JP2022089440A - Structure deterioration prediction device, structure deterioration prediction method, and structure deterioration prediction program - Google Patents

Structure deterioration prediction device, structure deterioration prediction method, and structure deterioration prediction program Download PDF

Info

Publication number
JP2022089440A
JP2022089440A JP2020201837A JP2020201837A JP2022089440A JP 2022089440 A JP2022089440 A JP 2022089440A JP 2020201837 A JP2020201837 A JP 2020201837A JP 2020201837 A JP2020201837 A JP 2020201837A JP 2022089440 A JP2022089440 A JP 2022089440A
Authority
JP
Japan
Prior art keywords
deterioration
distribution
prediction
inspection
measurement error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020201837A
Other languages
Japanese (ja)
Other versions
JP6985686B1 (en
Inventor
徹郎 工藤
Tetsuo Kudo
清吾 那須
Seigo Nasu
慎一 前田
Shinichi Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi Prefectural University Corp
Oriental Consultants Co Ltd
Original Assignee
Kochi Prefectural University Corp
Oriental Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi Prefectural University Corp, Oriental Consultants Co Ltd filed Critical Kochi Prefectural University Corp
Priority to JP2020201837A priority Critical patent/JP6985686B1/en
Application granted granted Critical
Publication of JP6985686B1 publication Critical patent/JP6985686B1/en
Publication of JP2022089440A publication Critical patent/JP2022089440A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

To facilitate understanding the degree of improvement in the accuracy of structure deterioration prediction.SOLUTION: A deterioration prediction device includes: a deterioration distribution creation unit that creates deterioration distribution of a structure divided into a plurality of surface elements obtained based on n=first inspection of the structure; a first deterioration distribution setting unit that sets first deterioration distribution in consideration of measurement error; a second deterioration distribution setting unit that sets second deterioration distribution in consideration of the measurement error and time error considering the time error; a deterioration speed correction coefficient multiplication unit that can evenly distribute up to 0 multiplication speed by multiplying a deterioration speed correction coefficient so that a degree of deterioration that is most deteriorated can be covered in the second deterioration distribution of an inspection result in consideration of the measurement error and the time error set by the second deterioration distribution setting unit; and a deterioration expression rate correction unit that corrects a deterioration expression rate of deterioration prediction so that the deterioration distribution in consideration of the measurement error and the time error set by the second deterioration distribution setting unit and the second deterioration distribution set by the second deterioration distribution setting unit match.SELECTED DRAWING: Figure 1

Description

本発明は、構造物の劣化を予測する技術に関する。特に、構造物構築後の所定の年数が経過した時点で行われる点検結果に対して、測定誤差と時間的な誤差とを適用して当該構造物の将来の劣化の予測を行う技術に関する。 The present invention relates to a technique for predicting deterioration of a structure. In particular, the present invention relates to a technique for predicting future deterioration of the structure by applying a measurement error and a temporal error to the inspection result performed after a predetermined number of years have passed since the structure was constructed.

日本国では、高度成長期以降に整備した実橋(ブリッジ)などの構造物(インフラ)が今後急激に老朽化することが見込まれる。老朽化が進む構造物を計画的に維持管理・更新することにより、国民の安全・安心の確保や維持管理・更新に係るトータルコストの縮減・平準化等を図る必要がある。国土交通省では、構造物の維持管理・更新等を着実に推進するための中長期的な取りみの方向性を明らかにする計画として、予防保全の考え方導入した「国土交通省インフラ長寿命化計画(行動計画)」を他省庁に先駆けて平成16年5月に策定する等の取り組みを行っている。 In Japan, structures (infrastructure) such as actual bridges constructed after the high-growth period are expected to deteriorate rapidly in the future. It is necessary to systematically maintain and renew aging structures to ensure the safety and security of the people and to reduce and level the total cost of maintenance and renewal. The Ministry of Land, Infrastructure, Transport and Tourism introduced the concept of preventive maintenance as a plan to clarify the direction of medium- to long-term efforts to steadily promote the maintenance and renewal of structures. We are making efforts such as formulating a "plan (action plan)" in May 2004 ahead of other ministries and agencies.

このため、従来、損傷等が発生した後に対処するという「事後的管理」から、事前に点検し、異常が確認または予測された場合、致命的欠陥が発現する前に速やかに措置するという「予防保全的管理」へと転換し、戦略的に維持管理を実施することで、国民の生命と財産を守り安全・安心を確保するとともに、施設の寿命を伸ばすことでライフサイクルコスト(Life Cycle Cost、以下「LCC」と称する。)の低減を図ることが求められる。 For this reason, from the conventional "ex post-management" of dealing with damage after it occurs, "prevention" of inspecting in advance and promptly taking measures before a fatal defect appears when an abnormality is confirmed or predicted. Life cycle cost (Life Cycle Cost,) by shifting to "conservative management" and strategically implementing maintenance to protect the lives and property of the people, ensure safety and security, and extend the life of the facility. Hereinafter referred to as "LCC") is required to be reduced.

橋梁の戦略的な維持管理手法としては、ブリッジマネジメントシステム(Bridge Management System、以下「BMS」と称する。)が注目されており、BMSの精度向上のための研究が進められている。BMSの精度を向上させるためにはLCC算出の精度を向上する必要があり、そのためには劣化予測と実際の劣化とを整合させ様々な補修工法の中からLCCを最小とする工法・タイミング選定の方法および精度の良い補修数量の算出が欠かせない。
劣化予測モデルは、物理モデルと点検データの判別結果を基に、その劣化を統計的に予測するモデル(代表的なものにマルコフ連鎖モデル)がある(下記、非特許文献1参照)。
As a strategic maintenance method for bridges, a bridge management system (Bridge Management System, hereinafter referred to as “BMS”) is attracting attention, and research for improving the accuracy of BMS is underway. In order to improve the accuracy of BMS, it is necessary to improve the accuracy of LCC calculation, and for that purpose, the method and timing selection that minimizes LCC from various repair methods by matching the deterioration prediction with the actual deterioration. It is essential to calculate the repair quantity with good method and accuracy.
As a deterioration prediction model, there is a model (typically a Markov chain model) that statistically predicts the deterioration based on the discrimination result between the physical model and the inspection data (see Non-Patent Document 1 below).

本願明細書では、将来の技術進歩により劣化予測の精度向上が見込める物理モデルを用いることとした。なお、実際の構造物は劣化状態が部材や場所によってばらつくため、劣化予測も実際の構造物の劣化分布を予測できる様にばらつかせる必要がある。しかし、単にばらつかせただけでは、劣化予測の劣化分布と実橋の劣化分布は整合しない。
従って、劣化予測の分布を実橋の分布と整合する様に補正する必要がある。
In the specification of the present application, it is decided to use a physical model that is expected to improve the accuracy of deterioration prediction due to future technological progress. Since the deterioration state of an actual structure varies depending on the member and location, it is necessary to vary the deterioration prediction so that the deterioration distribution of the actual structure can be predicted. However, the deterioration distribution of the deterioration prediction and the deterioration distribution of the actual bridge do not match just by making them scattered.
Therefore, it is necessary to correct the distribution of deterioration prediction so that it matches the distribution of the actual bridge.

構築済の構造物の劣化分布がばらつくのは種々の要因による。例えば、構築済の実際の橋(橋梁)である実橋の劣化分布がばらつくのは、温度、湿度、飛来塩分量のばらつきや材料のばらつきおよび部材の場所の違いによる風雨の受け方、橋梁周辺の地形の微妙な違いによる温度や湿度の違い等が原因である。 The deterioration distribution of the constructed structure varies due to various factors. For example, the deterioration distribution of an actual bridge, which is an actual bridge (bridge) that has already been constructed, varies depending on the temperature, humidity, variation in the amount of flying salt, variation in materials, and the way in which wind and rain are received due to differences in the location of members. The cause is the difference in temperature and humidity due to the slight difference in the terrain.

これらの原因を個別に考慮するためには、構築済の構造物ごとに種々の原因の特性をつきとめる必要がある。例えば、橋梁ごとにこれら原因の特性をつきとめる必要がある。
さらに、現在の研究成果で考慮することができていない不確定な誤差要因も考えられるため、構造物、例えば、橋梁ごとに材料条件や環境条件のばらつきの特性をつきとめても、劣化予測と実構造物の劣化分布を整合させることは困難である。
In order to consider these causes individually, it is necessary to identify the characteristics of various causes for each constructed structure. For example, it is necessary to identify the characteristics of these causes for each bridge.
Furthermore, uncertain error factors that cannot be taken into consideration in the current research results are also possible, so even if the characteristics of variations in material conditions and environmental conditions are identified for each structure, for example, bridges, deterioration prediction and actual results are possible. It is difficult to match the deterioration distribution of the structure.

ここで、構造物の劣化速度(mg/m/時間)は、材料条件や環境条件などの入力条件によって、その速度に影響を受ける。
そこで、飛来塩分量、温度、湿度、材料や周辺環境のばらつきを別個に考慮するよりも、それらを考慮した結果である「劣化速度」について、ばらつきを考慮する方がモデルを単純化できる。
劣化速度(mg/m/時間)は、時間と累積腐食量(mg/m)の関数である。また、劣化度は、累積腐食量(mg/m)から求められ、累積腐食量(mg/m)が変換され得る。
Here, the deterioration rate (mg / m 2 / hour) of the structure is affected by the input conditions such as material conditions and environmental conditions.
Therefore, rather than considering the amount of flying salt, temperature, humidity, and variations in materials and surrounding environment separately, it is possible to simplify the model by considering the variations in the "deterioration rate" that is the result of considering them.
Deterioration rate (mg / m 2 / hour) is a function of time and cumulative corrosion amount (mg / m 2 ). The degree of deterioration is determined from the cumulative corrosion amount (mg / m 2 ), and the cumulative corrosion amount (mg / m 2 ) can be converted.

既に、発明者らは、劣化予測におけるばらつきを「劣化速度」にばらつきをもたせて考慮することを提案している(下記、非特許文献2)。
実橋の劣化分布は点検結果により得られるが、点検結果には点検を実施した技術者の測定誤差が含まれる。また、ひび割れを測定しても、そのひび割れが、いつその状態になったか不明であるため、ひび割れが発生した時間と点検を実施した時間の誤差(時間誤差)も含まれる。
The inventors have already proposed to consider the variation in the deterioration prediction with the variation in the "deterioration rate" (Non-Patent Document 2 below).
The deterioration distribution of the actual bridge can be obtained from the inspection results, but the inspection results include the measurement error of the engineer who carried out the inspection. In addition, even if the crack is measured, it is unknown when the crack was in that state, so an error (time error) between the time when the crack occurred and the time when the inspection was performed is also included.

発明者らは、下記の特許文献1において、確定的な予測に対してばらつきを与え、点検結果を用いて劣化予測のばらつきの分布を点検結果のばらつきの分布に補正した上で、ばらつかせた劣化予測に「劣化表現率」という重みを与え、それを点検結果の分布に合うように補正し、これに対して、点検結果に含まれる「測定誤差」と、いつその劣化状態になったかの「時間的な誤差」との範囲で囲まれる範囲を「誤差ボックス」として設定し、劣化予測を補正する方法を提案している。また、1回目点検結果で補正した劣化予測を、2回目点検結果と比較して、補正による効果を検証している。 In Patent Document 1 below, the inventors give variation to a definite prediction, correct the distribution of variation in deterioration prediction to the distribution of variation in inspection result using the inspection result, and then disperse it. A weight of "deterioration expression rate" is given to the deterioration prediction, and it is corrected to match the distribution of the inspection results. On the other hand, the "measurement error" included in the inspection results and when the deterioration state was reached. We propose a method to correct the deterioration prediction by setting the range surrounded by the range of "time error" as the "error box". In addition, the deterioration prediction corrected by the first inspection result is compared with the second inspection result to verify the effect of the correction.

特開平2019-15528号公報Japanese Unexamined Patent Publication No. 2019-15528

津田尚胤、貝戸清之、青木一也、小林潔司:橋梁劣化予測のためのマルコフ推移の推定、土木学会論文集、No.801/I-73、 pp.69-82、 2005.Naokatsu Tsuda, Kiyoyuki Kaido, Kazuya Aoki, Kiyoshi Kobayashi: Estimating Markov Transition for Predicting Bridge Deterioration, JSCE Proceedings, No.801 / I-73, pp.69-82, 2005. 工藤 徹郎、ボンコッゲサクルナタコーン、那須清吾:劣化のばらつきを考慮した構造物の補修シナリオ、土木学会論文集E2、 Vol.68 No。4、 pp.316-329、 2012.Tetsuro Kudo, Bonkogge Sakurunatacorn, Seigo Nasu: Structure repair scenario considering variation in deterioration, JSCE Proceedings E2, Vol.68 No. 4, pp.316-329, 2012.

しかしながら、特許文献1に記載の実橋等の構造物の劣化予測の補正技術を用いた場合でも、構造物の劣化予測精度が十分高くないという問題があった。
また、特許文献1に記載の技術では、劣化の度合いを示すのに、「劣化評点」を使っていたため、劣化予測の精度向上の度合いが分かりにくいという問題があった。
そこで、本発明は、構造物の劣化予測の精度を高めることを目的とする。
また、本発明は、劣化予測の精度向上の度合いを分かりやすくすることを目的とする。
However, even when the correction technique for predicting deterioration of a structure such as an actual bridge described in Patent Document 1 is used, there is a problem that the accuracy of predicting deterioration of the structure is not sufficiently high.
Further, in the technique described in Patent Document 1, since the "deterioration score" is used to indicate the degree of deterioration, there is a problem that it is difficult to understand the degree of improvement in the accuracy of deterioration prediction.
Therefore, an object of the present invention is to improve the accuracy of deterioration prediction of a structure.
Another object of the present invention is to make it easy to understand the degree of improvement in the accuracy of deterioration prediction.

本発明の一観点によれば、構造物の劣化予測装置であって、
前記構造物のn=1回目の点検に基づいて得られた、複数の面要素に分割した前記構造物の劣化分布を作成する劣化分布作成部と、
前記劣化分布作成部により得られた劣化分布において、測定誤差を考慮した第1の劣化分布を設定する第1の劣化分布設定部と、
前記測定誤差を考慮した第1の劣化分布において、時間誤差を考慮し、測定誤差、時間誤差を考慮した第2の劣化分布を設定する第2の劣化分布設定部と、
前記第2の劣化分布設定部により設定された、前記測定誤差、時間誤差を考慮した点検結果の第2の劣化分布の中で最も劣化が進んでいる劣化度を網羅できるように「劣化速度補正係数」を乗じて、0倍速まで均等にばらつかせる劣化速度補正係数乗算部と、
前記第2の劣化分布設定部により設定された、前記測定誤差、時間誤差を考慮した劣化分布と、劣化予測により算出された劣化分布と、が整合するように、劣化予測の劣化表現率を補正する劣化表現率補正部と、
を有し、
以下、n+1として、n=m(mは2以上の最終点検回数)となるまで処理を継続した後に処理を終了させることを特徴とする構造物の劣化予測装置が提供される。
ここで、劣化予測1本あたりが表現している表面積の割合が「劣化表現率」である。また、実橋の中で全く劣化しない箇所(要素)も存在する可能性があり、それを表現するため、最も遅い劣化速度は「0倍速」と称する。すなわち、本発明では、「測定誤差、時間誤差を考慮した劣化分布」と「劣化予測により算出された劣化分布」とを整合させる必要がある。
According to one aspect of the present invention, it is a deterioration prediction device for a structure.
A deterioration distribution creation unit that creates a deterioration distribution of the structure divided into a plurality of surface elements, which is obtained based on n = first inspection of the structure.
In the deterioration distribution obtained by the deterioration distribution creating unit, the first deterioration distribution setting unit that sets the first deterioration distribution in consideration of the measurement error, and the deterioration distribution setting unit.
In the first deterioration distribution in consideration of the measurement error, the second deterioration distribution setting unit for setting the second deterioration distribution in consideration of the time error and the measurement error and the time error, and the second deterioration distribution setting unit.
"Deterioration rate correction" so as to cover the degree of deterioration that is most advanced in the second deterioration distribution of the inspection result considering the measurement error and the time error set by the second deterioration distribution setting unit. Deterioration speed correction coefficient multiplication unit that can be evenly distributed up to 0x speed by multiplying by "coefficient",
The deterioration expression rate of the deterioration prediction is corrected so that the deterioration distribution considering the measurement error and the time error, which is set by the second deterioration distribution setting unit, and the deterioration distribution calculated by the deterioration prediction match. Deterioration expression rate correction unit and
Have,
Hereinafter, a structure deterioration prediction device is provided, wherein n + 1 is used, and the process is continued until n = m (m is the number of final inspections of 2 or more) and then the process is terminated.
Here, the ratio of the surface area expressed by one deterioration prediction is the "deterioration expression rate". In addition, there is a possibility that there is a part (element) in the actual bridge that does not deteriorate at all, and in order to express that, the slowest deterioration speed is referred to as "0x speed". That is, in the present invention, it is necessary to match the "deterioration distribution considering measurement error and time error" with the "deterioration distribution calculated by deterioration prediction".

前記第1の劣化分布設定部は、
前記劣化分布作成部により得られた劣化分布に測定誤差補正行列を用いて、測定誤差を考慮した第1の劣化分布を設定する
ことを特徴とする。
The first deterioration distribution setting unit is
It is characterized in that a measurement error correction matrix is used for the deterioration distribution obtained by the deterioration distribution creating unit to set a first deterioration distribution in consideration of the measurement error.

前記劣化分布作成部は、
複数の面要素に分割されている実構造物について点検により把握された前記複数の面要素ごとのばらついた劣化状態である複数の面要素ごとのばらついた劣化度を求める
ことを特徴とする。
The deterioration distribution creation unit
It is characterized in that the degree of deterioration of each of the plurality of surface elements, which is the state of variation of the deterioration of each of the plurality of surface elements, which is grasped by the inspection of the actual structure divided into the plurality of surface elements, is obtained.

ここで、本発明では、確定的な予測に対してばらつきを与え、点検結果を用いて劣化予測のばらつきの分布を点検結果のばらつきの分布に補正を行う。ばらつきの考慮方法は確定的な劣化予測を0倍から実橋の劣化を網羅できる任意の倍数にばらつかせる方法である。
また、ばらつかせるだけでは点検結果の劣化分布と整合しないため、ばらつかせた劣化予測に「劣化表現率」と言う重みを与え、それを点検結果の分布に合うように補正する。
Here, in the present invention, variation is given to the deterministic prediction, and the distribution of the variation in the deterioration prediction is corrected to the distribution of the variation in the inspection result by using the inspection result. The method of considering the variation is a method of varying the definite deterioration prediction from 0 times to an arbitrary multiple that can cover the deterioration of the actual bridge.
In addition, since it does not match the deterioration distribution of the inspection results just by making them scattered, a weight called "deterioration expression rate" is given to the various deterioration predictions, and it is corrected so as to match the distribution of the inspection results.

以上により、劣化予測の密度を変えることで、点検結果の劣化分布と整合した劣化予測が可能である。
本発明においては、補正に用いる点検結果には測定誤差や時間的な誤差が含まれているため、点検結果に対して測定誤差を考慮するとともに、いつその劣化状態になったかの時間誤差を考慮した。
これにより、物理現象として起こり得る劣化速度を網羅的に予測できる。
From the above, by changing the density of deterioration prediction, it is possible to predict deterioration consistent with the deterioration distribution of the inspection results.
In the present invention, since the inspection result used for the correction includes a measurement error and a time error, the measurement error is taken into consideration for the inspection result, and the time error when the deterioration state is reached is taken into consideration. ..
This makes it possible to comprehensively predict the deterioration rate that may occur as a physical phenomenon.

劣化予測の要素の数は、100~1000要素である
ことを特徴とする。
前記構造物は、実橋である
ことを特徴とする。
The number of deterioration prediction elements is 100 to 1000 elements.
The structure is characterized by being a real bridge.

本発明の他の観点によれば、構造物の劣化予測方法であって、
a)1回目点検を実施し、劣化分布作成ステップにおいて作成した劣化分布を把握するステップと、
b)得られた劣化分布に測定誤差補正行列を用いて、劣化分布設定部が、測定誤差を考慮した第1の劣化分布を設定するステップと。
c)劣化分布設定部が、測定誤差を考慮した劣化分布に時間誤差を考慮し、測定誤差、時間誤差を考慮した第2の劣化分布を設定するステップと、
d)劣化速度補正係数乗算部が、確定的な劣化予測が、「測定誤差、時間誤差を考慮した点検結果の劣化分布」の中で最も劣化が進んでいる劣化度を網羅できるまで「劣化速度補正係数」を乗じ、0倍速まで均等にばらつかせるステップと、
e)劣化表現率補正部が、測定誤差、時間誤差を考慮した点検結果の劣化分布と、劣化予測により算出された劣化分布と、が整合するように、劣化予測の「劣化表現率」を補正するステップと、
を有し、
以下、n+1として、n=m(mは2以上の最終点検回数)となるまで処理を継続し、その後に処理を終了させることを特徴とする構造物の劣化予測方法が提供される。
「劣化表現率」は上記した通りである。
According to another aspect of the present invention, it is a method for predicting deterioration of a structure.
a) The step of conducting the first inspection and grasping the deterioration distribution created in the deterioration distribution creation step, and
b) With the step that the deterioration distribution setting unit sets the first deterioration distribution in consideration of the measurement error by using the measurement error correction matrix for the obtained deterioration distribution.
c) A step in which the deterioration distribution setting unit considers the time error in the deterioration distribution considering the measurement error and sets the second deterioration distribution in consideration of the measurement error and the time error.
d) Deterioration rate correction coefficient multiplication unit, until the definite deterioration prediction can cover the degree of deterioration that is most deteriorated in the "deterioration distribution of inspection results considering measurement error and time error", "deterioration rate" A step that multiplies the "correction coefficient" and evenly distributes up to 0x speed,
e) The deterioration expression rate correction unit corrects the "deterioration expression rate" of the deterioration prediction so that the deterioration distribution of the inspection result considering the measurement error and the time error and the deterioration distribution calculated by the deterioration prediction match. Steps to do and
Have,
Hereinafter, a method for predicting deterioration of a structure is provided, wherein the process is continued until n = m (m is the number of final inspections of 2 or more), and then the process is terminated, where n + 1.
The "deterioration expression rate" is as described above.

前記第1の劣化分布を設定するステップは、
前記劣化分布作成ステップにより得られた劣化分布に測定誤差補正行列を用いて、測定誤差を考慮した第1の劣化分布を設定する
ことを特徴とする構造物の劣化予測方法が提供される。すなわち、本発明では、「測定誤差、時間誤差を考慮した劣化分布」と「劣化予測により算出された劣化分布」とを整合させる必要がある。
The step of setting the first deterioration distribution is
A method for predicting deterioration of a structure is provided, which comprises setting a first deterioration distribution in consideration of a measurement error by using a measurement error correction matrix for the deterioration distribution obtained by the deterioration distribution creation step. That is, in the present invention, it is necessary to match the "deterioration distribution considering measurement error and time error" with the "deterioration distribution calculated by deterioration prediction".

前記劣化分布作成ステップは、
複数の面要素に分割されている実構造物について点検により把握された前記複数の面要素ごとのばらついた劣化状態である複数の面要素ごとのばらついた劣化度を求めることを特徴とする。
The deterioration distribution creation step is
It is characterized in that the degree of deterioration of each of the plurality of surface elements, which is the state of variation of the deterioration of each of the plurality of surface elements, which is grasped by the inspection of the actual structure divided into the plurality of surface elements, is obtained.

また、本発明は、コンピュータに、上記に記載の構造物の劣化予測方法における処理を順次実行させるためのプログラムである。 Further, the present invention is a program for causing a computer to sequentially execute the processes in the structure deterioration prediction method described above.

本発明によれば、構造物の劣化予測の精度を高めることができる。
また、本発明によれば、劣化予測の精度向上の度合いを分かりやすくすることができる。
According to the present invention, the accuracy of deterioration prediction of a structure can be improved.
Further, according to the present invention, it is possible to easily understand the degree of improvement in the accuracy of deterioration prediction.

本発明の実施の形態による構造物の劣化予測処理の流れを示すフローチャート図である。It is a flowchart which shows the flow of the deterioration prediction processing of a structure by embodiment of this invention. 本発明の実施の形態による構造物の劣化予測処理装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the deterioration prediction processing apparatus of a structure by embodiment of this invention. 職員が判定した劣化度と専門家が判定した劣化度を比較し、職員の測定誤差の傾向を損傷評価分布図で示す図である。It is a figure which compares the degree of deterioration judged by the staff and the degree of deterioration judged by an expert, and shows the tendency of the measurement error of the staff in the damage evaluation distribution map. 劣化予測を任意にはらつかせた場合の劣化予測例を示す図であり、横軸は時間、縦軸は劣化度を示す図である。It is a figure which shows the deterioration prediction example when the deterioration prediction is made arbitrary, the horizontal axis shows time, and the vertical axis shows the degree of deterioration. 測定誤差を考慮した劣化表現率の算出例を示す図である。It is a figure which shows the calculation example of the deterioration expression rate in consideration of a measurement error. 時間誤差を考慮した劣化度分布のイメージ例を示す図である。It is a figure which shows the image example of the deterioration degree distribution in consideration of a time error. 測定誤差と時間誤差の両方を考慮した劣化分布のイメージ例を示す図である。It is a figure which shows the image example of the deterioration distribution which considered both the measurement error and the time error. 1回目と2回目の点検を考慮した場合の測定誤差、時間誤差による分布の広がりと、補正に用いる点検回数が増えることによる精度向上の関係を示す図である。It is a figure which shows the relationship between the spread of a distribution due to a measurement error and a time error when the 1st and 2nd inspections are considered, and the improvement of accuracy by increasing the number of inspections used for correction. 1回目から3回目までの点検を考慮した場合の測定誤差、時間誤差による分布の広がりと、補正に用いる点検回数が増えることによる精度向上の関係を示す図である。It is a figure which shows the relationship between the spread of a distribution due to a measurement error and a time error when the 1st to 3rd inspections are considered, and the improvement of accuracy by increasing the number of inspections used for correction. 本発明の実施例1における、高知県点検マニュアルにおける劣化度定義を示す図である。It is a figure which shows the deterioration degree definition in the Kochi prefecture inspection manual in Example 1 of this invention. 図10に続く図であり、損傷程度の区分と損傷の程度の区分を示す図である。It is a figure following FIG. 10, and is the figure which shows the classification of the degree of damage and the classification of the degree of damage. 解析対象橋梁位置を示す地図である。It is a map showing the position of the bridge to be analyzed. 片粕大橋における4年前の時間誤差を考慮した劣化予測を示す図であり、劣化速度補正係数が1倍の場合の例を示す図である。It is a figure which shows the deterioration prediction which considered the time error of 4 years ago in Katakasucho Ohashi, and is the figure which shows the example of the case where the deterioration rate correction coefficient is 1 times. 片粕大橋における4年前の時間誤差を考慮した劣化予測を示す図であり、劣化速度補正係数が7倍の場合の例を示す図である。It is a figure which shows the deterioration prediction which considered the time error of 4 years ago in Katakasucho Ohashi, and is the figure which shows the example of the case where the deterioration rate correction coefficient is 7 times. 片粕大橋における点検結果と劣化予測の比較結果を示す図である。It is a figure which shows the comparison result of the inspection result and deterioration prediction in Katakasucho Ohashi. 片粕大橋における点検結果と劣化予測の整合度を示す図である(100要素)。It is a figure which shows the consistency of the inspection result and deterioration prediction in Katakasucho Ohashi (100 elements). 片粕大橋における点検結果と劣化予測の整合度を示す図である(1000要素)。It is a figure which shows the consistency of the inspection result and deterioration prediction in Katakasucho Ohashi (1000 elements). 片粕大橋における点検結果と劣化予測の整合度を示す図である(100要素と1000要素の比較)。It is a figure which shows the consistency of the inspection result and deterioration prediction in Katakasucho Ohashi (comparison of 100 elements and 1000 elements). 荷滝橋における点検結果と劣化予測の整合度を示す図である(100要素)。It is a figure which shows the consistency of the inspection result and deterioration prediction in the Narutaki Bridge (100 elements). 轟崎橋における点検結果と劣化予測の整合度を示す図である(100要素)。It is a figure which shows the consistency of the inspection result and deterioration prediction in Todoroki Bridge (100 elements). 熊野神代橋における点検結果と劣化予測の整合度を示す図である(100要素)。It is a figure which shows the consistency of the inspection result and deterioration prediction in Kumano Jindai Bridge (100 elements).

本願明細書では、点検結果に対して測定誤差や時間誤差を考慮した上で、ばらつかせた劣化予測に対して点検結果を用いて補正する。なお、点検データは高知県から提供されるデータを用いて説明するものとする。
尚、本願の関連発明である特許文献1の記載および図面を適宜参照して説明する。従って、これら特許文献1の記載、図面等も、本願明細書の内容に含まれるものとする。
In the specification of the present application, the inspection result is corrected by using the inspection result after considering the measurement error and the time error. The inspection data shall be explained using the data provided by Kochi Prefecture.
The description and drawings of Patent Document 1, which is a related invention of the present application, will be described as appropriate. Therefore, the description, drawings, etc. of Patent Document 1 are also included in the contents of the present specification.

(1)劣化予測モデルにばらつきを考慮する方法
1-1)ばらつき考慮の着眼点
実橋の劣化がばらつくのは、温度、湿度、飛来塩分量のばらつきや材料のばらつきおよび部材の場所の違いによる風雨の受け方、橋梁周辺の地形の微妙な違いによる温度や湿度の違い等が原因である。これらの原因を個別に考慮するためには、橋梁毎にこれら原因の特性をつきとめる必要がある。さらに、現在の研究成果で考慮することができていない不確定な誤差要因も考えられるため、橋梁毎に材料条件や環境条件のばらつきの特性をつきとめても、劣化予測と実構造物の劣化分布を整合させることは困難である。一方、劣化速度は材料条件や環境条件などの入力条件によって、その速度に影響を受ける。以上から、飛来塩分量、温度、湿度、材料や周辺環境のばらつきを別個に考慮するよりも、それらを考慮した結果である「劣化速度」について、ばらつきを考慮する方がモデルを単純化できる。よって、劣化予測におけるばらつきは「劣化速度」にばらつきをもたせて考慮する。
(1) Method of considering variation in deterioration prediction model 1-1) Focus on consideration of variation Deterioration of actual bridges varies due to variations in temperature, humidity, flying salt content, variations in materials, and differences in member locations. The cause is the difference in temperature and humidity due to the way of receiving wind and rain and the slight difference in the topography around the bridge. In order to consider these causes individually, it is necessary to identify the characteristics of these causes for each bridge. Furthermore, since uncertain error factors that cannot be taken into consideration in the current research results are possible, deterioration prediction and deterioration distribution of actual structures can be identified even if the characteristics of variations in material conditions and environmental conditions are identified for each bridge. Is difficult to match. On the other hand, the deterioration rate is affected by the input conditions such as material conditions and environmental conditions. From the above, it is possible to simplify the model by considering the variation in the "deterioration rate" which is the result of considering them, rather than considering the variation in the amount of flying salt, temperature, humidity, material and surrounding environment separately. Therefore, the variation in the deterioration prediction is considered with the variation in the "deterioration rate".

1-2)ばらつき分布の考慮方法と補正方針
実構造物(本論文では橋梁)を点検すると、特許文献1の図1の例に示すような面的(要素毎)にばらついた劣化状態が得られる。また、要素毎の劣化速度は特許文献1の図2に示す様なイメージとなる。ここで、特許文献1の図2の縦軸は累積腐食量(mg/m)とあるが、腐食速度(mg/m/時間)は時間とともに変化することを示す。また、「劣化度」は累積腐食量から求められ、累積腐食量を劣化度に変換したイメージも示している。
1-2) Consideration method and correction policy of variation distribution When the actual structure (bridge in this paper) is inspected, the deterioration state that varies in the plane (each element) as shown in the example of FIG. 1 of Patent Document 1 is obtained. Be done. Further, the deterioration rate for each element is an image as shown in FIG. 2 of Patent Document 1. Here, the vertical axis of FIG. 2 of Patent Document 1 is the cumulative corrosion amount (mg / m 2 ), but it is shown that the corrosion rate (mg / m 2 / hour) changes with time. In addition, the "deterioration degree" is obtained from the cumulative corrosion amount, and an image obtained by converting the cumulative corrosion amount into the deterioration degree is also shown.

特許文献1の図2の劣化速度(時間と累積腐食量および劣化度の関数)は材料条件・環境条件によりばらつく。なお、特許文献1の図1の例は全部で20要素あることから、1本あたり面積で5%の割合を表現していると言える。本明細書では、この劣化予測1本あたりが表現している表面積の割合を「劣化表現率」と定義する。従来の劣化予測による劣化速度は特許文献1の図3に示すように確定的であるため、劣化のばらつきを考慮することができない。そこで、下記に示すように、確定的に算出した劣化速度を1倍速として、任意の倍数にばらつかせる。 The deterioration rate (function of time, cumulative corrosion amount, and degree of deterioration) in FIG. 2 of Patent Document 1 varies depending on the material conditions and environmental conditions. Since the example of FIG. 1 of Patent Document 1 has 20 elements in total, it can be said that the ratio of 5% in area per one is expressed. In the present specification, the ratio of the surface area expressed by each deterioration prediction is defined as "deterioration expression rate". Since the deterioration rate based on the conventional deterioration prediction is definite as shown in FIG. 3 of Patent Document 1, it is not possible to consider the variation in deterioration. Therefore, as shown below, the deterministically calculated deterioration rate is set to 1x and can be dispersed in any multiple.

1-2-1)
実橋の中で全く劣化しない箇所(要素)も存在する可能性があり、それを表現するため、最も遅い劣化速度は「0倍速」とする。
1-2-1)
There is a possibility that there is a part (element) that does not deteriorate at all in the actual bridge, and in order to express that, the slowest deterioration speed is set to "0x speed".

1-2-2)
最も速い劣化速度としては、実橋の劣化分布を把握した上で、確定的に算出した劣化速度と比較し、十分に実橋の劣化分布をカバーできる速度となるように係数を乗じる。この係数を「劣化速度補正係数」と定義する。
1-2-2)
As the fastest deterioration rate, after grasping the deterioration distribution of the actual bridge, it is compared with the deterioration rate calculated deterministically, and the coefficient is multiplied so that the deterioration distribution of the actual bridge can be sufficiently covered. This coefficient is defined as the "deterioration rate correction coefficient".

1-2-3)
倍数の間隔は、一番遅い劣化速度(0倍速)と最も早い劣化速度の間で、実橋の劣化分布を十分にカバーできる間隔とする。ここで、実橋の劣化度分布は特許文献1の図1のa~eの間でばらついているが、倍率の間隔が大きすぎるとaとeの間であるb,cまたはdとなる劣化速度が存在しない状況になるケースもある。
1-2-3)
The interval of the multiple is an interval that can sufficiently cover the deterioration distribution of the actual bridge between the slowest deterioration rate (0 times speed) and the fastest deterioration rate. Here, the deterioration degree distribution of the actual bridge varies between a to e in FIG. 1 of Patent Document 1, but if the interval between the magnifications is too large, the deterioration becomes b, c or d between a and e. In some cases, there is no speed.

ここで、「十分にカバーできる範囲」とは、全ての劣化度を表現できると言う意味である。特許文献1の図4は、以上の要領でばらつかせた劣化イメージであり、確定的な劣化予測に対して、0倍速~4倍速まで0.4倍速刻みにばらつかせている。10本にばらつかせているため、1本の「劣化表現率」は10%となる。 Here, "a range that can be sufficiently covered" means that all the deterioration degrees can be expressed. FIG. 4 of Patent Document 1 is a deterioration image dispersed in the above manner, and is dispersed in 0.4x increments from 0x to 4x with respect to a definite deterioration prediction. Since it is scattered among 10 lines, the "deterioration expression rate" of 1 line is 10%.

しかしながら、劣化予測をこの方法により任意にばらつかせた場合、均等なばらつきとなるため、特許文献1の図2に示す不均等なばらつきである実橋の劣化度分布とは整合しない。従って、補正が必要となる。 However, when the deterioration prediction is arbitrarily dispersed by this method, the variation becomes even, and therefore, it does not match the deterioration degree distribution of the actual bridge, which is the uneven variation shown in FIG. 2 of Patent Document 1. Therefore, correction is required.

補正方法としては劣化曲線1本あたりの「劣化表現率」を補正することで、実橋と整合させることができる。特許文献1の図5に劣化予測における「劣化表現率」のイメージを示しているが、特許文献1の図6の劣化割合補正のイメージに示すように、その「劣化表現率(橋面積の割合)」を点検結果に合うように補正する。
尚、本明細書の劣化予測は劣化分布の割合を予測するものであり、具体的な部位等を示すことはできない。
As a correction method, by correcting the "deterioration expression rate" per deterioration curve, it can be matched with the actual bridge. FIG. 5 of Patent Document 1 shows an image of "deterioration expression rate" in deterioration prediction, but as shown in an image of deterioration rate correction in FIG. 6 of Patent Document 1, the "deterioration expression rate (ratio of bridge area)" is shown. ) ”Is corrected to match the inspection result.
It should be noted that the deterioration prediction in the present specification predicts the rate of deterioration distribution, and cannot indicate a specific part or the like.

1-3)具体的な補正方法
特許文献1の図1に示す実橋モデルと特許文献1の図4に示す劣化予測を用いて、具体的な補正方法を示す。特許文献1の図4は劣化曲線を10本にばらつかせているため、均等に考えた場合、1本あたり橋面積の10%を表現することとなる。しかし、その場合、前述した様に点検結果の劣化度分布と整合しないため、1本あたりの面積を10%から点検結果に合うように補正する。補正方法を下記に示す。
1-3) Specific correction method A specific correction method is shown using the actual bridge model shown in FIG. 1 of Patent Document 1 and the deterioration prediction shown in FIG. 4 of Patent Document 1. Since FIG. 4 of Patent Document 1 disperses the deterioration curve into 10 lines, 10% of the bridge area per line is expressed when considered evenly. However, in that case, as described above, since it does not match the deterioration degree distribution of the inspection result, the area per one is corrected from 10% so as to match the inspection result. The correction method is shown below.

1-3-1)
点検結果における劣化度「a」は10%であり、劣化予測の「劣化表現率」も10%であるため、「a」については点検結果と劣化予測の割合は整合しており、補正を実施する必要はない。
1-3-1)
Since the degree of deterioration "a" in the inspection result is 10% and the "deterioration expression rate" of the deterioration prediction is also 10%, the ratio of the inspection result and the deterioration prediction is consistent with respect to "a", and correction is performed. do not have to.

1-3-2)
点検結果における劣化度「b」は40%である。劣化予測において「b」となる劣化速度は2本あるため、均等に考えた場合の「劣化表現率」は20%となる。しかしながら、点検結果の40%に整合させるために、この劣化速度1本につき、「劣化表現率」を10%から20%(40÷2=20%)に補正する。以上により点検結果と劣化予測の劣化度分布は整合する。
1-3-2)
The degree of deterioration "b" in the inspection result is 40%. Since there are two deterioration rates that are "b" in the deterioration prediction, the "deterioration expression rate" when considered evenly is 20%. However, in order to match the inspection result with 40%, the "deterioration expression rate" is corrected from 10% to 20% (40/2 = 20%) for each deterioration rate. As a result, the inspection results and the deterioration degree distribution of the deterioration prediction match.

1-3-3)
同様に劣化予測において劣化度が「c」となる劣化速度は1本であるため、均等に考えた場合の割合としては10%存在することとなるが、点検結果では25%存在する。従って、この1本あたりの「劣化表現率」は10%から25%に補正することで、劣化度「c」の割合は点検結果と整合する。
1-3-3)
Similarly, since there is only one deterioration rate at which the degree of deterioration is "c" in the deterioration prediction, the ratio is 10% when considered evenly, but 25% is present in the inspection result. Therefore, by correcting the "deterioration expression rate" per one from 10% to 25%, the ratio of the deterioration degree "c" is consistent with the inspection result.

1-3-4)
同様に劣化予測において劣化度が「d」となる劣化速度は4本あるため、均等に考えた場合の割合としては40%存在することとなるが、点検結果では20%しか存在しない。
従って、この1本あたりの「劣化表現率」を10%から5%(20÷4=5%)に補正することで、劣化度「d」の割合は点検結果と整合する。
1-3-4)
Similarly, since there are four deterioration rates at which the degree of deterioration is "d" in the deterioration prediction, the ratio is 40% when considered evenly, but only 20% is present in the inspection result.
Therefore, by correcting the "deterioration expression rate" per one from 10% to 5% (20/4 = 5%), the ratio of the deterioration degree "d" is consistent with the inspection result.

1-3-5)
最後に劣化予測において劣化度が「e」となる劣化速度は1本あるため、割合としては10%存在するが、点検結果では5%しか存在しない。よって、この1本の「劣化表現率」を10%から5%に補正することで、劣化度「e」の割合は点検結果と整合する。
1-3-5)
Finally, since there is one deterioration rate in which the degree of deterioration is "e" in the deterioration prediction, the ratio is 10%, but the inspection result shows only 5%. Therefore, by correcting this one "deterioration expression rate" from 10% to 5%, the ratio of the deterioration degree "e" is consistent with the inspection result.

以上の方法により、任意にばらつかせた劣化予測と点検結果の劣化度分布は整合する。この劣化予測1本あたりの「劣化表現率」を補正した上で、将来の劣化を予測することで、実構造物の劣化のばらつきを考慮した予測が可能になる。 By the above method, the deterioration prediction and the deterioration degree distribution of the inspection result are matched. By correcting the "deterioration expression rate" per deterioration prediction and then predicting future deterioration, it is possible to make predictions in consideration of variations in deterioration of the actual structure.

なお、特許文献1の図1に示す面的な要素は、等分割されているが実橋の点検は特許文献1の図7に示す様に要素毎に面積が異なる場合もある。この場合も面積を考慮した劣化度の割合を点検で得ることができれば、劣化予測の補正は上記の考え方を用いて、補正可能である。 Although the planar elements shown in FIG. 1 of Patent Document 1 are equally divided, the area of the actual bridge inspection may differ for each element as shown in FIG. 7 of Patent Document 1. In this case as well, if the ratio of the degree of deterioration in consideration of the area can be obtained by inspection, the correction of the deterioration prediction can be corrected by using the above-mentioned idea.

以下に、本発明の一実施の形態による構造物の劣化予測技術について、図面を参照しながら詳細に説明する。 Hereinafter, the structure deterioration prediction technique according to the embodiment of the present invention will be described in detail with reference to the drawings.

(2)点検結果の測定誤差を考慮する方法
2-1)概要
上記1においては、点検結果を用いた劣化予測の補正方法について説明した。
しかしながら、点検結果には点検方法、点検条件および、定義した劣化度等の様々な要因によって、劣化予測には誤差が生じる。これらの要因について全てを考慮する方法もあるが、現在の研究においてはそれらの要因の中に不確定な要素もあり、モデルが煩雑となる上に精度向上に限界がある。
(2) Method for considering measurement error of inspection result 2-1) Outline In 1 above, a method for correcting deterioration prediction using inspection results has been described.
However, in the inspection result, an error occurs in the deterioration prediction due to various factors such as the inspection method, the inspection condition, and the defined degree of deterioration. There is a method to consider all of these factors, but in the current research, there are uncertainties among these factors, which complicates the model and limits the improvement of accuracy.

そこで、本発明では構造物の劣化予測技術における「測定誤差」に着目した。
ここで、「測定誤差」は、様々な誤差要因の作用として、技術者が構造物の劣化度を測定する際に生じる実橋のひび割れ幅の計測誤差や技術者の判断による誤差として扱える。
本発明では、点検から得られる劣化分布に対して「測定誤差」の補正を行った劣化分布を対象に劣化予測の補正を行う。
Therefore, in the present invention, attention is paid to the "measurement error" in the deterioration prediction technique of the structure.
Here, the "measurement error" can be treated as an error in measuring the crack width of the actual bridge or an error determined by the engineer when the engineer measures the degree of deterioration of the structure as an action of various error factors.
In the present invention, the deterioration prediction is corrected for the deterioration distribution obtained by correcting the "measurement error" for the deterioration distribution obtained from the inspection.

2-2)測定誤差の考慮について
高知県では、職員による実橋の定期点検を実施している。職員の教育訓練の一環として、職員が判定した劣化度と専門家が判定した劣化度を比較し、職員の測定誤差の傾向を分析している。
2-2) Consideration of measurement error In Kochi Prefecture, regular inspections of actual bridges are carried out by staff. As part of staff education and training, the degree of deterioration judged by staff is compared with the degree of deterioration judged by experts, and the tendency of staff measurement error is analyzed.

分析結果のある平成28年度においては、図3に示す傾向となっている。ここで、本発明に関係する研究で対象としている劣化は、「ひび割れ」、「鉄筋露出、剥離」、「遊離石灰、うき」であることから、これらの損傷を対象とした分析結果を用いる。 In FY2016, when the analysis results are available, the tendency is shown in Fig. 3. Here, since the deteriorations targeted in the research related to the present invention are "cracking", "reinforcing bar exposure, peeling", and "free lime, swelling", the analysis results for these damages are used.

本明細書の測定誤差は、この資料の傾向を用いて測定誤差を考慮する。測定誤差の傾向において、正評価は88%、3段階危険側への評価は2%、2段階危険側の評価は3%、1段階危険側の評価は3%、1段階安全側の評価は4%であった。 The measurement error described herein takes into account the measurement error using the trends in this material. In terms of the tendency of measurement error, the positive evaluation is 88%, the evaluation on the 3-step dangerous side is 2%, the evaluation on the 2-step dangerous side is 3%, the evaluation on the 1-step dangerous side is 3%, and the evaluation on the 1-step safe side is. It was 4%.

ここで、職員が評価した劣化度(a~e)までが専門家の判断より進んでいると判断した場合を「安全側」と表現し、進んでいない場合を「危険側」と表現している。この傾向を用いた具体的な誤差補正の考慮方法は、職員がa評価とした場合、これ以上、危険側の評価はできないため、正評価と危険側の評価を合わせた割合を「正評価88+3+3++2=96%」とする。また、1段階安全側のb評価とする割合を4%とする。b評価以下も上記と同様に補正を実施する。表1に以上を整理した補正行列を示す。 Here, the case where it is judged that the degree of deterioration (a to e) evaluated by the staff is more advanced than the expert's judgment is expressed as "safety side", and the case where it is not advanced is expressed as "dangerous side". There is. As for the specific method of considering error correction using this tendency, if the staff evaluates a, the risk side cannot be evaluated any more. Therefore, the ratio of the positive evaluation and the risk side evaluation is "correct evaluation 88 + 3 + 3 ++ 2". = 96% ". In addition, the ratio of b evaluation on the one-step safety side is 4%. b Evaluation and below are also corrected in the same manner as above. Table 1 shows the correction matrix in which the above are arranged.

Figure 2022089440000002
Figure 2022089440000002

(3)測定誤差の具体的な考慮例について
3-1)点検回数が1回の場合の測定誤差の考慮例について
点検結果に測定誤差を考慮した補正例を示す。まずは、特許文献1と同様に、点検回数が1回の場合であって点検要素が2要素の橋梁について説明する。
仮にこの橋梁の点検結果が要素1=a、要素2=cの場合、測定誤差を考慮した劣化分布は表2に示す通りとなる。
(3) Specific examples of measurement error 3-1) Examples of consideration of measurement error when the number of inspections is one An example of correction considering measurement error is shown in the inspection results. First, as in Patent Document 1, a bridge having two inspection elements in the case where the number of inspections is one will be described.
If the inspection result of this bridge is element 1 = a and element 2 = c, the deterioration distribution considering the measurement error is as shown in Table 2.

Figure 2022089440000003
Figure 2022089440000003

ここで、測定誤差を考慮した劣化分布割合の合計は職員の判定に偏りがあるため、1.045となり1.000とはならない。そこで、発明者は、劣化分布の合計は1.000になるように全体を割り戻すことに想到した。
以上を踏まえた測定誤差を考慮した場合の劣化分布を表3に示す。
Here, the total deterioration distribution ratio in consideration of the measurement error is 1.045 and not 1.000 because the judgment of the staff is biased. Therefore, the inventor came up with the idea of rebating the whole so that the total deterioration distribution becomes 1.000.
Table 3 shows the deterioration distribution when the measurement error based on the above is taken into consideration.

Figure 2022089440000004
Figure 2022089440000004

以上より、高知県職員が2要素の橋梁を点検し、要素1=a、要素2=cと判断した場合、最終的には劣化度aの割合0.459、劣化度bの割合0.057、劣化度cの割合0.445、劣化度dの割合は0.024、劣化度eの割合0.014となる。また、仮にこの橋梁の劣化予測が図4に示した結果となる場合の劣化表現率は図5に示す通りとなる。 From the above, when the Kochi Prefecture staff inspects the two-element bridge and determines that element 1 = a and element 2 = c, the final ratio of deterioration degree a is 0.459 and the ratio of deterioration degree b is 0.057. The ratio of the degree of deterioration c is 0.445, the ratio of the degree of deterioration d is 0.024, and the ratio of the degree of deterioration e is 0.014. Further, if the deterioration prediction of this bridge is the result shown in FIG. 4, the deterioration expression rate is as shown in FIG.

3-2)点検回数が2回の場合の測定誤差の考慮例
本発明の実施の形態では、2回以上の点検結果を用いることを特徴とする。
まず、点検回数が2回の場合であって点検要素が2要素の橋梁を考える。仮にこの橋梁の点検結果が1回目点検で要素1=a、要素2=c、2回目点検で要素1=b、要素2=cの場合、測定誤差を考慮した劣化分布は表4に示す通りとなる。
3-2) Example of Consideration of Measurement Error When The Number of Inspections is Two The embodiment of the present invention is characterized in that the inspection results of two or more inspections are used.
First, consider a bridge in which the number of inspections is two and the inspection elements are two elements. If the inspection result of this bridge is element 1 = a, element 2 = c in the first inspection, element 1 = b, and element 2 = c in the second inspection, the deterioration distribution considering the measurement error is as shown in Table 4. It becomes.

Figure 2022089440000005
Figure 2022089440000005

ここで、2回の点検結果は5×5=25通りの組み合わせとなるが、正しい劣化判断を行えば、劣化が自然に改善することはありえないため、b→a、c→bやc→a等の組み合わせを無視することができる。但し、点検と点検の間の期間で補修が実施されている場合は改善が見込まれるため、劣化度の改善を考慮する。 Here, the results of the two inspections are 5 × 5 = 25 combinations, but if the correct deterioration judgment is made, the deterioration cannot be improved naturally, so b → a, c → b and c → a. Etc. can be ignored. However, if repairs are carried out during the period between inspections, improvement is expected, so improvement in the degree of deterioration should be considered.

また、劣化予測速度は1回目点検結果に対し測定誤差と後述する時間誤差を考慮した上で最大と考えられる劣化速度も予測対象としている。これは点検結果を踏まえた劣化速度としては最大の速度と考えらえる。 In addition, the deterioration prediction speed, which is considered to be the maximum after considering the measurement error and the time error described later with respect to the first inspection result, is also predicted. This is considered to be the maximum deterioration rate based on the inspection results.

従って、この劣化予測速度を超える劣化度となるものは、物理現象として生じないと考え、劣化予測の対象外とする。例えばb→dやb→eといった5年後に劣化度が2段階以上進む点検結果が得られる場合がある。劣化予測において環境条件が厳しい場合は5年間で劣化度が2段階以上進む速度となる場合もあるため、その場合は、この様な点検結果も劣化予測の対象とする。 Therefore, it is considered that a deterioration degree exceeding this deterioration prediction speed does not occur as a physical phenomenon, and is excluded from the deterioration prediction target. For example, an inspection result such as b → d or b → e in which the degree of deterioration progresses by two or more stages may be obtained after five years. If the environmental conditions are severe in the deterioration prediction, the degree of deterioration may progress by two or more stages in five years. In that case, such inspection results are also subject to the deterioration prediction.

また、劣化予測において、5年間で2段階以上進む速度がない場合、今回の劣化予測は物理モデルで行っており、この物理劣化予測モデルを超える範囲の劣化は現実的に生じないと考えられることから、異なる要因による劣化又は損傷と考え、本発明の補正の対象外とする。 In addition, in the deterioration prediction, if there is no speed to advance by two or more steps in 5 years, the deterioration prediction this time is performed by the physical model, and it is considered that the deterioration in the range exceeding this physical deterioration prediction model does not actually occur. Therefore, it is considered to be deterioration or damage due to different factors, and is not subject to the amendment of the present invention.

また、測定誤差を考慮すると劣化度がa→dやa→e等の様に大幅に進行する場合が生じる。表4の例ではa→c、a→d、a→e、b→d、b→e、c→eは劣化予測を超える範囲と考えられるため検討の対象外とする。 Further, when the measurement error is taken into consideration, the degree of deterioration may progress significantly as in the case of a → d, a → e, and the like. In the example of Table 4, a → c, a → d, a → e, b → d, b → e, and c → e are considered to be in the range exceeding the deterioration prediction, and are therefore excluded from the study.

以上を考慮した2回目点検結果の合計に対し1.000になるように割戻の調整を行った結果を表5に示す。今回の例では結果として、a→a、a→b、b→b、b→c、c→cとc→dが残る結果となる。2回目以降の点検結果についても同様に考慮することで劣化分布を表現することができる。 Table 5 shows the results of adjusting the rebate so that the total of the results of the second inspection in consideration of the above is 1.000. In this example, as a result, a → a, a → b, b → b, b → c, c → c and c → d remain. The deterioration distribution can be expressed by considering the inspection results from the second time onward in the same manner.

Figure 2022089440000006
Figure 2022089440000006

(4)点検結果の時間誤差を考慮する方法
4-1)概要
定期点検は5年に1度などと決められているため、いつその「劣化」が生じたか分からない。すなわち、実橋の劣化程度は経時的に変化しており、点検で発見された「ひび割れ」や「鉄筋露出、剥落」等の損傷がいつその状態になったか等、点検時と損傷発生時の時間的な誤差が生じる。その誤差は点検が5年に1回実施されることを踏まえると。最大4年の誤差があると考えられる。
(4) Method to consider the time error of the inspection result 4-1) Outline Since the periodic inspection is decided to be once every 5 years, it is unknown when the "deterioration" occurred. In other words, the degree of deterioration of the actual bridge changes over time, and when the damage such as "cracking" and "reinforcing bar exposure and peeling" found in the inspection became that state, etc., at the time of inspection and at the time of damage occurrence, etc. There will be a time error. The error is based on the fact that the inspection is carried out once every five years. It is considered that there is an error of up to 4 years.

点検結果は、この「時間誤差」も考慮した劣化分布として求める必要がある。ここで点検結果に「時間誤差」を考慮する方法について説明する。
時間誤差の考慮は点検時の点検において劣化分布が得られるが、この劣化分布が点検時の1年~4年前に生じていたと仮定すると、図6に示すように、当初の条件で予測した劣化曲線より劣化速度が速い劣化曲線が得られる。これが時間誤差を考慮した劣化曲線であり、この劣化曲線から得られる劣化分布が時間誤差の劣化分布となる。
The inspection result needs to be obtained as a deterioration distribution considering this "time error". Here, a method of considering "time error" in the inspection result will be described.
Consideration of time error gives a deterioration distribution in the inspection at the time of inspection, but assuming that this deterioration distribution occurred 1 to 4 years before the inspection, it was predicted under the initial conditions as shown in FIG. A deterioration curve having a faster deterioration rate than the deterioration curve can be obtained. This is a deterioration curve considering the time error, and the deterioration distribution obtained from this deterioration curve is the deterioration distribution of the time error.

劣化予測においては、点検結果から得られた劣化分布には前述した測定誤差による劣化分布と、この時間誤差による劣化分布を考慮する。 In the deterioration prediction, the deterioration distribution due to the above-mentioned measurement error and the deterioration distribution due to this time error are taken into consideration in the deterioration distribution obtained from the inspection result.

なお、現時点では時間的な誤差を生じる確率は不明であるが、点検結果時の劣化分布となる累積確率は、5年前の時点は「0」、点検実施時までには「1」となる。現時点では、どの時点でその劣化が生じるのか不明であるため、この確率分布関数を、最も簡単な1次関数で想定すると式(1)となる。
P(x)=0.2x (1)
ここで、P(x)は累積確率、xは前回の点検実施から経過した時間(年)である。
At present, the probability of causing a time error is unknown, but the cumulative probability of deterioration distribution at the time of inspection results is "0" at the time of 5 years ago and "1" at the time of inspection. .. At present, it is unknown at what point the deterioration occurs, so if this probability distribution function is assumed to be the simplest linear function, Eq. (1) is obtained.
P (x) = 0.2x (1)
Here, P (x) is the cumulative probability, and x is the time (year) elapsed since the previous inspection.

4-2)時間誤差の考慮について
式(1)を微分すると右辺は0.2と定数になるため、点検実施時の劣化分布になる確率は4年前~点検実施時まで各年で20%となる。上記のように時間的な誤差によって、1橋につき劣化予測モデルは5本派生し、各々の劣化予測が有する確率は20%となるため、「劣化表現率」にはこの確率も加味する必要がある。
但し、時間誤差を考慮すると劣化速度が速い劣化予測を考慮することとなるが、劣化速度が速すぎて点検結果と合わない劣化曲線が得られる場合がある。その場合の劣化曲線の劣化表現率は、0%とする。
4-2) Consideration of time error When the equation (1) is differentiated, the right side becomes a constant of 0.2, so the probability of deterioration distribution at the time of inspection is 20% for each year from 4 years ago to the time of inspection. It becomes. As described above, five deterioration prediction models are derived for each bridge due to the time error, and the probability of each deterioration prediction is 20%. Therefore, it is necessary to take this probability into consideration in the "deterioration expression rate". be.
However, if the time error is taken into consideration, the deterioration prediction with a high deterioration rate is taken into consideration, but the deterioration rate may be too fast to obtain a deterioration curve that does not match the inspection result. In that case, the deterioration expression rate of the deterioration curve is 0%.

5)予測する劣化分布のまとめ
5-1)劣化分布の考慮による精度への影響について
これまで、確定的な劣化予測に対して、ばらつきによる分布を与え、これに点検の測定誤差による補正分布と時間誤差による補正分布を考慮してきた。測定誤差と時間誤差の両方を考慮した劣化分布のイメージを図7から図9までに示す。図7から図9までに示すように、1回目点検時において、当初の劣化予測分布に対し、測定誤差による補正分布と時間誤差による時間誤差分布を考慮すると、当初の劣化予測分布より広い範囲を予測対象としなければならなくなることが分かる。また、2回目点検時においても同様に測定誤差と時間誤差を考慮すると当初の劣化予測分布より広い範囲となるものの、1回目点検時よりも予測範囲が狭くなっていることが分かる。本劣化予測は劣化曲線に劣化表現率と言う密度を与えて予測する手法である。
5) Summary of predicted deterioration distribution 5-1) Impact of consideration of deterioration distribution on accuracy So far, for definite deterioration prediction, distribution due to variation has been given, and corrected distribution due to measurement error of inspection. We have considered the correction distribution due to time error. Images of deterioration distribution considering both measurement error and time error are shown in FIGS. 7 to 9. As shown in FIGS. 7 to 9, at the time of the first inspection, when the correction distribution due to the measurement error and the time error distribution due to the time error are taken into consideration with respect to the initial deterioration prediction distribution, a wider range than the initial deterioration prediction distribution is obtained. It turns out that it will have to be predicted. Further, it can be seen that the prediction range is narrower than that at the time of the first inspection, although the range is wider than the initial deterioration prediction distribution when the measurement error and the time error are similarly taken into consideration at the time of the second inspection. This deterioration prediction is a method of predicting by giving a density called deterioration expression rate to the deterioration curve.

よって、劣化予測の範囲が狭くなると言うことは、劣化曲線の密度が濃くなることを意味するため、密度が濃い劣化曲線程、予測精度が高まっていることを示している。以上から、測定誤差や時間誤差を考慮することによって、一旦予測範囲が広がることとなるが、点検による補正を繰り返すことで精度は高まると考えられる。 Therefore, narrowing the range of deterioration prediction means that the density of the deterioration curve is high, and therefore, the higher the density of the deterioration curve, the higher the prediction accuracy. From the above, it is considered that the prediction range will be expanded once by considering the measurement error and the time error, but the accuracy will be improved by repeating the correction by the inspection.

5-2)点検結果の補正と劣化予測の流れ
以上を踏まえ、点検結果の補正と劣化予測の補正の流れを以下に示す。図1は、本実施の形態による構造物の劣化予測処理の流れを示すフローチャート図である。また、図2は、本実施の形態による構造物の劣化予測処理装置Aの一構成例を示す機能ブロック図である。
5-2) Flow of inspection result correction and deterioration prediction Based on the above, the flow of inspection result correction and deterioration prediction correction is shown below. FIG. 1 is a flowchart showing a flow of a structure deterioration prediction process according to the present embodiment. Further, FIG. 2 is a functional block diagram showing a configuration example of the deterioration prediction processing device A for the structure according to the present embodiment.

処理の流れを図1および図2を参照して以下に説明する。
a)1回目点検を実施し、劣化分布作成部1において作成した劣化分布を把握する(ステップS1でn=1、ステップS2)。
b)ステップS2で得られた劣化分布に測定誤差補正行列を用いて、劣化分布設定部3が、測定誤差を考慮した劣化分布を設定する(ステップS3)。
The processing flow will be described below with reference to FIGS. 1 and 2.
a) The first inspection is carried out, and the deterioration distribution created by the deterioration distribution creation unit 1 is grasped (n = 1 in step S1, step S2).
b) Using the measurement error correction matrix for the deterioration distribution obtained in step S2, the deterioration distribution setting unit 3 sets the deterioration distribution in consideration of the measurement error (step S3).

c)劣化分布設定部5が、測定誤差を考慮した劣化分布に時間誤差を考慮し、測定誤差、時間誤差を考慮した劣化分布を設定する(ステップS4)。
d)劣化速度補正係数乗算部7が、確定的な劣化予測が、「測定誤差、時間誤差を考慮した点検結果の劣化分布」の中で最も劣化が進んでいる劣化度を網羅できるように「劣化速度補正係数」を乗じ、0倍速まで均等にばらつかせる(ステップS5)。すなわち、劣化予測に劣化速度補正係数を乗じ、0倍速から最も劣化度が進んだ劣化分布を網羅するまで劣化速度を均等にばらつかせる。
c) The deterioration distribution setting unit 5 considers the time error in the deterioration distribution in consideration of the measurement error, and sets the deterioration distribution in consideration of the measurement error and the time error (step S4).
d) The deterioration rate correction coefficient multiplication unit 7 allows the definite deterioration prediction to cover the degree of deterioration in which the deterioration is most advanced in the "deterioration distribution of inspection results considering measurement error and time error". By multiplying by the "deterioration speed correction coefficient", the speed can be evenly distributed up to 0 times speed (step S5). That is, the deterioration rate is multiplied by the deterioration rate correction coefficient, and the deterioration rate is evenly distributed from 0 times speed to cover the deterioration distribution with the most advanced deterioration degree.

e)劣化表現率補正部11が、「測定誤差、時間誤差を考慮した点検結果の劣化分布」と劣化分布が整合するように、劣化予測の「劣化表現率」を補正する(ステップS6)。
すなわち、劣化予測から得られた劣化分布と誤差を考慮した点検結果の劣化分布が整合するように、劣化予測の「劣化表現率」を補正する。
以下、n=m(mは最終点検回数)となるまで(ステップS7)、n+1として(ステップS8)処理を継続し、その後に処理を終了させる(end)。
e) The deterioration expression rate correction unit 11 corrects the "deterioration expression rate" of the deterioration prediction so that the "deterioration distribution of the inspection result considering the measurement error and the time error" and the deterioration distribution match (step S6).
That is, the "deterioration expression rate" of the deterioration prediction is corrected so that the deterioration distribution obtained from the deterioration prediction and the deterioration distribution of the inspection result considering the error match.
Hereinafter, the process is continued as n + 1 (step S8) until n = m (m is the number of final inspections) (step S7), and then the process is terminated (end).

尚、上記の処理に関して発明、ハードウェア処理で行っても良いし、ソフトウェア処理で行っても良い。
本発明では以上の調整を、点検を実施する毎に行うことで、劣化予測の精度が向上すると仮説を立てている。
The above processing may be performed by invention, hardware processing, or software processing.
In the present invention, it is hypothesized that the accuracy of deterioration prediction is improved by performing the above adjustments every time an inspection is performed.

[実施例1]
以下、実施の形態による構造物の劣化予測処理装置Aを用いた劣化予測の実施例について説明する。
[Example 1]
Hereinafter, an example of deterioration prediction using the structure deterioration prediction processing device A according to the embodiment will be described.

(実橋における劣化予測の実施例)
上記において、点検結果を用いた劣化予測の補正方法と点検結果が多いほど誤差の範囲が狭くなり、劣化予測の精度が向上する仮説を示した。ここでは高知県の点検データを用いて、実際の橋梁の劣化予測と点検結果を用いた補正と劣化予測の精度について検証する。
(Example of deterioration prediction in a real bridge)
In the above, the correction method of deterioration prediction using the inspection result and the hypothesis that the error range becomes narrower and the accuracy of deterioration prediction improves as the inspection result increases. Here, using inspection data from Kochi Prefecture, we will verify the accuracy of actual bridge deterioration prediction and correction and deterioration prediction using inspection results.

(1)高知県における点検システム概要について
点検データは高知県で5年に1回実施する定期点検のデータを用いる。高知県では職員による点検を実施しており、平成31年3月現在で、2順目(2回目)の点検を実施している状況である。
(1) Outline of inspection system in Kochi Prefecture The inspection data used is the data of regular inspections conducted in Kochi prefecture once every five years. In Kochi Prefecture, inspections are being carried out by staff, and as of March 2019, the second order (second) inspection is being carried out.

高知県の点検システムでは、図10および図11に示す指標によって、劣化度を判定する。特許文献1の図1や図4(本願)に示す様な要素毎に劣化度を集計することで、橋梁毎の劣化のばらつきの情報を得ることができる。なお、本論文の解析は高知県管内の橋梁の中で、点検結果が3回以上データベースに登録されているPC橋の「片粕大橋」、「荷滝橋」、「轟崎橋」、「熊野神代橋」等を対象として実施した。それらの実橋の地図に示した図が図12である。
劣化予測処理は、点検結果の測定誤差および時間誤差を考慮した上で、点検結果による劣化予測の補正過程を示す。
In the inspection system of Kochi prefecture, the degree of deterioration is determined by the indexes shown in FIGS. 10 and 11. By aggregating the degree of deterioration for each element as shown in FIGS. 1 and 4 (application) of Patent Document 1, it is possible to obtain information on the variation in deterioration for each bridge. In the analysis of this paper, among the bridges in the jurisdiction of Kochi prefecture, the PC bridges whose inspection results are registered in the database more than three times are "Katakasu Ohashi", "Kataki Bridge", "Todoroki Bridge", and "Todoroki Bridge". It was carried out for "Kumano Jindai Bridge" and so on. The figure shown in the map of those real bridges is FIG.
The deterioration prediction process shows a correction process of deterioration prediction based on the inspection result after considering the measurement error and the time error of the inspection result.

また、点検で補正しない劣化予測と1回目点検で補正した劣化予測、1回目と2回目点検結果で補正した劣化予測、及び1回目~3回目点検結果で補正した劣化予測の結果と3回目点検結果との比較による精度検証について説明する。 In addition, deterioration prediction not corrected by inspection, deterioration prediction corrected by the first inspection, deterioration prediction corrected by the first and second inspection results, and deterioration prediction result corrected by the first to third inspection results and the third inspection The accuracy verification by comparison with the result will be described.

(2)実橋における点検結果
2-1)橋梁(解析)諸元
「片粕大橋」、「荷滝橋」、「轟崎橋」、「熊野神代橋」は、1973年~1998年に架設されたPC橋である。また、詳細な構造図や配筋図が存在しないため、建設省標準図集や同じ示方書(S36年プレストレストコンクリート道路橋示方書)、S43年プレストレスとコンクリート道路橋示方書により設計された同規模の類似橋梁の設計図等を参考に、必要な諸元を想定した上で解析を実施する。表6に解析諸元を示す。
(2) Inspection results at the actual bridge 2-1) Bridge (analysis) specifications "Katakasu Ohashi", "Kataki Bridge", "Todoroki Bridge", and "Kumano Jindai Bridge" were erected from 1973 to 1998. It is a PC bridge that was built. In addition, since there is no detailed structural drawing or bar arrangement drawing, it was designed by the Ministry of Construction standard drawing collection, the same specification (S36 prestressed concrete road bridge specification), and S43 prestressed concrete road bridge specification. The analysis will be carried out after assuming the necessary specifications with reference to the design drawings of bridges of similar scale. Table 6 shows the analysis specifications.

Figure 2022089440000007
Figure 2022089440000007

2-2)測定誤差を考慮した1回目点検結果について
解析対象の4橋の点検実施年は表7に示す通りとなっている。
2-2) Results of the first inspection considering measurement errors Table 7 shows the year of inspection of the four bridges to be analyzed.

Figure 2022089440000008
Figure 2022089440000008

1回目点検は「片粕大橋」において2008年(供用24年)、「荷滝橋」は2009年(供用33年)、「轟崎橋」は2010年(供用37年)、「熊野神代橋」は2008年(供用10年)に1回目の点検を実施している。
2回目以降の点検は、基本的に1回目点検から5年経過毎に実施することとなるが、点検計画上5年未満の橋梁も存在する。
The first inspection was in 2008 (24 years in service) at "Katakasu Ohashi", 2009 (33 years in service) for "Rakutaki Bridge", 2010 (37 years in service) for "Todoroki Bridge", and "Kumano Jindai Bridge". The first inspection was carried out in 2008 (10 years of service).
The second and subsequent inspections are basically carried out every 5 years after the first inspection, but there are some bridges that are less than 5 years old due to the inspection plan.

上述した様に、ここで得られた点検結果は測定誤差を含んでいると考えられることから表1に示す測定誤差の補正行列により、得られた点検結果を補正する。
なお、本発明の劣化予測の劣化速度は1回目点検結果を用いて設定するため、1回目点検結果に測定誤差を考慮した劣化度分布を設定する。
補正の例として、ここでは表8に片粕大橋における1回目点検結果、表9に測定誤差の補正行列により補正した点検結果を示す。
As described above, since the inspection result obtained here is considered to include the measurement error, the obtained inspection result is corrected by the correction matrix of the measurement error shown in Table 1.
Since the deterioration rate of the deterioration prediction of the present invention is set by using the first inspection result, the deterioration degree distribution in consideration of the measurement error is set in the first inspection result.
As an example of correction, Table 8 shows the result of the first inspection at Katakasucho Ohashi, and Table 9 shows the inspection result corrected by the correction matrix of the measurement error.

Figure 2022089440000009
Figure 2022089440000009

Figure 2022089440000010
Figure 2022089440000010

また、本発明の劣化予測の対象となる1から3回目の点検結果を表10に示し、測定誤差を考慮して補正した1~3回目の点検結果を表11に示す。 Further, Table 10 shows the results of the first to third inspections, which are the targets of deterioration prediction of the present invention, and Table 11 shows the results of the first to third inspections corrected in consideration of the measurement error.

Figure 2022089440000011
Figure 2022089440000011

Figure 2022089440000012
Figure 2022089440000012

さらに上記において説明したように、測定誤差を考慮した1~3回目の点検結果に対して補正が必要になる。
補正は、1回目から2回目、あるいは、2回目から3回目点検において、劣化度が2段階以上進んでいるものが物理現象の範囲か範囲外か否かを確認し、範囲外の点検結果は除外する。
確認方法は、考えられる最大劣化速度を考慮した劣化予測との比較により行う。
Further, as described above, it is necessary to correct the results of the first to third inspections in consideration of the measurement error.
For correction, in the 1st to 2nd inspection, or from the 2nd to 3rd inspection, it is confirmed whether the deterioration degree is within the range or out of the range of the physical phenomenon, and the inspection result outside the range is. exclude.
The confirmation method is performed by comparing with the deterioration prediction considering the maximum possible deterioration rate.

表11は、劣化予測の本数を示しており、2段階以上劣化が進んだ結果と劣化予測の比較ができる様にしている。
ここで、劣化度が2段階以上進む現象に対応する劣化予測が0本であるもの(太字箇所)は範囲外と考える。範囲外を除外し劣化度分布の合計が1.000になるように割り戻した結果を表12に示す。
Table 11 shows the number of deterioration predictions, and makes it possible to compare the results of deterioration progressed by two or more stages with the deterioration predictions.
Here, it is considered that the deterioration prediction of 0 (bold portion) corresponding to the phenomenon that the degree of deterioration progresses by two or more stages is out of the range. Table 12 shows the results of rebating so that the total deterioration degree distribution is 1.000, excluding the outside of the range.

Figure 2022089440000013
Figure 2022089440000013

(3)点検結果を用いた劣化予測の補正
3-1)概要
次に、解析対象橋梁に対して点検結果を用いて劣化予測の補正を実施する。点検結果を用いた劣化予測の補正方法は上記の実施の形態で説明した方法を用いる。
また、ここでは、片粕大橋について点検で補正しない劣化予測と、1回目点検で補正した劣化予測、1回目と2回目点検結果で補正した劣化予測、及び1回目~3回目点検結果で補正した劣化予測を、点検結果と比較する具体的な例で示した。そして、補正する点検回数が劣化予測に与える精度を検証する。
他の解析対象橋梁については簡単に説明する。
(3) Correction of deterioration prediction using inspection results 3-1) Outline Next, correction of deterioration prediction is carried out for the bridge to be analyzed using the inspection results. As the method for correcting the deterioration prediction using the inspection result, the method described in the above embodiment is used.
In addition, here, the deterioration prediction that Katakasucho Ohashi is not corrected by the inspection, the deterioration prediction that was corrected by the first inspection, the deterioration prediction that was corrected by the first and second inspection results, and the correction by the first to third inspection results were corrected. The deterioration prediction is shown by a concrete example to compare with the inspection result. Then, the accuracy of the number of inspections to be corrected gives to the deterioration prediction is verified.
Other bridges to be analyzed will be briefly described.

3-2)初期解析における劣化速度係数の設定
本発明では、確定的な劣化予測に対して任意の倍数を与えて実橋のばらつきに補正することを提案している。従って、解析対象橋梁の確定的な劣化予測に「0倍速~実橋の劣化分布を網羅できる範囲の倍速」を乗じて任意にばらつかせ、測定誤差行列で補正した点検結果を用いて劣化予測を補正する流れとなる。
3-2) Setting the deterioration rate coefficient in the initial analysis The present invention proposes to correct the variation of the actual bridge by giving an arbitrary multiple to the definite deterioration prediction. Therefore, the definite deterioration prediction of the bridge to be analyzed is multiplied by "0x speed to double speed within the range that can cover the deterioration distribution of the actual bridge" and dispersed arbitrarily, and the deterioration prediction is performed using the inspection result corrected by the measurement error matrix. It becomes a flow to correct.

ここで、上記の「実橋の劣化分布を網羅できる範囲の倍速」とは、ばらつかせた劣化予測で最も進行している劣化度と実橋の点検結果で最も進行している劣化度が同じになる倍速をいう。 Here, the above-mentioned "double speed within the range that can cover the deterioration distribution of the actual bridge" means the most advanced deterioration degree in the scattered deterioration prediction and the most advanced deterioration degree in the inspection result of the actual bridge. Double speed that becomes the same.

なお、実橋の劣化分布は点検結果から得られるが、点検結果には上述した様に測定誤差と時間誤差を考慮する必要がある。すなわち、「実橋の劣化分布を網羅できる範囲の倍速」は、点検実施時から4年遡った点検結果の劣化分布と、劣化予測の劣化分布を比較して決めると、4年前の供用20年目に1回目点検結果で得られた劣化分布となる可能性を考慮する必要性がある。 The deterioration distribution of the actual bridge can be obtained from the inspection results, but it is necessary to consider the measurement error and time error in the inspection results as described above. In other words, the "double speed within the range that can cover the deterioration distribution of the actual bridge" is determined by comparing the deterioration distribution of the inspection result, which goes back four years from the time of the inspection, with the deterioration distribution of the deterioration prediction. It is necessary to consider the possibility of the deterioration distribution obtained from the first inspection result in the year.

1回目点検結果では、表9に示す様に、eの割合が6.1%存在する。従って、時間誤差を考慮する場合、供用20年目で劣化度eが存在することを考慮する必要がある。一方劣化予測は、1倍速で供用20年目を予測すると図13に示すように、劣化速度が遅いためeは存在しない。 In the result of the first inspection, as shown in Table 9, the ratio of e is 6.1%. Therefore, when considering the time error, it is necessary to consider that the degree of deterioration e exists in the 20th year of service. On the other hand, in the deterioration prediction, e does not exist because the deterioration rate is slow as shown in FIG. 13 when the 20th year of service is predicted at 1x speed.

従って、実橋の劣化分布を網羅できるように任意の倍数を劣化速度に乗じる必要がある。倍数を徐々に上げていった結果、供用20年目で劣化度eが存在するためには、倍数を7とする必要がある。従って、片粕大橋においては「0倍~7.0倍まで0.07倍間隔(100要素)でばらつかせる」ことによって、「0倍速~実橋の劣化分布を網羅できる範囲の倍速」でばらつかせたことになる。 Therefore, it is necessary to multiply the deterioration rate by an arbitrary multiple so that the deterioration distribution of the actual bridge can be covered. As a result of gradually increasing the multiple, it is necessary to set the multiple to 7 in order for the degree of deterioration e to exist in the 20th year of service. Therefore, in Katakasucho Ohashi, by "variing from 0 times to 7.0 times at 0.07 times intervals (100 elements)", "0 times speed to double speed within the range that can cover the deterioration distribution of the actual bridge". It will be scattered.

図14は、片粕大橋の4年前の時間誤差を考慮した劣化予測を示す図であり、劣化速度補正係数7倍の場合の図である。
図14に示すように、解析結果の劣化分布は点検結果の劣化分布を網羅することができる。本発明では、この任意の倍数のことを「劣化速度補正係数」と称する。
なお、同様に他の解析対象橋梁に対して劣化速度補正係数を設定した結果、荷滝橋の劣化速度係数は0.1、轟崎橋の劣化速度係数は5、熊野神代橋の劣化速度係数は717となった。
FIG. 14 is a diagram showing deterioration prediction in consideration of the time error of Katakasucho Ohashi four years ago, and is a diagram in the case of a deterioration rate correction coefficient of 7 times.
As shown in FIG. 14, the deterioration distribution of the analysis result can cover the deterioration distribution of the inspection result. In the present invention, this arbitrary multiple is referred to as a "deterioration rate correction coefficient".
Similarly, as a result of setting the deterioration rate correction coefficient for other bridges to be analyzed, the deterioration rate coefficient of Narutaki Bridge is 0.1, the deterioration rate coefficient of Todoroki Bridge is 5, and the deterioration rate coefficient of Kumano Jindai Bridge. Was 717.

3-3)片粕大橋の劣化予測の精度について
次に、1~3回目の点検結果に対し、劣化予測の適合度を確認する。表12に示す対象とする点検結果に対し、太字で示すように劣化予測が存在しない劣化度がある。これは100本の劣化予測では予測の間隔が大きく、予測することができなかったことを示している。予測できなかった劣化度を除いて劣化度分布を集計した結果を表13に示す。
3-3) Accuracy of deterioration prediction of Katakasucho Ohashi Next, the goodness of fit of deterioration prediction is confirmed for the first to third inspection results. As shown in bold, there is a degree of deterioration for which there is no deterioration prediction for the target inspection results shown in Table 12. This indicates that the prediction interval was large and could not be predicted in the deterioration prediction of 100 lines. Table 13 shows the results of totaling the deterioration degree distribution excluding the unpredictable deterioration degree.

Figure 2022089440000014
Figure 2022089440000014

表13に示すように、劣化度の合計は0.913となる。これが劣化予測を100本にばらつかせた場合の劣化予測の精度となる。 As shown in Table 13, the total degree of deterioration is 0.913. This is the accuracy of the deterioration prediction when the deterioration prediction is distributed to 100 lines.

3-4) 片粕大橋の劣化予測結果について
片粕大橋について、上述した結果を整理して劣化予測の精度検証を行う。以上に説明した手法を用いて、点検で補正しない劣化予測と1回目点検で補正した劣化予測、1回目と2回目点検結果で補正した劣化予測、及び1回目~3回目点検結果で補正した劣化予測の結果を表14から表17までに示す。
3-4) Deterioration prediction results of Katakasucho Ohashi For Katakasucho Ohashi, the above-mentioned results will be organized and the accuracy of deterioration prediction will be verified. Deterioration prediction not corrected by inspection, deterioration prediction corrected by the first inspection, deterioration prediction corrected by the first and second inspection results, and deterioration corrected by the first to third inspection results using the method described above. The results of the prediction are shown in Tables 14 to 17.

Figure 2022089440000015
Figure 2022089440000015

Figure 2022089440000016
Figure 2022089440000016

Figure 2022089440000017
Figure 2022089440000017

Figure 2022089440000018
Figure 2022089440000018

また、表12に示す片粕大橋の点検結果とそれぞれの劣化予測の結果を重ね合わせたグラフを図15に、点検結果と劣化予測の劣化度の割合について、小さい値÷大きい値×点検結果の確率関数を合計した整合度を図16に示す。 In addition, Fig. 15 shows a graph in which the inspection results of Katakasucho Ohashi shown in Table 12 and the results of each deterioration prediction are superimposed, and the ratio of the inspection results and the deterioration degree of the deterioration prediction is small value ÷ large value × inspection result. FIG. 16 shows the consistency of the sum of the probability functions.

劣化予測の精度について、表14に示す様に、まず点検結果で補正しない劣化予測は100本の劣化予測のうち、1本毎の劣化表現率は全て同じ0.010を初期値としている。図15に示すように、全体的に点検結果と整合している度合いが少なく、図16に示すように、整合度は0.235となっている。 Regarding the accuracy of deterioration prediction, as shown in Table 14, the deterioration prediction that is not corrected by the inspection result first has the same initial value of 0.010 as the deterioration expression rate for each of the 100 deterioration predictions. As shown in FIG. 15, the degree of consistency with the inspection result is small as a whole, and as shown in FIG. 16, the degree of consistency is 0.235.

同様に、1回目点検のみで補正した劣化予測は点検結果で補正しない点検結果に対して大幅に精度が向上していることが分かる。aaa、dee及eeeと言った割合が比較的大きい劣化度に対しては、ある程度整合していることが分かる。
ただし、bbb、bccと言った比較的割合の小さい劣化度に対して、点検結果はほとんど割合が無いのに対し、劣化予測は3.0%程度の割合がでており、整合していない。
Similarly, it can be seen that the deterioration prediction corrected only by the first inspection is significantly improved in accuracy with respect to the inspection result not corrected by the inspection result. It can be seen that there is some consistency with respect to the degree of deterioration in which the ratios of aaa, dee and ee are relatively large.
However, while there is almost no ratio in the inspection results for the relatively small degree of deterioration such as bbb and bcc, the deterioration prediction shows a ratio of about 3.0%, which is inconsistent.

図16の整合度は0.802となっていることから、8割程度の精度となっている。
点検1回目と2回目で補正した劣化予測は、図15を見ると、点検1回目で補正した劣化予測に見られたbbbやbccと言った割合の低い劣化度の不整合に対して改善が見られており、点検結果と同様にほとんど割合が無い結果を得ている。
ただし、劣化度の割合が大きいaaaやdee及びeeeに対して、やや点検結果との不整合が見られる。
Since the consistency in FIG. 16 is 0.802, the accuracy is about 80%.
Looking at FIG. 15, the deterioration prediction corrected in the first and second inspections is improved against the inconsistency of the low degree of deterioration such as bbb and bcc seen in the deterioration prediction corrected in the first inspection. It has been seen, and the results are almost the same as the inspection results.
However, there is some inconsistency with the inspection results for aaa, dee, and eee, which have a large rate of deterioration.

図16に示すように、全体的な整合度は0.818であり、結果的には1回目点検で補正した劣化予測と比較して大きな精度向上とはなっていない。
最後に、点検1~3回目の点検で補正した劣化予測は、どの劣化度に対しても点検結果と整合している。しかし、aabやabcといった劣化度に対し、点検結果では割合があるが、これらの劣化度を予測することができなかったため、図-16に示す整合度は0.913となっている。
As shown in FIG. 16, the overall consistency is 0.818, and as a result, the accuracy is not significantly improved as compared with the deterioration prediction corrected in the first inspection.
Finally, the deterioration prediction corrected in the first to third inspections is consistent with the inspection results for any degree of deterioration. However, although there is a ratio in the inspection results to the degree of deterioration such as aab and abc, the degree of deterioration could not be predicted, so the consistency shown in FIG. 16 is 0.913.

しかし、片粕大橋において、点検結果を用いて劣化予測を補正することで、劣化予測の精度が向上する結果を得ており、補正する点検回数が増えることで劣化予測精度が向上していることが分かった。 However, at Katakasucho Ohashi, the accuracy of deterioration prediction has been improved by correcting the deterioration prediction using the inspection results, and the accuracy of deterioration prediction has improved by increasing the number of inspections to be corrected. I understood.

次に片粕大橋について1~3回目の点検結果で補正した劣化予測のaabやabcといった劣化度を予測できなかった課題に対して、要素数を増やし1000要素で予測した場合の精度への影響を検証する。
解析結果を表18に、点検結果と1回目~3回目点検結果で補正した劣化予測100要素の場合及び1000要素の場合の比較を図17に、100要素の場合と1000要素の場合の整合度を図18に示す。
Next, for the problem that the degree of deterioration of Katakasucho Ohashi, such as aab and abc, which was corrected in the first to third inspection results, could not be predicted, the effect on the accuracy when the number of elements was increased and the prediction was made with 1000 elements. To verify.
Table 18 shows the analysis results, and Fig. 17 shows the comparison between the inspection results and the deterioration prediction of 100 elements and 1000 elements corrected by the 1st to 3rd inspection results. Consistency between 100 elements and 1000 elements. Is shown in FIG.

Figure 2022089440000019
Figure 2022089440000019

点検1回目~3回目点検結果で補正した劣化予測について100要素の場合と1000要素とを比較すると、表17と表18及び図17を見ると、ほぼ傾向は同じであるが、1000要素に増やすことによって、abbやbbcといった100要素では予測できなかった割合の低い劣化度に対して、1000要素では予測できるようになっている。しかし、その割合は合計で0.066程度であり、図18に示す様に100要素で0.913だった整合度が1000要素では0.920とわずかな精度向上しか見込めない結果となった。 Comparing the deterioration prediction corrected by the inspection results of the 1st to 3rd inspections with the case of 100 elements and 1000 elements, looking at Table 17, Table 18 and FIG. 17, the tendency is almost the same, but the tendency is increased to 1000 elements. As a result, it is possible to predict the degree of deterioration with a low rate that could not be predicted by 100 elements such as abb and bbc, but by 1000 elements. However, the ratio is about 0.066 in total, and as shown in FIG. 18, the consistency, which was 0.913 for 100 elements, is 0.920 for 1000 elements, which is a result that only a slight improvement in accuracy can be expected.

以上の結果から、片粕大橋の事例では要素数を、100要素を1000要素に増やしても、大幅な精度向上が見込めない結果となることが分かった。従って、100要素程度の分割でも十分であることがわかった。 From the above results, it was found that in the case of Katakasucho Ohashi, even if the number of elements is increased from 100 elements to 1000 elements, a significant improvement in accuracy cannot be expected. Therefore, it was found that a division of about 100 elements is sufficient.

3-5) 荷滝橋、轟崎橋、熊野神代橋の補正結果
荷滝橋、轟崎橋、熊野神代橋について、片粕大橋と同様に、1~3回目点検結果の補正前と補正後及び、点検で補正しない劣化予測と1回目点検で補正した劣化予測、1回目と2回目点検結果で補正した劣化予測、及び1回目~3回目点検結果で補正した劣化予測の結果と点検結果との比較による精度検証を行った。
図19は、荷滝橋における点検結果と劣化予測の整合度を示す図である(100要素)。
図20は、轟橋における点検結果と劣化予測の整合度を示す図である(100要素)。 図21は、熊野神代橋における点検結果と劣化予測の整合度を示す図である(100要素)。それぞれ、図16に対応する図である。
3-5) Correction results for Narutaki Bridge, Todoroki Bridge, and Kumano Jindai Bridge For Narutaki Bridge, Todoroki Bridge, and Kumano Jindai Bridge, as with Katagasu Ohashi, before and after the correction of the 1st to 3rd inspection results. And the deterioration prediction not corrected by the inspection, the deterioration prediction corrected by the first inspection, the deterioration prediction corrected by the first and second inspection results, and the deterioration prediction result and the inspection result corrected by the first to third inspection results. The accuracy was verified by comparison.
FIG. 19 is a diagram showing the consistency between the inspection result and the deterioration prediction at the Narutaki Bridge (100 elements).
FIG. 20 is a diagram showing the consistency between the inspection result and the deterioration prediction in Todoro Bridge (100 elements). FIG. 21 is a diagram showing the consistency between the inspection result and the deterioration prediction at Kumano Jindai Bridge (100 elements). It is a figure corresponding to FIG. 16, respectively.

詳細は省略するが、点検結果の補正前、補正後の比較、劣化予測の結果の比較を行ったところ、荷滝橋、轟崎橋、熊野神代橋とも、点検結果で補正しない場合の劣化予測の精度は良く無いことが分かった。
一方、1回目点検結果で補正することで大幅に予測精度が向上し、1,2回目点検結果及び1~3回目点検結果で補正する毎に予測精度が向上しており、片粕大橋と概ね同様の傾向を示していることが分かった。また、実橋における点検結果と劣化予測の整合度は、図16と同様である。従って、本発明の予測補正技術には、汎用性があることがわかった。
Although details are omitted, when the inspection results were compared before and after the correction, and the deterioration prediction results were compared, deterioration prediction was made when the inspection results were not corrected for all of the Narutaki Bridge, Todoroki Bridge, and Kumano Jindai Bridge. It turned out that the accuracy of was not good.
On the other hand, the prediction accuracy is greatly improved by making corrections based on the results of the first inspection, and the prediction accuracy is improved each time the corrections are made based on the results of the first and second inspections and the results of the first to third inspections. It was found that they showed a similar tendency. Further, the consistency between the inspection result and the deterioration prediction in the actual bridge is the same as in FIG. Therefore, it was found that the prediction correction technique of the present invention has versatility.

(まとめ)
以上の劣化予測の解析結果と点検結果についてまとめる。
(1)片粕大橋、荷滝橋、轟崎橋、熊野神代橋の4橋は点検結果で補正しない劣化予測の精度は悪くなっている。
これは、本実施例の劣化予測技術は、測定誤差や時間誤差を考慮して広範囲を予測対象としており、広範囲の劣化分布のうち、最も劣化速度が速いものを対象に劣化速度係数を設定し、確定的な劣化予測をばらつかせている。
(summary)
The analysis results and inspection results of the above deterioration prediction are summarized.
(1) The four bridges, Katakasucho Bridge, Narutaki Bridge, Todoroki Bridge, and Kumano Jindai Bridge, are not corrected by the inspection results, and the accuracy of deterioration prediction is poor.
This is because the deterioration prediction technique of this embodiment targets a wide range of predictions in consideration of measurement error and time error, and sets the deterioration rate coefficient for the one with the fastest deterioration rate among the wide range of deterioration distributions. , Disperses definitive deterioration predictions.

これら4橋の実際の劣化分布において、劣化速度が速い割合は小さいが、点検結果で補正しない劣化予測は均等な割合となるため、実際の劣化分布との乖離は大きくなる傾向になると考えられる。 In the actual deterioration distribution of these four bridges, the rate of high deterioration rate is small, but the deterioration prediction that is not corrected by the inspection results is an equal rate, so it is considered that the deviation from the actual deterioration distribution tends to be large.

(2)4橋は、より多くの点検結果で補正した劣化予測の精度が良くなることがわかった。図8,図9に示すように、点検結果が多くなる毎に劣化の経緯が明確になる。本発明の劣化予測は点検結果と整合する劣化予測を残して密度を増やし、整合しない劣化予測は除外している。 (2) It was found that the accuracy of deterioration prediction corrected by more inspection results was improved for 4 bridges. As shown in FIGS. 8 and 9, the process of deterioration becomes clear as the number of inspection results increases. The deterioration prediction of the present invention increases the density while leaving the deterioration prediction consistent with the inspection result, and excludes the inconsistent deterioration prediction.

従って、劣化の経緯が整合する劣化予測が残り、その密度が濃くなることによって、精度が向上していると考えられる。 Therefore, it is considered that the accuracy is improved by leaving the deterioration prediction in which the history of deterioration is consistent and increasing the density.

(3)片粕大橋において、劣化予測の本数を100本とした場合と1000本とした場合で予測精度の比較を行い、大きな差が無いことを確認した。 (3) At Katakasucho Ohashi, the prediction accuracy was compared between the case where the number of deterioration predictions was 100 and the case where the number was 1000, and it was confirmed that there was no big difference.

これは、表17、表18に示すように、本発明の劣化予測は劣化速度係数を乗じることから、劣化の速度が速い分布に対して劣化予測本数が多くなり、その場合、劣化速度が遅い分布に対しては劣化予測本数が少なくなる傾向にある。 This is because, as shown in Tables 17 and 18, the deterioration prediction of the present invention is multiplied by the deterioration rate coefficient, so that the number of deterioration predictions is larger than the distribution in which the deterioration rate is fast, and in that case, the deterioration rate is slow. The number of predicted deterioration tends to decrease with respect to the distribution.

片粕大橋のように、3回の点検による劣化の経緯において、「aab」、「abb」や「abc」のような劣化速度が遅い範囲に対しては劣化予測本数が少なくなり、劣化予測が点検結果の経緯と整合しにくい傾向となる。これは、劣化予測の本数を100本から1000本にしても多少の精度向上はあるが、傾向としては変わらないためと考えられる。 In the process of deterioration by three inspections such as Katakasucho Ohashi, the number of deterioration predictions is small for the range where the deterioration rate is slow such as "ab", "abb" and "abc", and the deterioration prediction is It tends to be difficult to match the details of the inspection results. It is considered that this is because the accuracy is improved to some extent even if the number of deterioration predictions is changed from 100 to 1000, but the tendency does not change.

(結論)
本発明は、実用的なBMSを開発する際の課題の一因となっていた、劣化予測にばらつきを考慮し、さらに、測定誤差や時間誤差を考慮した点検結果を用いて劣化予測補正モデルを提供するものである。
(Conclusion)
The present invention considers variations in deterioration prediction, which has been one of the causes of problems in developing a practical BMS, and further uses inspection results in consideration of measurement errors and time errors to create a deterioration prediction correction model. It is to provide.

(1)本発明では、確定的な予測に対してばらつきを与え、点検結果を用いて劣化予測のばらつきの分布を点検結果のばらつきの分布に補正する方法を提示した。ばらつきの考慮方法は確定的な劣化予測を0倍から実橋の劣化を網羅できる任意の倍数にばらつかせる方法を提案する。
また、ばらつかせるだけでは点検結果の劣化分布と整合しないため、ばらつかせた劣化予測に「劣化表現率」と言う重みを与え、それを点検結果の分布に合うように補正する方法を提案する。
(1) In the present invention, a method is presented in which variations are given to a definite prediction and the distribution of variations in deterioration prediction is corrected to the distribution of variations in inspection results using inspection results. As a method for considering the variation, we propose a method for diversifying the definite deterioration prediction from 0 times to an arbitrary multiple that can cover the deterioration of the actual bridge.
In addition, since it does not match the deterioration distribution of the inspection results just by making them scattered, we propose a method of giving a weight called "deterioration expression rate" to the various deterioration predictions and correcting it so that it matches the distribution of the inspection results. do.

以上により、劣化予測の密度を変えることで、点検結果の劣化分布と整合した劣化予測を可能とした。 From the above, by changing the density of deterioration prediction, it is possible to predict deterioration consistent with the deterioration distribution of inspection results.

(2)補正に用いる点検結果には測定誤差や時間的な誤差が含まれているため、点検結果に対して測定誤差を考慮するとともに、いつその劣化状態になったかの時間誤差を考慮した。
これにより、物理現象として起こり得る劣化速度を網羅的に予測できることがわかった。
(2) Since the inspection result used for correction includes measurement error and time error, the measurement error was taken into consideration for the inspection result, and the time error when the deterioration state was reached was taken into consideration.
From this, it was found that the deterioration rate that can occur as a physical phenomenon can be comprehensively predicted.

(3)高知県管内の塩害を受ける橋梁の中から、3回目点検を実施している片粕大橋を始めとした4橋に着目して、本発明の劣化予測モデルを適用して解析を行った。
確定的な劣化予測に与える任意倍数を示すとともに、点検結果で補正した劣化予測は、点検結果で補正しない劣化予測よりも予測精度が向上することがわかった。
また、点検結果による補正についても回数が増える毎に予測精度が向上することがわかった。
(3) Focusing on 4 bridges including Katagasu Ohashi, which is being inspected for the third time, from among the bridges damaged by salt in the Kochi prefecture jurisdiction, analysis is performed by applying the deterioration prediction model of the present invention. rice field.
It was found that the deterioration prediction corrected by the inspection result has higher prediction accuracy than the deterioration prediction not corrected by the inspection result, while showing an arbitrary multiple given to the definite deterioration prediction.
It was also found that the prediction accuracy of the correction based on the inspection result improves as the number of times increases.

(補足)本発明で用いた劣化予測モデル
本発明で用いる劣化予測モデルはこれまでの既往研究成果を用いて構成している。劣化予測モデルは飛来塩分ひび割れモデル、剥落モデルから構成される。飛来塩分量算出モデル、塩化物イオン移動モデル、腐食モデル、水分の移動モデルは、1次元の物質移動方程式を用いる。量算出モデルは小窪モデル(小窪 幸恵,岡村 甫:海水飛沫の発生過程に着目した飛来塩化物イオン量の算定モデル,土木学会論文集B, Vol.65 No.4, pp.259-268, 2009.8)を用いる。
(Supplement) Deterioration prediction model used in the present invention The deterioration prediction model used in the present invention is constructed by using the results of previous research. The deterioration prediction model consists of a flying salt crack model and a peeling model. A one-dimensional mass transfer equation is used for the flying salt content calculation model, chloride ion transfer model, corrosion model, and water transfer model. The quantity calculation model is the Kokubo model (Yukie Kokubo, Hajime Okamura: Calculation model of the amount of flying chloride ions focusing on the generation process of seawater droplets, JSCE Proceedings B, Vol.65 No.4, pp.259-268, 2009.8 ) Is used.

塩化物イオン・腐食モデルは環境の変化、電気防食や補修効果を考慮できる電気化学腐食モデル(前川宏一,石田哲也,岸利治:Multi-Scale Modeling of Structural Concrete9)を用いる。 The chloride ion / corrosion model uses an electrochemical corrosion model (Koichi Maekawa, Tetsuya Ishida, Toshiharu Kishi: Multi-Scale Modeling of Structural Concrete 9) that can take into consideration changes in the environment, electrocorrosion protection, and repair effects.

ひび割れモデルはFEM 解析と腐食ひび割れ実験から求めた提案式(Lukuan Q., 関 博:鉄筋腐食によるコンクリートのひび割れ発生状況及びひび割れ幅に関する研究,土木学会論文集,No.669/V-50, pp.161-171, 2001.)を用いる。
剥落モデルは腐食深さが限界値を超えるとかぶりが剥落することをFEM解析と実験から求めた提案式(鳥取誠一,宮川豊章:初期塩化物イオンの影響を受ける場合の鉄筋腐食に関する劣化予測,土木学会論文集,No.781/V-65, pp.157-170, 2005. (2020. 8.14 受付)を用いる。
The crack model is a proposed formula obtained from FEM analysis and corrosion crack experiment (Lukuan Q., Hiroshi Seki: Study on crack occurrence and crack width of concrete due to reinforcing bar corrosion, JSCE Proceedings, No.669 / V-50, pp. .161-171, 2001.) is used.
The exfoliation model is a proposal formula obtained from FEM analysis and experiments that the fog exfoliates when the corrosion depth exceeds the limit value (Seiichi Tottori, Toyoaki Miyagawa: Deterioration prediction related to reinforcing bar corrosion when affected by initial chloride ions, Proceedings of the Society of Civil Engineers, No. 781 / V-65, pp.157-170, 2005. (Reception on August 14, 2020) are used.

本明細書における処理および制御は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)によるソフトウェア処理、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)によるハードウェア処理によって実現することができる。 The processing and control in this specification are software processing by CPU (Central Processing Unit) and GPU (Graphics Processing Unit), ASIC (Application Specific Integrated Circuit) and FPGA (Field Programmable). can.

また、上記の実施の形態において、図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。 Further, in the above-described embodiment, the configuration and the like shown in the illustration are not limited to these, and can be appropriately changed within the range in which the effect of the present invention is exhibited. In addition, it can be appropriately modified and implemented as long as it does not deviate from the scope of the object of the present invention.

また、本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれるものである。
また、本実施の形態で説明した機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。尚、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
In addition, each component of the present invention can be arbitrarily selected, and an invention having the selected configuration is also included in the present invention.
Further, the program for realizing the function described in the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system and executed to process each part. May be done. The term "computer system" as used herein includes hardware such as an OS and peripheral devices.

また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また前記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。機能の少なくとも一部は、集積回路などのハードウェアで実現しても良い。
Further, the "computer system" includes the homepage providing environment (or display environment) if the WWW system is used.
Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. In that case, it also includes those that hold the program for a certain period of time, such as the volatile memory inside the computer system that is the server or client. Further, the program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. At least some of the functions may be realized by hardware such as integrated circuits.

(付記)
尚、本発明は、特許文献1に関する以下の開示および上記の記載に基づくその改良発明の開示を含む。
(Additional note)
The present invention includes the following disclosure regarding Patent Document 1 and the disclosure of the improved invention based on the above description.

(参考)
(発明1)
複数の面要素に分割されている実構造物について点検者が行った点検により把握された前記複数の面要素ごとのばらついた劣化状態である複数の面要素ごとのばらついた腐食量(mg/m)を把握する工程と、
分割した前記複数の面要素ごとの前記腐食量(mg/m)と構築時から前記点検を行ったときまでの経過時間(年)とに基づき、劣化予測速度(mg/m/時間)を表す曲線である劣化予測曲線を、横軸を構築時からの経過時間(年)、縦軸を累積腐食量(mg/m)として複数の面要素に分割されている前記実構造物について点検者が行った前記点検に基づいて表す工程と、
分割した前記複数の面要素ごとの前記劣化予測曲線1本あたりが表現している前記実構造物における表面積の割合を劣化表現率として把握し、確定的に算出した劣化予測速度を1倍速として、前記点検を行ったときにまったく劣化していない最も遅い劣化予測速度を0倍速とし、最も速い劣化速度として前記実構造物の劣化分布を把握した上で確定的に算出した劣化速度と比較し、累積腐食量(mg/m)から求められ累積腐食量(mg/m)が変換され、前記実構造物の劣化状態である劣化度を、分割した前記複数の面要素のすべてにわたって表現できる倍速とし、確定的に算出した劣化予測速度に、最も遅い劣化速度と最も早い劣化速度の間で前記実構造物の劣化分布に対応する間隔に相当する所定の間隔の倍率をそれぞれ掛けて、最も遅い劣化速度から最も早い劣化速度まで前記所定の間隔の倍率で刻んでばらつかせた複数の劣化表現率を得る工程と、
前記劣化予測曲線1本あたりの、前記ばらつかされた劣化表現率を前記実構造物について点検者が行った前記点検結果の劣化表現率に合うように補正することで、前記実構造物について点検者が行った前記点検結果と整合させる補正を行って前記劣化予測曲線1本あたりの、前記ばらつかされた劣化表現率を補正した劣化表現率を得る工程と、
前記実構造物の劣化状態を表す複数の劣化度に応じてそれぞれ所定の点数を定義し、定義した劣化度ごとの点数に、各劣化度の前記実構造物の面積割合を乗じ、その合計を劣化評点とする工程と、
分割した複数の面要素ごとの前記劣化評点を劣化予測速度を表す劣化評点曲線として、横軸を構築時からの経過時間(年)、縦軸を劣化評点として表す工程と、
前記劣化評点曲線のn年(nは2以上の整数)ごとに行われる点検時ごとに、
構造物の構築後所定の年数が経過してから行う点検の際に発生する「点検結果による測定誤差」について、点検を行う者が判定した劣化度と、専門家が判定した劣化度を比較することで分析し、あらかじめ把握されている、点検を行う者による測定誤差の傾向を用いて、点検を行う者が判定した劣化度についての点検結果を補正して得られた「点検結果による測定誤差」と、
前記点検時の劣化分布となるn年前の累積確率を0、前記点検時の劣化分布となる前記点検時の累積確率を1として、劣化予測が有する確率を{(1/n)×100}%とすることで得られた「時間的な誤差」
との範囲で囲まれる範囲を「誤差ボックス」として設定する工程と、
前記「誤差ボックス」の範囲に含まれる前記劣化予測に基づいて構造物の将来の劣化を予測する工程
を備えている
測定誤差、時間誤差を考慮した点検結果を用いた構造物の将来の劣化を予測する方法。
(reference)
(Invention 1)
The amount of corrosion (mg / m) that varies among the plurality of surface elements, which is a state of variation in deterioration for each of the plurality of surface elements, ascertained by the inspection performed by the inspector for the actual structure divided into the plurality of surface elements. 2 ) The process of grasping and
Deterioration prediction rate (mg / m 2 / hour) based on the amount of corrosion (mg / m 2 ) for each of the divided plurality of surface elements and the elapsed time (year) from the time of construction to the time of the inspection. The deterioration prediction curve, which is a curve representing, is divided into a plurality of surface elements with the horizontal axis representing the elapsed time (year) from the time of construction and the vertical axis representing the cumulative corrosion amount (mg / m 2 ). The process represented by the inspector based on the above inspection,
The ratio of the surface area in the actual structure represented by one of the deterioration prediction curves for each of the divided plurality of surface elements is grasped as the deterioration expression rate, and the deterministically calculated deterioration prediction speed is set to 1x speed. The slowest predicted deterioration rate that has not deteriorated at all when the above inspection is performed is set to 0 times the speed, and the fastest deterioration rate is compared with the deterioration rate deterministically calculated after grasping the deterioration distribution of the actual structure. The cumulative corrosion amount (mg / m 2 ) obtained from the cumulative corrosion amount (mg / m 2 ) is converted, and the degree of deterioration, which is the deterioration state of the actual structure, can be expressed over all of the divided plurality of surface elements. The speed is doubled, and the deterministically calculated deterioration prediction speed is multiplied by the magnification of the predetermined interval corresponding to the interval corresponding to the deterioration distribution of the actual structure between the slowest deterioration rate and the fastest deterioration rate, respectively. A process of obtaining a plurality of deterioration expression rates that are scattered at a magnification of the predetermined intervals from the slow deterioration rate to the fastest deterioration rate.
The actual structure is inspected by correcting the dispersed deterioration expression rate per one deterioration prediction curve so as to match the deterioration expression rate of the inspection result performed by the inspector for the actual structure. A step of obtaining a deterioration expression rate obtained by correcting the various deterioration expression rates per one deterioration prediction curve by making corrections that are consistent with the inspection results performed by the person.
A predetermined score is defined for each of a plurality of deterioration degrees representing the deterioration state of the actual structure, and the score for each defined deterioration degree is multiplied by the area ratio of the actual structure for each deterioration degree, and the total is calculated. The process of scoring deterioration and
The process of expressing the deterioration score for each of a plurality of divided surface elements as a deterioration score curve representing the deterioration prediction speed, the horizontal axis as the elapsed time (year) from the time of construction, and the vertical axis as the deterioration score.
At each inspection performed every n years (n is an integer of 2 or more) of the deterioration score curve,
Compare the degree of deterioration judged by the inspector with the degree of deterioration judged by the expert regarding the "measurement error due to the inspection result" that occurs during the inspection performed after a predetermined number of years have passed since the construction of the structure. The "measurement error due to the inspection result" obtained by correcting the inspection result for the degree of deterioration judged by the inspector using the tendency of the measurement error by the inspector, which is analyzed in advance and grasped in advance. "When,
The probability of deterioration prediction is {(1 / n) × 100}, where 0 is the cumulative probability n years before the deterioration distribution at the time of inspection and 1 is the cumulative probability at the time of the inspection which is the deterioration distribution at the time of inspection. "Time error" obtained by setting to%
The process of setting the range surrounded by the range as an "error box" and
The process of predicting the future deterioration of the structure based on the deterioration prediction included in the range of the "error box" is provided. The future deterioration of the structure using the inspection result considering the measurement error and the time error can be determined. How to predict.

(発明2)
コンピュータシステムによって構成されている劣化予測システムであって、
実構造物における分割した複数の面要素ごとの劣化予測速度(mg/m/時間)を表す曲線である劣化予測曲線を、横軸を構築時からの経過時間(年)、縦軸を累積腐食量(mg/m)として複数の面要素に分割されている前記実構造物について点検者が行った点検に基づいて表す処理を行う劣化予測曲線作成処理部と、
実構造物における分割した複数の面要素ごとの劣化予測曲線1本あたりが表現している前記実構造物における表面積の割合を劣化表現率として把握し、確定的に算出した劣化予測速度を1倍速として、前記点検を行ったときにまったく劣化していない最も遅い劣化予測速度を0倍速とし、最も速い劣化速度として前記実構造物の劣化分布を把握した上で確定的に算出した劣化速度と比較し、累積腐食量(mg/m)から求められ累積腐食量(mg/m)が変換され、前記実構造物の劣化状態である劣化度を、分割した前記複数の面要素のすべてにわたって表現できる倍速とし、確定的に算出した劣化予測速度に、最も遅い劣化速度と最も早い劣化速度の間で前記実構造物の劣化分布に対応する間隔に相当する所定の間隔の倍率をそれぞれ掛けて、最も遅い劣化速度から最も早い劣化速度まで前記所定の間隔の倍率で刻んでばらつかせた複数の劣化表現率を作成する処理を行う修正劣化表現率作成処理部と、
前記劣化予測曲線1本あたりの、前記ばらつかされた劣化表現率を前記実構造物について点検者が行った前記点検結果の劣化表現率に合うように補正することで、前記実構造物について点検者が行った前記点検結果と整合させる補正を行って前記劣化予測曲線1本あたりの、前記ばらつかされた劣化表現率を補正した劣化表現率を得る劣化予測曲線補正処理部と、
前記実構造物の劣化状態を表す複数の劣化度に応じてそれぞれ所定の点数を定義し、定義した劣化度ごとの点数に、各劣化度の前記実構造物の面積割合を乗じ、その合計を劣化評点とする処理を行う劣化評点演算処理部と、
分割した複数の面要素ごとの前記劣化評点を劣化予測速度を表す劣化評点曲線として、横軸を構築時からの経過時間(年)、縦軸を劣化評点として表す処理を行う劣化評点曲線作成処理部と、
前記劣化評点曲線のn年(nは2以上の整数)ごとに行われる点検時ごとに、
構造物の構築後所定の年数が経過してから行う点検の際に発生する「点検結果による測定誤差」について、点検を行う者が判定した劣化度と、専門家が判定した劣化度を比較することで分析し、あらかじめ把握されている、点検を行う者による測定誤差の傾向を用いて、点検を行う者が判定した劣化度についての点検結果を補正して得られた「点検結果による測定誤差」と、
前記点検時の劣化分布となるn年前の累積確率を0、前記点検時の劣化分布となる前記点検時の累積確率を1として、劣化予測が有する確率を{(1/n)×100}%とすることで得られた「時間的な誤差」
との範囲で囲まれる範囲を「誤差ボックス」として設定する処理を行う「誤差ボックス」設定処理部と、
前記「誤差ボックス」の範囲に含まれる前記劣化予測に基づいて構造物の将来の劣化を予測する処理部と
を備えている劣化予測システム。
(Invention 2)
It is a deterioration prediction system composed of a computer system.
The deterioration prediction curve, which is a curve representing the deterioration prediction rate (mg / m 2 / hour) for each of a plurality of divided surface elements in the actual structure, the horizontal axis is the elapsed time (year) from the time of construction, and the vertical axis is cumulative. A deterioration prediction curve creation processing unit that performs processing based on an inspection performed by an inspector on the actual structure divided into a plurality of surface elements as a corrosion amount (mg / m 2 ).
The ratio of the surface area in the actual structure expressed by one deterioration prediction curve for each of a plurality of divided surface elements in the actual structure is grasped as the deterioration expression rate, and the deterministically calculated deterioration prediction speed is 1x. As a result, the slowest deterioration prediction speed that has not deteriorated at all when the inspection is performed is set to 0 times the speed, and the fastest deterioration speed is compared with the deterioration speed deterministically calculated after grasping the deterioration distribution of the actual structure. Then, the cumulative corrosion amount (mg / m 2 ) obtained from the cumulative corrosion amount (mg / m 2 ) is converted, and the deterioration degree, which is the deterioration state of the actual structure, is spread over all of the divided surface elements. It is a double speed that can be expressed, and the deterministically calculated deterioration prediction speed is multiplied by a magnification of a predetermined interval corresponding to the interval corresponding to the deterioration distribution of the actual structure between the slowest deterioration rate and the fastest deterioration rate. , A modified deterioration expression rate creation processing unit that performs a process of creating a plurality of deterioration expression rates scattered at a magnification of the predetermined interval from the slowest deterioration rate to the fastest deterioration rate.
The actual structure is inspected by correcting the dispersed deterioration expression rate per one deterioration prediction curve so as to match the deterioration expression rate of the inspection result performed by the inspector for the actual structure. A deterioration prediction curve correction processing unit that obtains a deterioration expression rate obtained by correcting the various deterioration expression rates per one deterioration prediction curve by making corrections that match the inspection results performed by the person.
A predetermined score is defined for each of a plurality of deterioration degrees representing the deterioration state of the actual structure, and the score for each defined deterioration degree is multiplied by the area ratio of the actual structure for each deterioration degree, and the total is calculated. A deterioration score calculation processing unit that performs processing to be a deterioration score,
Deterioration score curve creation process in which the deterioration score for each of a plurality of divided surface elements is represented as a deterioration score curve representing the deterioration prediction speed, the horizontal axis is the elapsed time (year) from the time of construction, and the vertical axis is the deterioration score. Department and
At each inspection performed every n years (n is an integer of 2 or more) of the deterioration score curve,
Compare the degree of deterioration judged by the inspector with the degree of deterioration judged by the expert regarding the "measurement error due to the inspection result" that occurs during the inspection performed after a predetermined number of years have passed since the construction of the structure. The "measurement error due to the inspection result" obtained by correcting the inspection result for the degree of deterioration judged by the inspector using the tendency of the measurement error by the inspector, which is analyzed in advance and grasped in advance. "When,
The probability of deterioration prediction is {(1 / n) × 100}, where 0 is the cumulative probability n years before the deterioration distribution at the time of inspection and 1 is the cumulative probability at the time of the inspection which is the deterioration distribution at the time of inspection. "Time error" obtained by setting to%
An "error box" setting processing unit that performs processing to set the range surrounded by the range as an "error box",
A deterioration prediction system including a processing unit for predicting future deterioration of a structure based on the deterioration prediction included in the range of the “error box”.

本発明は、構造物の劣化予測装置に利用することが可能である。 The present invention can be used as a deterioration prediction device for structures.

A 構造物の劣化予測処理装置
1 劣化分布作成部
3 劣化分布設定部
5 劣化分布設定部
7 劣化速度補正係数乗算部
11 劣化表現率補正部
A Deterioration prediction processing device for structures 1 Deterioration distribution creation unit 3 Deterioration distribution setting unit 5 Deterioration distribution setting unit 7 Deterioration rate correction coefficient multiplication unit 11 Deterioration expression rate correction unit

Figure 2022089440000041
Figure 2022089440000041

Figure 2022089440000042
Figure 2022089440000042

Claims (9)

構造物の劣化予測装置であって、
前記構造物のn=1回目の点検に基づいて得られた、複数の面要素に分割した前記構造物の劣化分布を作成する劣化分布作成部と、
前記劣化分布作成部により得られた劣化分布において、測定誤差を考慮した第1の劣化分布を設定する第1の劣化分布設定部と、
前記測定誤差を考慮した第1の劣化分布において、時間誤差を考慮し、測定誤差、時間誤差を考慮した第2の劣化分布を設定する第2の劣化分布設定部と、
前記第2の劣化分布設定部により設定された、前記測定誤差、時間誤差を考慮した点検結果の第2の劣化分布の中で最も劣化が進んでいる劣化度を網羅できるように「劣化速度補正係数」を乗じて、0倍速まで均等にばらつかせる劣化速度補正係数乗算部と、
前記第2の劣化分布設定部により設定された、前記測定誤差、時間誤差を考慮した劣化分布と、前記第2の劣化分布設定部により設定された第2の劣化分布と、が整合するように、劣化予測の劣化表現率を補正する劣化表現率補正部と、
を有し、
以下、n+1として、n=m(mは2以上の最終点検回数)となるまで処理を継続した後に処理を終了させることを特徴とする構造物の劣化予測装置。
ここで、劣化予測1本あたりが表現している表面積の割合が「劣化表現率」である。
It is a deterioration prediction device for structures.
A deterioration distribution creation unit that creates a deterioration distribution of the structure divided into a plurality of surface elements, which is obtained based on n = first inspection of the structure.
In the deterioration distribution obtained by the deterioration distribution creating unit, the first deterioration distribution setting unit that sets the first deterioration distribution in consideration of the measurement error, and the deterioration distribution setting unit.
In the first deterioration distribution in consideration of the measurement error, the second deterioration distribution setting unit for setting the second deterioration distribution in consideration of the time error and the measurement error and the time error, and the second deterioration distribution setting unit.
"Deterioration rate correction" so as to cover the degree of deterioration that is most advanced in the second deterioration distribution of the inspection result considering the measurement error and the time error set by the second deterioration distribution setting unit. Deterioration speed correction coefficient multiplication unit that can be evenly distributed up to 0x speed by multiplying by "coefficient",
The deterioration distribution in consideration of the measurement error and the time error set by the second deterioration distribution setting unit is matched with the second deterioration distribution set by the second deterioration distribution setting unit. , Deterioration expression rate correction unit that corrects the deterioration expression rate of deterioration prediction,
Have,
Hereinafter, a structure deterioration prediction device, wherein n + 1 is used, and the process is continued until n = m (m is the number of final inspections of 2 or more) and then the process is terminated.
Here, the ratio of the surface area expressed by one deterioration prediction is the "deterioration expression rate".
前記第1の劣化分布設定部は、
前記劣化分布作成部により得られた劣化分布に測定誤差補正行列を用いて、測定誤差を考慮した第1の劣化分布を設定する
ことを特徴とする請求項1に記載の構造物の劣化予測装置。
The first deterioration distribution setting unit is
The deterioration prediction device for a structure according to claim 1, wherein a first deterioration distribution in consideration of a measurement error is set by using a measurement error correction matrix for the deterioration distribution obtained by the deterioration distribution creating unit. ..
前記劣化分布作成部は、
複数の面要素に分割されている実構造物について点検により把握された前記複数の面要素ごとのばらついた劣化状態である複数の面要素ごとのばらついた劣化度を求める
請求項1又は2に記載の構造物の劣化予測装置。
The deterioration distribution creation unit
The invention according to claim 1 or 2, wherein the degree of deterioration of the actual structure divided into the plurality of surface elements, which is the state of variation of the deterioration of the plurality of surface elements ascertained by inspection, is obtained. Deterioration prediction device for structures.
劣化予測の要素の数は、100~1000要素である
請求項1~3までのいずれか1項に記載の構造物の劣化予測装置。
The deterioration prediction device for a structure according to any one of claims 1 to 3, wherein the number of deterioration prediction elements is 100 to 1000 elements.
前記構造物は、実橋である
請求項1~4までのいずれか1項に記載の構造物の劣化予測装置。
The structure deterioration prediction device according to any one of claims 1 to 4, wherein the structure is an actual bridge.
構造物の劣化予測方法であって、
a)1回目点検を実施し、劣化分布作成ステップにおいて作成した劣化分布を把握するステップと、
b)得られた劣化分布において、測定誤差を考慮した第1の劣化分布を設定するステップと、
c)劣化分布設定部が、測定誤差を考慮した劣化分布に時間誤差を考慮し、測定誤差、時間誤差を考慮した第2の劣化分布を設定するステップと、
d)劣化速度補正係数乗算部が、確定的な劣化予測が、「測定誤差、時間誤差を考慮した点検結果の劣化分布」の中で最も劣化が進んでいる劣化度を網羅できるまで「劣化速度補正係数」を乗じ、0倍速まで均等にばらつかせるステップと、
e)劣化表現率補正部が、測定誤差、時間誤差を考慮した点検結果の劣化分布と、誤差を考慮した点検結果の劣化分布と、が整合するように、劣化予測の「劣化表現率」を補正するステップと、
を有し、
以下、n+1として、n=m(mは2以上の最終点検回数)となるまで処理を継続し、その後に処理を終了させることを特徴とする構造物の劣化予測方法。
ここで、劣化予測1本あたりが表現している表面積の割合が「劣化表現率」である。
It is a method of predicting deterioration of structures.
a) The step of conducting the first inspection and grasping the deterioration distribution created in the deterioration distribution creation step, and
b) In the obtained deterioration distribution, the step of setting the first deterioration distribution in consideration of the measurement error, and
c) A step in which the deterioration distribution setting unit considers the time error in the deterioration distribution considering the measurement error and sets the second deterioration distribution in consideration of the measurement error and the time error.
d) Deterioration rate correction coefficient multiplication unit, until the definite deterioration prediction can cover the degree of deterioration that is most deteriorated in the "deterioration distribution of inspection results considering measurement error and time error", "deterioration rate" A step that multiplies the "correction coefficient" and evenly distributes up to 0x speed,
e) The deterioration expression rate correction unit sets the "deterioration expression rate" of the deterioration prediction so that the deterioration distribution of the inspection result considering the measurement error and time error and the deterioration distribution of the inspection result considering the error match. Steps to correct and
Have,
Hereinafter, a method for predicting deterioration of a structure, wherein n + 1 is used, and the process is continued until n = m (m is the number of final inspections of 2 or more), and then the process is terminated.
Here, the ratio of the surface area expressed by one deterioration prediction is the "deterioration expression rate".
前記第1の劣化分布を設定するステップは、
前記劣化分布作成ステップにより得られた劣化分布に測定誤差補正行列を用いて、測定誤差を考慮した第1の劣化分布を設定する
ことを特徴とする請求項6に記載の構造物の劣化予測方法。
The step of setting the first deterioration distribution is
The deterioration prediction method for a structure according to claim 6, wherein a first deterioration distribution in consideration of a measurement error is set for the deterioration distribution obtained by the deterioration distribution creation step by using a measurement error correction matrix. ..
前記劣化分布作成ステップは、
複数の面要素に分割されている実構造物について点検により把握された前記複数の面要素ごとのばらついた劣化状態である複数の面要素ごとのばらついた劣化度を求めることを特徴とする
請求項6又は7に記載の構造物の劣化予測方法。
The deterioration distribution creation step is
The claim is characterized in that the degree of deterioration of each of the plurality of surface elements, which is the state of variation of the deterioration of each of the plurality of surface elements, which is grasped by the inspection of the actual structure divided into the plurality of surface elements, is obtained. The method for predicting deterioration of a structure according to 6 or 7.
コンピュータに、請求項6から8までのいずれか1項に記載の構造物の劣化予測方法における処理を順次実行させるためのプログラム。 A program for causing a computer to sequentially execute the processes in the structure deterioration prediction method according to any one of claims 6 to 8.
JP2020201837A 2020-12-04 2020-12-04 Structure deterioration prediction device, structure deterioration prediction method and structure deterioration prediction program Active JP6985686B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020201837A JP6985686B1 (en) 2020-12-04 2020-12-04 Structure deterioration prediction device, structure deterioration prediction method and structure deterioration prediction program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020201837A JP6985686B1 (en) 2020-12-04 2020-12-04 Structure deterioration prediction device, structure deterioration prediction method and structure deterioration prediction program

Publications (2)

Publication Number Publication Date
JP6985686B1 JP6985686B1 (en) 2021-12-22
JP2022089440A true JP2022089440A (en) 2022-06-16

Family

ID=79193097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020201837A Active JP6985686B1 (en) 2020-12-04 2020-12-04 Structure deterioration prediction device, structure deterioration prediction method and structure deterioration prediction program

Country Status (1)

Country Link
JP (1) JP6985686B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192221A (en) * 2008-02-12 2009-08-27 Kyoto Univ Deterioration evaluator and deterioration evaluation method
US20140330609A1 (en) * 2013-05-01 2014-11-06 International Business Machines Corporation Performance Driven Municipal Asset Needs and Sustainability Analysis
JP2019015528A (en) * 2017-07-04 2019-01-31 高知県公立大学法人 Predication method of deterioration of structure using inspection result by taking measurement error and time error into consideration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192221A (en) * 2008-02-12 2009-08-27 Kyoto Univ Deterioration evaluator and deterioration evaluation method
US20140330609A1 (en) * 2013-05-01 2014-11-06 International Business Machines Corporation Performance Driven Municipal Asset Needs and Sustainability Analysis
JP2019015528A (en) * 2017-07-04 2019-01-31 高知県公立大学法人 Predication method of deterioration of structure using inspection result by taking measurement error and time error into consideration

Also Published As

Publication number Publication date
JP6985686B1 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
Qin et al. Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models
Hao et al. Reliability modeling for mutually dependent competing failure processes due to degradation and random shocks
Kim An assessment of deforestation models for reducing emissions from deforestation and forest degradation (REDD)
Fitzpatrick et al. Benchmarking the cost per person of mass treatment for selected neglected tropical diseases: an approach based on literature review and meta-regression with web-based software application
Williams Predicting completed project cost using bidding data
Regan et al. Testing decision rules for categorizing species’ extinction risk to help develop quantitative listing criteria for the US Endangered Species Act
Andreeski et al. Modelling, forecasting and testing decisions for seasonal time series in tourism
CN111160667A (en) Method and device for improving robustness of food safety prediction model
JP6985686B1 (en) Structure deterioration prediction device, structure deterioration prediction method and structure deterioration prediction program
Bradley et al. An ensemble of spatially explicit land-cover model projections: prospects and challenges to retrospectively evaluate deforestation policy
Mahipan et al. A forecasting model for Thailand’s unemployment rate
JP4028824B2 (en) Deterioration prediction method for reinforced concrete structures
Pashova et al. Gap filling of daily sea levels by artificial neural networks
JP6919705B2 (en) Deterioration prediction device, deterioration prediction method, and program
Melendez et al. Tourism demand modeling and forecasting for El Salvador
Samuel et al. Multi-criteria-based simulation model to estimate resources for bridge inspections
Creary et al. The data mining approach for analyzing infrastructure operating conditions
Owolabi et al. Development of priority index assessment model for road pavements in Nigeria
Naibaho et al. Prediksi Persentase Kepemilikan Akta Kelahiran Pada Usia 0-17 Tahun Dengan Neural Network Backpropagation Algoritma Conjugate Gradient
Ceribasi et al. Application of trend analysis and artificial neural networks methods: The case of Sakarya River
JP2019015528A (en) Predication method of deterioration of structure using inspection result by taking measurement error and time error into consideration
Andreou et al. A neural network measurement of relative military security‐the case of Greece and Cyprus
ZHANG et al. Reinforcement Learning-based Bridge Inspection Management
Omshi et al. Bayesian update and aperiodic maintenance policy for deteriorating systems with unknown parameters
Ali et al. Development of International Roughness Index from Pavement Distress Using Artificial Neural Networks (ANNs)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201204

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201218

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6985686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150