JP2009191286A - Method of and facility for producing thick plate - Google Patents

Method of and facility for producing thick plate Download PDF

Info

Publication number
JP2009191286A
JP2009191286A JP2008030481A JP2008030481A JP2009191286A JP 2009191286 A JP2009191286 A JP 2009191286A JP 2008030481 A JP2008030481 A JP 2008030481A JP 2008030481 A JP2008030481 A JP 2008030481A JP 2009191286 A JP2009191286 A JP 2009191286A
Authority
JP
Japan
Prior art keywords
steel plate
cooling
shape
plate shape
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008030481A
Other languages
Japanese (ja)
Inventor
Katsumi Okada
克己 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008030481A priority Critical patent/JP2009191286A/en
Publication of JP2009191286A publication Critical patent/JP2009191286A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control the shape of a product at better precision when a thick plate is produced by acceleratively cooling the hot-rolled steel thick plate. <P>SOLUTION: The hot-rolled steel plate 20 is applied to a slow cooling on a cooling bed 4 after acceleratively cooling, and the steel plate shape after acceleratively cooling, is controlled into a prescribed steel plate shape by controlling the cooling condition of the acceleratively cooling. At that time, based on data obtained with on-line shaping meters 6, 7, a correlation between the steel plate shape at the inlet side of the cooling bed and the steel plate shape at the outlet side of the cooling bed, is beforehand obtained each type of the product, and based on the pre-obtained correlation, the steel plate shape at the inlet side of the cooling bed obtaining the permissible steel plate shape as the product for steel plate at the inlet side of the cooling bed, is estimated. This cooling condition of the acceleratively cooling is adjusted so as to obtain this estimated steel plate shape. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱間圧延鋼板を加速冷却した後に、冷却床で徐冷することで、製品となる厚板を製造する技術に係り、特に加速冷却の冷却条件を調整して加速冷却後の鋼板形状を制御する厚板製造方法及び厚板製造設備に関する。   The present invention relates to a technique for manufacturing a thick plate as a product by accelerating cooling of a hot-rolled steel plate and then gradually cooling it in a cooling bed, and in particular, adjusting the cooling conditions for accelerated cooling to provide a steel plate after accelerated cooling. The present invention relates to a plank manufacturing method and plank manufacturing equipment for controlling the shape.

加速冷却時に冷却条件を制御して、加速冷却後の鋼板形状を制御する厚板製造方法としては、例えば特許文献1や特許文献2に記載の技術がある。
特許文献1に記載の技術は、加速冷却後の鋼板の形状を平坦にし、且つ、鋼板の面温度分布を均一化するように、加速冷却時の冷却水量を制御している。
また、特許文献2に記載の技術は、加速冷却した鋼板の常温冷却後の形状を、加速冷却直後の形状と鋼板温度履歴とから推定し、その推定値に基づき、次鋼板の形状を確保するための加速冷却条件を、自動で且つフィードバック制御で補正介入する技術である。
特開平8−294717号公報 特開平10−5868号公報
As a thick plate manufacturing method for controlling the cooling conditions during accelerated cooling and controlling the shape of the steel plate after accelerated cooling, there are techniques described in Patent Document 1 and Patent Document 2, for example.
The technique described in Patent Document 1 controls the amount of cooling water during accelerated cooling so that the shape of the steel plate after accelerated cooling is flattened and the surface temperature distribution of the steel plate is made uniform.
Moreover, the technique of patent document 2 estimates the shape after normal temperature cooling of the steel plate accelerated-cooled from the shape immediately after accelerated cooling, and a steel plate temperature history, and ensures the shape of the next steel plate based on the estimated value. This is a technique for correcting and intervening the accelerated cooling condition for automatic and feedback control.
JP-A-8-294717 Japanese Patent Laid-Open No. 10-5868

特許文献1の技術では、加速冷却後の鋼板形状が平坦となるように制御している。しかしながら、冷却床で徐冷される際に鋼板形状が変化し、徐冷後の鋼板形状が、製品として許容される範囲の鋼板形状で収まらないおそれがある。
また、特許文献2に記載の技術では、加速冷却直後の形状と鋼板温度履歴とに基づき、次鋼板のために加速冷却条件をフィードバック制御している。しかしながら、徐冷後の実際の鋼板形状に基づきフィードバック制御を行っていないので、その分、形状の精度が悪いおそれがある。例えば、夏場や冬場などの徐冷時の温度条件などによって、徐冷後の鋼板形状が変化するが、それに対応出来ない。
In the technique of Patent Document 1, the steel plate shape after accelerated cooling is controlled to be flat. However, when the steel sheet is slowly cooled in the cooling bed, the shape of the steel plate changes, and the steel plate shape after the slow cooling may not fit within the steel plate shape in a range acceptable as a product.
Further, in the technique described in Patent Document 2, the accelerated cooling condition is feedback-controlled for the next steel plate based on the shape immediately after the accelerated cooling and the steel plate temperature history. However, since feedback control is not performed based on the actual steel plate shape after slow cooling, the shape accuracy may be reduced accordingly. For example, the steel plate shape after slow cooling changes depending on the temperature conditions during slow cooling in summer or winter, but cannot cope with it.

なお、特許文献2に記載の技術は、段落番号0003に記載のように、徐冷後の最終形状を認識して、次鋼板に反映することを阻害する発想の技術である。
ここで、冷却床の出側よりも下流側には、製品出荷前の形状を計測するためのオフライン形状計が配置されている場合がある。しかし、温度低下に伴う鋼板の形状変化の実測データを蓄積しているものではない。特に、室温近くの形状データは少ない。これは、多数の鋼板製品についてオフラインで製品形状データを採取して蓄積することが現実的で無いためである。このようなことから、高温時の形状や、それまでの製造履歴をもとに室温の形状を予測して、特許文献2のような方法が採用されていると考えられる。
本発明は、上記のような点に着目してなされたもので、より精度よく形状制御が可能な厚板製造方法及び厚板製造設備を提供することを課題としている。
In addition, the technique described in Patent Document 2 is a conception technique that prevents the final shape after slow cooling from being recognized and reflected in the next steel plate, as described in paragraph 0003.
Here, an off-line shape meter for measuring the shape before product shipment may be arranged downstream of the exit side of the cooling bed. However, the actual measurement data of the shape change of the steel sheet accompanying the temperature drop is not accumulated. In particular, there is little shape data near room temperature. This is because it is not realistic to collect and accumulate product shape data offline for many steel plate products. For this reason, it is considered that the method as disclosed in Patent Document 2 is adopted by predicting the shape at room temperature based on the shape at high temperature and the manufacturing history so far.
This invention is made paying attention to the above points, and makes it a subject to provide the board manufacturing method and board manufacturing equipment which can control shape more accurately.

上記課題を解決するために、本発明のうち請求項1に記載した発明は、熱間圧延鋼板を、加速冷却した後に冷却床で徐冷を行い、上記加速冷却の冷却条件を制御することで加速冷却後の鋼板形状を所定の鋼板形状に制御する厚板製造方法において、
製品の種類毎に、冷却床の入側での鋼板形状と出側での鋼板形状との相関関係を、予め求めておき、その予め求めた相関関係に基づき、冷却床出側での鋼板形状が製品として許容可能な鋼板形状となる冷却床入側での鋼板形状を推定し、その推定した鋼板形状となるように加速冷却の冷却条件を調整することを特徴とするものである。
In order to solve the above-mentioned problem, the invention described in claim 1 of the present invention is to perform hot cooling on a hot-rolled steel sheet after cooling in a cooling bed and to control cooling conditions for the accelerated cooling. In the plate manufacturing method for controlling the steel plate shape after accelerated cooling to a predetermined steel plate shape,
For each product type, the correlation between the steel plate shape on the inlet side of the cooling bed and the steel plate shape on the outlet side is obtained in advance, and the steel plate shape on the outlet side of the cooling bed is determined based on the correlation obtained in advance. Is characterized by estimating the steel plate shape on the cooling bed entrance side, which is an acceptable steel plate shape as a product, and adjusting the cooling conditions for accelerated cooling so as to obtain the estimated steel plate shape.

次に、請求項2に記載した発明は、請求項1に記載した構成に対し、冷却床の入側及び出側にそれぞれオンライン形状計を配置し、そのオンライン形状計で、冷却床の入側での鋼板形状の情報と出側での鋼板形状の情報とを取得し、その取得した情報を、上記相関関係を求めるために蓄積することを特徴とするものである。   Next, in the invention described in claim 2, the online shape meter is arranged on the inlet side and the outlet side of the cooling bed with respect to the configuration described in claim 1, and the online shape meter is used to enter the cooling bed on the inlet side. In this case, the information on the shape of the steel plate and the information on the shape of the steel plate on the outlet side are acquired, and the acquired information is accumulated in order to obtain the correlation.

次に、請求項3に記載した発明は、熱間圧延鋼板を、加速冷却設備で加速冷却した後に、冷却床で徐冷する厚板製造設備であって、加速冷却後の鋼板形状を所定の鋼板形状とするために上記加速冷却設備の冷却条件を制御する加速冷却制御手段を備えた厚板製造設備において、
上記冷却床の入側及び出側にそれぞれ配置したオンライン形状計と、製品毎に上記入側及び出側に配置したオンライン形状計で取得した入側及び出側の鋼板形状の情報を逐次蓄積する製造情報蓄積手段と、上記製造情報蓄積手段で蓄積された鋼板形状の情報に基づき、冷却床の出側の鋼板形状が製品として許容可能な範囲の形状に収まるための冷却床入側の鋼板形状を推定する入側鋼板形状推定手段と、を備え、
上記加速冷却制御手段は、上記入側鋼板形状推定手段が推定した冷却床入側での鋼板形状となるように上記加速冷却設備の加速冷却条件を制御することを特徴とするものである。
Next, the invention described in claim 3 is a thick plate manufacturing facility in which a hot-rolled steel plate is acceleratedly cooled in an accelerated cooling facility and then gradually cooled in a cooling bed, and the shape of the steel plate after accelerated cooling is predetermined. In a thick plate manufacturing facility equipped with an accelerated cooling control means for controlling the cooling conditions of the accelerated cooling facility to form a steel plate shape,
Information on the shape of the steel sheets on the inlet side and the outlet side acquired with the online shape meters respectively arranged on the inlet side and the outlet side of the cooling floor and the online shape meters arranged on the inlet side and the outlet side for each product is sequentially accumulated. Based on the manufacturing information storage means and the steel plate shape information stored in the manufacturing information storage means, the steel sheet shape on the cooling floor entry side so that the steel sheet shape on the outlet side of the cooling bed falls within the allowable range as a product. An ingress steel plate shape estimating means for estimating
The accelerated cooling control means controls the accelerated cooling condition of the accelerated cooling equipment so that the steel sheet shape on the cooling bed inlet side estimated by the inlet-side steel sheet shape estimating means is obtained.

次に、請求項4に記載した発明は、請求項3に記載した構成に対し、入側鋼板形状推定手段は、上記製造情報蓄積手段で蓄積された鋼板形状の情報に基づき、製品毎に、冷却床出側の鋼板形状と冷却床入側の鋼板形状の相関関係を求める相関関係取得手段を備え、その相関関係取得手段が取得した相関関係に基づき、上記冷却床入側の鋼板形状を推定することを特徴とするものである。   Next, the invention described in claim 4 is the configuration described in claim 3, wherein the entry side steel plate shape estimation means is based on the steel plate shape information accumulated in the manufacturing information accumulation means for each product. A correlation acquisition means for obtaining the correlation between the steel plate shape on the cooling floor exit side and the steel plate shape on the cooling floor entry side is provided, and the steel plate shape on the cooling floor entry side is estimated based on the correlation acquired by the correlation acquisition means. It is characterized by doing.

本発明によれば、予め求めた冷却床出側と入側との鋼板形状の相関関係を使用して求めた鋼板形状となるように加速冷却の冷却条件を制御する。この結果、冷却床で徐冷された後の鋼板形状を、製品として許容可能な範囲に収めることができ、形状精度が向上する。場合によっては、許容可能な範囲を小さく設定可能となる。
また、冷却床の入側及び出側にオンライン形状計を配置して形状データを取得する。これによって、製造品全量など、多数の鋼板の形状変化データを蓄積することが可能となる。この結果、加速冷却後の適正形状を、より精度良く明確化することが可能となる。
According to the present invention, the cooling conditions for accelerated cooling are controlled so as to obtain the steel plate shape obtained by using the correlation between the steel plate shapes of the cooling bed exit side and the entrance side obtained in advance. As a result, the steel plate shape after being gradually cooled in the cooling bed can be accommodated in a range acceptable as a product, and the shape accuracy is improved. In some cases, the allowable range can be set small.
In addition, shape data is obtained by arranging online shape meters on the entry side and exit side of the cooling bed. Thereby, it becomes possible to accumulate | store the shape change data of many steel plates, such as the total amount of manufactured goods. As a result, the proper shape after accelerated cooling can be clarified with higher accuracy.

次に、本発明の実施形態について図面を参照しつつ説明する。
図1は、本実施形態に係る厚板製造設備を示す概要構成図である。
(構成)
本実施形態の厚板製造設備は、図1に示すように、上流側から圧延機1、加速冷却設備2、ホットレベラ3、入側オンライン形状計6、冷却床4、出側オンライン形状計7、剪断設備5の順に配置されている。
そして、圧延機1で熱間圧延された鋼板20は、順次、搬送ローラなどの搬送装置(不図示)によって搬送されながら、加速冷却設備2で加速冷却された後に、ホットレベラ3で形状矯正が行われる。続いて、冷却床4に送られて、当該冷却床4で搬送されながら自然冷却が行われて徐冷する。冷却床4で、例えば室温まで冷却すると、剪断設備5で剪断が行われて最終工程に送られる。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a thick plate manufacturing facility according to this embodiment.
(Constitution)
As shown in FIG. 1, the thick plate manufacturing facility of the present embodiment includes a rolling mill 1, an accelerated cooling facility 2, a hot leveler 3, an entry-side online shape meter 6, a cooling bed 4, an exit-side online shape meter 7, from the upstream side. The shearing equipment 5 is arranged in this order.
And the steel plate 20 hot-rolled by the rolling mill 1 is accelerated and cooled by the accelerated cooling equipment 2 while being sequentially conveyed by a conveying device (not shown) such as a conveying roller, and then the shape is corrected by the hot leveler 3. Is called. Then, it is sent to the cooling bed 4 and is naturally cooled while being transported on the cooling bed 4 and gradually cooled. When the cooling bed 4 is cooled to room temperature, for example, shearing is performed by the shearing equipment 5 and sent to the final process.

なお、通常は、同時期に同じ種類の厚板が連続して熱間圧延される。
上記冷却床4の入側及び出側に配置したオンライン形状計6,7は、順次通過する鋼板20の形状プロフィールを計測して鋼板形状データをそれぞれ取得する。取得した鋼板形状データは、製造情報蓄積手段に出力される。
製造情報蓄積手段11は、入力された鋼板形状データについて、入側の鋼板形状データと出側の鋼板形状データとを対応付けて形状データベース9に蓄積する。
Normally, the same type of thick plates are continuously hot-rolled at the same time.
The on-line shape meters 6 and 7 arranged on the entry side and the exit side of the cooling bed 4 measure the shape profiles of the steel plates 20 that pass through sequentially to acquire the steel plate shape data. The acquired steel plate shape data is output to the manufacturing information storage means.
The manufacturing information storage unit 11 stores the input steel plate shape data in the shape database 9 in association with the incoming steel plate shape data and the outgoing steel plate shape data.

また、加速冷却制御手段10を備える。その加速冷却制御手段10は、圧延された厚板の板情報(形状データ、鋼の化学成分、温度分布など)を入力して、加速冷却後の鋼板形状が目標鋼板形状となるように、上記加速冷却設備2の冷却条件を制御する。上記制御する冷却条件は、主として冷却水の流量分布の条件である。この制御は、各冷却水ヘッダへの供給量を調整したり、各ノズルの噴射圧を調整したりして行う。   Moreover, the acceleration cooling control means 10 is provided. The accelerated cooling control means 10 inputs plate information (shape data, chemical composition of steel, temperature distribution, etc.) of the rolled thick plate, and the steel plate shape after accelerated cooling becomes the target steel plate shape as described above. The cooling conditions of the accelerated cooling facility 2 are controlled. The cooling conditions to be controlled are mainly conditions for the flow rate distribution of the cooling water. This control is performed by adjusting the supply amount to each cooling water header or adjusting the injection pressure of each nozzle.

ここで、加速冷却の制御方法は、公知の方法を採用すれば良い。上述の特許文献1や特許文献2に記載されているように、冷却水量やその水量分布を制御することで、加速冷却時における形状制御は可能である。
また、上記製造情報蓄積手段11は、上記加速冷却設備2での冷却条件、及び製品の形状データについても、対応する厚板に対応付けして、形状データベース9に蓄積する。
Here, a known method may be adopted as a method for controlling the accelerated cooling. As described in Patent Document 1 and Patent Document 2 described above, shape control during accelerated cooling is possible by controlling the cooling water amount and the water amount distribution.
Further, the manufacturing information accumulating unit 11 accumulates the cooling conditions in the accelerated cooling facility 2 and the product shape data in the shape database 9 in association with the corresponding thick plates.

図2に、形状データベース9中の各蓄積データの構成を例示する。
また、入側鋼板形状推定手段8を備える。入側鋼板形状推定手段8は、相関関係取得手段8Aと、入側鋼板形状選択手段8Bとを備える。
相関関係取得手段8Aは、製品の種類毎に、上記形状データベース9中の各蓄積データを参照して回帰曲線その他の統計処理によって、出側の鋼板形状と入側の鋼板形状との相関を求める。更に、求めた相関関係に基づき、対象とする厚板の種類毎に、冷却床4の出側の鋼板形状が許容範囲内の形状となるための、冷却床4の入側での鋼板形状(以下、適正形状とも呼ぶ。)を求め、上記形状データベース9に記憶しておく。
FIG. 2 illustrates the configuration of each accumulated data in the shape database 9.
Moreover, the entrance side steel plate shape estimation means 8 is provided. The entry side steel plate shape estimation means 8 includes a correlation acquisition means 8A and an entry side steel plate shape selection means 8B.
The correlation acquisition means 8A obtains the correlation between the steel plate shape on the outgoing side and the steel plate shape on the incoming side by regression curve or other statistical processing with reference to each accumulated data in the shape database 9 for each type of product. . Furthermore, based on the obtained correlation, the steel plate shape on the inlet side of the cooling bed 4 (for the type of target thick plate, the steel plate shape on the outlet side of the cooling bed 4 becomes a shape within an allowable range ( Hereinafter, it is also referred to as an appropriate shape) and is stored in the shape database 9.

ここで、上記製品毎の適正形状のデータは、適宜、更新される。また、製品毎の適正形状データは、加速冷却時の水温やラインの雰囲気温度などによる条件によって複数に区分して、複数種類、個別に記憶しておいても良い。
また、入側鋼板形状選択手段8Bは、冷却する熱間圧延鋼板の情報を入力すると、形状データベース9を参照して、条件が合致する厚板の適正形状のデータを取得して、その適正形状のデータを、加速冷却制御手段10に対し目標鋼板形状として出力する。
ここで、上記実施形態では、加速冷却設備2の後段にホットレベラ3(熱間矯正機)がある場合で説明しているが、ホットレベラ3は無くても構わない。
また、ホットレベラ3では、加速冷却設備2による冷却処理で適正形状に制御しきれなかった分を補正することで、冷却床4の入側での鋼板形状を、できるだけ上記適正形状に近づけることができる。
Here, the data of the appropriate shape for each product is appropriately updated. Further, the appropriate shape data for each product may be divided into a plurality of types depending on conditions such as the water temperature at the time of accelerated cooling and the atmospheric temperature of the line, and a plurality of types may be stored individually.
Moreover, when the information on the hot rolled steel sheet to be cooled is input, the entry-side steel sheet shape selection means 8B refers to the shape database 9 and acquires data on the appropriate shape of the thick plate that meets the conditions, and the appropriate shape. Is output as a target steel plate shape to the accelerated cooling control means 10.
Here, although the said embodiment demonstrated the case where there existed the hot leveler 3 (hot straightening machine) in the back | latter stage of the accelerated cooling equipment 2, the hot leveler 3 may not be provided.
Moreover, in the hot leveler 3, the steel plate shape at the entrance side of the cooling floor 4 can be brought as close to the appropriate shape as possible by correcting the amount that cannot be controlled to the appropriate shape by the cooling process by the accelerated cooling equipment 2. .

(動作)
2組のオンライン形状計6,7を使用することで、加速冷却後の鋼板形状と、冷却床4での徐冷後の鋼板形状とを対応づけて取得して、順次蓄積する。オンライン形状計6,7を使用することで、製造品の全量についてデータを収集できる。
収集したデータによって、予め冷却床4による徐冷後の鋼板形状と、加速冷却後の鋼板形状との相関を求める。更に、この相関情報を参照して、徐冷後の鋼板形状が製品として許容可能な範囲に収まる形状に対応した適正形状を求めておく。
ここで、徐冷後の鋼板形状に対する加速冷却後の鋼板形状が明確となるため、データ蓄積を行うことで、精度良く、冷却床4で徐冷後の形状が、製品として許容可能な範囲に収るための加速冷却後の形状を、精度良く予測することが可能となる。
(Operation)
By using the two sets of on-line shape meters 6 and 7, the steel plate shape after accelerated cooling and the steel plate shape after slow cooling on the cooling bed 4 are acquired in association with each other and sequentially accumulated. By using the on-line shape meters 6 and 7, data can be collected for the total amount of manufactured products.
Based on the collected data, the correlation between the steel plate shape after slow cooling by the cooling bed 4 and the steel plate shape after accelerated cooling is obtained. Further, by referring to this correlation information, an appropriate shape corresponding to a shape in which the steel plate shape after the slow cooling falls within an allowable range as a product is obtained.
Here, since the steel plate shape after the accelerated cooling with respect to the steel plate shape after the slow cooling becomes clear, by performing data accumulation, the shape after the slow cooling in the cooling bed 4 is within an acceptable range as a product. It is possible to accurately predict the shape after accelerated cooling to be accommodated.

そして、順次、冷却対象とする厚板に対応した適正形状を形状データベース9から取得し、取得した適正形状となるように、加速冷却設備2の冷却条件を制御する。
これによって、加速冷却直後の鋼板形状が平坦で無い方が冷却床4での徐冷後の鋼板形状が望ましい形状となる場合でも、対応できることになる。
ここで、間接的には、冷却床4での徐冷後の鋼板形状から、加速冷却設備2の冷却条件の設定を行うことになる。しかし、上記形状データベース9を参照することで、直接的には、加速冷却後の鋼板形状(目標鋼板形状)から、加速冷却の条件の設定を行うことができるので、加速冷却後から常温に至るまでの時間は必要無く、且つ精度良くタイムリーな冷却条件の設定が可能である。
And the appropriate shape corresponding to the thick board made into cooling object is acquired from the shape database 9 sequentially, and the cooling conditions of the accelerated cooling equipment 2 are controlled so that it may become the acquired appropriate shape.
Accordingly, it is possible to cope with the case where the shape of the steel plate after the slow cooling in the cooling bed 4 becomes a desirable shape when the shape of the steel plate immediately after the accelerated cooling is not flat.
Here, indirectly, the cooling condition of the accelerated cooling facility 2 is set from the steel plate shape after the slow cooling in the cooling bed 4. However, by referring to the shape database 9, the conditions for accelerated cooling can be set directly from the steel plate shape after acceleration cooling (target steel plate shape). It is possible to set cooling conditions accurately and in a timely manner.

(本実施形態の効果)
予め、冷却床4の出側と入側との鋼板形状の相関関係を求め、その相関関係を参照して製品毎の適正形状を得る。そして、その適正形状となるように加速冷却の冷却条件を制御する。この結果、冷却床4で徐冷された後の鋼板形状が、製品として許容可能な範囲に収まる精度が向上する。場合によっては、許容可能な範囲を小さく設定可能となる。
また、冷却床4の入側及び出側にオンライン形状計6,7を配置して形状データを取得する。これによって、製造品全量など、多数の鋼板の形状変化データを蓄積することが可能となる。
すなわち、相関を求めるためのデータ量が豊富なので、形状データベース9の精度や信頼が大幅に向上する。
(Effect of this embodiment)
The correlation of the steel plate shape of the exit side and entrance side of the cooling floor 4 is calculated | required previously, and the appropriate shape for every product is obtained with reference to the correlation. And the cooling conditions of accelerated cooling are controlled so that it may become the appropriate shape. As a result, the accuracy with which the shape of the steel sheet after being gradually cooled in the cooling bed 4 is within an allowable range for the product is improved. In some cases, the allowable range can be set small.
In addition, online shape meters 6 and 7 are arranged on the entry side and the exit side of the cooling bed 4 to obtain shape data. Thereby, it becomes possible to accumulate | store the shape change data of many steel plates, such as the total amount of manufactured goods.
That is, since the amount of data for obtaining the correlation is abundant, the accuracy and reliability of the shape database 9 are greatly improved.

また、オンラインで形状を取得しているので、高温時や低温時などの大気雰囲気などによる形状変化挙動に経時変化があっても、データベース9を構築するためのデータ収集は短時間で済む。従って、データベース9の更新が容易である。ここで、経時変化の要因としては、季節要因などがある。
また、製造品全量についてデータの取得ができることから、適正形状に対応する厚板の条件設定をきめ細かく設定可能となる。このことは、少量生産品種に対しても対応が可能となる。すなわち、少量多品種材を生産するラインであっても適用が可能となる。
以上のように、加速冷却後の適正形状を、より精度良く明確化することが可能となる。
In addition, since the shape is acquired online, data collection for constructing the database 9 can be completed in a short time even if the shape change behavior due to the air atmosphere at high temperature or low temperature changes with time. Accordingly, the database 9 can be easily updated. Here, as a factor of the change with time, there is a seasonal factor.
In addition, since data can be acquired for the total amount of manufactured products, it is possible to finely set conditions for thick plates corresponding to appropriate shapes. This can also be applied to small-quantity production varieties. That is, the present invention can be applied even to a line that produces a small amount of various kinds of materials.
As described above, the proper shape after accelerated cooling can be clarified with higher accuracy.

本発明に基づく実施形態に係る厚板製造ラインを説明する概要構成図である。It is a schematic block diagram explaining the thick plate production line which concerns on embodiment based on this invention. 本発明に基づく実施形態に係るデータ構造の例を示す図である。It is a figure which shows the example of the data structure which concerns on embodiment based on this invention.

符号の説明Explanation of symbols

2 加速冷却設備
3 ホットレベラ
4 冷却床
6 入側オンライン形状計
7 出側オンライン形状計
8 入側鋼板形状推定手段
8A 相関関係取得手段
8B 入側鋼板形状選択手段
9 形状データベース
10 加速冷却制御手段
11 製造情報蓄積手段
20 鋼板
2 Accelerated cooling equipment 3 Hot leveler 4 Cooling floor 6 Entry-side online shape meter 7 Entry-side online shape meter 8 Entry-side steel plate shape estimation means 8A Correlation acquisition means 8B Entry-side steel plate shape selection means 9 Shape database 10 Acceleration cooling control means 11 Manufacturing Information storage means 20 Steel plate

Claims (4)

熱間圧延鋼板を、加速冷却した後に冷却床で徐冷を行い、上記加速冷却の冷却条件を制御することで加速冷却後の鋼板形状を所定の鋼板形状に制御する厚板製造方法において、
製品の種類毎に、冷却床の入側での鋼板形状と出側での鋼板形状との相関関係を、予め求めておき、
その予め求めた相関関係に基づき、冷却床出側での鋼板形状が製品として許容可能な鋼板形状となる冷却床入側での鋼板形状を推定し、その推定した鋼板形状となるように加速冷却の冷却条件を調整することを特徴とする厚板製造方法。
In the thick plate manufacturing method for controlling the steel plate shape after accelerated cooling to a predetermined steel plate shape by slowly cooling the hot rolled steel plate after accelerated cooling in the cooling bed and controlling the cooling conditions for the accelerated cooling.
For each product type, the correlation between the steel plate shape on the inlet side of the cooling floor and the steel plate shape on the outlet side is obtained in advance,
Based on the correlation obtained in advance, the steel plate shape on the cooling bed entry side is estimated so that the steel plate shape on the cooling bed exit side becomes an acceptable steel plate shape as a product, and accelerated cooling is performed so that the estimated steel plate shape is obtained. A method for producing a thick plate, characterized in that the cooling conditions of the plate are adjusted.
冷却床の入側及び出側にそれぞれオンライン形状計を配置し、そのオンライン形状計で、冷却床の入側での鋼板形状の情報と出側での鋼板形状の情報とを取得し、その取得した情報を、上記相関関係を求めるために蓄積することを特徴とする請求項1に記載した厚板製造方法。   Online shape meters are placed on the inlet side and outlet side of the cooling floor, respectively, and the online shape meters acquire the information on the steel plate shape on the inlet side of the cooling bed and the information on the steel plate shape on the outlet side. 2. The method for manufacturing a thick plate according to claim 1, wherein the obtained information is accumulated for obtaining the correlation. 熱間圧延鋼板を、加速冷却設備で加速冷却した後に、冷却床で徐冷する厚板製造設備であって、加速冷却後の鋼板形状を所定の鋼板形状とするために上記加速冷却設備の冷却条件を制御する加速冷却制御手段を備えた厚板製造設備において、
上記冷却床の入側及び出側にそれぞれ配置したオンライン形状計と、
製品毎に上記入側及び出側に配置したオンライン形状計で取得した入側及び出側の鋼板形状の情報を逐次蓄積する製造情報蓄積手段と、
上記製造情報蓄積手段で蓄積された鋼板形状の情報に基づき、冷却床の出側の鋼板形状が製品として許容可能な範囲の形状に収まるための冷却床入側の鋼板形状を推定する入側鋼板形状推定手段と、を備え、
上記加速冷却制御手段は、上記入側鋼板形状推定手段が推定した冷却床入側での鋼板形状となるように上記加速冷却設備の加速冷却条件を制御することを特徴とする厚板製造設備。
This is a thick plate manufacturing facility that cools a hot-rolled steel plate with an accelerated cooling facility and then slowly cools it with a cooling bed, and cooling the accelerated cooling facility to make the steel plate shape after accelerated cooling into a predetermined steel plate shape. In the plate manufacturing equipment equipped with accelerated cooling control means to control the conditions,
An on-line shape meter arranged respectively on the entry side and exit side of the cooling bed;
Manufacturing information accumulation means for sequentially accumulating information on the shape of the steel sheets on the entry side and the exit side acquired with the online shape meters arranged on the entry side and the exit side for each product,
Based on the steel plate shape information accumulated by the manufacturing information accumulating means, the entry side steel plate for estimating the steel plate shape on the cooling bed entry side so that the steel plate shape on the exit side of the cooling bed fits in a shape that is acceptable as a product. A shape estimation means,
The thick plate manufacturing equipment, wherein the accelerated cooling control means controls the accelerated cooling condition of the accelerated cooling equipment so as to have a steel plate shape on the cooling bed inlet side estimated by the incoming steel plate shape estimating means.
入側鋼板形状推定手段は、上記製造情報蓄積手段で蓄積された鋼板形状の情報に基づき、製品毎に、冷却床出側の鋼板形状と冷却床入側の鋼板形状の相関関係を求める相関関係取得手段を備え、その相関関係取得手段が取得した相関関係に基づき、上記冷却床入側の鋼板形状を推定することを特徴とする請求項3に記載した厚板製造設備。   The entry side steel plate shape estimation means is a correlation for obtaining a correlation between the steel plate shape on the cooling bed exit side and the steel plate shape on the cooling floor entry side for each product based on the steel plate shape information accumulated in the manufacturing information accumulation means. The thick plate manufacturing equipment according to claim 3, further comprising an acquiring unit, wherein the steel plate shape on the cooling bed entrance side is estimated based on the correlation acquired by the correlation acquiring unit.
JP2008030481A 2008-02-12 2008-02-12 Method of and facility for producing thick plate Pending JP2009191286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030481A JP2009191286A (en) 2008-02-12 2008-02-12 Method of and facility for producing thick plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030481A JP2009191286A (en) 2008-02-12 2008-02-12 Method of and facility for producing thick plate

Publications (1)

Publication Number Publication Date
JP2009191286A true JP2009191286A (en) 2009-08-27

Family

ID=41073573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030481A Pending JP2009191286A (en) 2008-02-12 2008-02-12 Method of and facility for producing thick plate

Country Status (1)

Country Link
JP (1) JP2009191286A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193777A (en) * 2016-04-15 2017-10-26 新日鐵住金株式会社 Method for producing steel sheet and heat treatment equipment
KR20210111292A (en) 2019-02-07 2021-09-10 제이에프이 스틸 가부시키가이샤 Cooling control method of thick steel plate, cooling control device and manufacturing method of thick steel plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193777A (en) * 2016-04-15 2017-10-26 新日鐵住金株式会社 Method for producing steel sheet and heat treatment equipment
KR20210111292A (en) 2019-02-07 2021-09-10 제이에프이 스틸 가부시키가이샤 Cooling control method of thick steel plate, cooling control device and manufacturing method of thick steel plate

Similar Documents

Publication Publication Date Title
US20090326700A1 (en) Method for monitoring the physical state of a hot-rolled sheet or hot-rolled strip while controlling a plate rolling train for working a hot-rolled sheet or hot-rolled strip
KR101228647B1 (en) Control device and control method
TWI483790B (en) Energy consumption prediction device
KR101782281B1 (en) Energy consumption predicting device for rolling line
CN104942019A (en) Automatic control method for width of steel strips during cold rolling
CN103567226B (en) Data analysis set-up
JP5789958B2 (en) Cooling stop temperature control device and cooling stop temperature control method
JP2021098213A (en) Warpage prediction method in hot rolling, warpage control method, manufacturing method for hot-rolled steel plate, method for creating warpage prediction model and hot-rolling facility
JP2009191286A (en) Method of and facility for producing thick plate
KR20150091963A (en) Temperature distribution prediction apparatus
KR100641755B1 (en) Control apparatus for width margin in hot strip mill and its method
JP5903869B2 (en) Mil pacing control method in hot rolling line
JP7298645B2 (en) Method for generating cross-sectional dimension variation prediction model for shaped steel, apparatus for generating cross-sectional dimension variation prediction model for shaped steel, method for predicting cross-sectional dimension of shaped steel, method for controlling cross-sectional dimension of shaped steel, and method for manufacturing shaped steel
JP2021181095A (en) Rolling load prediction method, rolling method, hot-rolled steel sheet manufacturing method, and rolling load prediction model generation method
JP6036857B2 (en) Rolling mill control method, rolling mill control device, and rolled material manufacturing method
WO2024135050A1 (en) Method for predicting width of rough-rolled material, method for controlling width of rough-rolled material, method for producing hot-rolled steel sheet, and method for generating width prediction model for rough-rolled material
JP3520868B2 (en) Steel sheet manufacturing method
JP5949691B2 (en) Plate width control method and plate width control device
KR101879085B1 (en) Apparatus and method for endless hot rolling
JP2022508735A (en) How to make metal workpieces
WO2024105996A1 (en) Method for predicting width of rough rolled material, method for controlling width of rough rolled material, method for producing hot-rolled steel sheet, and method for generating width prediction model for rough rolled material
JP2021109185A (en) Control method for rolling device, control device for rolling device, and manufacturing method for steel plate
JP7287422B2 (en) Slab thickness prediction method, roughing mill control method, and slab thickness prediction model generation method
JP2018122319A (en) Method for manufacturing scalene unequal thickness angle steel
JP2006281280A (en) Method for operating slab heating furnace