JP2009191715A - Turbine control valve control device - Google Patents

Turbine control valve control device Download PDF

Info

Publication number
JP2009191715A
JP2009191715A JP2008032631A JP2008032631A JP2009191715A JP 2009191715 A JP2009191715 A JP 2009191715A JP 2008032631 A JP2008032631 A JP 2008032631A JP 2008032631 A JP2008032631 A JP 2008032631A JP 2009191715 A JP2009191715 A JP 2009191715A
Authority
JP
Japan
Prior art keywords
control valve
turbine control
request signal
turbine
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008032631A
Other languages
Japanese (ja)
Other versions
JP4913079B2 (en
Inventor
Madoka Saito
円 斉藤
Koji Jibiki
浩至 地曵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008032631A priority Critical patent/JP4913079B2/en
Publication of JP2009191715A publication Critical patent/JP2009191715A/en
Application granted granted Critical
Publication of JP4913079B2 publication Critical patent/JP4913079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbine control valve control device capable of avoiding a resonance phenomenon or an excess hydraulic pressure pulsation in a high pressure oil line caused by control signal fluctuation of a turbine control valve without damaging the response speed of the turbine control valve. <P>SOLUTION: When a high frequency component included in an opening requirement signal of the turbine control valve is determined as being equal to or more than a prescribed value by a high frequency component determination means 41 and generator output is determined as being equal to or more than a prescribed value by a generator output determination means 27, an output switch means 42 selects the opening requirement signal of the turbine control valve passing through a band pass filter 22, and selects the opening requirement signal of the turbine control valve not passing though the band pass filter 22 at a time other than this, and outputs it to a control means 43. The control means 43 drives the opening of the turbine control valve based on the opening requirement signal of the turbine control valve selected by the output switch means 42. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、タービンを駆動する作動流体の流量を調整するタービン制御弁を制御するタービン制御弁制御装置に関する。   The present invention relates to a turbine control valve control device that controls a turbine control valve that adjusts the flow rate of a working fluid that drives a turbine.

例えば、高圧の作動流体(主蒸気)を流入させて膨張仕事を得る蒸気タービンにおいては、蒸気タービンの加減弁制御に電気油圧式の制御装置が用いられている。電気油圧式制御装置では、タービン回転数、タービンにより駆動される発電機負荷、タービンに流入する主蒸気圧力などの入力信号を基に内部の演算回路で加減弁の流量指令信号を算出し、これを加減弁開度信号に変換して開度指令を決定するようにしている。   For example, in a steam turbine that obtains expansion work by flowing a high-pressure working fluid (main steam), an electrohydraulic control device is used for control of the steam turbine. In the electrohydraulic control device, the flow rate command signal of the regulating valve is calculated by an internal arithmetic circuit based on input signals such as the turbine speed, the generator load driven by the turbine, and the main steam pressure flowing into the turbine. Is converted into an increase / decrease valve opening signal to determine the opening command.

一方、作動流体と共に燃料を流入させて燃焼させた後に膨張させて仕事を得るガスタービン設備のタービンにおいても同様に、排気温度や作動流体圧力などの入力信号を基にタービン制御弁制御装置の内部の演算回路で制御弁の流量指令信号を算出し、これを制御弁開度信号に変換して開度指令を決定するようにしている。   On the other hand, in the turbine of a gas turbine facility that obtains work by inflating fuel after flowing in with the working fluid, similarly, the inside of the turbine control valve control device is based on input signals such as exhaust temperature and working fluid pressure. The flow rate command signal of the control valve is calculated by this arithmetic circuit and converted into a control valve opening signal to determine the opening command.

以下、蒸気タービンの場合について説明する。蒸気タービンの場合は制御弁は加減弁であり、加減弁開度指令信号と現場の弁駆動用の油圧シリンダ(油筒)からの実開度フィードバック信号との偏差にゲインをかけた信号がサーボ弁の入力信号となる。これによって駆動されるサーボ弁内部のポートの切り替わりによって加減弁油圧シリンダへの高圧油の供給と排出が制御され加減弁開度が決定される。   Hereinafter, the case of a steam turbine will be described. In the case of a steam turbine, the control valve is an adjusting valve, and a signal obtained by multiplying the deviation between the adjusting valve opening command signal and the actual opening feedback signal from the hydraulic cylinder (oil cylinder) for on-site valve driving is a servo. It becomes the input signal of the valve. As a result, the supply and discharge of high-pressure oil to the control valve hydraulic cylinder is controlled by switching the port inside the servo valve that is driven, and the control valve opening is determined.

一般に、サーボ弁は油圧シリンダに付随して油圧シリンダへの高圧油供給入り口部に設置されるが、これは油圧シリンダすなわち加減弁の応答性を高める目的によるものである。サーボ弁の利点はゲインが高く精度と即応性に優れているところであるが、その一方で追従が良過ぎるために制御信号中に少なからず存在するノイズ成分にも応答可能であるという問題がある。   In general, the servo valve is installed at the high pressure oil supply inlet to the hydraulic cylinder in association with the hydraulic cylinder. This is for the purpose of improving the response of the hydraulic cylinder, that is, the adjusting valve. The advantage of the servo valve is that it has a high gain and is excellent in accuracy and responsiveness. On the other hand, since the tracking is too good, there is a problem that it can respond to a noise component that is present in the control signal.

近年、タービンの大容量化に伴う負荷遮断時の過速抑制制御に対する要求や、速度・負荷・圧力追従制御におけるより高速で高精度での制御要求などを満足するためには油圧シリンダ駆動部にサーボ弁を用いた電気油圧式制御装置を適用することは必要不可欠なものとなっている。仮に、制御信号が高周波で変動すると、これにサーボ弁が応答することにより高圧油ラインに共振現象や過大な油圧脈動現象が発生することが指摘されており、これによる高圧油系統の配管機器やサーボ弁の損傷の可能性が増大する。   In order to satisfy the demand for overspeed suppression control at the time of load interruption due to the increase in turbine capacity in recent years and the demand for higher speed and high accuracy control in speed / load / pressure tracking control, etc. It is indispensable to apply an electrohydraulic control device using a servo valve. If the control signal fluctuates at a high frequency, it has been pointed out that a resonance phenomenon or excessive hydraulic pulsation occurs in the high-pressure oil line due to the response of the servo valve. The possibility of servo valve damage increases.

これを防止するためには、高圧油系統に機械式アキュムレータを設けることや電気制御装置側に信号フィルタを設けることが提案されている。また、タービン制御弁制御装置の蒸気加減弁開度要求信号ラインに高周波カットフィルタを介挿して出力信号を減衰させサーボ弁の動きを抑制して油圧脈動の抑制を図るようにしたものもある(例えば、特許文献1参照)。   In order to prevent this, it has been proposed to provide a mechanical accumulator in the high-pressure oil system or to provide a signal filter on the electric control device side. In addition, there is a type in which a high-frequency cut filter is inserted into the steam control valve opening request signal line of the turbine control valve control device to attenuate the output signal and suppress the movement of the servo valve to suppress hydraulic pulsation ( For example, see Patent Document 1).

図6は、蒸気タービンの加減弁油圧シリンダ直近に機械式アキュムレータを設けて油圧の緩衝減衰効果をもたせた従来の電気油圧式制御装置の構成図である。蒸気発生器1により発生した蒸気は、主蒸気止め弁5と加減弁6とを通過した後にタービン2に導かれる。そして、タービン2で膨張仕事をすることにより、発電機7を駆動すると共に復水器3で凝縮して復水となる。この復水は給水ポンプ4で蒸気発生器1に戻されて蒸気サイクルを構成するが、タービン2の回転数、タービン2により駆動される発電機7の負荷、主蒸気圧力は加減弁6の開度によって決定される。   FIG. 6 is a configuration diagram of a conventional electrohydraulic control device in which a mechanical accumulator is provided in the immediate vicinity of a control valve hydraulic cylinder of a steam turbine so as to have a hydraulic buffer damping effect. The steam generated by the steam generator 1 is guided to the turbine 2 after passing through the main steam stop valve 5 and the control valve 6. Then, by performing expansion work with the turbine 2, the generator 7 is driven and condensed with the condenser 3 to become condensate. This condensate is returned to the steam generator 1 by the feed water pump 4 to constitute a steam cycle. The rotational speed of the turbine 2, the load of the generator 7 driven by the turbine 2, and the main steam pressure are opened by the open / close valve 6. Determined by degree.

この加減弁6の開度は、制御弁制御装置14の内部で演算処理された開度要求信号により制御される。制御弁制御装置14には、回転数測定器15によって測定された回転数信号、発電機出力測定器16によって測定された負荷信号、主蒸気圧力測定器17によって測定された蒸気圧力信号が入力され、また、加減弁開度検出器9によって測定された実開度フィードバック信号が入力される。制御弁制御装置14は、これら信号に基づいて演算処理を行い作成された制御信号をサーボ弁10に導き、これによってサーボ弁10を動作させて加減弁油圧シリンダ8への高圧油の流入/流出を制御する。これにより加減弁油圧シリンダ8の位置として加減弁6の開度は決定される。   The opening degree of the adjusting valve 6 is controlled by an opening degree request signal that has been arithmetically processed inside the control valve control device 14. The control valve control device 14 is inputted with the rotation speed signal measured by the rotation speed measuring device 15, the load signal measured by the generator output measuring device 16, and the steam pressure signal measured by the main steam pressure measuring device 17. In addition, the actual opening feedback signal measured by the adjusting valve opening detector 9 is input. The control valve control device 14 performs arithmetic processing based on these signals, guides a control signal created to the servo valve 10, thereby operating the servo valve 10 to inflow / outflow of high pressure oil to the control valve hydraulic cylinder 8. To control. Thereby, the opening degree of the regulating valve 6 is determined as the position of the regulating valve hydraulic cylinder 8.

この高圧油は離れた位置にある油圧発生装置11から高圧油ポンプ12により高圧油配管13を介してサーボ弁10と加減弁油圧シリンダ8とに供給されるが、油圧シリンダの近傍にアキュムレータ35が設置されている。   This high-pressure oil is supplied from the oil pressure generator 11 at a remote position to the servo valve 10 and the adjusting valve hydraulic cylinder 8 via the high-pressure oil pipe 13 by the high-pressure oil pump 12, and an accumulator 35 is provided in the vicinity of the hydraulic cylinder. is set up.

一般に、制御弁制御装置14への入力信号である回転数信号、負荷信号、圧力信号などは、それらの測定器の影響も含めて微小外乱変動成分を持つため、加減弁開度要求信号にも変動成分が加算されることになり、これにサーボ弁10が応答すると高圧油の給排油量が変動し、さらに、この変動周波数が高圧油配管系統の固有振動数と共振した場合には、過大な圧力脈動となる可能性があるが、アキュムレータ35の設置により、その圧力緩衝作用によってこの圧力脈動成長に対する抑制効果を持たせている。   In general, a rotation speed signal, a load signal, a pressure signal, and the like, which are input signals to the control valve control device 14 have a minute disturbance fluctuation component including the influence of those measuring instruments. When the variable component is added and the servo valve 10 responds to this, the supply and discharge amount of the high-pressure oil fluctuates, and when this fluctuation frequency resonates with the natural frequency of the high-pressure oil piping system, Although there is a possibility of excessive pressure pulsation, the accumulator 35 is provided to suppress the pressure pulsation growth by its pressure buffering action.

図7は従来の制御弁制御装置14の構成図である。制御弁制御装置14には、入力信号として、発電機出力測定器16、回転数測定器15、主蒸気圧力測定器17から、それぞれ発電機出力信号、回転数信号、主蒸気圧力信号が入力される。制御弁制御装置14の制御信号演算発生器19は、これら信号に基づいて、制御量を所定の設定値に制御するのに必要な蒸気流量信号を作成する。   FIG. 7 is a block diagram of a conventional control valve control device 14. The control valve control device 14 receives, as input signals, a generator output signal, a rotation speed signal, and a main steam pressure signal from a generator output measurement device 16, a rotation speed measurement device 15, and a main steam pressure measurement device 17, respectively. The Based on these signals, the control signal calculation generator 19 of the control valve control device 14 creates a steam flow signal necessary for controlling the control amount to a predetermined set value.

この必要流量信号は開度変換関数発生器20によって、加減弁6の必要開度信号に変換されるが、この加減弁開度要求信号aに対して、例えば、カットオフ周波数f0を5Hz程度に設定したバンドパスフィルタ22を通過させて高周波成分を除去するようにしている。   This required flow rate signal is converted into a required opening signal of the adjusting valve 6 by the opening conversion function generator 20, but for this adjusting valve opening request signal a, for example, the cut-off frequency f0 is set to about 5 Hz. High-frequency components are removed by passing through the set band-pass filter 22.

図8は従来の制御弁制御装置14のバンドパスフィルタ22の通過前後における加減弁開度要求信号の波形図である。バンドパスフィルタ22の通過前の加減弁開度要求信号aに対して、バンドパスフィルタ22の通過後の加減弁開度要求信号a1は、高周波成分が除去されている。このフィルタ通過後の加減弁開度要求信号a1を差分演算器30に導き、弁開度検出器9から復調器32によって復調されたフィードバック信号a2との偏差Δaを算出した後に、この偏差Δaを演算増幅器31で演算増幅した信号でサーボ弁10を駆動する。   FIG. 8 is a waveform diagram of the control valve opening request signal before and after passing through the band-pass filter 22 of the conventional control valve control device 14. The control valve opening request signal a1 after passing through the bandpass filter 22 has a high-frequency component removed from the control valve opening request signal a before passing through the bandpass filter 22. The control valve opening request signal a1 after passing through the filter is guided to the difference calculator 30, and after calculating the deviation Δa from the valve opening detector 9 and the feedback signal a2 demodulated by the demodulator 32, the deviation Δa is calculated. The servo valve 10 is driven by a signal that has been amplified by the operational amplifier 31.

このような処理を実施することによって、サーボ弁10は制御弁制御装置14の入力信号検出系に含まれる高周波変動成分をノイズとみなして除去した後の制御信号によって駆動される。このため、高圧油系統の圧力脈動の元となる高周波動作が抑制された動作をすることになり、機械式アキュムレータと同様な効果が期待できることになる。   By performing such processing, the servo valve 10 is driven by the control signal after removing the high frequency fluctuation component included in the input signal detection system of the control valve control device 14 as noise. For this reason, it will operate | move in which the high frequency operation | movement which becomes the origin of the pressure pulsation of a high pressure oil system | strain was suppressed, and the effect similar to a mechanical accumulator can be anticipated.

一般に、タービン1が大型化すると油圧発生装置11から加減弁6までの距離が遠くなり、間をとりもつ高圧油配管系の圧力脈動に対する固有振動数が低下する。また制御信号の基となる回転数信号や圧力信号には数Hz〜数十Hzの避け得ないノイズが加わっていることが一般的であるから、高圧油配管系の固有振動数が低下した状態にあると、このようなノイズの変動周波数に接近することになる。このため、ノイズの変動レベルが小さくても、その変動周波数と共振しやすくなって、大きな圧力脈動が発生することになる。よって前述したような回避技術の重要性はより高まることになる。
特開平6−248904号公報
In general, when the size of the turbine 1 is increased, the distance from the hydraulic pressure generator 11 to the control valve 6 is increased, and the natural frequency with respect to pressure pulsation in the high-pressure oil piping system is reduced. In addition, since the inevitable noise of several Hz to several tens of Hz is generally added to the rotation speed signal and pressure signal that are the basis of the control signal, the natural frequency of the high-pressure oil piping system is reduced. If it is, it will approach the fluctuation frequency of such noise. For this reason, even if the fluctuation level of the noise is small, it tends to resonate with the fluctuation frequency, and a large pressure pulsation occurs. Therefore, the importance of the avoidance technique as described above is further increased.
JP-A-6-248904

ところが、従来ものでは、機械式のアキュムレータ35を設置するためには、その容量や個数、設置位置の最適化などについて、油圧シリンダ構造・サイズや配管ルートの異なる各機種ごとに個別にエンジニアリングを実施して検討する必要があり、設置後の効果評価を含めた検討作業は容易ではない。また、ハードウエアの設置であることからコストがかさみ、設置スペースも考慮する必要がある。さらに、定期的な充填圧力管理や油漏れ管理などに対するメンテナンスも考慮する必要がある。   However, in order to install the mechanical accumulator 35 in the conventional system, engineering is performed individually for each model with different hydraulic cylinder structure / size and piping route in terms of capacity, number, and installation position optimization. Therefore, it is not easy to carry out the examination work including the effect evaluation after installation. In addition, since hardware is installed, the cost is high and the installation space needs to be considered. Furthermore, it is necessary to consider maintenance for periodic filling pressure management and oil leakage management.

また、特許文献1に示されるように、制御回路中に常時バンドパスフィルタを介挿する場合では、その効果によって過渡的な加減弁の制御応答スピードが抑制されることになるため、通常のノイズ信号に対しては効果的であるが、例えば負荷遮断時などのように過速を抑制するために加減弁の動作に高速即応性が求められる場合や、BWR原子力プラントの様に、通常運転は加減弁により蒸気タービンの負荷制御運転に優先して主蒸気圧力制御が行われるプラントでは、微小な圧力変動に基づき原子炉側からの要求に基づく圧力制御が必要な場合にも拘らず微小な圧力変化に応じて開度制御が行われなくなってしまう、
さらに、高速追従制御が必要にも拘わらずバンドパスフィルタが機能することにより追従ができなくなる点が不利となる。すなわち、バンドパスフィルタは本来必要な時のみ作動することが望ましく常時作動している必要はない。
In addition, as shown in Patent Document 1, in the case where a band-pass filter is always inserted in the control circuit, the effect of the control response speed of the transient valving valve is suppressed by the effect. Although it is effective for signals, normal operation is not necessary when high-speed responsiveness is required for the operation of the adjusting valve in order to suppress overspeed, such as when a load is interrupted. In plants where main steam pressure control is performed prior to the load control operation of the steam turbine by adjusting valves, even if pressure control based on requests from the reactor side is necessary based on minute pressure fluctuations, minute pressure The opening degree control will not be performed according to the change,
Furthermore, although the high-speed tracking control is necessary, it is disadvantageous that the band-pass filter functions so that tracking cannot be performed. That is, it is desirable that the band-pass filter is activated only when it is necessary, and it is not necessary to always operate.

本発明の目的は、タービン制御弁の応答スピードに弊害を与えずにタービン制御弁の制御信号変動に起因して高圧油ラインに発生する共振現象や過大な油圧脈動が回避できるタービン制御弁制御装置を提供することである。   An object of the present invention is to provide a turbine control valve control device capable of avoiding a resonance phenomenon and excessive hydraulic pulsation that occur in a high pressure oil line due to fluctuations in the control signal of the turbine control valve without adversely affecting the response speed of the turbine control valve. Is to provide.

本発明に係わるタービン制御弁制御装置は、タービンを駆動する作動流体の流量を調整するタービン制御弁の開度要求信号を演算する開度要求信号演算手段と、前記タービン制御弁の開度要求信号に含まれる高周波成分を除去するバンドパスフィルタと、前記タービン制御弁の開度要求信号に含まれる高周波成分が所定値以上であるかどうかを判定する高周波成分判定手段と、前記タービンにより駆動される発電機の出力が所定値以上であるかどうかを判定する発電機出力判定手段と、前記タービン制御弁の開度要求信号に含まれる高周波成分が所定値以上で前記発電機出力が所定値以上であるときは前記バンドパスフィルタを通したタービン制御弁の開度要求信号を選択し、それ以外のときは前記バンドパスフィルタを通さないタービン制御弁の開度要求信号を選択し出力する出力切替手段と、前記出力切替手段で選択されたタービン制御弁の開度要求信号に基づいてタービン制御弁の開度を駆動する制御手段とを備えたことを特徴とする。   A turbine control valve control device according to the present invention includes an opening request signal calculating means for calculating an opening request signal of a turbine control valve for adjusting a flow rate of a working fluid that drives a turbine, and an opening request signal of the turbine control valve. Driven by the turbine, a band-pass filter that removes the high-frequency component contained in the high-frequency component, a high-frequency component determination means that determines whether or not the high-frequency component contained in the opening request signal of the turbine control valve is greater than or equal to a predetermined value A generator output determining means for determining whether or not the output of the generator is greater than or equal to a predetermined value; In some cases, an opening request signal of the turbine control valve that has passed through the bandpass filter is selected, and in other cases, the turbine control valve that does not pass through the bandpass filter is selected. Output switching means for selecting and outputting a valve opening request signal, and control means for driving the opening of the turbine control valve based on the opening request signal of the turbine control valve selected by the output switching means It is characterized by that.

本発明によれば、タービン制御弁の応答スピードに弊害を与えずにタービン制御弁の制御信号変動に起因して高圧油ラインに発生する共振現象や過大な油圧脈動が回避できる。   According to the present invention, it is possible to avoid the resonance phenomenon and excessive hydraulic pulsation that occur in the high-pressure oil line due to fluctuations in the control signal of the turbine control valve without adversely affecting the response speed of the turbine control valve.

図1は本発明の第1の実施の形態に係わるタービン制御弁制御装置の構成図である。タービン制御弁制御装置14は、開度要求信号演算手段40と、バンドパスフィルタ22と、高周波成分判定手段41と、発電機出力判定手段27と、出力切替手段42と、制御手段43とから構成されている。   FIG. 1 is a configuration diagram of a turbine control valve control device according to a first embodiment of the present invention. The turbine control valve control device 14 includes an opening degree request signal calculation means 40, a band pass filter 22, a high frequency component determination means 41, a generator output determination means 27, an output switching means 42, and a control means 43. Has been.

開度要求信号演算手段40は、タービンを駆動する作動流体の流量を調整するタービン制御弁の開度要求信号を演算するものであり、開度要求信号演算手段40の制御信号発生器19には、入力信号として、発電機出力測定器16から発電機出力信号、回転数測定器15から回転数信号、主蒸気圧力測定器17から主蒸気圧力信号がそれぞれ入力される。制御信号発生器19は、これらの信号を基に、これらの制御量を所定の設定値に制御するのに必要な蒸気流量信号を作成し開度変換関数発生器20に出力する。開度変換関数発生器20は、制御信号発生器19で得られた必要な蒸気流量信号を加減弁6の必要開度信号に変換する。これらの必要流量信号や必要開度信号には、タービン制御弁制御装置14の入力信号である発電機出力信号、回転数信号、主蒸気圧力信号が脈動(ノイズ)成分を持つ場合には、演算を経た後も脈動分が加算された形で引き継がれる。   The opening request signal calculating means 40 calculates an opening request signal of a turbine control valve that adjusts the flow rate of the working fluid that drives the turbine, and the control signal generator 19 of the opening request signal calculating means 40 includes As an input signal, a generator output signal from the generator output measuring device 16, a rotation speed signal from the rotation speed measuring device 15, and a main steam pressure signal from the main steam pressure measuring device 17 are input. Based on these signals, the control signal generator 19 creates a steam flow signal necessary for controlling these control amounts to a predetermined set value, and outputs the steam flow rate signal to the opening degree conversion function generator 20. The opening degree conversion function generator 20 converts the necessary steam flow rate signal obtained by the control signal generator 19 into a required opening degree signal of the adjusting valve 6. These required flow rate signals and required opening signals are calculated when the generator output signal, the rotation speed signal, and the main steam pressure signal, which are input signals of the turbine control valve controller 14, have pulsation (noise) components. Even after passing through, the pulsation is added and added.

そこで、開度変換関数発生器20で得られた開度要求信号をバンドパスフィルタ22に導きノイズとして問題となる周波数f0以上の成分をカットする。このカットオフ周波数f0としては、例えば5Hzに予め設定する。以下の説明においては、予め設定された値は、例えば5Hz或いは5%であるとして説明する。   Therefore, the opening degree request signal obtained by the opening degree conversion function generator 20 is guided to the band pass filter 22 to cut off a component having a frequency f0 or more which becomes a problem as noise. The cut-off frequency f0 is set in advance to 5 Hz, for example. In the following description, it is assumed that the preset value is 5 Hz or 5%, for example.

ここで、開度変換関数発生器20とバンドパスフィルタ22との間に出力切替手段42が設けられている。出力制御手段42は、接点28及び接点29を有し、この接点29の切り替わりによって開度要求信号のバンドパスフィルタ22の通過有無を選択する。   Here, output switching means 42 is provided between the opening degree conversion function generator 20 and the bandpass filter 22. The output control means 42 has a contact point 28 and a contact point 29, and selects whether or not the opening request signal passes through the band-pass filter 22 by switching the contact point 29.

開度変換関数発生器20で得られた開度要求信号は、高周波成分判定手段41にも入力される。高周波成分判定手段41は、タービン制御弁の開度要求信号に含まれる高周波成分が所定値以上であるかどうかを判定するものである。   The opening request signal obtained by the opening conversion function generator 20 is also input to the high frequency component determination means 41. The high frequency component determination means 41 determines whether the high frequency component contained in the opening request signal of the turbine control valve is equal to or greater than a predetermined value.

開度変換関数発生器20で得られた開度要求信号は、高周波成分判定手段41のバンドパスフィルタ21及び差分演算手段23に入力される。 The opening degree request signal obtained by the opening degree conversion function generator 20 is input to the bandpass filter 21 and the difference calculation means 23 of the high frequency component determination means 41.

バンドパスフィルタ21のカットオフ周波数f0もバンドパスフィルタ22と同じく5Hzに設定され、ノイズとして問題となる周波数f0以上の成分がカットされる。差分演算手段23は、開度変換関数発生器20を出た開度要求信号と、バンドパスフィルタ21を通った開度要求信号との差分を演算し、変動成分のみを算出する。この変動信号を直流変換器24で直流に整流した信号をラッチ付き接点操作用比較器25に導くと共に、しきい値設定器26からの信号と比較し、これを上回った場合に出力切替手段42の接点29を動作させる。しきい値設定器26に設定される変動成分振幅レベルのしきい値は5%とする。   The cut-off frequency f0 of the band-pass filter 21 is also set to 5 Hz like the band-pass filter 22, and a component having a frequency f0 or more that is problematic as noise is cut. The difference calculation means 23 calculates the difference between the opening request signal output from the opening conversion function generator 20 and the opening request signal that has passed through the band-pass filter 21, and calculates only the fluctuation component. A signal obtained by rectifying the fluctuation signal into a direct current by the direct current converter 24 is guided to a contact operation comparator 25 with a latch, and is compared with a signal from the threshold value setting unit 26. The contact 29 is operated. The threshold value of the fluctuation component amplitude level set in the threshold setting device 26 is 5%.

また、出力切替手段42は、接点29に加えてその動作用信号ラインの途中に接点28を有している。この接点28は発電機出力測定器16からの負荷信号が一定値以上となり発電機出力判定手段27が動作したときのみ閉じる接点である。発電機出力判定手段27は、タービンにより駆動される発電機の出力が所定値以上であるかどうかを判定ものであり、発電機の出力が所定値以上のときに接点28を閉じるものである。   The output switching means 42 has a contact 28 in the middle of the operation signal line in addition to the contact 29. This contact 28 is a contact that is closed only when the load signal from the generator output measuring device 16 exceeds a certain value and the generator output determining means 27 is operated. The generator output determination means 27 determines whether or not the output of the generator driven by the turbine is greater than or equal to a predetermined value, and closes the contact 28 when the output of the generator is greater than or equal to a predetermined value.

このように、出力切替手段42は、タービン制御弁の開度要求信号に含まれる高周波成分が所定値以上で、発電機出力が所定値以上であるときは、バンドパスフィルタ22を通したタービン制御弁の開度要求信号を選択し、それ以外のときはバンドパスフィルタ22を通さないタービン制御弁の開度要求信号を選択して制御手段43に出力する。   Thus, the output switching means 42 is configured to control the turbine through the band-pass filter 22 when the high-frequency component included in the turbine control valve opening request signal is equal to or greater than a predetermined value and the generator output is equal to or greater than a predetermined value. A valve opening request signal is selected, and otherwise, an opening request signal for a turbine control valve that does not pass through the bandpass filter 22 is selected and output to the control means 43.

制御手段43は、出力切替手段41で選択されたタービン制御弁の開度要求信号に基づいてタービン制御弁の開度を駆動するものであり、出力切替手段41で選択されたタービン制御弁の開度要求信号を差分演算器30に導き、弁開度検出器9から復調器32によって復調されたフィードバック信号との偏差を算出した後に、この偏差を演算増幅器31で演算増幅した信号でサーボ弁10を駆動する。これにより、開度要求信号は信号そのものに5Hz以上かつ5%以上の変動成分が存在する場合のみ、その変動成分が取り除かれて加減弁6は制御されることになる。   The control means 43 drives the opening of the turbine control valve based on the opening request signal of the turbine control valve selected by the output switching means 41, and opens the turbine control valve selected by the output switching means 41. After calculating the deviation request signal to the difference calculator 30 and calculating a deviation from the feedback signal demodulated by the demodulator 32 from the valve opening detector 9, the servo valve 10 is a signal obtained by calculating and amplifying the deviation by the operational amplifier 31. Drive. Thereby, the opening request signal is controlled only when the fluctuation component of 5 Hz or more and 5% or more exists in the signal itself, and the fluctuation component 6 is removed.

本発明の第1の実施の形態によれば、開度要求信号に5Hz以上かつ5%以上の変動成分を含む場合に、これをバンドパスフィルタ22で取り除いた信号でサーボ弁10を制御するので、サーボ弁10の高周波制御信号に対する応答動作に起因する高圧油の流量変動によって発生する高圧油配管系統の過大な圧力脈動を防止できる。また、5%以内の微小変動制御域や負荷遮断時などのように速い応答が要求される状態では、フィルタ効果を外してこれに追従できる。   According to the first embodiment of the present invention, when the opening request signal includes a fluctuation component of 5 Hz or more and 5% or more, the servo valve 10 is controlled by a signal obtained by removing the fluctuation component by the band-pass filter 22. Thus, it is possible to prevent excessive pressure pulsation in the high-pressure oil piping system caused by the flow rate fluctuation of the high-pressure oil resulting from the response operation of the servo valve 10 to the high frequency control signal. Further, in a state where a quick response is required such as a minute fluctuation control region within 5% or when the load is interrupted, the filter effect can be removed and the response can be followed.

図2は本発明の第2の実施の形態における電気油圧式制御装置の構成図である。図6に示した従来例に対し、油圧シリンダ内部油圧を検出する油圧測定器18が追加して設けられ、油圧測定器18で検出された油圧シリンダ内部油圧は、制御弁制御装置14に入力されている。   FIG. 2 is a configuration diagram of the electrohydraulic control device according to the second embodiment of the present invention. In addition to the conventional example shown in FIG. 6, a hydraulic pressure measuring device 18 for detecting the hydraulic pressure inside the hydraulic cylinder is additionally provided, and the hydraulic pressure inside the hydraulic cylinder detected by the hydraulic pressure measuring device 18 is input to the control valve control device 14. ing.

図3は本発明の第2の実施の形態に係わるタービン制御弁制御装置の構成図である。この第2の実施の形態は、第1の実施の形態に対し、発電機出力測定器16から発電機出力信号、回転数測定器15から回転数信号、主蒸気圧力測定器17から主蒸気圧力信号に加え、油圧測定器18で検出された油圧シリンダ内部油圧も入力し、高周波判定手段41は、タービン制御弁の開度要求信号に含まれる高周波成分に代えて、油圧シリンダ内部油圧の脈動成分を用い、油圧シリンダ内部油圧の脈動成分が所定値以上であるかどうかを判定し、出力切替手段42は、油圧シリンダ内部油圧の脈動成分が所定値以上で発電機出力が所定値以上であるときは、バンドパスフィルタ22を通したタービン制御弁の開度要求信号を選択し、それ以外のときはバンドパスフィルタ22を通さないタービン制御弁の開度要求信号を選択し出力するようにしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   FIG. 3 is a configuration diagram of a turbine control valve control device according to the second embodiment of the present invention. The second embodiment is different from the first embodiment in that the generator output measuring device 16 generates a generator output signal, the rotation speed measuring device 15 outputs a rotation speed signal, and the main steam pressure measuring device 17 outputs a main steam pressure. In addition to the signal, the hydraulic cylinder internal hydraulic pressure detected by the hydraulic pressure measuring device 18 is also input, and the high frequency determination means 41 replaces the high frequency component included in the opening request signal of the turbine control valve with the pulsating component of the hydraulic cylinder internal hydraulic pressure. Is used to determine whether or not the pulsation component of the hydraulic pressure inside the hydraulic cylinder is greater than or equal to a predetermined value, and the output switching means 42 is when the pulsation component of the hydraulic pressure inside the hydraulic cylinder is greater than or equal to a predetermined value and the generator output is greater than or equal to a predetermined value. Selects the opening request signal of the turbine control valve that has passed through the band-pass filter 22, and selects and outputs the opening request signal of the turbine control valve that does not pass through the band-pass filter 22 otherwise. Those were Unishi. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

加減弁油圧シリンダ下部の圧力測定器18で測定された油圧信号は、高周波判定手段41のバンドパスフィルタに入力されるとともに差分演算器23に入力される。差分演算器23では、圧力測定器18で測定された油圧信号とバンドパスフィルタ21の通過後の信号との差を求め油圧変動成分を算出する。   The hydraulic pressure signal measured by the pressure measuring device 18 below the control valve hydraulic cylinder is input to the band pass filter of the high frequency determination means 41 and to the difference calculator 23. The difference calculator 23 obtains a difference between the hydraulic pressure signal measured by the pressure measuring instrument 18 and the signal after passing through the bandpass filter 21 to calculate a hydraulic pressure fluctuation component.

この変動信号は直流変換器24で直流に整流され、ラッチ付き接点操作用比較器25に導かれる。そして、ラッチ付き接点操作用比較器25により、しきい値設定器26からの信号と比較され、油圧変動成分がしきい値を上回った場合に出力切替手段42の接点29を動作させる。   This fluctuation signal is rectified to a direct current by the direct current converter 24 and guided to a contact operation comparator 25 with a latch. Then, the contact operation comparator with latch 25 is compared with the signal from the threshold setting device 26, and when the hydraulic pressure fluctuation component exceeds the threshold, the contact 29 of the output switching means 42 is operated.

高周波判定手段41のバンドパスフィルタ21及びバンドパスフィルタ22のカットオフ周波数の設定は、第1の実施の形態と同じく5Hzである。また、しきい値設定器26のしきい値(油圧変動成分の振幅)は、定格油圧相当信号の約50%程度とする。   The setting of the cut-off frequency of the band-pass filter 21 and the band-pass filter 22 of the high-frequency determination unit 41 is 5 Hz as in the first embodiment. Further, the threshold value (the amplitude of the hydraulic pressure fluctuation component) of the threshold setting device 26 is set to about 50% of the rated hydraulic pressure equivalent signal.

第2の実施の形態によれば、開度要求信号に5Hz以上かつ一定振幅以上の変動成分を含む場合には、サーボ弁10がこれに応答することによって油圧シリンダ8への給排油流量が変動することによって油圧シリンダ下部圧力が変動するため、これを油圧シリンダ下部の圧力検出器18で検出して制御弁制御装置14に導き、この油圧変動成分にしきい値を設けると共に、これを越えた場合に開度要求信号がバンドパスフィルタ22を通過させるので、第1の実施の形態と同等の効果が得られる。   According to the second embodiment, when the opening request signal includes a fluctuation component of 5 Hz or more and a certain amplitude or more, the servo valve 10 responds to the supply / discharge oil flow rate to the hydraulic cylinder 8. Since the lower pressure of the hydraulic cylinder fluctuates due to the fluctuation, this is detected by the pressure detector 18 at the lower part of the hydraulic cylinder and guided to the control valve control device 14. In this case, since the opening request signal passes through the band-pass filter 22, the same effect as the first embodiment can be obtained.

図4は本発明の第3の実施の形態に係わるタービン制御弁制御装置の構成図である。この第3の実施の形態は、第1の実施の形態に対し、高周波判定手段41は、タービン制御弁の開度要求信号に含まれる高周波成分に代えて、油圧シリンダ8の開度と油圧シリンダ駆動用サーボ弁10の駆動指令信号との変動偏差が所定値以上の場合に、バンドパスフィルタ22を通したタービン制御弁の開度要求信号を選択し、それ以外のときはバンドパスフィルタ22を通さないタービン制御弁の開度要求信号を選択し出力するようにしたものである。図1と同一要素には、同一符号を付し重複する説明は省略する。   FIG. 4 is a configuration diagram of a turbine control valve control device according to the third embodiment of the present invention. In the third embodiment, in contrast to the first embodiment, the high frequency determination means 41 replaces the high frequency component included in the opening request signal of the turbine control valve with the opening of the hydraulic cylinder 8 and the hydraulic cylinder. When the fluctuation deviation from the drive command signal of the drive servo valve 10 is a predetermined value or more, the opening request signal of the turbine control valve through the band pass filter 22 is selected, and in other cases, the band pass filter 22 is selected. The opening request signal of the turbine control valve that is not passed is selected and output. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図4に示すように、高周波判定手段41は、第1の実施の形態における高周波カット用のバンドパスフイルタ21の代わりに、低周波カット用のバンドパスフィルタ33を設け、またその入力信号としては差分演算器30を通過した後の偏差信号をブランチして導く。なおバンドパスフィルタ33のカットオフ周波数f0はバンドパスフィルタ22と同じく5Hzに設定する。   As shown in FIG. 4, the high frequency determination means 41 is provided with a low frequency cut band pass filter 33 instead of the high frequency cut band pass filter 21 in the first embodiment. The deviation signal after passing through the difference calculator 30 is branched and guided. The cut-off frequency f0 of the bandpass filter 33 is set to 5 Hz as with the bandpass filter 22.

バンドパスフィルタ33に導かれた制御偏差信号の中に5Hz以上の変動成分がある場合は、これが後段の直流変換器24で直流に整流され、さらにラッチ付き接点操作用比較器25に導かれる。そして、しきい値設定器26からのしきい値と比較して、これを上回った場合に、出力切替手段42の接点29を動作させる。なお、しきい値設定器26の設定値は演算増幅器31の入力フルスケール基準値の5%程度とする。   If there is a fluctuation component of 5 Hz or more in the control deviation signal guided to the band pass filter 33, this is rectified to direct current by the subsequent DC converter 24 and further guided to the contact operation comparator 25 with latch. When the threshold value from the threshold value setter 26 exceeds the threshold value, the contact 29 of the output switching means 42 is operated. The set value of the threshold setting device 26 is set to about 5% of the input full scale reference value of the operational amplifier 31.

本発明の第3の実施の形態によれば、開度要求信号に5Hz以上かつ一定振幅以上の変動成分を含む場合には、サーボ弁10まではこれに応答するものの油圧シリンダ8は時定数が大きいことから、これに追従応答できない。そのために、弁開度検出器9から復調器32を通ったフィードバック信号は変動せず、結果として差分演算器30を通過した偏差信号に変動成分が加算されることになることから、これを検出してバンドパスフィルタ22の通過有無を切り替える。これにより、第1の実施の形態と同等の効果が得られる。   According to the third embodiment of the present invention, when the opening request signal includes a fluctuation component of 5 Hz or more and a certain amplitude or more, the hydraulic cylinder 8 responds to this until the servo valve 10 has a time constant. Because of its large size, it cannot respond to this. For this reason, the feedback signal that has passed through the demodulator 32 from the valve opening detector 9 does not fluctuate, and as a result, a fluctuation component is added to the deviation signal that has passed through the difference calculator 30, and this is detected. Then, the presence or absence of passage through the bandpass filter 22 is switched. Thereby, an effect equivalent to that of the first embodiment can be obtained.

図5は本発明の第4の実施の形態に係わるタービン制御弁制御装置の構成図である。この第4の実施の形態は、第1の実施の形態に対し、バンドパスフィルタ22に代えて出力制限リミッタ39を設け、出力切替手段42は接点29に代えて接点34を有するようにしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   FIG. 5 is a configuration diagram of a turbine control valve control device according to the fourth embodiment of the present invention. The fourth embodiment is different from the first embodiment in that an output limiting limiter 39 is provided in place of the bandpass filter 22 and the output switching means 42 has a contact 34 instead of the contact 29. It is. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図5に示すように、差分演算器30の後段側を二手に分けてONとOFFが対になる切替接点34を持つと共に、そのうちの通常OFF側の接点の手前のラインに出力制限リミッタ39を持ち、接点34の後で合流させる。出力制限リミッタ39の制限幅は、演算増幅器31の入力フルスケール基準値の±5%程度とする。   As shown in FIG. 5, the second stage of the difference calculator 30 is divided into two hands and has a switching contact 34 that is paired with ON and OFF, and an output limiter limiter 39 is provided on the line before the contact of the normal OFF side. Hold and merge after contact 34. The limit width of the output limit limiter 39 is about ± 5% of the input full scale reference value of the operational amplifier 31.

開度変換関数発生器20の開度要求信号は、差分演算器23とバンドパスフィルタ21とに入力される。差分演算器23は、開度変換関数発生器20からの開度要求信号とバンドパスフィルタ21を通った開度要求信号との偏差を演算し、その偏差は直流変換器24で整流されてラッチ付き比較設定器25に導かれる。そして、ラッチ付き比較設定器25により、しきい値設定器26に設定されたしきい値と比較され、開度変換関数発生器20からの開度要求信号とバンドパスフィルタ21を通った開度要求信号との偏差がしきい値を上回った場合に、出力切替手段42の接点34を動作させる。   The opening request signal of the opening conversion function generator 20 is input to the difference calculator 23 and the band pass filter 21. The difference calculator 23 calculates the deviation between the opening request signal from the opening conversion function generator 20 and the opening request signal that has passed through the bandpass filter 21, and the deviation is rectified and latched by the DC converter 24. Guided to the comparison setting unit 25. Then, the comparison setter 25 with latch is compared with the threshold set in the threshold setter 26, and the opening through the band-pass filter 21 and the opening request signal from the opening conversion function generator 20. When the deviation from the request signal exceeds the threshold value, the contact 34 of the output switching means 42 is operated.

第4の実施の形態では、サーボ弁10の入力信号ラインに出力制限リミッタ39を設けて、開度要求信号に5Hz以上かつ一定振幅以上の変動成分を含む場合に、サーボ弁10の動作変動幅を制限することによって高圧油の流量変動を抑制する。従って、結果的に高圧油系統の圧力脈動を抑制するという同等の効果が得られる。   In the fourth embodiment, when an output limit limiter 39 is provided on the input signal line of the servo valve 10 and the opening request signal includes a fluctuation component of 5 Hz or more and a certain amplitude or more, the operation fluctuation range of the servo valve 10 is obtained. The flow rate fluctuation of the high pressure oil is suppressed by limiting the pressure. Therefore, as a result, an equivalent effect of suppressing the pressure pulsation of the high-pressure oil system can be obtained.

以上の説明では、バンドパスフィルタ22の介挿位置は、開度変換関数発生器20の後段としたが、この部位に特定する必要はなく、制御信号演算発生器19の後段、またはサーボ弁10への入力信号部となる差分演算器30の後段に介挿してもよい。   In the above description, the insertion position of the bandpass filter 22 is the latter stage of the opening degree conversion function generator 20, but it is not necessary to specify this part, and the latter stage of the control signal calculation generator 19 or the servo valve 10 is not necessary. You may insert in the back | latter stage of the difference calculating unit 30 used as the input signal part.

すなわち、タービン制御弁が複数個存在し、各タービン制御弁の開度指令信号が全体の流量要求信号を分割した開度要求信号に対応している場合には、バンドパスフィルタ22は、流量要求信号ライン、または各タービン制御弁の開度要求信号ライン、または各タービン制御弁の駆動信号入力信号ラインに設ける。同様に、出力制限リミッタ39についても、タービン制御弁が複数個存在し、各タービン制御弁の開度指令信号が全体の流量要求信号を分割した開度要求信号に対応している場合には、各タービン制御弁の駆動信号入力信号ラインに設ける。   That is, when there are a plurality of turbine control valves and the opening command signal of each turbine control valve corresponds to the opening request signal obtained by dividing the entire flow request signal, the bandpass filter 22 It is provided in the signal line, the opening request signal line of each turbine control valve, or the drive signal input signal line of each turbine control valve. Similarly, for the output limit limiter 39, when there are a plurality of turbine control valves and the opening command signal of each turbine control valve corresponds to the opening request signal obtained by dividing the entire flow request signal, Provided on the drive signal input signal line of each turbine control valve.

また、発電機出力判定手段27は、発電機出力が所定値以上であるときに、出力切替手段42の接点28を閉じるようにしたが、発電機の遮断器が投入されているときに、出力切替手段42の接点28を閉じ、発電機の遮断器が開放したときには出力切替手段42の接点28を開くようにしてもよい。これにより、負荷遮断の場合には、速やかに加減弁を制御できる。   The generator output determining means 27 closes the contact 28 of the output switching means 42 when the generator output is equal to or greater than a predetermined value, but the output is output when the generator breaker is turned on. The contact 28 of the output switching means 42 may be opened when the contact 28 of the switching means 42 is closed and the breaker of the generator is opened. Thereby, in the case of load interruption, the control valve can be quickly controlled.

また、以上の説明では、タービン制御弁として蒸気タービンの加減弁の場合について説明したが、ガスタービン設備のタービンの制御弁である燃料流量弁に適用することも可能である。   Moreover, although the above description demonstrated the case of the adjustment valve of a steam turbine as a turbine control valve, it is also applicable to the fuel flow valve which is a control valve of the turbine of gas turbine equipment.

本発明の実施の形態によれば、タービンの制御弁が高圧油を用いた電気油圧式制御装置で制御される場合、必要なときのみ制御信号中に含まれる高周波変動成分を取り除くことが可能となる。このため、通常制御時と共に負荷遮断時や微小圧力変動抑制時などは制御弁の高速追従性を維持すると共に、高周波・大振幅での制御変動を抑制することが可能になる。また、これによって高圧油配管系の共振現象や過大な圧力脈動現象を回避し、配管機器やサーボ弁の損傷を未然に防止することが可能となる。   According to the embodiment of the present invention, when a turbine control valve is controlled by an electrohydraulic control device using high-pressure oil, it is possible to remove a high-frequency fluctuation component contained in a control signal only when necessary. Become. For this reason, it is possible to maintain high-speed follow-up performance of the control valve and suppress control fluctuations at high frequencies and large amplitudes during normal control as well as when the load is interrupted or when minute pressure fluctuations are suppressed. This also avoids the resonance phenomenon and excessive pressure pulsation phenomenon of the high-pressure oil piping system, and can prevent damage to piping equipment and servo valves.

本発明の第1の実施の形態に係わるタービン制御弁制御装置の構成図。The block diagram of the turbine control valve control apparatus concerning the 1st Embodiment of this invention. 本発明の第2の実施の形態における電気油圧式制御装置の構成図。The block diagram of the electrohydraulic control apparatus in the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係わるタービン制御弁制御装置の構成図。The block diagram of the turbine control valve control apparatus concerning the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係わるタービン制御弁制御装置の構成図。The block diagram of the turbine control valve control apparatus concerning the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係わるタービン制御弁制御装置の構成図。The block diagram of the turbine control valve control apparatus concerning the 4th Embodiment of this invention. 蒸気タービンの加減弁油圧シリンダ直近に機械式アキュムレータを設けて油圧の緩衝減衰効果をもたせた従来の電気油圧式制御装置の構成図。The block diagram of the conventional electrohydraulic control apparatus which provided the mechanical accumulator in the immediate vicinity of the control valve hydraulic cylinder of the steam turbine, and had the buffer damping effect of the hydraulic pressure. 従来の制御弁制御装置の構成図Configuration diagram of conventional control valve control device 従来の制御弁制御装置のバンドパスフィルタの通過前後における加減弁開度要求信号の波形図。The wave form diagram of the regulation valve opening request signal before and behind passage of the band pass filter of the conventional control valve control apparatus.

符号の説明Explanation of symbols

1…蒸気発生器、2…タービン、3…復水器、4…給水ポンプ、5…主蒸気止め弁、6…加減弁、7…発電機、8…加減弁油圧シリンダ、9…弁開度検出器、10…サーボ弁、11…油圧発生装置、12…高圧油ポンプ、13…高圧油配管、14…制御弁制御装置、15…回転数測定器、16…発電機出力測定器、17…蒸気圧力測定器、18…油圧シリンダ下部圧力測定器、19…制御信号演算発生器、20…開度変換関数発生器、21…バンドパスフィルタ、22…バンドパスフィルタ、23…差分演算器、24…直流変換器、25…ラッチ付き接点操作用比較器、26…しきい値設定器、27…発電機出力判定手段、28…接点、29…接点、30…差分演算器、31…演算増幅器、32…復調器、33…バンドパスフィルタ、34…接点、35…アキュムレータ、39…出力制限リミッタ、40…開度要求信号演算手段、41…高周波成分判定手段、42…出力切替手段、43…制御手段 DESCRIPTION OF SYMBOLS 1 ... Steam generator, 2 ... Turbine, 3 ... Condenser, 4 ... Feed water pump, 5 ... Main steam stop valve, 6 ... Control valve, 7 ... Generator, 8 ... Control valve hydraulic cylinder, 9 ... Valve opening degree Detector: 10 ... Servo valve, 11 ... Hydraulic pressure generator, 12 ... High pressure oil pump, 13 ... High pressure oil piping, 14 ... Control valve control device, 15 ... Speed measuring device, 16 ... Generator output measuring device, 17 ... Steam pressure measuring device, 18 ... Hydraulic cylinder lower pressure measuring device, 19 ... Control signal calculation generator, 20 ... Opening degree conversion function generator, 21 ... Band pass filter, 22 ... Band pass filter, 23 ... Difference calculator, 24 DESCRIPTION OF SYMBOLS ... DC converter, 25 ... Comparator for contact operation with a latch, 26 ... Threshold setting device, 27 ... Generator output determination means, 28 ... Contact, 29 ... Contact, 30 ... Difference calculator, 31 ... Operational amplifier, 32 ... demodulator, 33 ... bandpass filter, 34 ... Point, 35 ... accumulator, 39 ... output limit limiter 40 ... opening request signal calculation means, 41 ... high frequency component determining means, 42 ... output switching means, 43 ... control unit

Claims (7)

タービンを駆動する作動流体の流量を調整するタービン制御弁の開度要求信号を演算する開度要求信号演算手段と、前記タービン制御弁の開度要求信号に含まれる高周波成分を除去するバンドパスフィルタと、前記タービン制御弁の開度要求信号に含まれる高周波成分が所定値以上であるかどうかを判定する高周波成分判定手段と、前記タービンにより駆動される発電機の出力が所定値以上であるかどうかを判定する発電機出力判定手段と、前記タービン制御弁の開度要求信号に含まれる高周波成分が所定値以上で前記発電機出力が所定値以上であるときは前記バンドパスフィルタを通したタービン制御弁の開度要求信号を選択し、それ以外のときは前記バンドパスフィルタを通さないタービン制御弁の開度要求信号を選択し出力する出力切替手段と、前記出力切替手段で選択されたタービン制御弁の開度要求信号に基づいてタービン制御弁の開度を駆動する制御手段とを備えたことを特徴とするタービン制御弁制御装置。 An opening request signal calculating means for calculating an opening request signal of a turbine control valve that adjusts a flow rate of a working fluid that drives a turbine, and a bandpass filter that removes a high frequency component contained in the opening request signal of the turbine control valve And high frequency component determination means for determining whether or not the high frequency component included in the opening request signal of the turbine control valve is greater than or equal to a predetermined value, and whether the output of the generator driven by the turbine is greater than or equal to a predetermined value A generator output determining means for determining whether or not a high-frequency component included in the turbine control valve opening request signal is equal to or greater than a predetermined value and the generator output is equal to or greater than a predetermined value; Selects the opening request signal for the control valve, otherwise selects the output request signal for the turbine control valve that does not pass through the bandpass filter and outputs it. Means and, turbine control valve control apparatus characterized by comprising a control means for driving the opening of the turbine control valve based on the opening request signal of the selected turbine control valve in said output switching means. 前記タービン制御弁が油圧シリンダで駆動される場合に、この油圧シリンダ内部油圧を検出する油圧測定器を設け、前記高周波判定手段は、前記タービン制御弁の開度要求信号に含まれる高周波成分に代えて前記油圧シリンダ内部油圧の脈動成分を用い、前記油圧シリンダ内部油圧の脈動成分が所定値以上であるかどうかを判定し、前記出力切替手段は、前記油圧シリンダ内部油圧の脈動成分が所定値以上で前記発電機出力が所定値以上であるときは前記バンドパスフィルタを通したタービン制御弁の開度要求信号を選択し、それ以外のときは前記バンドパスフィルタを通さないタービン制御弁の開度要求信号を選択し出力することを特徴とする請求項1に記載のタービン制御弁制御装置。 When the turbine control valve is driven by a hydraulic cylinder, a hydraulic pressure measuring device is provided for detecting the hydraulic pressure inside the hydraulic cylinder, and the high frequency determination means is replaced with a high frequency component included in the opening request signal of the turbine control valve. The pulsation component of the hydraulic cylinder internal oil pressure is used to determine whether or not the pulsation component of the hydraulic cylinder internal oil pressure is greater than or equal to a predetermined value. When the generator output is greater than or equal to a predetermined value, the turbine control valve opening request signal through the bandpass filter is selected, and otherwise the turbine control valve opening through the bandpass filter is selected. The turbine control valve control device according to claim 1, wherein the request signal is selected and output. 前記タービン制御弁が油圧シリンダで駆動される場合に、前記高周波判定手段は、前記タービン制御弁の開度要求信号に含まれる高周波成分に代えて、前記油圧シリンダの開度と前記油圧シリンダ駆動用サーボ弁の駆動指令信号との変動偏差が所定値以上の場合に、前記バンドパスフィルタを通したタービン制御弁の開度要求信号を選択し、それ以外のときは前記バンドパスフィルタを通さないタービン制御弁の開度要求信号を選択し出力することを特徴とする請求項1に記載のタービン制御弁制御装置。 When the turbine control valve is driven by a hydraulic cylinder, the high frequency determination means replaces the high frequency component included in the turbine control valve opening request signal with the opening of the hydraulic cylinder and the hydraulic cylinder driving A turbine control valve opening request signal that has passed through the band-pass filter is selected when the variation deviation from the servo valve drive command signal is greater than or equal to a predetermined value, and the turbine that does not pass through the band-pass filter otherwise. 2. The turbine control valve control device according to claim 1, wherein an opening request signal for the control valve is selected and output. タービン制御弁の開度要求信号を演算する開度要求信号演算手段と、前記タービン制御弁の開度要求信号に含まれる高周波成分が所定値以上であるかどうかを判定する高周波成分判定手段と、前記タービンにより駆動される発電機の出力が所定値以上であるかどうかを判定する発電機出力判定手段と、前記タービン制御弁の開度要求信号と開度信号との差分が予め設定された所定値を超えるときは超えた分をカットする出力制限リミッタと、前記タービン制御弁の開度要求信号に含まれる高周波成分が所定値以上で前記発電機出力が所定値以上であるときは出力制限リミッタの出力信号を選択し、それ以外のときは前記タービン制御弁の開度要求信号と開度信号との差分を選択する出力切替手段と、前記出力切替手段で選択された信号に基づいて制御弁の開度を制御する制御手段とを備えたことを特徴とするタービン制御弁制御装置。 An opening request signal calculating means for calculating an opening request signal of the turbine control valve; a high frequency component determining means for determining whether or not a high frequency component included in the opening request signal of the turbine control valve is equal to or greater than a predetermined value; A generator output determining means for determining whether or not an output of a generator driven by the turbine is equal to or greater than a predetermined value, and a predetermined difference in which an opening request signal and an opening signal of the turbine control valve are set in advance. An output limit limiter that cuts the excess when the value exceeds the value, and an output limit limiter when the high-frequency component included in the opening request signal of the turbine control valve is equal to or greater than a predetermined value and the generator output is equal to or greater than the predetermined value The output switching means for selecting the difference between the opening request signal of the turbine control valve and the opening degree signal, and the signal selected by the output switching means. Turbine control valve control apparatus characterized by comprising a control means for controlling the opening degree of the control valve Te. 前記タービン制御弁が複数個存在し、各タービン制御弁の開度指令信号が全体の流量要求信号を分割した開度要求信号に対応している場合には、前記バンドパスフィルタは、流量要求信号ライン、または各タービン制御弁の開度要求信号ライン、または各タービン制御弁の駆動信号入力信号ラインに設けたことを特徴とする特徴とする請求項1乃至請求項3のいずれか1項に記載のタービン制御弁制御装置。 When there are a plurality of turbine control valves and the opening command signal of each turbine control valve corresponds to the opening request signal obtained by dividing the entire flow request signal, the bandpass filter 4. The system according to claim 1, wherein the turbine control valve is provided in a line, an opening request signal line of each turbine control valve, or a drive signal input signal line of each turbine control valve. 5. Turbine control valve control device. 前記タービン制御弁が複数個存在し、各タービン制御弁の開度指令信号が全体の流量要求信号を分割した開度要求信号に対応している場合には、前記出力制限リミッタは、各タービン制御弁の駆動信号入力信号ラインに設けたことを特徴とする請求項4に記載のタービン制御弁制御装置。 When there are a plurality of turbine control valves and the opening command signal of each turbine control valve corresponds to the opening request signal obtained by dividing the entire flow request signal, the output limit limiter The turbine control valve control device according to claim 4, wherein the turbine control valve control device is provided in a drive signal input signal line of the valve. 前記発電機出力が所定値以上であることに代えて、前記発電機の遮断器が投入されていることとしたことを特徴とする請求項1乃至請求項6のいずれか1項に記載のタービン制御弁制御装置。 The turbine according to any one of claims 1 to 6, wherein a breaker of the generator is turned on instead of the generator output being a predetermined value or more. Control valve control device.
JP2008032631A 2008-02-14 2008-02-14 Turbine control valve control device Active JP4913079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008032631A JP4913079B2 (en) 2008-02-14 2008-02-14 Turbine control valve control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008032631A JP4913079B2 (en) 2008-02-14 2008-02-14 Turbine control valve control device

Publications (2)

Publication Number Publication Date
JP2009191715A true JP2009191715A (en) 2009-08-27
JP4913079B2 JP4913079B2 (en) 2012-04-11

Family

ID=41073961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008032631A Active JP4913079B2 (en) 2008-02-14 2008-02-14 Turbine control valve control device

Country Status (1)

Country Link
JP (1) JP4913079B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298276B1 (en) 2012-07-17 2013-08-20 울산대학교 산학협력단 Bypass valve operating system using electric-hydraulic actuator and control method of the same
CN110230524A (en) * 2019-03-12 2019-09-13 华电电力科学研究院有限公司 A kind of efficient distributed top pressure power generation Power quality management system and method
WO2022039109A1 (en) * 2020-08-17 2022-02-24 三菱重工業株式会社 Control device, control method, and program
JP2022128609A (en) * 2021-02-24 2022-09-05 三菱重工業株式会社 Hydraulic control system, and control method for hydraulic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069215A (en) * 1983-09-26 1985-04-19 Toshiba Corp Apparatus for controlling steam pressure at inlet side of turbine
JPS61167102A (en) * 1985-01-18 1986-07-28 Hitachi Ltd Governing system changeover device
JPS63277804A (en) * 1987-03-20 1988-11-15 Hitachi Ltd Turbine control device for steam generating plant
JPH01240703A (en) * 1988-02-05 1989-09-26 Westinghouse Electric Corp <We> Method and device for controlling power plant
JPH04286278A (en) * 1991-03-14 1992-10-12 Toshiba Corp Device for removing noise
JPH06173613A (en) * 1992-12-07 1994-06-21 Toshiba Corp Turbine control device
JPH06248904A (en) * 1993-02-26 1994-09-06 Toshiba Corp Steam regulating valve control device
JP2004169621A (en) * 2002-11-20 2004-06-17 Toshiba Corp Controller of extraction condensing turbine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069215A (en) * 1983-09-26 1985-04-19 Toshiba Corp Apparatus for controlling steam pressure at inlet side of turbine
JPS61167102A (en) * 1985-01-18 1986-07-28 Hitachi Ltd Governing system changeover device
JPS63277804A (en) * 1987-03-20 1988-11-15 Hitachi Ltd Turbine control device for steam generating plant
JPH01240703A (en) * 1988-02-05 1989-09-26 Westinghouse Electric Corp <We> Method and device for controlling power plant
JPH04286278A (en) * 1991-03-14 1992-10-12 Toshiba Corp Device for removing noise
JPH06173613A (en) * 1992-12-07 1994-06-21 Toshiba Corp Turbine control device
JPH06248904A (en) * 1993-02-26 1994-09-06 Toshiba Corp Steam regulating valve control device
JP2004169621A (en) * 2002-11-20 2004-06-17 Toshiba Corp Controller of extraction condensing turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298276B1 (en) 2012-07-17 2013-08-20 울산대학교 산학협력단 Bypass valve operating system using electric-hydraulic actuator and control method of the same
CN110230524A (en) * 2019-03-12 2019-09-13 华电电力科学研究院有限公司 A kind of efficient distributed top pressure power generation Power quality management system and method
WO2022039109A1 (en) * 2020-08-17 2022-02-24 三菱重工業株式会社 Control device, control method, and program
JP2022033495A (en) * 2020-08-17 2022-03-02 三菱重工業株式会社 Control device, control method and program
JP7426312B2 (en) 2020-08-17 2024-02-01 三菱重工業株式会社 Control device, control method and program
JP2022128609A (en) * 2021-02-24 2022-09-05 三菱重工業株式会社 Hydraulic control system, and control method for hydraulic device
JP7315599B2 (en) 2021-02-24 2023-07-26 三菱重工業株式会社 Hydraulic control system, control method for hydraulic equipment

Also Published As

Publication number Publication date
JP4913079B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
EP2414748B1 (en) Compressor surge control system and method
JP5406688B2 (en) System and method for liquid level control in a container
US9709261B2 (en) Condensate flow rate control device and condensate flow rate control method for power plant
US10859087B2 (en) Method for preventing surge in a dynamic compressor using adaptive preventer control system and adaptive safety margin
JP4281770B2 (en) Heat pump system
US8977518B2 (en) Device and method for performing a functional test on a control element of a turbo engine
JP2010121890A (en) Tank water level control system
JP4913079B2 (en) Turbine control valve control device
JP2008008291A (en) System and method for detecting undesirable operation of turbine
JP4909294B2 (en) Turbine bypass control device and control method
CN113357016A (en) Adjusting an operating limit threshold of a gas turbine system compressor based on mass flow loss
JP4158120B2 (en) Steam turbine plant
JP4734184B2 (en) Steam turbine control device and steam turbine control method
JP4528693B2 (en) Steam turbine power plant and control method thereof
JP2007262916A (en) Condenser vacuum control method of condensate steam turbine
JP2013174223A (en) Speed governing controller for steam turbine, method for controlling the same and steam turbine
JP6671202B2 (en) Positioner
JP2019124196A (en) Hydraulic machine for hydraulic plant
JP2021032223A (en) Control device and abnormality detecting method
JP6121192B2 (en) Steam turbine gland seal device
JP4589279B2 (en) Non-condensable gas discharge device for condenser and non-condensable gas discharge control method for condenser
JP5836709B2 (en) Turbine valve control device and turbine equipment
JP5427851B2 (en) Steam system
JP5889386B2 (en) Reliability evaluation test method and apparatus for gas turbine
JP2021060020A (en) Steam plant and steam flow rate control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100312

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R151 Written notification of patent or utility model registration

Ref document number: 4913079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3