JP2020094847A - Deterioration prediction method for structure - Google Patents

Deterioration prediction method for structure Download PDF

Info

Publication number
JP2020094847A
JP2020094847A JP2018231325A JP2018231325A JP2020094847A JP 2020094847 A JP2020094847 A JP 2020094847A JP 2018231325 A JP2018231325 A JP 2018231325A JP 2018231325 A JP2018231325 A JP 2018231325A JP 2020094847 A JP2020094847 A JP 2020094847A
Authority
JP
Japan
Prior art keywords
deterioration
degree
transition rate
prediction
deterioration degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018231325A
Other languages
Japanese (ja)
Inventor
吉田 武史
Takeshi Yoshida
武史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018231325A priority Critical patent/JP2020094847A/en
Publication of JP2020094847A publication Critical patent/JP2020094847A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

To provide a deterioration prediction method for structures capable of highly precisely predicting progress of deterioration of structures having a deterioration mechanism whose deterioration speed is not constant, and structures having a complicated deterioration mechanism combined with various deterioration factors.SOLUTION: A deterioration prediction method for structures comprises: a deterioration state inspection step of inspecting a deterioration state of a structure a plurality of times at time intervals; a deterioration degree evaluation step of replacing the deterioration state obtained by the deterioration state inspection step with a deterioration degree divided into a plurality of stages and evaluating a secular change of the deterioration degree; a transition rate calculation step of calculating a transition rate as a probability transferring from the secular change of the deterioration degree obtained by the deterioration evaluation step to a next-stage deterioration degree within a prescribed period for every-stage transition rate; and a deterioration prediction step of performing the deterioration prediction of the structure using the transition rate for every deterioration degree obtained by the transition rate calculation step.SELECTED DRAWING: Figure 4

Description

本発明は、構造物の劣化予測方法に関する。 The present invention relates to a method of predicting deterioration of a structure.

建設後数十年経過した構造物の劣化損傷は深刻な問題であり、それらの適切な維持管理によるライフサイクルコストの軽減が重要な課題になっている。そのため、構造物の劣化進行を定量的に評価する劣化予測方法が提案されている。 Deterioration damage of structures decades after construction is a serious problem, and reduction of life cycle cost by appropriate maintenance of them is an important issue. Therefore, a deterioration prediction method for quantitatively evaluating the progress of deterioration of a structure has been proposed.

例えば、特許文献1では、飛来塩分等による外部塩害に起因するコンクリート構造物の鉄筋の腐食速度を推定することにより、構造物の劣化予測を行うことのできる方法が示されている。 For example, Patent Document 1 discloses a method capable of predicting deterioration of a structure by estimating a corrosion rate of a reinforcing bar of a concrete structure caused by external salt damage due to a flying salt content or the like.

また、非特許文献1には、劣化機構が不明な場合や、劣化機構は分かっているがモデル化が難しい場合において、確率論的モデルとしてマルコフ連鎖モデル(物事がある「状態」から、ある「遷移率」で次の「状態」へと推移する様子を確率論的に捉える統計手法)を用いることで、構造物の劣化状況の推移に関する予測を行うことができる劣化予測方法が示されている。 Further, Non-Patent Document 1 describes a Markov chain model (from a certain "state" as a stochastic model) when the deterioration mechanism is unknown or when the deterioration mechanism is known but modeling is difficult. Degradation prediction method that can predict the transition of the deterioration status of a structure is shown by using a statistical method that stochastically captures the transition to the next "state" at "transition rate". ..

この劣化予測方法は、図1(a)に示すように、構造物の劣化の度合を示す劣化度(例えば、劣化度0、I〜Vの6段階)を予め定めておき、ある劣化度の部位が所定期間内(通常は、1年以内)に次の段階の劣化度に移行している確率を遷移率xとし、ある劣化度の部位が1年後もその劣化度でいる確率を(1−x)とする。そして、図1(b)に示す式を用いて、ある年の劣化度の割合を基準に、t年後の劣化度の割合を予測するものである。ここで、劣化度の割合とは、構造物において劣化度の評価対象としている部位の数に対して、それぞれの劣化度の部位の数が占める割合である。 In this deterioration prediction method, as shown in FIG. 1A, a deterioration degree indicating the degree of deterioration of a structure (for example, deterioration degree 0, 6 levels of I to V) is set in advance, and a certain deterioration degree is determined. The transition rate x is the probability that a part has moved to the next level of deterioration within a predetermined period (usually within one year), and the probability that a part with a certain deterioration level will remain at that deterioration level after one year ( 1-x). Then, using the formula shown in FIG. 1B, the rate of deterioration after t years is predicted based on the rate of deterioration in a certain year. Here, the ratio of the degree of deterioration is the ratio of the number of parts of each deterioration degree to the number of parts of the structure whose deterioration degree is to be evaluated.

特開2012−8152号公報JP 2012-8152 A

港湾の施設の維持管理技術マニュアル(沿岸技術センター、2007)Technical Manual for Maintenance of Port Facilities (Coastal Technology Center, 2007)

しかしながら、上記の特許文献1に記載の技術や非特許文献1に記載の技術には以下のような問題があった。 However, the technique described in Patent Document 1 and the technique described in Non-Patent Document 1 have the following problems.

まず、特許文献1に記載の技術は、構造物内の鉄筋という一部についての劣化予測は可能であるが、構造物全体の劣化については評価できないため、構造物の劣化予測については精度よく評価ができないという問題があった。 First, although the technology described in Patent Document 1 can predict deterioration of a part of a reinforcing bar in a structure, deterioration of the entire structure cannot be evaluated. Therefore, deterioration prediction of the structure is accurately evaluated. There was a problem that I could not.

一方、非特許文献1に記載の技術は、構造物全体の劣化について評価することはできるが、全ての劣化度における遷移率xが一定と定義されているため、図2のように、劣化速度が一定でない劣化を精度良く予測できず、実構造物の観測結果と比較すると大きな乖離が発生してしまう問題があった。 On the other hand, the technique described in Non-Patent Document 1 can evaluate the deterioration of the entire structure, but since the transition rate x at all deterioration levels is defined as constant, as shown in FIG. However, there was a problem that the deterioration could not be accurately predicted and a large deviation occurred compared with the observation result of the actual structure.

例えば、図3は、塩害による鉄筋コンクリートの劣化過程であり、潜伏期(健全状態)、進展期(鉄筋の腐食)、加速期(コンクリートのひび割れ)、劣化期(コンクリートの剥落)の4段階によって分けられ、それぞれの段階で劣化進行の速さが異なるため、それぞれの劣化状態の遷移率が一定だと劣化予測の精度が低下してしまう。 For example, Fig. 3 shows the deterioration process of reinforced concrete due to salt damage, which is divided into four stages: incubation period (healthy state), development period (corrosion of reinforcing bar), acceleration period (cracking of concrete), and deterioration period (stripped concrete). Since the speed of deterioration progress differs at each stage, if the transition rate of each deterioration state is constant, the accuracy of deterioration prediction decreases.

精度よく劣化を予測できないと、補修計画の立案のために高頻度の点検が必要となり、構造物の維持管理に関するコスト・労務負担の増加が発生してしまう。さらに、合理的な維持管理を行うために必要なライフサイクルコストの算出ができないという問題があった。 If the deterioration cannot be predicted accurately, frequent inspections are required to formulate a repair plan, and the cost and labor burden related to the maintenance of the structure will increase. Further, there is a problem that the life cycle cost necessary for rational maintenance cannot be calculated.

本発明は、上記のような事情に鑑みてなされたものであり、劣化速度が一定でない劣化機構を有する構造物や、様々な劣化要因が組み合わさった複雑な劣化機構を有する構造物の劣化の進行を精度良く予測することができる構造物の劣化予測方法を提供することを目的とするものである。 The present invention has been made in view of the circumstances as described above, and a structure having a deterioration mechanism in which the deterioration rate is not constant or a structure having a complicated deterioration mechanism in which various deterioration factors are combined is used. It is an object of the present invention to provide a method for predicting deterioration of a structure, which can accurately predict the progress.

上記課題を解決するために、本発明は以下のような特徴を有している。 In order to solve the above problems, the present invention has the following features.

[1]構造物の劣化予測方法であって、
構造物の劣化状態を時間間隔を置いて複数回調査する劣化状態調査工程と、
前記劣化状態調査工程で得られた劣化状態を、複数の段階に区分された劣化度に置き換えて、劣化度の経時変化を評価する劣化度評価工程と、
前記劣化度評価工程で得られた劣化度の経時変化から、各段階の劣化度ごとに、所定期間内に次の段階の劣化度へ移行する確率としての遷移率を算出する遷移率算出工程と、
前記遷移率算出工程で得られた劣化度ごとの遷移率を用いて、前記構造物の劣化予測を行う劣化予測工程と
を有することを特徴とする構造物の劣化予測方法。
[1] A method for predicting deterioration of a structure, comprising:
A deterioration state inspection process of inspecting the deterioration state of the structure multiple times at time intervals,
The deterioration state obtained in the deterioration state investigation step, by replacing the deterioration degree divided into a plurality of stages, the deterioration degree evaluation step of evaluating the change over time of the deterioration degree,
From the change with time of the deterioration degree obtained in the deterioration degree evaluation step, for each deterioration degree of each step, a transition rate calculation step for calculating a transition rate as a probability of moving to the next step deterioration degree within a predetermined period, ,
A deterioration prediction method for a structure, comprising: a deterioration prediction step of predicting deterioration of the structure using the transition rate for each deterioration degree obtained in the transition rate calculation step.

[2]前記劣化度が0〜nのn+1段階に区分されている場合は、前記遷移率算出工程において劣化度ごとの遷移率を算出する際と、前記劣化予測工程において前記構造物の劣化予測を行う際には、下記の式を用いることを特徴とする前記[1]に記載の構造物の劣化予測方法。 [2] When the degree of deterioration is classified into n+1 stages of 0 to n, when calculating the transition rate for each degree of deterioration in the transition rate calculation step and in the deterioration prediction step, deterioration prediction of the structure is performed. When performing, the method of predicting deterioration of a structure according to the above [1], wherein the following equation is used.

Figure 2020094847
Figure 2020094847

ここで、
’〜P’:基準時の劣化度の割合
t:基準時からの経過年数
〜P:基準時からt年後の劣化度の割合
〜xn−1:劣化度ごとの遷移率
i:劣化度の段階を示す添字
here,
P 0 ′ to P n ′: Ratio of deterioration degree from standard time t: Number of years elapsed from standard time P 0 to P n : Ratio of deterioration degree after t years from standard time x 0 to x n−1 : Degree of deterioration Transition rate for each i: Subscript indicating the stage of deterioration degree

本発明においては、劣化速度が一定でない劣化機構を有する構造物や、様々な劣化要因が組み合わさった複雑な劣化機構を有する構造物の劣化の進行を精度良く予測することができる。 In the present invention, it is possible to accurately predict the progress of deterioration of a structure having a deterioration mechanism in which the deterioration rate is not constant or a structure having a complicated deterioration mechanism in which various deterioration factors are combined.

従来技術(非特許文献1)を示す図である。It is a figure which shows prior art (nonpatent literature 1). 劣化要因による劣化速度の差異を示す図である。It is a figure which shows the difference of the deterioration speed by a deterioration factor. 塩害による劣化の進行を示す図である。It is a figure which shows progress of deterioration by salt damage. 本発明の一実施形態におけるマルコフ連鎖モデルを示す図である。It is a figure which shows the Markov chain model in one Embodiment of this invention. 本発明の一実施形態における作業工程を示す図である。It is a figure which shows the work process in one Embodiment of this invention. 本発明の一実施形態における劣化度の区分の一例を示す図である。It is a figure which shows an example of the division of the deterioration degree in one Embodiment of this invention. 本発明の実施例において劣化度の割合を比較した図である。It is a figure which compared the ratio of the deterioration degree in the Example of this invention.

本発明は、物事がある「状態」から、ある「遷移率」で次の「状態」へと推移する様子を確率論的に捉える統計手法であるマルコフ連鎖モデルを利用した、構造物の劣化予測方法である。 INDUSTRIAL APPLICABILITY The present invention uses a Markov chain model, which is a statistical method that stochastically captures the transition from one “state” to the next “state” at a certain “transition rate” Is the way.

本発明の一実施形態を以下に述べる。 One embodiment of the present invention will be described below.

まず、図4は、本発明の一実施形態における基本的な考え方を示すマルコフ連鎖モデルである。 First, FIG. 4 is a Markov chain model showing the basic idea in one embodiment of the present invention.

図4に示すように、この実施形態においては、構造物の劣化の度合を示すために複数の段階に区分された劣化度(ここでは、0、I〜Vの6段階)を予め定めておく。そして、ある劣化度の部位が所定期間内(通常は、1年以内)に次の段階の劣化度に移行する確率(遷移率)を劣化度ごとに設定している。すなわち、劣化度0、I〜IV、Vごとに、それぞれの遷移率をx、x〜x、0としている。したがって、劣化度0、I〜IV、Vの部位が1年後もその劣化度でいる確率は、それぞれ1−x、1−x〜1−x、1ということになる。 As shown in FIG. 4, in this embodiment, the degree of deterioration divided into a plurality of stages (here, 0, 6 stages of I to V) is set in advance to indicate the degree of deterioration of the structure. .. Then, a probability (transition rate) at which a part having a certain degree of deterioration shifts to the next stage deterioration degree within a predetermined period (usually within one year) is set for each deterioration degree. That is, the respective transition rates are set to x 0 , x 1 to x 4 , 0 for each of the deterioration degrees 0, I to IV, and V. Therefore, the probabilities that the parts with deterioration degrees 0, I to IV, and V have the deterioration degrees even after 1 year are 1-x 0 , 1-x 1 to 1-x 4 , 1 respectively.

このように、この実施形態では、遷移率を劣化度ごとに設定している点が、遷移率を一定としている前記非特許文献1と根本的に異なる点である。 Thus, in this embodiment, the point that the transition rate is set for each deterioration degree is fundamentally different from the non-patent document 1 in which the transition rate is constant.

次に、図5は、この実施形態における作業工程を示す図である。図5に示すように、この実施形態では、(S1)〜(S4)の作業工程を有している。 Next, FIG. 5 is a diagram showing a work process in this embodiment. As shown in FIG. 5, this embodiment has work steps (S1) to (S4).

(S1)劣化状態調査工程
この劣化状態調査工程では、構造物の劣化状態を時間を置いて複数回調査する。例えば、構造物で劣化の評価対象としてリストアップしている各部位の劣化状態について、当該構造物の竣工からt1年目に第1回目の調査を行い、時間間隔(t2−t1)を置いて、当該構造物の竣工からt2年目に第2回目の調査を行う。
(S1) Deterioration State Inspection Step In this deterioration state inspection step, the deterioration state of the structure is inspected a plurality of times with an interval. For example, regarding the deterioration state of each part listed in the structure as an evaluation target of deterioration, the first investigation is performed in t1 years after the completion of the structure, and a time interval (t2-t1) is set. , The second survey will be conducted two years after the completion of the structure.

なお、その際の調査方法については、目視調査・打音調査などの簡易的な調査方法や、超音波探傷調査や塩化物イオン含有量調査などの詳細調査がある。それぞれの構造物の管理点検マニュアル等に記載された適切な方法で調査を行う。 Regarding the investigation method at that time, there are simple investigation methods such as visual inspection and tapping investigation, and detailed investigations such as ultrasonic flaw detection and chloride ion content investigation. Conduct an investigation using the appropriate method described in the management and inspection manual for each structure.

(S2)劣化度評価工程
この劣化度評価工程では、前記劣化状態調査工程で得られた劣化状態を、複数の段階に区分された劣化度に置き換えて、劣化度の経時変化を評価する。
(S2) Deterioration Degree Evaluation Step In this deterioration degree evaluation step, the deterioration state obtained in the deterioration state inspection step is replaced with the deterioration degree divided into a plurality of stages to evaluate the change with time of the deterioration degree.

すなわち、t1年目(第1回目)の各部位の劣化状態調査結果から各部位のt1年目の劣化度を評価し、t2年目(第2回目)の各部位の劣化状態調査結果から各部位のt2年目の劣化度を評価する。 That is, the degree of deterioration of each part in the t1 year is evaluated from the deterioration state investigation result of each part in the t1 year (first time), and each deterioration state investigation result of each part in the t2 year (second time) is evaluated. The degree of deterioration of the part at the second year t is evaluated.

なお、劣化度は、各構造物によって評価基準が定められている。例えば、図6は、港湾構造物で用いられる劣化度の例である。鉄筋の腐食・コンクリートのひび割れ・コンクリートの剥離の3つを指標として6段階の劣化度で評価される。劣化度は、竣工状態を示す「0」が最良であり、以降の劣化に応じて「V」まで設定されている。ここで、図6の出典は、「運輸省港湾技術研究所所編著、港湾構造物の維持・補修マニュアル、平成11年6月、(財)沿岸開発技術研究センター」である。 It should be noted that the deterioration level has an evaluation standard determined by each structure. For example, FIG. 6 is an example of the degree of deterioration used in a port structure. The degree of deterioration is evaluated in 6 grades, with the three indicators of corrosion of reinforcing bars, cracking of concrete, and peeling of concrete. The degree of deterioration is best "0" indicating the completed state, and is set up to "V" according to the deterioration thereafter. Here, the source of FIG. 6 is "Portal Technology Research Institute, Ministry of Transport, Manual for Maintenance and Repair of Port Structures, June 1999, Research Center for Coastal Development Technology".

(S3)遷移率算出工程
前記劣化度評価工程で得られた劣化度の経時変化から、各段階の劣化度ごとに、所定期間内(通常は、1年以内)に次の段階の劣化度へ移行する確率としての遷移率を算出する。
(S3) Transition rate calculation step From the change with time of the deterioration degree obtained in the deterioration degree evaluation step, to the deterioration degree of the next step within a predetermined period (usually within one year) for each deterioration degree of each step The transition rate as the probability of transition is calculated.

例えば、劣化度0、I〜IV(、V)ごとに、それぞれの遷移率x、x〜x(、0)を算出する。その際には、後述する(1)式を用いる。 For example, the transition rates x 0 , x 1 to x 4 (, 0) are calculated for each of the deterioration degrees 0 and I to IV (, V). In that case, the equation (1) described later is used.

(S4)劣化予測工程
この劣化予測工程では、前記遷移率算出工程で得られた劣化度ごとの遷移率を用いて、当該構造物の劣化予測を行う。
(S4) Deterioration Prediction Step In this deterioration prediction step, deterioration prediction of the structure is performed using the transition rate for each deterioration degree obtained in the transition rate calculation step.

例えば、劣化度0、I〜IV、Vごとの遷移率x、x〜x、0を用いて、ある年の劣化度の割合を基準に、それからt年後の劣化度の割合を予測する。その際には、後述する(1)式を用いる。ここで、劣化度の割合とは、構造物において劣化度の評価対象としている部位の数に対して、それぞれの劣化度の部位の数が占める割合である。 For example, using the deterioration rates 0, I to IV, and the transition rates x 0 , x 1 to x 4 , and 0 for each V, the deterioration rate after t years is calculated based on the deterioration rate in a certain year. Predict. In that case, the equation (1) described later is used. Here, the ratio of the degree of deterioration is the ratio of the number of parts of each deterioration degree to the number of parts of the structure whose deterioration degree is to be evaluated.

ここに、前述の(S3)遷移率算出工程と(S4)劣化予測工程で用いる(1)式を示す。 Here, the formula (1) used in the transition rate calculation step (S3) and the deterioration prediction step (S4) is shown.

Figure 2020094847
Figure 2020094847

ここで、
’〜P’:基準時の劣化度の割合
t:基準時からの経過年数
〜P:基準時からt年後の劣化度の割合
〜x:劣化度ごとの遷移率
here,
P 0 ′ to P 5 ′: Ratio of deterioration degree at reference time t: Number of years elapsed from reference time P 0 to P 5 : Ratio of deterioration degree after t years from reference time x 0 to x 4 : For each deterioration degree Transition rate

この(1)式は、経過年数tを1年として、基準時の劣化度の割合P’〜P’を基に、基準時から1年後の劣化度の割合P〜Pを算出する計算を、順次t回繰り返すことによって、基準時からt年後の劣化度の割合を算定することを意味している。 The equation (1), the number of years elapsed t as 1 year, based on the ratio P 0 '~P 5' degradation of the reference time, the ratio P 0 to P 5 of the deterioration rate after one year from the reference time It means that the rate of deterioration after t years from the reference time is calculated by repeating the calculation for t times in sequence.

したがって、上記の(S3)遷移率算出工程で、(1)式を用いて、劣化度0、I〜IVごとの遷移率x、x〜xを算出する際には、「基準時の劣化度の割合P’〜P’」に、t1年目の調査結果による劣化度の割合を代入し、「基準時からt年後の劣化度の割合」に、t2年目の調査結果による劣化度の割合を代入することによって、遷移率x、x〜xを逆算することができる。逆算する際には、最小二乗法による近似を用いるとよい。 Therefore, in the above (S3) transition rate calculation step, when calculating the transition rates x 0 , x 1 to x 4 for each of the deterioration degrees 0 and I to IV using the equation (1), the “reference time Substituting the deterioration rate according to the survey result in the t1 year into the deterioration rate ratio P 0 ′ to P 5 ′”, and in the “ratio of the deterioration degree after t years from the reference time”, the survey in the t2 year The substitution rates x 0 and x 1 to x 4 can be back-calculated by substituting the rate of deterioration according to the result. When performing the back calculation, it is preferable to use the approximation by the least square method.

次に、(S4)劣化予測工程で、(1)式を用いて、所望の年の劣化状態(劣化度の割合)の予測を行う際には、「劣化度ごとの遷移率(x、x〜x)」に、上記(S3)で逆算した値を代入し、「基準時の劣化度の割合P’〜P’」に、t2年目の調査結果による劣化度の割合を代入することによって、t2年目からt年が経過した年の劣化度の割合を算定することができる。 Next, in the deterioration prediction step (S4), when predicting the deterioration state (ratio of deterioration degrees) of a desired year using the equation (1), “transition rate for each deterioration degree (x 0 , x 1 to x 4 )”, the value calculated back in (S3) above is substituted, and the “deterioration rate P 0 ′ to P 5 ′ at the reference time” is replaced with the rate of deterioration based on the survey result in the t2 year By substituting, it is possible to calculate the ratio of the degree of deterioration in the year in which t years have passed since the second year t2.

なお、上記では、劣化度が「0」〜「5」の6段階に区分されている場合を例にして述べたが、劣化度が「0」〜「n」のn+1段階に区分されている場合は、上記(1)式に替えて、下記(2)式を用いればよい。 In the above, the case where the deterioration degree is classified into 6 stages of “0” to “5” has been described, but the deterioration degree is divided into n+1 stages of “0” to “n”. In this case, the following equation (2) may be used instead of the above equation (1).

Figure 2020094847
Figure 2020094847

ここで、
’〜P’:基準時の劣化度の割合
t:基準時からの経過年数
〜P:基準時からt年後の劣化度の割合
〜xn−1:劣化度ごとの遷移率
i:劣化度の段階を示す添字
here,
P 0 ′ to P n ′: Ratio of deterioration degree from standard time t: Number of years elapsed from standard time P 0 to P n : Ratio of deterioration degree after t years from standard time x 0 to x n−1 : Degree of deterioration Transition rate for each i: Subscript indicating the stage of deterioration degree

このようにして、この実施形態においては、劣化速度が一定でない劣化機構を有する構造物や、様々な劣化要因が組み合わさった複雑な劣化機構を有する構造物の劣化の進行を精度よく予測することができる。それによって、将来の補修費を算出することが可能であるため、ライフサイクルコストの算出や比較を行うことができるという効果もある。さらに、劣化予測を行うことにより対象物の観測調査の実施回数を減らすことが可能であるため、調査費用の削減を図ることができるという効果もある。 In this way, in this embodiment, it is possible to accurately predict the progress of deterioration of a structure having a deterioration mechanism in which the deterioration rate is not constant or a structure having a complicated deterioration mechanism in which various deterioration factors are combined. You can As a result, future repair costs can be calculated, and there is also an effect that life cycle costs can be calculated and compared. Furthermore, since it is possible to reduce the number of times the observation survey of the target object is performed by performing the deterioration prediction, it is possible to reduce the survey cost.

本発明の実施例として、港湾コンクリート構造物の劣化状態(劣化度の割合)の予測を行った。なお、劣化度は図6に示したものを用いた。したがって、劣化度は0、I〜Vの6段階とした。 As an example of the present invention, the deterioration state (ratio of deterioration degree) of a harbor concrete structure was predicted. The deterioration degree used was that shown in FIG. Therefore, the degree of deterioration is set to 0 and 6 stages of I to V.

その際に、本発明例として、上述した本発明の一実施形態に基づいて劣化予測を行った。具体的には、2002年に第1回目の劣化状態調査を行い、2014年に第2回目の劣化状態調査を行い、前記(1)式を用いて、劣化度0、I〜IV(、V)ごとに、それぞれの遷移率x、x〜x(、0)を算出した。算出された遷移率x、x〜xを表1に示す。そして、その遷移率x、x〜x(、0)を前記(1)式に代入して、2017年における劣化状態(劣化度の割合)の予測を行った。 At that time, as an example of the present invention, deterioration prediction was performed based on the above-described embodiment of the present invention. Specifically, the first deterioration state investigation was conducted in 2002, the second deterioration state investigation was conducted in 2014, and the deterioration degrees 0, I to IV(, V ), the respective transition rates x 0 , x 1 to x 4 (, 0) were calculated. Table 1 shows the calculated transition rates x 0 and x 1 to x 4 . Then, the transition rates x 0 , x 1 to x 4 (, 0) were substituted into the equation (1) to predict the deterioration state (rate of deterioration degree) in 2017.

一方、比較例として、前記非特許文献1に記載の方法によって劣化予測を行った。具体的には、2014年に行った劣化状態調査のみを用いて、遷移率xを算出した。算出された遷移率xを表2に示す。そして、その遷移率xを図1(b)の式に代入して、2017年における劣化状態(劣化度の割合)の予測を行った。 On the other hand, as a comparative example, deterioration prediction was performed by the method described in Non-Patent Document 1. Specifically, the transition rate x was calculated using only the deterioration state survey conducted in 2014. Table 2 shows the calculated transition rate x. Then, the transition rate x was substituted into the equation of FIG. 1B to predict the deterioration state (rate of deterioration degree) in 2017.

そして、本発明例と比較例の劣化予測の精度を確認するために、2017年に再度劣化状態を調査し、その調査結果(実測値)と劣化予測結果(本発明例、比較例)との比較を行った。 Then, in order to confirm the accuracy of the deterioration prediction of the present invention example and the comparative example, the deterioration state is investigated again in 2017, and the investigation result (measured value) and the deterioration prediction result (the present invention example, the comparative example) are compared. A comparison was made.

本発明例および比較例を実測値と比較した結果を表3に示す。また、比較例と実測値を比較したグラフを図7(a)に示し、本発明例と実測値を比較したグラフを図7(b)に示す。 Table 3 shows the results of comparison between the examples of the present invention and the comparative examples with the measured values. Further, a graph comparing the comparative example with the measured value is shown in FIG. 7A, and a graph comparing the example of the present invention with the measured value is shown in FIG. 7B.

その結果、比較例では、実測値との差(平均)が7.7%であったのに対して、本発明例では、実測値との差(平均)が1.6%となり、非常に良好な精度で劣化予測できることが確認された。 As a result, in the comparative example, the difference (average) from the measured value was 7.7%, whereas in the example of the present invention, the difference (average) from the measured value was 1.6%, which is extremely high. It was confirmed that the deterioration can be predicted with good accuracy.

Figure 2020094847
Figure 2020094847

Figure 2020094847
Figure 2020094847

Figure 2020094847
Figure 2020094847

Claims (2)

構造物の劣化予測方法であって、
構造物の劣化状態を時間間隔を置いて複数回調査する劣化状態調査工程と、
前記劣化状態調査工程で得られた劣化状態を、複数の段階に区分された劣化度に置き換えて、劣化度の経時変化を評価する劣化度評価工程と、
前記劣化度評価工程で得られた劣化度の経時変化から、各段階の劣化度ごとに、所定期間内に次の段階の劣化度へ移行する確率としての遷移率を算出する遷移率算出工程と、
前記遷移率算出工程で得られた劣化度ごとの遷移率を用いて、前記構造物の劣化予測を行う劣化予測工程と
を有することを特徴とする構造物の劣化予測方法。
A method for predicting deterioration of a structure,
A deterioration state inspection process of inspecting the deterioration state of the structure multiple times at time intervals,
The deterioration state obtained in the deterioration state investigation step, by replacing the deterioration degree divided into a plurality of stages, the deterioration degree evaluation step of evaluating the change over time of the deterioration degree,
From the change with time of the deterioration degree obtained in the deterioration degree evaluation step, for each deterioration degree of each step, a transition rate calculation step for calculating a transition rate as a probability of moving to the next step deterioration degree within a predetermined period, ,
A deterioration prediction method for a structure, comprising: a deterioration prediction step of predicting deterioration of the structure using the transition rate for each deterioration degree obtained in the transition rate calculation step.
前記劣化度が0〜nのn+1段階に区分されている場合は、前記遷移率算出工程において劣化度ごとの遷移率を算出する際と、前記劣化予測工程において前記構造物の劣化予測を行う際には、下記の式を用いることを特徴とする請求項1に記載の構造物の劣化予測方法。

Figure 2020094847
ここで、
’〜P’:基準時の劣化度の割合
t:基準時からの経過年数
〜P:基準時からt年後の劣化度の割合
〜xn−1:劣化度ごとの遷移率
i:劣化度の段階を示す添字
When the degree of deterioration is divided into n+1 stages of 0 to n, when calculating the transition rate for each degree of deterioration in the transition rate calculating step and when performing deterioration prediction of the structure in the deterioration prediction step. The method for predicting deterioration of a structure according to claim 1, wherein the following equation is used for:

Figure 2020094847
here,
P 0 ′ to P n ′: Ratio of deterioration degree from standard time t: Number of years elapsed from standard time P 0 to P n : Ratio of deterioration degree after t years from standard time x 0 to x n−1 : Degree of deterioration Transition rate for each i: Subscript indicating the stage of deterioration degree
JP2018231325A 2018-12-11 2018-12-11 Deterioration prediction method for structure Pending JP2020094847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018231325A JP2020094847A (en) 2018-12-11 2018-12-11 Deterioration prediction method for structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018231325A JP2020094847A (en) 2018-12-11 2018-12-11 Deterioration prediction method for structure

Publications (1)

Publication Number Publication Date
JP2020094847A true JP2020094847A (en) 2020-06-18

Family

ID=71084010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018231325A Pending JP2020094847A (en) 2018-12-11 2018-12-11 Deterioration prediction method for structure

Country Status (1)

Country Link
JP (1) JP2020094847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398017B1 (en) 2023-03-09 2023-12-13 J-Powerジェネレーションサービス株式会社 Method for rationalizing maintenance management by predicting structural performance deterioration of reinforced concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398017B1 (en) 2023-03-09 2023-12-13 J-Powerジェネレーションサービス株式会社 Method for rationalizing maintenance management by predicting structural performance deterioration of reinforced concrete

Similar Documents

Publication Publication Date Title
Frangopol et al. Life-cycle of structural systems: recent achievements and future directions
Biondini et al. Life-cycle performance of deteriorating structural systems under uncertainty
Bastidas-Arteaga et al. Stochastic improvement of inspection and maintenance of corroding reinforced concrete structures placed in unsaturated environments
Ma et al. Hybrid uncertainty quantification for probabilistic corrosion damage prediction for aging RC bridges
Vecchi et al. Corrosion morphology of prestressing steel strands in naturally corroded PC beams
Calvert et al. Multi-defect modelling of bridge deterioration using truncated inspection records
Ge et al. Probabilistic service life prediction updating with inspection information for RC structures subjected to coupled corrosion and fatigue
JP7455660B2 (en) How to diagnose or predict concrete deterioration
Wawrzeńczyk et al. Evaluation of concrete resistance to freeze-thaw based on probabilistic analysis of damage
Yuan et al. Probabilistic assessment for concrete spalling in tunnel structures
JP2020094847A (en) Deterioration prediction method for structure
JP5064259B2 (en) Degradation evaluation apparatus and degradation evaluation method
JP2011257245A (en) Corrosion amount estimation method, corrosion amount estimation device, and management method for reinforced concrete
Canivell Characterization methodology to efficiently manage the conservation of historical rammed-earth buildings
Jung et al. Development of a probabilistic life-cycle cost model for marine structures exposed to chloride attack based on Bayesian approach using monitoring data
Yasuda et al. Fatigue crack detection system based on IoT and statistical analysis
Zhou et al. Two-stage degradation modeling combined with machine learning for steel rebar degradation prediction
Jiang et al. Multivariate probabilistic modelling for seepage risk assessment in tunnel segments
Breysse et al. Life cycle cost analysis of ageing structural components based on non-destructive condition assessment
Jodejko-Pietruczuk et al. Block inspection policy model with imperfect inspections for multi-unit systems
CN103323578B (en) A kind of detection based on concrete structure durability and construction control method
JP2007198838A (en) Breakage probability calculation method
Guo et al. A predictive Hidden semi-Markov Model for bridges subject to chloride-induced deterioration
JP2005037370A (en) Method and program for reliability assessment
スリヴァラヌンスパシット Stochastic Simulation of Spatial Steel Corrosion for Performance Assessment of Aging RC Structures

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327