JP6121192B2 - Steam turbine gland seal device - Google Patents

Steam turbine gland seal device Download PDF

Info

Publication number
JP6121192B2
JP6121192B2 JP2013032343A JP2013032343A JP6121192B2 JP 6121192 B2 JP6121192 B2 JP 6121192B2 JP 2013032343 A JP2013032343 A JP 2013032343A JP 2013032343 A JP2013032343 A JP 2013032343A JP 6121192 B2 JP6121192 B2 JP 6121192B2
Authority
JP
Japan
Prior art keywords
steam
seal
pressure
control valve
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013032343A
Other languages
Japanese (ja)
Other versions
JP2014163233A (en
Inventor
昭憲 赤垣
昭憲 赤垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013032343A priority Critical patent/JP6121192B2/en
Publication of JP2014163233A publication Critical patent/JP2014163233A/en
Application granted granted Critical
Publication of JP6121192B2 publication Critical patent/JP6121192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、蒸気復水タービンのグランドシール装置に関し、特に、グランド部をシールするグランドシール蒸気を、タービン入口蒸気を減圧して使用する場合のグランドシール装置に関する。   The present invention relates to a gland seal device for a steam condensing turbine, and more particularly, to a gland seal device for using a gland seal steam for sealing a gland portion while reducing the pressure at a turbine inlet.

通常、復水式蒸気タービンにおいては、タービン停止時であっても、タービン車室内の真空度を保持しているため、グランド部にシール蒸気を供給して、外部から空気等が侵入してタービン車室内の真空度が低下するのを防止するようになっている。   Normally, in a condensing steam turbine, since the degree of vacuum in the turbine casing is maintained even when the turbine is stopped, seal steam is supplied to the gland and air or the like enters from the outside. This prevents the degree of vacuum in the passenger compartment from decreasing.

このタービングランドシール蒸気は、タービン入口蒸気を減圧して使用する場合が多いが、このタービン入口蒸気を減圧して使用する場合、運転状態からタービントリップが生じた際には、主蒸気止弁が閉じられ、また、発電機解列が生じた場合には無負荷運転状態にするため主蒸気加減弁が微開状態にされるため、グランドシール蒸気が十分に得られずグランドシール性が悪化する問題があった。   This turbine ground seal steam is often used with the turbine inlet steam being decompressed, but when this turbine inlet steam is decompressed, the main steam stop valve is turned off when a turbine trip occurs from the operating state. If the generator is disconnected and the generator is disconnected, the main steam control valve is slightly opened in order to make it in a no-load operation state, so that the gland seal steam cannot be obtained sufficiently and the gland seal performance deteriorates. There was a problem.

また、定圧運転の蒸気タービンの場合には、タービン入口蒸気圧力が一定であるため、運転状態からタービントリップや発電機解列が生じた際に、必要とする所定のシール蒸気圧の確保が容易である。   In the case of a steam turbine operated at a constant pressure, the steam pressure at the turbine inlet is constant, so it is easy to ensure the required seal steam pressure when a turbine trip or generator disconnection occurs from the operating state. It is.

しかし、変圧運転の蒸気タービンの場合には、タービン入口蒸気圧力が変わるため、シール蒸気圧制御弁を介してのシール蒸気圧の制御領域が変わる。このため、運転中の状態からタービントリップまたは発電機解列が生じた際に、シール蒸気圧力を必要とする所定圧力に保持することが困難であった。   However, in the case of a steam turbine operating in a transformer operation, since the steam pressure at the turbine inlet changes, the control region of the seal steam pressure via the seal steam pressure control valve changes. For this reason, it is difficult to maintain the seal steam pressure at a predetermined pressure when a turbine trip or a generator disconnection occurs from the operating state.

このため、タービン入口蒸気圧力が変化する変圧運転タービンの場合においても、運転中の状態からタービントリップまたは発電機解列が生じた際の過渡時にシール蒸気圧力の変動を抑えて一定に制御可能とすることが要求されていた。   For this reason, even in the case of a transformer-operated turbine in which the steam pressure at the turbine inlet changes, it is possible to control the steam steam pressure to be constant while suppressing fluctuations in the seal steam pressure during a transient when a turbine trip or generator disconnection occurs from the operating state. It was requested to do.

なお、タービングランドシール蒸気を、タービン入口蒸気を使用する例として、特許文献1(特開2010−209858号公報)を挙げることができる。
この特許文献1の図1、2等には、蒸気タービン装置について開示され、高圧タービンと低圧タービンとが設けられ、各グランドシールに蒸気を供給または各グランドシール部の蒸気を回収して復水器に導くグランドシール系統配管を備え、低圧タービンのグランドシール部へのシール蒸気が、高圧タービンから低圧タービンに導かれる主蒸気を分岐して、供給する構成が開示されている。
In addition, patent document 1 (Unexamined-Japanese-Patent No. 2010-209858) can be mentioned as an example which uses turbine inlet-steam steam for turbine inlet steam.
1 and 2, etc. of Patent Document 1 disclose a steam turbine device, which is provided with a high-pressure turbine and a low-pressure turbine, and supplies steam to each ground seal or recovers steam from each ground seal portion to condensate water. There is disclosed a configuration in which the main steam led from the high-pressure turbine to the low-pressure turbine is branched and supplied by the seal steam to the ground seal portion of the low-pressure turbine.

特開2010−209858号公報JP 2010-209858 A

前記特許文献1には、低圧タービンのグランドシール部へのシール蒸気が、高圧タービンから低圧タービンに導かれる主蒸気を分岐して、供給する構成が開示されているに止まり、タービントリップ時や、発電機解列のような過渡時におけるグランドシール部へのシール蒸気圧の供給制御、さらには変圧運転のタービンにおけるシール蒸気圧の安定制御を可能とすることまでは開示されていない。   Patent Document 1 discloses a configuration in which the seal steam to the ground seal portion of the low-pressure turbine branches and supplies the main steam guided from the high-pressure turbine to the low-pressure turbine. There is no disclosure until it is possible to control the supply of the seal steam pressure to the gland seal part at the time of a transition such as a generator disconnection, and to enable stable control of the seal steam pressure in a turbine in a transformer operation.

また前述のように、変圧運転の蒸気タービンの場合には、タービン入口蒸気圧力が変わるため、運転中にタービントリップまたは発電機解列が生じた際に、シール蒸気圧力を一定圧力に効率よく保持することが困難であったため、変圧運転のタービンにおけるタービントリップ時または発電機解列時におけるシール蒸気圧の安定制御が要求されていた。   In addition, as described above, in the case of a steam turbine operating in a transformer operation, the steam pressure at the turbine inlet changes, so when a turbine trip or generator disconnection occurs during operation, the seal steam pressure is efficiently maintained at a constant pressure. Therefore, stable control of the seal steam pressure during a turbine trip or a generator disconnection in a transformer-operated turbine has been required.

そこで、本発明は前記課題に鑑みて、タービングランドシール蒸気を、タービン入口蒸気を減圧して使用する場合において、変圧運転の蒸気タービンであってタービン入口圧力が変動しても、タービントリップ時や発電機解列時の場合にシール蒸気圧力を一定圧力に保持して、シール蒸気圧力の制御性を向上できる蒸気タービンのグランドシール装置を提供することを目的とする。   Therefore, in view of the above problems, the present invention is a steam turbine for transformer operation in which the turbine ground seal steam is used while the turbine inlet steam is depressurized. An object of the present invention is to provide a ground seal device for a steam turbine which can improve the controllability of the seal steam pressure by maintaining the seal steam pressure at a constant pressure when the generator is disconnected.

かかる課題を解決するために、本発明は、蒸気タービンのグランド部をシールするグランドシール蒸気を、タービン入口蒸気を減圧して使用する蒸気タービンのグランドシール装置において、
蒸気タービンへの主蒸気の流入を遮断して蒸気タービンを急停止する場合、または蒸気タービンによって駆動される発電機を電力系統から解列して蒸気タービンを無負荷運転する場合に、蒸気タービンへの主蒸気の流入を制御する主蒸気制御弁と、該主蒸気制御弁の上流側から分岐して前記グランド部へシール蒸気を導くシール蒸気分岐通路と、該シール蒸気分岐通路に設けられて、前記グランド部に作用するシール蒸気圧力を制御するシール蒸気圧制御弁と、該シール蒸気圧制御弁の開度を制御するシール蒸気制御装置と、を備え、該シール蒸気制御装置は、グランド部へのシール蒸気圧を一定の目標圧力に保持するようにシール蒸気圧制御弁の開度を制御する目標制御部と、前記蒸気タービンを急停止する場合または発電機を電力系統から解列して蒸気タービンを無負荷運転する場合の少なくともいずれかの場合に、シール蒸気圧制御弁の開度を、前記主蒸気制御弁の上流側の主蒸気圧力に対応した開度に可変制御する過渡制御部と、を有し、前記過渡制御部によるシール蒸気圧制御弁の開度制御は一定時間だけ実行され、その後は前記目標制御部による制御が行われることを特徴とする。
In order to solve such a problem, the present invention provides a gland seal steam for sealing a gland portion of a steam turbine, and a gland seal apparatus for a steam turbine that uses a turbine inlet steam under reduced pressure.
When the steam turbine is shut down suddenly by shutting off the main steam flow into the steam turbine, or when the generator driven by the steam turbine is disconnected from the power system and the steam turbine is operated without load, A main steam control valve that controls the inflow of main steam, a seal steam branch passage that branches from the upstream side of the main steam control valve and guides the seal steam to the ground portion, and is provided in the seal steam branch passage, A seal steam pressure control valve that controls a seal steam pressure acting on the gland portion; and a seal steam control device that controls an opening degree of the seal steam pressure control valve. A target control unit for controlling the opening degree of the seal steam pressure control valve so as to maintain the seal steam pressure at a constant target pressure, and when the steam turbine is suddenly stopped or the generator is connected to the power system. In at least one of cases where the steam turbine is disconnected and operated without load, the opening degree of the seal steam pressure control valve is variably controlled to the opening degree corresponding to the main steam pressure upstream of the main steam control valve. to a transient control unit, it has a, wherein the opening control of the steam seal pressure control valve by transient control unit is performed by a predetermined time and then is characterized in that control of the target controller is performed.

蒸気タービンへの主蒸気の流入を遮断して蒸気タービンを急停止させるタービントリップ時の場合、または発電機を電力系統から解列して蒸気タービンを無負荷運転させる発電機解列時の場合においても、クランド部にはタービン車室内の真空度を保持するために、グランド部にシール蒸気を供給して、外部から空気等が侵入してタービン車室内の真空度が低下するのを防止する必要がある。   In the case of a turbine trip that shuts down the steam turbine by shutting off the main steam flow to the steam turbine, or in the case of a generator disconnection that disconnects the generator from the power system and operates the steam turbine without load However, in order to maintain the degree of vacuum in the turbine casing in the ground part, it is necessary to supply seal steam to the ground part to prevent air from entering from the outside to reduce the degree of vacuum in the turbine casing. There is.

本発明では、主蒸気制御弁の上流側から分岐して前記グランド部へシール蒸気を導くシール蒸気分岐通路と、該シール蒸気分岐通路に設けられて、前記グランド部へのシール蒸気圧力を制御するシール蒸気圧制御弁と、該シール蒸気圧制御弁の開度を制御するシール蒸気制御装置と、を備え、該シール蒸気制御装置は、蒸気タービンを急停止する場合または発電機を電力系統から解列して蒸気タービンを無負荷運転する場合の少なくともいずれかの場合に、シール蒸気圧制御弁の開度を、前記主蒸気制御弁の上流側の主蒸気圧力に対応した開度に可変制御する過渡制御部を有しているため、主蒸気制御弁による主蒸気の遮断若しくは微開の影響を受けることなく、グランド部へシール蒸気を供給することが可能になる。   In the present invention, a seal steam branch passage that branches from the upstream side of the main steam control valve and guides the seal steam to the ground portion, and is provided in the seal steam branch passage to control the seal steam pressure to the ground portion. A seal steam pressure control valve, and a seal steam control device that controls the opening degree of the seal steam pressure control valve. The seal steam control device is configured to stop the steam turbine or to remove the generator from the power system. In at least one of the cases where the steam turbine is in a no-load operation in a row, the opening degree of the seal steam pressure control valve is variably controlled to an opening degree corresponding to the main steam pressure upstream of the main steam control valve. Since the transient control unit is provided, the seal steam can be supplied to the gland without being affected by the main steam being blocked or slightly opened by the main steam control valve.

さらに、この過渡制御部では、シール蒸気圧制御弁の開度を、主蒸気制御弁の上流側の主蒸気圧力に対応した開度に可変制御するため、主蒸気圧力を変えて蒸気タービンへの流入蒸気量を調整して出力制御を行う変圧運転の蒸気タービンにおいても、タービントリップや発電機解列時のグランド部へのシール蒸気圧力を一定にする制御が可能になり、シール蒸気圧力の制御性を向上できる。
また、本発明では、前記過渡制御部によるシール蒸気圧制御弁の開度制御は一定時間だけ実行され、その後は前記目標制御部による制御が行われる。
すなわち、タービントリップや発電機解列が発生して、主蒸気がタービンに供給されない過渡的な状態の一定時間だけ、過渡制御部によってシール蒸気圧制御弁を開作動せしめてシール蒸気を確保してシール蒸気圧の変動を抑えて、その後は、目標制御部による一定圧力の目標圧力への制御へと切り替えることで、シール蒸気圧力を安定制御できる。
Further, in this transient control unit, the opening degree of the seal steam pressure control valve is variably controlled to an opening degree corresponding to the main steam pressure upstream of the main steam control valve, so that the main steam pressure is changed to the steam turbine. Even in a steam turbine with a transformer operation that controls output by adjusting the amount of inflow steam, it is possible to control the seal steam pressure to the ground when the turbine trips or the generator is disconnected. Can be improved.
In the present invention, the opening degree control of the seal vapor pressure control valve by the transient control unit is executed for a predetermined time, and thereafter, the control by the target control unit is performed.
That is, the seal steam pressure control valve is opened by the transient control unit for a certain period of time when the turbine trip or generator disconnection occurs and the main steam is not supplied to the turbine to secure the seal steam. The seal steam pressure can be stably controlled by suppressing the fluctuation of the seal steam pressure and then switching to the control to a constant pressure by the target control unit.

また、本発明において好ましくは、前記シール蒸気制御装置は、前記蒸気タービンを急停止させるタービントリップ時の前記主蒸気制御弁の上流側の主蒸気圧力と前記シール蒸気圧制御弁の開度との関係を設定した第1関数設定部を有するとよい。   In the present invention, it is preferable that the seal steam control device includes a main steam pressure upstream of the main steam control valve and an opening degree of the seal steam pressure control valve during a turbine trip for suddenly stopping the steam turbine. It is good to have the 1st function setting part which set up relation.

このように、タービントリップ時のシール蒸気制御弁の開度を、主蒸気制御弁の上流側の主蒸気圧力に応じて設定した第1関数設定部のデータを基に算出するため、タービントリップ時において主蒸気圧力に応じた適切なシール蒸気制御弁の弁開度に制御できる。   Thus, since the opening degree of the seal steam control valve at the time of the turbine trip is calculated based on the data of the first function setting unit set according to the main steam pressure on the upstream side of the main steam control valve, It is possible to control the valve opening of an appropriate seal steam control valve in accordance with the main steam pressure.

また、本発明において好ましくは、前記シール蒸気制御装置は、前記発電機を電力系統から解列して蒸気タービンを無負荷運転させる発電機解列時の前記主蒸気制御弁の上流側の主蒸気圧力とシール蒸気圧制御弁の開度との関係を設定した第2関数設定部を有するとよい。   In the present invention, it is preferable that the seal steam control device is configured so that the main steam on the upstream side of the main steam control valve at the time of generator disengagement in which the generator is disconnected from the power system and the steam turbine is operated without load. It is good to have the 2nd function setting part which set up the relation between a pressure and the opening of a seal vapor pressure control valve.

このように、発電機解列時のシール蒸気制御弁の開度を、主蒸気制御弁の上流側の主蒸気圧力に応じて設定した第2関数設定部のデータを基に算出するため、発電機解列時において主蒸気圧力に応じた適切なシール蒸気制御弁の弁開度に制御できる。   Thus, in order to calculate the opening degree of the seal steam control valve when the generator is disconnected based on the data of the second function setting unit set according to the main steam pressure on the upstream side of the main steam control valve, It is possible to control the opening degree of the seal steam control valve suitable for the main steam pressure when the machine is disconnected.

また、本発明において好ましくは、前記第1関数設定部に設定された関係、及び前記第2関数設定部に設定された関係は、前記主蒸気制御弁の上流側の主蒸気圧力が高くなるに従って前記シール蒸気圧制御弁の開度が小さくなるように設定されるとよい。   In the present invention, it is preferable that the relationship set in the first function setting unit and the relationship set in the second function setting unit are as the main steam pressure upstream of the main steam control valve increases. The opening degree of the seal vapor pressure control valve may be set to be small.

このように、主蒸気圧力が高くなるに従って、シール蒸気圧制御弁の開度を小さくすることで、また、逆に主蒸気圧力が低くなるに従って、シール蒸気圧力制御弁の開度を大きくすることで、いかなる運転領域からタービントリップや発電機解列が発生しても、グランド部へのシール蒸気量が一定量供給できるようになり、シール蒸気圧力の変動を抑えることができる。   In this way, the opening degree of the seal steam pressure control valve is decreased as the main steam pressure increases, and conversely, the opening degree of the seal steam pressure control valve is increased as the main steam pressure decreases. Thus, even if a turbine trip or generator disconnection occurs from any operating region, a fixed amount of seal steam can be supplied to the gland, and fluctuations in seal steam pressure can be suppressed.

また、本発明において好ましくは、前記蒸気タービンからグランド部へ漏洩したグランドリーク蒸気が前記グランド部のシール蒸気として前記シール蒸気圧制御弁の下流側のグランドシール通路に供給されるとよい。   In the present invention, it is preferable that the ground leak steam leaked from the steam turbine to the ground portion is supplied to the ground seal passage on the downstream side of the seal steam pressure control valve as the seal steam of the ground portion.

このように、蒸気タービンの高負荷時に、例えば50%以上の負荷時に、蒸気タービンの高圧側のグランド部から漏洩するグランドリーク蒸気を前記グランド部のシール蒸気として前記シール蒸気圧制御弁の下流側のグランドシール通路に供給して利用するようになっているので、高負荷運転時には、グランドシール通路の圧力が上昇してシール蒸気圧を確保することができる。   Thus, at the time of high load of the steam turbine, for example, when the load is 50% or more, the ground leak steam leaking from the ground part on the high pressure side of the steam turbine is used as the seal steam of the ground part, and the downstream side of the seal steam pressure control valve. Therefore, during high load operation, the pressure in the ground seal passage rises and the seal vapor pressure can be secured.

以上のように、本発明によれば、変圧運転をする蒸気タービンのタービングランドシール蒸気を、タービン入口蒸気を減圧して使用する場合において、タービントリップ時や発電機解列時の場合に、タービン入口圧力が変動しても、シール蒸気圧制御弁の開度を、主蒸気制御弁の上流側の主蒸気圧力に対応して変化させるため、シール蒸気圧力を一定圧力に保持できるようになり、これによってシール蒸気圧力の制御性を向上できる。   As described above, according to the present invention, in the case of using the turbine ground seal steam of the steam turbine performing the transformation operation while reducing the pressure of the turbine inlet steam, the turbine is tripped or the generator is disconnected. Even if the inlet pressure fluctuates, the opening degree of the seal steam pressure control valve is changed corresponding to the main steam pressure upstream of the main steam control valve, so that the seal steam pressure can be maintained at a constant pressure, This can improve the controllability of the seal steam pressure.

本発明の実施形態を示し、全体構成を示すブロック図である。It is a block diagram which shows embodiment of this invention and shows the whole structure. シール蒸気制御装置の制御構成ブロック図である。It is a control block diagram of a seal steam control device. シール蒸気圧制御弁の開度特性を示す説明図である。It is explanatory drawing which shows the opening degree characteristic of a seal | sticker vapor pressure control valve. タービントリップ時のシール蒸気圧制御弁の開度特性を示す説明図である。It is explanatory drawing which shows the opening degree characteristic of the seal | sticker vapor pressure control valve at the time of a turbine trip. 発電機解列時のシール蒸気圧制御弁の開度特性を示す説明図である。It is explanatory drawing which shows the opening degree characteristic of the seal | sticker vapor pressure control valve at the time of a generator disconnection.

以下、本発明に係る実施形態について図面を用いて詳細に説明する。なお、以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. It should be noted that the dimensions, materials, shapes, relative arrangements, and the like of the components described in the following embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely descriptions. It is just an example.

図1は、本発明に係る復水式変圧運転の蒸気タービンのグランドシール装置の全体構成ブロック図を示す。
タービン1は、タービン車室3内に、回転軸5に取り付けられたタービンブレード7を有しており、その両端部分に高圧側グランド部9、及び低圧側グランド部11が配置され、それぞれのグランド部にはグランドシールフィン13が配置されている。また、回転軸5には直結されて発電機15が設けられている。
FIG. 1 is a block diagram showing the overall configuration of a ground seal device for a steam turbine for condensing type transformer operation according to the present invention.
The turbine 1 has turbine blades 7 attached to a rotating shaft 5 in a turbine casing 3, and a high-pressure side ground portion 9 and a low-pressure side ground portion 11 are disposed at both ends thereof, and the respective grounds. A ground seal fin 13 is disposed in the part. Further, a generator 15 is provided directly connected to the rotating shaft 5.

一方、図示しないプラント中の適宜の蒸気発生源から主蒸気通路17を経て主蒸気がタービン1に供給される。主蒸気通路17には、主蒸気の流量を計測するためのノズル流量計(ノズル19の前後差圧を計測して流量を算出)21が設置され、その下流側には、主蒸気圧力計23が、その下流側には主蒸気制御弁である主蒸気止弁25と蒸気加減弁27とが直列に設置されている。   On the other hand, main steam is supplied to the turbine 1 through a main steam passage 17 from an appropriate steam generation source in a plant (not shown). The main steam passage 17 is provided with a nozzle flow meter 21 for measuring the flow rate of the main steam (measuring the flow rate by measuring the differential pressure across the nozzle 19), and on the downstream side thereof, the main steam pressure gauge 23 However, on the downstream side, a main steam stop valve 25 and a steam control valve 27 which are main steam control valves are installed in series.

本実施形態は、変圧運転を行う蒸気タービンであり、通常運転時においては、主蒸気止弁25は全開状態に保持され、図示しない蒸気発生源から主蒸気の圧力が制御されて供給され、該圧力制御された主蒸気の流入量を蒸気加減弁27によって調整して出力制御を行うようになっている。   The present embodiment is a steam turbine that performs a transformation operation. During normal operation, the main steam stop valve 25 is maintained in a fully open state, and the pressure of the main steam is controlled and supplied from a steam generation source (not shown). Output control is performed by adjusting the amount of pressure-controlled main steam inflow by a steam control valve 27.

また、主蒸気止弁25及び蒸気加減弁27は、タービン1への主蒸気の流入を遮断してタービン1を急停止するタービントリップの際には、共に全閉され、またはタービン1によって駆動される発電機15を電力系統から解列してタービン1を無負荷運転にする発電機解列の際には、主蒸気止弁25は全開状態で蒸気加減弁27が微開に制御される。   The main steam stop valve 25 and the steam control valve 27 are both fully closed or driven by the turbine 1 during a turbine trip that shuts off the turbine 1 by shutting off the flow of the main steam to the turbine 1. When the generator 15 is disconnected from the power system so that the turbine 1 is in a no-load operation, the main steam stop valve 25 is fully opened and the steam control valve 27 is controlled to be slightly opened.

また、タービン1に供給された主蒸気は、タービンブレード7を回転駆動した後に排出されて、図示しない復水器に導かれて凝縮されて復水となる。   Further, the main steam supplied to the turbine 1 is discharged after the turbine blade 7 is rotationally driven, and is led to a condenser (not shown) to be condensed and become condensed water.

主蒸気通路17の主蒸気止弁25及び蒸気加減弁27の上流側で分岐して前記高圧側グランド部9及び低圧側グランド部11へグランドシール蒸気を導くシール蒸気分岐通路29が設けられている。   A seal steam branch passage 29 is provided which branches on the upstream side of the main steam stop valve 25 and the steam control valve 27 of the main steam passage 17 and guides the ground seal steam to the high pressure side gland portion 9 and the low pressure side gland portion 11. .

このシール蒸気分岐通路29には、シール蒸気圧制御弁31、その下流側にはグランド部へ供給される蒸気圧を計測するシール蒸気圧計33が設けられている。また、シール蒸気圧制御弁31の下流側は、高圧側グランド部9へシール蒸気を供給する高圧側グランドシール通路35と、低圧側グランド部11へシール蒸気を供給する低圧側グランドシール通路36とが接続され、低圧側グランドシール通路36には、低圧側グランド部11へ供給されるシール蒸気温度を計測する温度計37、減温水噴射装置39が設けられている。   The seal steam branch passage 29 is provided with a seal steam pressure control valve 31 and a seal steam pressure gauge 33 for measuring the steam pressure supplied to the gland portion on the downstream side. Further, the downstream side of the seal steam pressure control valve 31 is a high-pressure side ground seal passage 35 that supplies seal steam to the high-pressure side gland portion 9 and a low-pressure side ground seal passage 36 that supplies seal steam to the low-pressure side gland portion 11. Are connected to each other, and a low pressure side ground seal passage 36 is provided with a thermometer 37 for measuring the temperature of the seal steam supplied to the low pressure side ground portion 11 and a temperature-reduced water injection device 39.

さらに、シール蒸気を冷却する減温水が、減温水通路41に設けられた温度調整弁42によって制御されて、減温水噴射装置39に供給されるようになっており、これにより温度計37の検出値を基に、低圧側グランド部11へのシール蒸気が一定温度になるように冷却される。   Further, the temperature-decreasing water that cools the seal steam is controlled by the temperature adjusting valve 42 provided in the temperature-decreasing water passage 41 and is supplied to the temperature-decreasing water injection device 39, thereby detecting the thermometer 37. Based on the value, the seal steam to the low-pressure side gland portion 11 is cooled to a constant temperature.

また、低圧側グランドシール通路36から分岐してスピルオーバ弁38を介して余剰蒸気が復水器に排出される排出通路40が設けられている。該排出通路40を通って図示しない復水器へ回収されて凝縮して復水となる。
このスピルオーバ弁38は手動によって一定開度に設定されている。例えば、高負荷運転時(例えば100%負荷時)に、シール蒸気圧計33で検出される圧力によって制御されるシール蒸気圧制御弁31が全閉に制御される圧力になるように設定されている。なお、スピルオーバ弁38は開度設定が自動のものを用いてもよい。
Further, a discharge passage 40 is provided which branches from the low-pressure side gland seal passage 36 and discharges surplus steam to the condenser via a spillover valve 38. It is collected to a condenser (not shown) through the discharge passage 40 and condensed to become condensate.
The spillover valve 38 is manually set to a constant opening. For example, during high load operation (for example, at 100% load), the seal steam pressure control valve 31 controlled by the pressure detected by the seal steam pressure gauge 33 is set to a pressure that is controlled to be fully closed. . The spillover valve 38 may have an automatic opening setting.

以上のようなタービン1では、図示しない蒸気発生源で発生した主蒸気は、主蒸気通路17を通って、ノズル流量計21、主蒸気圧力計23で流量、圧力が検出され、その後、主蒸気止弁25、蒸気加減弁27を通り、タービン車室3内に供給され、回転軸5に取り付けられたタービンブレード7に対して蒸気による膨張仕事をして回転せしめる。そして、回転軸5が回転されて、発電機15により発電される。また、膨張仕事をした後の蒸気は図示しない復水器へ排出されて凝縮されて復水となる。   In the turbine 1 as described above, the main steam generated from a steam generation source (not shown) passes through the main steam passage 17, and the flow rate and pressure are detected by the nozzle flow meter 21 and the main steam pressure gauge 23. It passes through the stop valve 25 and the steam control valve 27 and is supplied into the turbine casing 3 and rotated by the expansion work by the steam with respect to the turbine blade 7 attached to the rotating shaft 5. Then, the rotating shaft 5 is rotated and power is generated by the generator 15. Further, the steam after the expansion work is discharged to a condenser (not shown) and condensed to become condensate.

また、主蒸気の一部は、シール蒸気分岐通路29を通って、さらに、シール蒸気圧制御弁31を介してシール蒸気の圧力を調整して、高圧側グランドシール通路35及び低圧側グランドシール通路36に導かれる。
その後は、高圧側グランド部9及び低圧側グランド部11へシール蒸気として供給され、回収蒸気として回収通路45を通ってグランドコンデンサーを経由し、復水器へ回収されて復水される。
Further, a part of the main steam passes through the seal steam branch passage 29 and further adjusts the pressure of the seal steam via the seal steam pressure control valve 31, so that the high pressure side ground seal passage 35 and the low pressure side ground seal passage are provided. 36.
Thereafter, the steam is supplied to the high-pressure side gland portion 9 and the low-pressure side gland portion 11 as seal steam, and is collected as recovered steam through the recovery passage 45, through the ground condenser, and then recovered to the condenser.

まず、「立上げ時」には、
主蒸気止弁25は全開で、蒸気加減弁27は回転数制御中であり中間開度となっている。そして、主蒸気はタービン1に流入して、回転数が上昇を開始する。この時はまだ、立上げ時で低負荷であるため、蒸気タービン1から高圧側グランド部9へ漏洩するグランドリーク蒸気はほとんど発生しない状態である。
First of all, at the time of startup,
The main steam stop valve 25 is fully open, and the steam control valve 27 is under rotation speed control and has an intermediate opening. Then, the main steam flows into the turbine 1 and the rotation speed starts increasing. At this time, since the load is still low at the time of start-up, ground leakage steam leaking from the steam turbine 1 to the high-pressure side ground portion 9 is hardly generated.

従って、高圧側グランドシール通路35及び低圧側グランドシール通路36の蒸気圧力は、シール蒸気圧制御弁31が、シール蒸気分岐通路29を通って流入する主蒸気を調整するために、中間開度で制御される。その中間開度の制御は、シール蒸気圧制御弁31の下流側に設けられたシール蒸気圧計33の検出信号を基に、一定の目標圧力、つまり高圧側グランド部9及び低圧側グランド部11において、外部から蒸気タービン内への空気の侵入を防止するための適切な圧力(大気圧より若干高い正圧力)に制御される。
なお、シール蒸気圧力が低いとシール性が不足し、高すぎると外部へシール蒸気の漏洩量が増大する。
Therefore, the steam pressure in the high-pressure side gland seal passage 35 and the low-pressure side gland seal passage 36 has an intermediate opening degree so that the seal vapor pressure control valve 31 adjusts the main steam flowing in through the seal vapor branch passage 29. Be controlled. The intermediate opening degree is controlled based on a detection signal of a seal vapor pressure gauge 33 provided on the downstream side of the seal vapor pressure control valve 31 at a constant target pressure, that is, at the high-pressure side gland portion 9 and the low-pressure side gland portion 11. The pressure is controlled to an appropriate pressure (a positive pressure slightly higher than the atmospheric pressure) for preventing air from entering the steam turbine from the outside.
If the sealing steam pressure is low, the sealing performance is insufficient, and if it is too high, the leakage amount of the sealing steam increases.

次に、「負荷運転時」には、
主蒸気止弁25は全開で、蒸気加減弁27は負荷に応じた中間開度となり、図示しない蒸気発生源からの主蒸気の圧力制御、及び、蒸気加減弁27によるタービン流入蒸気量を調整して負荷に対応した出力制御を行う。
中高負荷運転になると、蒸気圧力が上昇、また蒸気流量が増えることで、高圧側グランド部9のグランドシールフィンと回転軸5との隙間から高圧側グランド部9へ蒸気が漏洩するようになる。
Next, during "load operation"
The main steam stop valve 25 is fully open, and the steam control valve 27 has an intermediate opening according to the load. The main steam pressure control from a steam generation source (not shown) and the turbine inflow steam amount by the steam control valve 27 are adjusted. Output control corresponding to the load.
In the middle and high load operation, the steam pressure rises and the steam flow rate increases, so that the steam leaks from the gap between the ground seal fin of the high-pressure side gland part 9 and the rotary shaft 5 to the high-pressure side gland part 9.

そして、高圧側グランド部9へ漏洩したグランドリーク蒸気の圧力は、高圧側グランドシール通路35から供給されるシール蒸気の圧力より高くなるので、グランドリーク蒸気は、これに打ち勝って高圧側グランドシール通路35に流れるとともに、低圧側グランドシール通路36を通って低圧側グランド部11にも流入するようになる。   The pressure of the ground leak steam leaked to the high pressure side gland portion 9 becomes higher than the pressure of the seal steam supplied from the high pressure side ground seal passage 35. Therefore, the ground leak steam overcomes this and the high pressure side ground seal passage is overcome. And flows into the low-pressure side gland part 11 through the low-pressure side gland seal passage 36.

なお、この時、高圧側グランドシール通路35の圧力が上昇するため、シール蒸気圧制御弁31の下流側に設けられたシール蒸気圧計33の検出信号も上昇するので、その信号を基に制御されるシール蒸気圧制御弁31は閉弁方向に制御される。これにより、シール蒸気圧制御弁31は、圧力制御をしながら負荷上昇に伴い全閉となる。   At this time, since the pressure in the high-pressure side gland seal passage 35 increases, the detection signal of the seal vapor pressure gauge 33 provided on the downstream side of the seal vapor pressure control valve 31 also rises. The seal vapor pressure control valve 31 is controlled in the valve closing direction. Thus, the seal vapor pressure control valve 31 is fully closed as the load increases while performing pressure control.

次に、「タービントリップ時」には、
タービン1への主蒸気の流入を遮断してタービン1を急停止するタービントリップの場合には、主蒸気止弁25及び蒸気加減弁27は共に急速に全閉状態となる。
このため、タービン1に主蒸気が流入しなくなる。これによって、グランドリーク蒸気もなくなり高圧側グランドシール通路35及び低圧側グランドシール通路36の圧力は負圧状態となる。
Next, during "turbine trip"
In the case of a turbine trip that shuts off the turbine 1 by shutting off the flow of the main steam to the turbine 1, both the main steam stop valve 25 and the steam control valve 27 are rapidly fully closed.
For this reason, the main steam does not flow into the turbine 1. As a result, the ground leak vapor disappears and the pressure in the high-pressure side gland seal passage 35 and the low-pressure side gland seal passage 36 becomes negative.

このとき、シール蒸気圧計33の検出値も低下するため、シール蒸気圧制御弁31は開弁方向に制御されるが、高圧側グランドシール通路35及び低圧側グランドシール通路36の圧力低下の検出とそれに伴うシール蒸気圧制御弁31の開方向の制御は遅い。このため、タービントリップ時のシール蒸気の確保に急速に対応するため後述のシール蒸気制御装置47の過渡制御部49によって急速な対応が可能なように制御している。   At this time, since the detected value of the seal vapor pressure gauge 33 is also lowered, the seal vapor pressure control valve 31 is controlled in the valve opening direction, but the pressure drop in the high pressure side ground seal passage 35 and the low pressure side ground seal passage 36 is detected. Accordingly, the control of the opening direction of the seal vapor pressure control valve 31 is slow. For this reason, in order to respond quickly to securing of the seal steam at the time of the turbine trip, the transient control unit 49 of the seal steam control device 47 described later is controlled so as to be able to respond quickly.

次に、「発電機解列時」には、
タービン1によって駆動される発電機15を電力系統から解列してタービンを無負荷運転する発電機解列の場合には、タービン1への主蒸気の流入は微量に制御される。
Next, at the time of generator disconnection,
In the case of the generator disconnection in which the generator 15 driven by the turbine 1 is disconnected from the power system and the turbine is operated without load, the flow of main steam into the turbine 1 is controlled to a very small amount.

すなわち、発電機解列の場合には、主蒸気止弁25は全開で、蒸気加減弁27は微開状態で、且つ無負荷制御中である。
タービン1には、主蒸気は流入しているが、前記「立上げ時」と同様に、蒸気タービン1から高圧側グランド部9へ漏洩するグランドリーク蒸気はほとんど発生しない、若しくは僅かに流れている状態であり、高圧側グランドシール通路35及び低圧側グランドシール通路36の圧力は負側に低下する。
That is, in the case of the generator disconnection, the main steam stop valve 25 is fully open, the steam control valve 27 is in a slightly open state, and no load control is being performed.
Although the main steam flows into the turbine 1, the ground leak steam leaking from the steam turbine 1 to the high-pressure side gland portion 9 is hardly generated or slightly flows as in the above “start-up”. In this state, the pressure in the high-pressure side ground seal passage 35 and the low-pressure side ground seal passage 36 decreases to the negative side.

従って、前記のタービントリップ時の作動と同様に、高圧側グランドシール通路35及び低圧側グランドシール通路36の圧力が負圧の検出とそれに伴うシール蒸気圧制御弁31の開方向の制御は遅い。このため、急速な対応を可能とするように後述するシール蒸気制御装置47の過渡制御部49によって急速な対応が可能なように制御される。   Therefore, similarly to the operation at the time of the turbine trip, the detection of the negative pressure in the high-pressure side gland seal passage 35 and the low-pressure side gland seal passage 36 and the control of the opening direction of the seal vapor pressure control valve 31 accompanying this are slow. For this reason, it controls so that a rapid response | compatibility is possible by the transient control part 49 of the seal | sticker steam control apparatus 47 mentioned later so that a rapid response | compatibility is possible.

次に、タービン1の作動を制御する主蒸気制御装置51、及びグランドシール蒸気圧を制御するシール蒸気制御装置47について説明する。
主蒸気制御装置51は、タービントリップ信号53、発電機解列信号55、主蒸気のノズル流量計21からの信号、さらにタービンの回転数や負荷等の運転状態の信号が入力されて、主蒸気止弁25及び蒸気加減弁27の開度を制御して、タービン1の運転を制御している。すなわち、前述の「立上げ時」、「負荷運転時」、「タービントリップ時」、「発電機解列時」の際の主蒸気止弁25及び蒸気加減弁27の開度を制御して、タービン1の運転を制御している。
シール蒸気制御装置47は、図1に示すように、主に目標制御部57と過渡制御部49とを有している。
Next, the main steam control device 51 that controls the operation of the turbine 1 and the seal steam control device 47 that controls the gland seal steam pressure will be described.
The main steam control device 51 receives the turbine trip signal 53, the generator disconnection signal 55, the signal from the main steam nozzle flow meter 21, and the operation state signal such as the turbine speed and load, and the main steam control device 51 receives the main steam. The operation of the turbine 1 is controlled by controlling the opening degree of the stop valve 25 and the steam control valve 27. That is, by controlling the opening degree of the main steam stop valve 25 and the steam control valve 27 at the time of the above-mentioned “start-up”, “load operation”, “turbine trip”, “generator disconnection”, The operation of the turbine 1 is controlled.
As shown in FIG. 1, the seal steam control device 47 mainly includes a target control unit 57 and a transient control unit 49.

目標制御部57では、高圧側グランド部9、及び低圧側グランド部11へのシール蒸気圧を一定の目標圧力に保持するようにシール蒸気圧制御弁31の開度を、シール蒸気圧計33の検出値を基に、フィートバック制御によって一定目標値になるように制御する。
高圧側グランドシール通路35の蒸気圧力が目標値に対して低下した場合に、シール蒸気圧制御弁31を開いて、主蒸気を導入して圧力を高めるように制御される。
In the target control unit 57, the opening degree of the seal vapor pressure control valve 31 is detected by the seal vapor pressure gauge 33 so as to keep the seal vapor pressure to the high pressure side gland unit 9 and the low pressure side gland unit 11 at a constant target pressure. Based on the value, control is made so that a constant target value is obtained by footback control.
When the steam pressure in the high-pressure side gland seal passage 35 is lower than the target value, the seal steam pressure control valve 31 is opened and main steam is introduced to increase the pressure.

すなわち、目標制御部57は、前記「立上げ時」、および前記「負荷運転時」の制御を行い、「立上げ時」では、前述したようにタービンのグランドリーク蒸気はほとんど発生しないため、シール蒸気圧制御弁31は、シール蒸気分岐通路29を通って流入する主蒸気を調整することでシール蒸気圧力を、シール蒸気圧制御弁31の下流側に設けられたシール蒸気圧計33の検出信号を基に、一定の目標圧力になるように制御される。   That is, the target control unit 57 performs control at the time of “starting up” and “at the time of load operation”, and at the time of “starting up”, since the ground leakage steam of the turbine is hardly generated as described above, The steam pressure control valve 31 adjusts the main steam flowing in through the seal steam branch passage 29 to obtain the seal steam pressure, and the detection signal of the seal steam pressure gauge 33 provided on the downstream side of the seal steam pressure control valve 31. Based on this, it is controlled so as to be a constant target pressure.

また、「負荷運転時」では、前述したように中高負荷運転時には高圧側グランド部9へ蒸気が漏洩してグランドリーク蒸気が発生し、高圧側グランドシール通路35から供給されるシール蒸気の圧力より高くなり、高圧側グランドシール通路35の圧力が上昇するので、シール蒸気圧制御弁31の下流側に設けられたシール蒸気圧計33の検出信号も上昇するため、シール蒸気圧制御弁31は閉弁方向に制御される。   Further, in the “load operation”, as described above, during the medium and high load operation, steam leaks to the high-pressure side ground portion 9 to generate ground leak steam, which is based on the pressure of the seal steam supplied from the high-pressure side ground seal passage 35. Since the pressure in the high-pressure side ground seal passage 35 increases and the detection signal of the seal steam pressure gauge 33 provided on the downstream side of the seal steam pressure control valve 31 also increases, the seal steam pressure control valve 31 is closed. Controlled in direction.

過渡制御部49では、蒸気タービン1を急停止する場合、または発電機15を電力系統から解列してタービン1を無負荷運転する場合において、シール蒸気圧制御弁31の開度を急速開弁して、トリップ発生後若しくは解列発生後暫く回転が継続している回転軸5の高圧側グランド部9及び低圧側グランド部11へのシール蒸気を確保するように制御する。   In the transient control unit 49, when the steam turbine 1 is suddenly stopped or when the generator 15 is disconnected from the power system and the turbine 1 is operated without load, the opening degree of the seal steam pressure control valve 31 is rapidly opened. Then, control is performed so as to secure seal steam to the high-pressure side gland portion 9 and the low-pressure side gland portion 11 of the rotating shaft 5 that continues to rotate for a while after the occurrence of the trip or the disconnection.

急速開弁する際の開弁開度を主蒸気制御弁である主蒸気止弁25と蒸気加減弁27との上流側、つまり、シール蒸気分岐通路29の主蒸気圧力計23で検出してその検出値の大きさに対応して変化させている。
従って、主蒸気圧力を変えて蒸気タービンへの流入蒸気量を調整して出力制御を行う変圧運転の蒸気タービンにおいても、タービントリップや発電機解列時のグランド部へのシール蒸気圧力を一定にする制御が可能になり、シール蒸気圧力の制御性を向上できる。
The opening degree at the time of rapid opening is detected by the main steam pressure gauge 23 in the seal steam branch passage 29, that is, upstream of the main steam stop valve 25 and the steam control valve 27, which are the main steam control valves. It is changed corresponding to the magnitude of the detected value.
Therefore, even in a steam turbine with a transformer operation that performs output control by adjusting the amount of steam flowing into the steam turbine by changing the main steam pressure, the seal steam pressure to the ground during a turbine trip or generator disconnection is kept constant. Therefore, the controllability of the seal steam pressure can be improved.

シール蒸気制御装置47の制御構成ブロック図を図2に示す。
図2において、目標制御部57によるシール蒸気圧を一定にするようなシール蒸気圧制御弁31への開度信号Gが出力され、タービントリップや発電機解列による異常事態がない場合には、その開度信号Gがそのままシール蒸気圧制御弁31の開度信号Pxとして出力される。
シール蒸気圧制御弁31の開度信号Pxと開度量との関係は、図3に示すように比例関係のなっており、開度信号Pxに応じた開度が設定される。
A control configuration block diagram of the seal steam control device 47 is shown in FIG.
In FIG. 2, when the opening degree signal G to the seal steam pressure control valve 31 that makes the seal steam pressure constant by the target control unit 57 is output and there is no abnormal situation due to turbine trip or generator disconnection, The opening signal G is output as it is as the opening signal Px of the seal vapor pressure control valve 31.
The relationship between the opening signal Px and the opening amount of the seal vapor pressure control valve 31 is proportional as shown in FIG. 3, and the opening corresponding to the opening signal Px is set.

一方、過渡制御部49においては、発電機解列信号55によって、発電機15が解列して無負荷状態となったことを受信した時に、すなわち発電機遮断器が開となったときに、反転部61で信号が立ち上がり、例えば1.5秒間のON信号が出力されて、選択部63に選択信号S=1が入力されて、入力IN2からの開度信号が出力OUTされる。   On the other hand, in the transient control unit 49, when it is received by the generator disconnection signal 55 that the generator 15 is disconnected and becomes in a no-load state, that is, when the generator breaker is opened, The signal rises at the inverting unit 61, for example, an ON signal for 1.5 seconds is output, the selection signal S = 1 is input to the selection unit 63, and the opening signal from the input IN2 is output OUT.

発電機解列時の入力IN2からの開度信号は、第1関数設定部65に記憶されている関数F(x)Aの関係を基に算出される。関数F(x)Aは、図4のように横軸が主蒸気圧力計23からの主蒸気圧力であり、縦軸がシール蒸気圧制御弁31の開度が設定されている。マップとして記憶していても関数式として記憶していてもよい。   The opening signal from the input IN2 when the generator is disconnected is calculated based on the relationship of the function F (x) A stored in the first function setting unit 65. In the function F (x) A, as shown in FIG. 4, the horizontal axis is the main steam pressure from the main steam pressure gauge 23, and the vertical axis is the opening degree of the seal steam pressure control valve 31. It may be stored as a map or a function expression.

また、タービン1がトリップして停止状態となったタービントリップ信号53を受信した時には、例えば1.5秒間のON信号が出力されて、選択部67に選択信号S=1が入力されて、入力IN2からの開度信号が出力OUTされる。   Further, when the turbine trip signal 53 that has stopped due to the trip of the turbine 1 is received, for example, an ON signal for 1.5 seconds is output, and the selection signal S = 1 is input to the selection unit 67 and input. The opening signal from IN2 is output OUT.

タービントリップ時の入力IN2からの開度信号は、第2関数設定部69に記憶されている関数F(x)Bの関係を基に算出される。関数F(x)Bは、図5のように横軸が主蒸気圧力計23からの主蒸気圧力であり、縦軸がシール蒸気圧制御弁31の開度が設定されている。マップとして記憶していても関数式として記憶していてもよい。   The opening degree signal from the input IN2 at the time of the turbine trip is calculated based on the relationship of the function F (x) B stored in the second function setting unit 69. In the function F (x) B, as shown in FIG. 5, the horizontal axis is the main steam pressure from the main steam pressure gauge 23, and the vertical axis is the opening degree of the seal steam pressure control valve 31. It may be stored as a map or a function expression.

図4に示した第1関数設定部65に設定された関係、及び図5に示した第2関数設定部69に設定された関係は、主蒸気圧力計23からの主蒸気圧力が高くなるに従ってシール蒸気圧制御弁31の開度が小さくなるように設定され、逆に主蒸気圧力が低くなるに従って、シール蒸気圧力制御弁の開度が大きくなる。
具体的には、第1関数設定部65は図4に示すように、開度が20%〜50%の範囲を、主蒸気圧力の高さに応じて可変制御され、第2関数設定部69は、図5に示すように、開度が20%〜55%の範囲を、主蒸気圧力の高さに応じて可変制御される。
The relationship set in the first function setting unit 65 shown in FIG. 4 and the relationship set in the second function setting unit 69 shown in FIG. 5 are as the main steam pressure from the main steam pressure gauge 23 increases. The opening degree of the seal steam pressure control valve 31 is set to be small. Conversely, as the main steam pressure is lowered, the opening degree of the seal steam pressure control valve is increased.
Specifically, as shown in FIG. 4, the first function setting unit 65 is variably controlled in accordance with the main steam pressure within the range of 20% to 50%, and the second function setting unit 69. As shown in FIG. 5, the opening degree is variably controlled in the range of 20% to 55% according to the height of the main steam pressure.

発電機解列時に用いる第1関数設定部65の最大開度の方が、タービントリップ時に用いる第2関数設定部69の最大開度より小さく設定されている。発電機解列時には、主蒸気の流入はほとんどないが、ゼロではないため、グラドリーク蒸気もゼロとは言えずその僅かな上昇分を考慮したものである。   The maximum opening of the first function setting unit 65 used when the generator is disconnected is set to be smaller than the maximum opening of the second function setting unit 69 used when the turbine trips. At the time of the generator disconnection, there is almost no inflow of main steam, but it is not zero. Therefore, it can be said that Gradleak steam is not zero, and its slight rise is taken into consideration.

従って、いかなる運転領域からタービントリップや発電機解列が発生しても、急速にグランド部へのシール蒸気量が一定量供給できるようになり、シール蒸気圧力の変動を抑えて、安定したシールを可能とする。   Therefore, even if a turbine trip or generator disconnection occurs from any operating region, it becomes possible to supply a constant amount of the seal steam to the gland section rapidly, suppressing fluctuations in the seal steam pressure and ensuring a stable seal. Make it possible.

また、例えば1.5秒間のON信号が出力されて、選択部63、67において選択信号S=1が入力されて、入力IN2からの開度信号が出力OUTされるので、過渡制御部49によるシール蒸気圧制御弁31の開度制御は一定時間だけ実行され、その後は目標制御部57による制御が行われるため、タービントリップや発電機解列が発生して、主蒸気がタービン1に供給されない過渡的な状態の一定時間だけ、過渡制御部49によってシール蒸気圧制御弁31を急速に開作動せしめてシール蒸気を確保してシール蒸気圧の変動を抑えることができ、その後は、目標制御部57による一定圧力の目標圧力への制御へと切り替えることで、シール蒸気圧力を安定制御できる。   Further, for example, an ON signal for 1.5 seconds is output, the selection signal S = 1 is input in the selection units 63 and 67, and the opening degree signal from the input IN2 is output OUT. The opening degree control of the seal steam pressure control valve 31 is executed for a predetermined time, and thereafter, the control by the target control unit 57 is performed. Therefore, a turbine trip or a generator disconnection occurs, and the main steam is not supplied to the turbine 1. For a certain period of time in a transient state, the transient control unit 49 can rapidly open the seal vapor pressure control valve 31 to secure the seal vapor and suppress the variation of the seal vapor pressure. Thereafter, the target control unit By switching to the control to the target pressure of a constant pressure by 57, the seal steam pressure can be stably controlled.

以上の実施形態によれば、シール蒸気圧制御弁31の開度を、主蒸気止弁25及び蒸気加減弁27の上流側の主蒸気圧力に対応して設定した開度に制御する過渡制御部49を有しているため、タービントリップや発電機解列時における主蒸気止弁25及び蒸気加減弁27による主蒸気のタービン1への流入制御に影響を受けることなく、高圧側グランド部9、及び低圧側グランド部11へシール蒸気を供給することが可能になる。   According to the above embodiment, the transient control part which controls the opening degree of the seal | sticker steam pressure control valve 31 to the opening degree set corresponding to the main steam pressure of the upstream of the main steam stop valve 25 and the steam control valve 27. 49, without being influenced by the main steam stop valve 25 and the steam control valve 27 inflow control to the turbine 1 during the turbine trip or generator disconnection, In addition, it becomes possible to supply seal steam to the low-pressure side gland portion 11.

また、この過渡制御部49は、シール蒸気圧制御弁31の開度を、主蒸気止弁25及び蒸気加減弁27の上流側の主蒸気圧力に対応して変化させたので、主蒸気圧力を変えることで蒸気タービンへの流入蒸気量を調整して出力制御を行う変圧運転の蒸気タービンにおいても、タービントリップや発電機解列時のグランド部へのシール蒸気圧力を一定にする制御が可能になり、シール蒸気圧力の制御性を向上できる。   Further, since the transient control unit 49 changes the opening degree of the seal steam pressure control valve 31 in accordance with the main steam pressure on the upstream side of the main steam stop valve 25 and the steam control valve 27, the main steam pressure is changed. It is possible to control the steam pressure of the seal to the ground part at the time of turbine trip or generator disconnection even in a transformer-operated steam turbine that controls output by adjusting the amount of steam flowing into the steam turbine by changing Therefore, the controllability of the seal steam pressure can be improved.

本発明によれば、変圧運転をする蒸気タービンのタービングランドシール蒸気を、タービン入口蒸気を減圧して使用する場合において、タービントリップ時や発電機解列時の場合に、タービン入口圧力が変動しても、シール蒸気圧制御弁の開度を、主蒸気止弁の上流側の主蒸気圧力に対応して変化させるため、シール蒸気圧力を一定圧力に保持できるようになり、これによってシール蒸気圧力の制御性を向上できる。従って、変圧運転の蒸気タービンのグランドシール蒸気の供給装置への利用に好適である。   According to the present invention, when the turbine ground seal steam of a steam turbine that performs a transformation operation is used with the turbine inlet steam being depressurized, the turbine inlet pressure varies when the turbine trips or when the generator is disconnected. However, since the opening degree of the seal steam pressure control valve is changed corresponding to the main steam pressure upstream of the main steam stop valve, the seal steam pressure can be maintained at a constant pressure. Controllability can be improved. Therefore, it is suitable for use in a ground seal steam supply device of a steam turbine in a transformer operation.

1 タービン(蒸気タービン)
3 タービン車室
5 回転軸
7 タービンブレード
9 高圧側グランド部(グランド部)
11 低圧側グランド部(グランド部)
15 発電機
17 主蒸気通路
23 主蒸気圧力計
25 主蒸気止弁(主蒸気制御弁)
27 蒸気加減弁(主蒸気制御弁)
29 シール蒸気分岐通路
31 シール蒸気圧制御弁
33 シール蒸気圧力計
35 高圧側グランドシール通路
36 低圧側グランドシール通路
37 温度計
38 スピルオーバ弁
39 減温水噴射装置
40 排出通路
47 シール蒸気制御装置
49 過渡制御部
53 タービントリップ信号
55 発電機解列信号
57 目標制御部
63、67 選択部
65 第1関数設定部
69 第2関数設定部
1 Turbine (steam turbine)
3 Turbine casing 5 Rotating shaft 7 Turbine blade 9 High-pressure side ground (ground)
11 Low-pressure side ground part (ground part)
15 Generator 17 Main steam passage 23 Main steam pressure gauge 25 Main steam stop valve (main steam control valve)
27 Steam control valve (Main steam control valve)
29 Seal steam branch passage 31 Seal steam pressure control valve 33 Seal steam pressure gauge 35 High-pressure side ground seal passage 36 Low-pressure side ground seal passage 37 Thermometer 38 Spillover valve 39 Decreased water injection device 40 Discharge passage 47 Seal steam control device 49 Transient control Unit 53 Turbine trip signal 55 Generator disconnection signal 57 Target control unit 63, 67 Selection unit 65 First function setting unit 69 Second function setting unit

Claims (6)

蒸気タービンのグランド部をシールするグランドシール蒸気を、タービン入口蒸気を減圧して使用する蒸気タービンのグランドシール装置において、
蒸気タービンへの主蒸気の流入を遮断して蒸気タービンを急停止する場合、または蒸気タービンによって駆動される発電機を電力系統から解列して蒸気タービンを無負荷運転する場合に、蒸気タービンへの主蒸気の流入を制御する主蒸気制御弁と、
該主蒸気制御弁の上流側から分岐して前記グランド部へシール蒸気を導くシール蒸気分岐通路と、
該シール蒸気分岐通路に設けられて、前記グランド部に作用するシール蒸気圧力を制御するシール蒸気圧制御弁と、
該シール蒸気圧制御弁の開度を制御するシール蒸気制御装置と、を備え、
該シール蒸気制御装置は、グランド部へのシール蒸気圧を一定の目標圧力に保持するようにシール蒸気圧制御弁の開度を制御する目標制御部と、
前記蒸気タービンを急停止する場合または発電機を電力系統から解列して蒸気タービンを無負荷運転する場合の少なくともいずれかの場合に、シール蒸気圧制御弁の開度を、前記主蒸気制御弁の上流側の主蒸気圧力に対応した開度に可変制御する過渡制御部と、を有し、前記過渡制御部によるシール蒸気圧制御弁の開度制御は一定時間だけ実行され、その後は前記目標制御部による制御が行われることを特徴とする蒸気タービンのグランドシール装置。
In a ground seal device for a steam turbine that uses a ground seal steam for sealing a ground portion of a steam turbine while reducing the pressure at the turbine inlet steam,
When the steam turbine is shut down suddenly by shutting off the main steam flow into the steam turbine, or when the generator driven by the steam turbine is disconnected from the power system and the steam turbine is operated without load, A main steam control valve for controlling the main steam inflow,
A seal steam branch passage that branches from the upstream side of the main steam control valve and guides the seal steam to the gland portion;
A seal steam pressure control valve provided in the seal steam branch passage for controlling the seal steam pressure acting on the gland portion;
A seal steam control device for controlling the opening degree of the seal steam pressure control valve,
The seal steam control device includes a target control unit that controls the opening degree of the seal steam pressure control valve so as to maintain the seal steam pressure to the gland portion at a constant target pressure;
In at least one of the case where the steam turbine is suddenly stopped or the generator is disconnected from the power system and the steam turbine is operated without load, the opening degree of the seal steam pressure control valve is determined as the main steam control valve. of the transient control section for variably controlling, it was closed to the opening degree corresponding to the main steam pressure upstream, opening control of the steam seal pressure control valve according to the transition control unit is performed by a predetermined time, then the target A ground seal device for a steam turbine, which is controlled by a control unit.
前記シール蒸気制御装置は、前記蒸気タービンを急停止させるタービントリップ時の前記主蒸気制御弁の上流側の主蒸気圧力と前記シール蒸気圧制御弁の開度との関係を設定した第1関数設定部を有したことを特徴とする請求項1記載の蒸気タービンのグランドシール装置。   The seal steam control device sets a first function in which a relationship between the main steam pressure on the upstream side of the main steam control valve and the opening of the seal steam pressure control valve during a turbine trip for suddenly stopping the steam turbine is set. The ground seal device for a steam turbine according to claim 1, further comprising a portion. 前記シール蒸気制御装置は、前記発電機を電力系統から解列して蒸気タービンを無負荷運転させる発電機解列時の前記主蒸気制御弁の上流側の主蒸気圧力とシール蒸気圧制御弁の開度との関係を設定した第2関数設定部を有したことを特徴とする請求項1記載の蒸気タービンのグランドシール装置。   The seal steam control device includes a main steam pressure on the upstream side of the main steam control valve and a seal steam pressure control valve when the generator is disconnected so that the generator is disconnected from the power system and the steam turbine is operated without load. The ground seal device for a steam turbine according to claim 1, further comprising a second function setting unit that sets a relationship with the opening. 前記第1関数設定部に設定された関係は、前記主蒸気制御弁の上流側の主蒸気圧力が高くなるに従って前記シール蒸気圧制御弁の開度が小さくなるように設定されていることを特徴とする請求項2記載の蒸気タービンのグランドシール装置。   The relationship set in the first function setting unit is set such that the opening degree of the seal steam pressure control valve decreases as the main steam pressure upstream of the main steam control valve increases. The ground seal device for a steam turbine according to claim 2. 前記第2関数設定部に設定された関係は、前記主蒸気制御弁の上流側の主蒸気圧力が高くなるに従って前記シール蒸気圧制御弁の開度が小さくなるように設定されていることを特徴とする請求項3記載の蒸気タービンのグランドシール装置。   The relationship set in the second function setting unit is set such that the opening degree of the seal steam pressure control valve decreases as the main steam pressure upstream of the main steam control valve increases. The ground seal device for a steam turbine according to claim 3. 前記蒸気タービンからグランド部へ漏洩したグランドリーク蒸気が前記グランド部のシール蒸気として前記シール蒸気圧制御弁の下流側のグランドシール通路に供給されることを特徴とする請求項1記載の蒸気タービンのグランドシール装置。
2. The steam turbine according to claim 1, wherein the ground leak steam leaked from the steam turbine to the ground portion is supplied to a ground seal passage downstream of the seal steam pressure control valve as seal steam of the ground portion. Gland seal device.
JP2013032343A 2013-02-21 2013-02-21 Steam turbine gland seal device Expired - Fee Related JP6121192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013032343A JP6121192B2 (en) 2013-02-21 2013-02-21 Steam turbine gland seal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013032343A JP6121192B2 (en) 2013-02-21 2013-02-21 Steam turbine gland seal device

Publications (2)

Publication Number Publication Date
JP2014163233A JP2014163233A (en) 2014-09-08
JP6121192B2 true JP6121192B2 (en) 2017-04-26

Family

ID=51614093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013032343A Expired - Fee Related JP6121192B2 (en) 2013-02-21 2013-02-21 Steam turbine gland seal device

Country Status (1)

Country Link
JP (1) JP6121192B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6775963B2 (en) * 2016-02-22 2020-10-28 三菱重工マリンマシナリ株式会社 Turbine ground steam supply system and its operation method
CN113982700B (en) * 2021-11-04 2023-11-21 华能山东石岛湾核电有限公司 High-temperature gas cooled reactor shaft seal steam supply system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117103A (en) * 1977-03-22 1978-10-13 Hitachi Ltd Gland steam temperature regulating device
JPS58176405A (en) * 1982-04-09 1983-10-15 Toshiba Corp Adjusting device for gland steam temperature
JPS61187503A (en) * 1985-02-16 1986-08-21 Toshiba Corp Temperature decreasing controller of turbine gland sealing steam
JPH06185304A (en) * 1992-12-16 1994-07-05 Mitsubishi Heavy Ind Ltd Turbine gland steam supply device
US7147427B1 (en) * 2004-11-18 2006-12-12 Stp Nuclear Operating Company Utilization of spillover steam from a high pressure steam turbine as sealing steam

Also Published As

Publication number Publication date
JP2014163233A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
JP5734792B2 (en) Steam turbine plant and operation method thereof
US10316752B2 (en) Gas turbine cool-down phase operation methods for controlling turbine clearance by adjusting air flow rate
EP2426318B1 (en) System for controlling thrust in steam turbine
US10082089B2 (en) Systems and methods to improve shut-down purge flow in a gas turbine system
EP2400113B1 (en) System for controlling thrust in steam turbine
US9719377B2 (en) Operation of gas turbine power plant with carbon dioxide separation
JP6121192B2 (en) Steam turbine gland seal device
CN111123770B (en) Method and device for determining opening of bypass model under FCB working condition
KR101834654B1 (en) Steam turbine and Thrust force balancing method of the steam turbine
US10082091B2 (en) Systems and methods to improve shut-down purge flow in a gas turbine system
SA517390600B1 (en) Method for cooling a turbo machine
US9506373B2 (en) Steam turbine arrangement of a three casing supercritical steam turbine
US10082087B2 (en) Systems and methods to improve shut-down purge flow in a gas turbine system
US10082090B2 (en) Systems and methods to improve shut-down purge flow in a gas turbine system
JP2003106170A (en) Gas turbine, gas turbine combined plant and method for controlling cooling steam pressure
CN111542689B (en) Fuel supply system, gas turbine, power generation facility, control method, and recording medium
JP6781613B2 (en) Control systems, steam turbines, power plants and control methods
JP2013144967A (en) Gland steam seal device of steam turbine
US20120151918A1 (en) Method for operating a turbomachine during a loading process
JPS6033965B2 (en) Seal steam temperature control method and device in steam turbine
JP6178189B2 (en) Steam turbine overspeed prevention system and power plant
Huang et al. The Fast Forecast and Control Technology of Anti Surge on Primary Air Fan
US20170314421A1 (en) Method for operating a turbine unit, steam power plant or combined-cycle power plant, and use of a throttling device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150122

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170329

R150 Certificate of patent or registration of utility model

Ref document number: 6121192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees