4 is an explanatory diagram of a method for formulating the Markov transition probability. In FIG. 4, it is assumed that the soundness level changes from i-1 to i at time τ i−1 , and the soundness level changes from i to i + 1 at time τ i . Here, a time axis with the time τ i−1 as an initial time point (y i = 0) is set. At this time, time τ A is y A on the time axis, and time τ B is y B. Further, the length of the period during which the soundness level of the object remains at i (lifetime of the soundness level i) is ζ i = y C as shown in FIG. The life ζ i of the soundness i is a random variable, and follows the probability density function f ii ) and distribution function F ii ),
Figure 2009192221
Is established. Further, the probability that the soundness level remains i from the initial time point y i = 0 (time τ i-1 ) to the inspection time point y i is:
Pr {ζ i ≧ y i } = F ′ ii ) = 1−F ii )
Can be defined. Here, the conditional probability that the soundness changes in the state i until the time point y i and deteriorates to the state i + 1 during the period [y i , y i + Δy i ) is
Figure 2009192221
Can be expressed as This probability density λ i (y i ) is called a hazard function. It is possible to define a hazard function of the number of states of soundness minus one. In addition, it means that deterioration rate is so small that the value of a hazard function is small.

上述したように、劣化過程をマルコフ劣化モデルとし、上記ハザード関数が時間に依存せず、常に一定値をとるとすると、指数ハザード関数
λ(y)=θ (θは正の定数)
が成立する。このように、指数ハザード関数が時間に依存しないで一定値をとることから、劣化過程が過去の履歴に依存しないというマルコフ性を表現することができる。また、健全度iの寿命がy以上となる確率F’(y)は、
F’(y)=exp(−θ
となる。
As described above, when the deterioration process is a Markov deterioration model and the hazard function does not depend on time and always takes a constant value, the exponential hazard function λ i (y i ) = θ ii is a positive constant) )
Is established. In this way, since the exponent hazard function takes a constant value without depending on time, it is possible to express the Markov property that the deterioration process does not depend on the past history. In addition, the probability F ′ i (y i ) that the lifetime of the soundness level i is y i or more is
F ′ i (y i ) = exp (−θ i y i )
It becomes.

ここで、上記指数ハザード関数を用いると、2回の点検(τとτ)の間に健全度がiからjに推移するマルコフ推移確率πij(i=1,・・・,I−1;j=i+1,・・・,I)を以下の式のように定式化することができる。

Figure 2009192221
ただし、zは1回目と2回目の点検の間隔(y−y)である。 Here, when the exponential hazard function is used, the Markov transition probability π ij (i = 1,..., I−) in which the soundness transitions from i to j between two inspections (τ A and τ B ). 1; j = i + 1,..., I) can be formulated as:
Figure 2009192221
However, z is the interval between the first inspection and the second inspection (y B -y A ).

劣化特性算出部12は、以上に述べた指数ハザード関数θを、対象物の劣化特性として算出する。 The deterioration characteristic calculation unit 12 calculates the exponent hazard function θ i described above as the deterioration characteristic of the object.

次に、異質性パラメータ算出部16が行う、劣化特性の偏差の指標である異質性パラメータを算出する処理を説明する。   Next, a process performed by the heterogeneity parameter calculation unit 16 to calculate a heterogeneity parameter, which is an index of deterioration characteristic deviation, will be described.

まず、劣化特性算出部12は、複数の対象物をK個のグループに分割し、各グループk(k=1,2,…,K)に属する要素l毎の劣化特性(指数ハザード関数)θ(l)の平均値(Aveθ )を算出する。ここで、各グループの要素lは、例えばグループに属する橋梁等の建造物でもよいし、建造物を構成する部材としてもよい。このグループは、例えば橋梁の場合に、観測可能な劣化要因としての交通量を適宜な基準により大中小に分類し、交通量に応じて複数の橋梁を分類する等により構成することができる。 First, the degradation characteristic calculation unit 12 divides a plurality of objects into K groups, and degradation characteristics (exponential hazard function) for each element l k belonging to each group k (k = 1, 2,..., K). An average value (Aveθ k i ) of θ i (l k ) is calculated. Here, the element l k of each group may be a building such as a bridge belonging to the group, or may be a member constituting the building. For example, in the case of a bridge, this group can be configured by classifying the traffic volume as an observable degradation factor into large, medium, and small according to an appropriate standard, and classifying a plurality of bridges according to the traffic volume.

次に、異質性パラメータ算出部16は、各グループkの要素l毎に劣化特性に偏差を生じさせる異質性要因を設定し、偏差の指標である異質性パラメータεを算出する。なお、異質性パラメータεはレーティングiには依存しない。この異質性パラメータεは、各グループk毎に、劣化特性がその平均値(Aveθ )から乖離する程度を表す確率変数であり、ε>0である。ε=1が各グループkの劣化特性の平均値に相当し、異質性パラメータεの値が1より大きくなるほど当該対象物の劣化速度が平均値に対して速いことを、1より小さくなるほど当該対象物の劣化速度が平均値に対して遅いことを表す。要素l毎の劣化特性θ(l)は、混合指数ハザード関数として以下の式で表される。
θ(l)=Aveθ ×ε … (1)
Next, heterogeneity parameter calculating unit 16 sets the heterogeneity factor causing deviation deterioration characteristics for each element l k in each group k, calculates the heterogeneity parameter epsilon k is an index of deviation. The heterogeneity parameter ε k does not depend on the rating i. This heterogeneity parameter ε k is a random variable representing the degree to which the deterioration characteristic deviates from the average value (Aveθ k i ) for each group k, and ε k > 0. ε k = 1 corresponds to the average value of the degradation characteristics of each group k, and the larger the value of the heterogeneity parameter ε k is, the faster the degradation rate of the object is with respect to the average value. It represents that the degradation rate of the object is slow relative to the average value. The deterioration characteristic θ i (l k ) for each element l k is expressed by the following equation as a mixed index hazard function.
θ i (l k ) = Ave θ k i × ε k (1)

ここで、例えば異質性パラメータεが、平均1、分散1/φのガンマ分布から抽出された確率標本であるとすると、平均的な劣化推移を表すマルコフ推移確率は、

Figure 2009192221
と表される。 Here, for example, if the heterogeneity parameter ε k is a probability sample extracted from a gamma distribution with an average of 1 and a variance of 1 / φ, the Markov transition probability representing the average deterioration transition is
Figure 2009192221
It is expressed.

このとき、全対象物の健全度(レーティング)の観測値が同時に得られる確率を表現した同時生起確率を表す対数尤度関数は、

Figure 2009192221
と定式化される。さらには、異質性パラメータの同時生起確率を表す部分対数尤度関数は、
Figure 2009192221
と表される。ここで、xlkは、劣化予測の対象となる対象物の任意の観測可能な特性ベクトルを示す。また、
Figure 2009192221
は指数ハザード関数の平均値及び異質性パラメータの確率分布に関する最尤推定値を表している。 At this time, the log-likelihood function representing the co-occurrence probability expressing the probability that the observed values of the soundness (ratings) of all objects are obtained simultaneously is
Figure 2009192221
Is formulated. Furthermore, the partial log likelihood function representing the co-occurrence probability of heterogeneity parameters is
Figure 2009192221
It is expressed. Here, x lk represents an arbitrary observable characteristic vector of the target object for which deterioration is predicted. Also,
Figure 2009192221
Represents the maximum likelihood estimate for the mean value of the exponential hazard function and the probability distribution of the heterogeneity parameter.

なお、上記各数式中の符号に付したハット(^)は推定値を、チルダ(〜)は平均値を、バー(−)は観測値をそれぞれ表している。   In addition, the hat (^) attached | subjected to the code | symbol in each said numerical formula represents the estimated value, the tilde (-) represents the average value, and the bar | burr (-) represents the observed value, respectively.

以上の場合、上記劣化特性算出部12は、全対象物の健全度(レーティング)の観測値が同時に得られる確率を表現した同時生起確率を表す対数尤度関数を最大にする最尤推定値として、劣化特性の異質性を考慮しない平均的な劣化特性を表現する指数ハザード関数の平均値(Aveθ )を求める。また、異質性パラメータ算出部16は、上記指数ハザード関数の平均値(Aveθ )を用いて、例えばグループkに属する対象物の異質性パラメータの同時生起確率を表す部分対数尤度を、条件付きで(すなわち指数ハザード関数の平均値がAveθ となることを前提として)最大化する最適解として、各グループkの異質性パラメータεを算出する。 In the above case, the deterioration characteristic calculation unit 12 uses the maximum likelihood estimation value that maximizes the log likelihood function representing the co-occurrence probability that expresses the probability that the observed values of the soundness (ratings) of all objects are obtained simultaneously. Then, an average value (Aveθ k i ) of an exponential hazard function that represents an average deterioration characteristic that does not consider the heterogeneity of the deterioration characteristic is obtained . Further, the heterogeneity parameter calculation unit 16 uses the average value (Aveθ k i ) of the exponent hazard function, for example, to calculate a partial log likelihood representing the co-occurrence probability of the heterogeneity parameter of the target object belonging to the group k. Then, the heterogeneity parameter ε k of each group k is calculated as an optimal solution to be maximized (that is, on the assumption that the average value of the exponential hazard function becomes Ave θ k i ).

なお、上述したように、異質性パラメータεは、観察が困難な個別的な異質性要因に基づくものであり、例えば異質性要因格納部14に予め格納された異質性要因毎に算出する構成とすることができる。また、劣化特性の検討の際に、管理者が設定する構成としてもよい。 As described above, the heterogeneity parameter ε k is based on individual heterogeneity factors that are difficult to observe. For example, the heterogeneity parameter ε k is calculated for each heterogeneity factor stored in advance in the heterogeneity factor storage unit 14. It can be. Moreover, it is good also as a structure which an administrator sets in the case of examination of a degradation characteristic.

図5には、本発明にかかる劣化評価装置の動作例のフローが示される。図5において、管理者が複数の対象物を点検して決定した健全度の状態及び点検日時を入力装置から入力し、データ受付部10が点検データとして受け付ける(S1)。この点検は、適宜な時点で複数回行われる。   FIG. 5 shows a flow of an operation example of the deterioration evaluation apparatus according to the present invention. In FIG. 5, the state of health and the date and time of inspection determined by the administrator inspecting a plurality of objects are input from the input device, and the data receiving unit 10 receives them as inspection data (S1). This check is performed several times at an appropriate time.

劣化特性算出部12は、データ受付部10が受け付けた複数の対象物の健全度に関するデータ(状態)に基づいて、各劣化要因について対象物の劣化特性θ(l)の平均値(Aveθ )を算出する(S2)。 Based on the data (state) regarding the soundness of a plurality of objects received by the data receiving unit 10, the deterioration characteristic calculating unit 12 averages (Aveθ) the deterioration characteristics θ i (l k ) of the objects for each deterioration factor. k i ) is calculated (S2).

異質性パラメータ算出部16は、異質性要因格納部14に格納され、または管理者が指定した異質性要因毎に、異質性パラメータεを算出する(S3)。 The heterogeneity parameter calculation unit 16 calculates the heterogeneity parameter ε k for each heterogeneity factor stored in the heterogeneity factor storage unit 14 or designated by the administrator (S3).

次に、ベンチマーキング部18は、異質性パラメータ算出部16が算出した異質性パラメータの大小関係に基づき上記異質性要因が劣化特性に及ぼす影響を評価し(S4)、出力部20がベンチマーキング部18の評価結果を出力する(S5)。この場合、ベンチマーキング部18は、例えば後述する図7に示される劣化曲線及び平均劣化曲線を作成し、この劣化曲線及び平均劣化曲線を出力部20が出力する構成とすることができる。   Next, the benchmarking unit 18 evaluates the influence of the heterogeneity factor on the degradation characteristics based on the magnitude relationship of the heterogeneity parameters calculated by the heterogeneity parameter calculation unit 16 (S4), and the output unit 20 sets the benchmarking unit. 18 evaluation results are output (S5). In this case, the benchmarking unit 18 can create a deterioration curve and an average deterioration curve shown in FIG. 7 described later, for example, and the output unit 20 can output the deterioration curve and the average deterioration curve.

図6には、出力部20が出力した異質性パラメータの大小関係の概念図が示される。図6では、横軸が劣化特性θ(l)であり、縦軸が劣化特性θ(l)毎の要素lの数(頻度)である。また、劣化特性θ(l)の平均値(Aveθ )が縦線で示されている。異質性パラメータεは、平均値(Aveθ )からの横軸方向の距離で示されている。 FIG. 6 shows a conceptual diagram of the magnitude relationship of the heterogeneity parameters output by the output unit 20. In FIG. 6, the horizontal axis represents the deterioration characteristic θ i (l k ), and the vertical axis represents the number (frequency) of the elements l k for each deterioration characteristic θ i (l k ). Further, the average value (Aveθ k i ) of the deterioration characteristics θ i (l k ) is indicated by a vertical line. The heterogeneity parameter ε k is indicated by the distance in the horizontal axis direction from the average value (Aveθ k i ).

図6において、異質性要因がA,B,Cで示される。また、異質性パラメータεは、平均値(Aveθ )からの横軸方向の距離で示されている。ここで、異質性要因は、例えば施工時の条件や、RC床版等の特性値が等しい橋梁における個々の橋梁特有の要因等である。劣化特性θ(l)は、小さいほど劣化速度が小さいことを表しているので、異質性パラメータεの定義式(1)から、劣化速度が小さいほど異質性パラメータεも小さいことになる。このため、異質性要因A,B,Cは、この順序(A<B<C)で劣化速度が大きくなっていることになる。このように、劣化特性θ(l)により、異質性要因毎の優劣を判断することができ、定量的な観測が不可能または困難な要因の評価を行うことができる。 In FIG. 6, the heterogeneity factors are indicated by A, B, and C. Further, the heterogeneity parameter ε k is indicated by the distance in the horizontal axis direction from the average value (Aveθ k i ). Here, the heterogeneity factor is, for example, a condition peculiar to an individual bridge in a bridge having the same characteristic value such as a construction condition or an RC floor slab. Degradation characteristic theta i (l k), since it indicates that higher degradation rate less is low, the heterogeneity parameter epsilon k defining equation (1), heterogeneity parameter as the degradation rate is smaller epsilon k that is small Become. For this reason, the deterioration factors A, B, and C increase in this order (A <B <C). As described above, the superiority or inferiority of each heterogeneous factor can be determined based on the deterioration characteristic θ i (l k ), and the factor that cannot be quantitatively observed or difficult can be evaluated.

マルコフ劣化モデルを用いれば、アセットマネジメントにおけるリスク管理指標であるレーティング期待寿命(所定のレーティングにはじめて到達した時点から、劣化が進行して次のレーティングに進むまでの期待時間長)を求めることができる。すなわち、健全度iの寿命がy以上となる確率F’(y)を時刻0から無限大まで積分することにより、レーティング期待寿命RMD

Figure 2009192221
となる。本式より、初期時点(レーティングが1の場合)からの経過年数と対象物の平均的なレーティングとの対応関係である劣化曲線を求めることができる。また、劣化曲線は、グループ毎に作成することも、グループの別なく全対象物を対象に作成することもできる。 By using the Markov degradation model, it is possible to obtain the expected rating life (the expected length of time from when the specified rating is reached for the first time until degradation progresses to the next rating), which is a risk management index in asset management. . That is, by integrating the probability F ′ i (y i ) that the life of the soundness i becomes y i or more from time 0 to infinity, the rating expected life RMD i is
Figure 2009192221
It becomes. From this equation, it is possible to obtain a deterioration curve that is a correspondence relationship between the number of years elapsed from the initial time point (when the rating is 1) and the average rating of the object. In addition, the deterioration curve can be created for each group, or can be created for all objects regardless of the group.

図7には、レーティング期待寿命及びその平均値(異質性パラメータε=1に相当)からベンチマーキング部18が作成した劣化曲線及び平均劣化曲線(基準曲線;ベンチマーク曲線)の例が示される。平均劣化曲線の上側に位置する対象物(ε<1に相当)ほど平均に比べて劣化が遅く、逆に平均劣化曲線の下側に位置する対象物(ε>1に相当)ほど平均に比べて劣化が早いことが分かる。 FIG. 7 shows an example of a degradation curve and an average degradation curve (reference curve; benchmark curve) created by the benchmarking unit 18 from the expected rating life and its average value (corresponding to the heterogeneity parameter ε k = 1). An object positioned above the average deterioration curve (corresponding to ε k <1) has a slower deterioration than the average, and conversely, an object positioned below the average deterioration curve (corresponding to ε k > 1) is averaged. It can be seen that the deterioration is faster than

この結果を参照し、特に平均劣化曲線からの偏差が大きい対象物を詳細に分析することにより、当初グループ分割の際に予見していた要因以外に、劣化速度に影響する要因を把握することができる。   By referring to this result and analyzing in detail objects that have a large deviation from the average deterioration curve, it is possible to grasp factors that affect the deterioration rate in addition to the factors that were foreseen at the time of the initial group division. it can.

なお、ここでは劣化曲線を例に説明したが、異質性パラメータ毎に確率的劣化分布(レーティングの確率分布)の経年変化を求め、これらを比較することによって劣化速度に影響する要因を把握することも可能である。   In this example, the deterioration curve has been described as an example, but the secular change of the stochastic deterioration distribution (rating probability distribution) is obtained for each heterogeneous parameter, and the factors affecting the deterioration speed are understood by comparing these. Is also possible.

本発明にかかる劣化評価装置の一実施形態の機能ブロック図である。It is a functional block diagram of one embodiment of a degradation evaluation device concerning the present invention. 健全度の例を示す図である。It is a figure which shows the example of a soundness degree. 対象物の劣化過程の説明図である。It is explanatory drawing of the degradation process of a target object. マルコフ推移確率の定式化方法の説明図である。It is explanatory drawing of the formulation method of a Markov transition probability. 本発明にかかる劣化評価装置の動作例のフロー図である。It is a flowchart of the operation example of the degradation evaluation apparatus concerning this invention. 異質性パラメータの大小関係の概念図である。It is a conceptual diagram of the magnitude relationship of a heterogeneity parameter. 劣化曲線の相対評価の説明図である。It is explanatory drawing of the relative evaluation of a degradation curve.

符号の説明Explanation of symbols

10 データ受付部、12 劣化特性算出部、14 異質性要因格納部、16 異質性パラメータ算出部、18 ベンチマーキング部、20 出力部。   DESCRIPTION OF SYMBOLS 10 Data reception part, 12 Deterioration characteristic calculation part, 14 Heterogeneity factor storage part, 16 Heterogeneity parameter calculation part, 18 Benchmarking part, 20 Output part

Claims (6)

複数の対象物の健全度に基づき、観測可能な劣化要因毎に前記複数の対象物の劣化特性を算出する劣化特性算出手段と、
前記劣化特性に偏差を生じさせる観測不可能または観測困難な異質性要因毎に前記劣化特性の偏差の指標である異質性パラメータを算出する異質性パラメータ算出手段と、
を備えることを特徴とする複数対象物の劣化評価装置。
A deterioration characteristic calculating means for calculating deterioration characteristics of the plurality of objects for each observable deterioration factor based on the soundness of the plurality of objects;
Heterogeneity parameter calculating means for calculating a heterogeneity parameter that is an indicator of the deviation of the deterioration characteristic for each unobservable or difficult to observe heterogeneity factor that causes a deviation in the deterioration characteristic;
A deterioration evaluation apparatus for a plurality of objects, comprising:
請求項1記載の複数対象物の劣化評価装置は、さらに前記異質性パラメータの大小関係に基づき前記異質性要因が前記劣化特性に及ぼす影響を評価するベンチマーキング手段を備えることを特徴とする複数対象物の劣化評価装置。   The deterioration evaluation apparatus for a plurality of objects according to claim 1, further comprising benchmarking means for evaluating the influence of the heterogeneity factor on the deterioration characteristics based on the magnitude relationship of the heterogeneity parameters. Equipment for evaluating deterioration of objects. 前記劣化特性算出手段は、前記複数の対象物の劣化過程の同時生起確率密度を表す対数尤度関数を最大にする最尤推定値として前記劣化特性を求めることを特徴とする請求項1又は請求項2に記載の複数対象物の劣化評価装置。   2. The deterioration characteristic calculating means obtains the deterioration characteristic as a maximum likelihood estimation value that maximizes a log likelihood function representing a co-occurrence probability density of deterioration processes of the plurality of objects. Item 3. The deterioration evaluation apparatus for multiple objects according to Item 2. 前記異質性パラメータ算出手段は、前記異質性要因を有する対象物が生じる同時生起確率密度を表す部分対数尤度を求め、これを条件付きで最大化した際の最適解として前記異質性パラメータを求めることを特徴とする請求項1から請求項3のいずれか一項に記載の複数対象物の劣化評価装置。   The heterogeneity parameter calculation means obtains a partial log likelihood representing a co-occurrence probability density in which an object having the heterogeneity factor occurs, and obtains the heterogeneity parameter as an optimal solution when the condition is maximized conditionally. The deterioration evaluation apparatus for a plurality of objects according to any one of claims 1 to 3, wherein: 前記劣化評価装置は更に出力手段を有し、
前記ベンチマーキング手段は、横軸に経過時間、縦軸に健全度をとり、個々の対象物における劣化特性を相対的に表す劣化曲線を作成し、
前記出力手段は、前記異質性パラメータの値に基づいて作成した個々の劣化曲線を出力することを特徴とする請求項2から請求項4のいずれか一項に記載の複数対象物の劣化評価装置。
The deterioration evaluation apparatus further includes output means,
The benchmarking means takes the elapsed time on the horizontal axis and the soundness on the vertical axis, and creates a deterioration curve that relatively represents the deterioration characteristics of individual objects,
5. The multi-object degradation evaluation apparatus according to claim 2, wherein the output unit outputs an individual degradation curve created based on the value of the heterogeneity parameter. 6. .
複数の対象物の劣化速度を取得し、
前記劣化速度に基づき、観測可能な劣化要因毎に前記複数の対象物の劣化特性を算出し、
前記劣化特性に偏差を生じさせる観測不可能または観測困難な異質性要因毎に前記劣化特性の偏差の指標である異質性パラメータを算出する、
ことを特徴とする複数対象物の劣化評価方法。
Get the degradation rate of multiple objects,
Based on the degradation rate, calculate degradation characteristics of the plurality of objects for each observable degradation factor,
Calculating a heterogeneity parameter that is an indicator of the deviation of the degradation characteristic for each unobservable or difficult to observe heterogeneity factor that causes a deviation in the degradation characteristic;
A method for evaluating deterioration of multiple objects.
JP2008029901A 2008-02-12 2008-02-12 Degradation evaluation apparatus and degradation evaluation method Active JP5064259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029901A JP5064259B2 (en) 2008-02-12 2008-02-12 Degradation evaluation apparatus and degradation evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029901A JP5064259B2 (en) 2008-02-12 2008-02-12 Degradation evaluation apparatus and degradation evaluation method

Publications (2)

Publication Number Publication Date
JP2009192221A true JP2009192221A (en) 2009-08-27
JP5064259B2 JP5064259B2 (en) 2012-10-31

Family

ID=41074390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029901A Active JP5064259B2 (en) 2008-02-12 2008-02-12 Degradation evaluation apparatus and degradation evaluation method

Country Status (1)

Country Link
JP (1) JP5064259B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173358A (en) * 2015-03-02 2016-09-29 ゼネラル・エレクトリック・カンパニイ Method of evaluating part
WO2018179376A1 (en) * 2017-03-31 2018-10-04 日本電気株式会社 Degradation prediction device, degradation prediction method, and computer-readable recording medium
JP2019015528A (en) * 2017-07-04 2019-01-31 高知県公立大学法人 Predication method of deterioration of structure using inspection result by taking measurement error and time error into consideration
JPWO2021199942A1 (en) * 2020-03-31 2021-10-07
JP2022089440A (en) * 2020-12-04 2022-06-16 株式会社オリエンタルコンサルタンツ Structure deterioration prediction device, structure deterioration prediction method, and structure deterioration prediction program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173358A (en) * 2015-03-02 2016-09-29 ゼネラル・エレクトリック・カンパニイ Method of evaluating part
US10042964B2 (en) 2015-03-02 2018-08-07 General Electric Company Method of evaluating a part
US11334062B2 (en) 2015-03-02 2022-05-17 General Electric Company Method of evaluating a part
WO2018179376A1 (en) * 2017-03-31 2018-10-04 日本電気株式会社 Degradation prediction device, degradation prediction method, and computer-readable recording medium
JPWO2018179376A1 (en) * 2017-03-31 2020-05-21 日本電気株式会社 Degradation prediction device, deterioration prediction method, and program
US11263573B2 (en) 2017-03-31 2022-03-01 Nec Corporation Degradation prediction apparatus, degradation prediction method, and computer-readable recording medium
JP2019015528A (en) * 2017-07-04 2019-01-31 高知県公立大学法人 Predication method of deterioration of structure using inspection result by taking measurement error and time error into consideration
JPWO2021199942A1 (en) * 2020-03-31 2021-10-07
WO2021199942A1 (en) * 2020-03-31 2021-10-07 日本電気株式会社 Deterioration diagnosis device, deterioration diagnosis system, and recording medium
JP7334852B2 (en) 2020-03-31 2023-08-29 日本電気株式会社 Deterioration diagnosis device, deterioration diagnosis system, deterioration diagnosis method, and program
JP2022089440A (en) * 2020-12-04 2022-06-16 株式会社オリエンタルコンサルタンツ Structure deterioration prediction device, structure deterioration prediction method, and structure deterioration prediction program

Also Published As

Publication number Publication date
JP5064259B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
US8880962B2 (en) Maintenance planning and failure prediction from data observed within a time window
Sheils et al. Development of a two-stage inspection process for the assessment of deteriorating infrastructure
EP2837984B1 (en) Process to optimize the maintenance of technical systems
JP6359960B2 (en) Failure prediction apparatus, failure prediction method, and failure prediction program
KR101358673B1 (en) Facilities condition assessment method using smartphone and system thereof
JP5064259B2 (en) Degradation evaluation apparatus and degradation evaluation method
Stewart Spatial and time-dependent reliability modelling of corrosion damage, safety and maintenance for reinforced concrete structures
US20170193460A1 (en) Systems and methods for predicting asset specific service life in components
Sheils et al. Investigation of the effect of the quality of inspection techniques on the optimal inspection interval for structures
JP5768983B2 (en) Contract violation prediction system, contract violation prediction method, and contract violation prediction program
Chen et al. A data heterogeneity modeling and quantification approach for field pre-assessment of chloride-induced corrosion in aging infrastructures
El Hajj et al. A condition‐based deterioration model for the stochastic dependency of corrosion rate and crack propagation in corroded concrete structures
Tran et al. Improved Bayesian network configurations for probabilistic identification of degradation mechanisms: application to chloride ingress
JP6502062B2 (en) Communication quality prediction device and communication quality prediction program
Bertola et al. Sensing the structural behavior: A perspective on the usefulness of monitoring information for bridge examination
JP2015133115A (en) remaining useful life determination method
JP6919705B2 (en) Deterioration prediction device, deterioration prediction method, and program
JP6733656B2 (en) Information processing apparatus, information processing system, plant system, information processing method, and program
Karbhari Introduction: the future of non-destructive evaluation (NDE) and structural health monitoring (SHM)
Jiang et al. Multivariate probabilistic modelling for seepage risk assessment in tunnel segments
JP6571552B2 (en) Prediction device and prediction method
US8650007B2 (en) Apparatus and method for evaluating deterioration performance
JP2020094847A (en) Deterioration prediction method for structure
Kamariotis et al. Quantifying the value of vibration-based structural health monitoring considering environmental variability
JP2019015528A (en) Predication method of deterioration of structure using inspection result by taking measurement error and time error into consideration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5064259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250