JP2009191152A - HONEYCOMB STRUCTURE COMPRISING DENDRITIC pi-CONJUGATED BASED POLYMER AND METHOD OF MANUFACTURING THE SAME - Google Patents

HONEYCOMB STRUCTURE COMPRISING DENDRITIC pi-CONJUGATED BASED POLYMER AND METHOD OF MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2009191152A
JP2009191152A JP2008032995A JP2008032995A JP2009191152A JP 2009191152 A JP2009191152 A JP 2009191152A JP 2008032995 A JP2008032995 A JP 2008032995A JP 2008032995 A JP2008032995 A JP 2008032995A JP 2009191152 A JP2009191152 A JP 2009191152A
Authority
JP
Japan
Prior art keywords
honeycomb structure
dendritic
conjugated polymer
conjugated
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008032995A
Other languages
Japanese (ja)
Inventor
Naoko Yoshie
尚子 吉江
Hirotaka Ejima
広貴 江島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2008032995A priority Critical patent/JP2009191152A/en
Publication of JP2009191152A publication Critical patent/JP2009191152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel approach to obtain a honeycomb structure without chemical modification such as copolymerization with other monomer unit or the formation of derivative by the introduction of side chain by applying Breath Figure method (BF method) to a π-conjugated based polymer such as poly(para-phenylene vinylene). <P>SOLUTION: In the honeycomb structure comprising a dendritic π-conjugated polymer and a method of manufacturing the same, the honeycomb structure comprising π-conjugated polymer is obtained by applying BF method using the π-conjugated polymer having a dendritic structure. A cured material or carbonaceous material having the honeycomb structure is obtained by photocuring or heat-treating a honeycomb structure comprising a dendritic aromatic π-conjugated polymer, particularly dendritic poly(phenylene vinylene). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、樹状π共役系高分子、特に樹状ポリ(フェニレンビニレン)からなるハニカム構造体及びその製造方法に関する。本発明はまた、該構造体から得られる、耐熱性及び耐溶剤性に優れたハニカム構造を有する硬化物、並びにハニカム構造を有する炭素質材料にも関する。   The present invention relates to a honeycomb structure made of a dendritic π-conjugated polymer, particularly dendritic poly (phenylene vinylene), and a method for producing the same. The present invention also relates to a cured product having a honeycomb structure excellent in heat resistance and solvent resistance obtained from the structure, and a carbonaceous material having a honeycomb structure.

1994年、Breath Figure法(以下、BF法と略す)によって、ロッドコイル型のブロック共重合体であるポリスチレン−b−ポリパラフェニレン(PS−b−PP)又は星型PSからハニカムフィルム(孔が六角形状に規則正しく空いたフィルム、図1下段参照)を作製できることが報告された(非特許文献1参照)。BF法とはハニカム構造を作るために高湿度下でキャストフィルムを作製する手法のことである。高湿度下では、蒸発することによって気化熱を奪われ冷えた有機溶媒上に小さな水滴が結露する。この水滴は、数が増え混み合ってくるにつれてエネルギー的に安定な六角形状にパッキングし、それが鋳型となって、最終的に有機溶媒が蒸発した後のポリマーフィルムに孔という形で残る(図1上段参照)。小さな水滴がパッキングする際に融合してしまわないのは、水滴のまわりが薄いポリマー溶液に覆われているからである。これまでBF法によって得られたハニカムフィルムの孔のサイズは150nmから数十μmである。この孔のサイズはキャスティング時のコンディション(湿度、ポリマーの濃度など)によって制御できる。   In 1994, a honeycomb film (pores were formed from polystyrene-b-polyparaphenylene (PS-b-PP) or star-shaped PS, which is a rod coil type block copolymer, by the Breath Figure method (hereinafter abbreviated as BF method). It was reported that a film regularly opened in a hexagonal shape (see the lower part of FIG. 1) can be produced (see Non-Patent Document 1). The BF method is a method for producing a cast film under high humidity in order to produce a honeycomb structure. Under high humidity, small water droplets are condensed on the cooled organic solvent by evaporating away the heat of vaporization. These water droplets are packed into a hexagonal shape that is energetically stable as the number increases and becomes crowded, and it becomes a mold and finally remains in the form of pores in the polymer film after the organic solvent has evaporated (Fig. (See 1 top). The reason why the small water droplets do not merge when packing is that the water droplets are covered with a thin polymer solution. So far, the pore size of the honeycomb film obtained by the BF method is 150 nm to several tens of μm. The pore size can be controlled by the casting conditions (humidity, polymer concentration, etc.).

近年、電子工学から医療に及ぶ機能性高分子材料を利用する様々な分野で、その材料表面に微細なパターン・構造を加工することが求められている。そのような微細加工の分野では、従来の光リソグラフィー法のようなトップダウン方式の技術に加え、その材料自身の自己組織化現象や自己集合性といった物理的性質を利用した様々なボトムアップ方式の技術が開発・報告されている。上述のBF法もまた、そのようなボトムアップ方式の表面パターニング技術の一つとしてその応用が研究されており、これまでにBF法によって、導電性高分子又は発光性高分子(例えば、非特許文献2〜4参照)、あるいは生分解性高分子(例えば、特許文献1参照)等をはじめとする様々な機能性高分子からハニカムフィルム(構造体)を作製できることが報告された。   In recent years, in various fields using functional polymer materials ranging from electronics to medicine, it is required to process fine patterns and structures on the surface of the materials. In the field of microfabrication, in addition to the top-down technique such as the conventional photolithography method, various bottom-up techniques utilizing physical properties such as self-organization phenomenon and self-assembly of the material itself are used. Technology has been developed and reported. The application of the above-described BF method has also been studied as one of such bottom-up surface patterning techniques, and a conductive polymer or a light-emitting polymer (for example, non-patented) has been used by the BF method so far. It has been reported that honeycomb films (structures) can be produced from various functional polymers including biodegradable polymers (see, for example, Patent Document 1).

しかしながら、BF法は、その原理から、鋳型となる水と混ざり合わない有機溶媒をキャスト溶液に使用することが前提となる。この水と混ざり合わない有機溶媒として、二硫化炭素、クロロホルム、ジクロロメタン、トルエン、ベンゼン、キシレン等が用いられた実績がある。一方、BF法はキャスト法の一種であるから、原則、溶媒に溶けるポリマーにしか適用できない。したがって、多くの機能性高分子は、そのままではBF法の適用が困難である。   However, the BF method is based on the premise that an organic solvent that does not mix with water used as a template is used for the casting solution. As organic solvents that do not mix with water, carbon disulfide, chloroform, dichloromethane, toluene, benzene, xylene and the like have been used. On the other hand, since the BF method is a kind of casting method, in principle, it can be applied only to a polymer that is soluble in a solvent. Therefore, it is difficult to apply the BF method as it is for many functional polymers.

さらにこれらの溶媒に溶けるからといってきれいなハニカムフィルムが得られるとは限らない。例えば、溶媒が二硫化炭素の場合、星型PSではきれいなハニカムフィルムが得られるのに対して、ただの直鎖状PSを用いるとハニカムフィルムが得られないことが知られている。はっきりとした理由はわかっていないが、ロッドコイル型のブロック共重合体、星型ポリマー、両親媒性ポリマーからはきれいなパターンが出来やすいことが経験的に知られている。   Furthermore, a beautiful honeycomb film is not always obtained just because it dissolves in these solvents. For example, when the solvent is carbon disulfide, it is known that a clean honeycomb film can be obtained with a star-shaped PS, whereas a honeycomb film cannot be obtained when only a linear PS is used. Although the reason is not clearly known, it is empirically known that a clean pattern is easily formed from a rod coil type block copolymer, a star polymer, and an amphiphilic polymer.

π共役系高分子は、高分子の主鎖に沿って広がったπ電子を持つため、導電性高分子又は発光性高分子として働くことが知られている。そのような高分子としては、ポリアセチレン、ポリチオフェン、ポリピロール、ポリパラフェニレン、ポリパラフェニレンビニレン(PPV)等が挙げられる。これらは、金属系電子材料と比べ軽量で加工しやすいといった利点を有することから、リチウムイオン電池、アルミ電解コンデンサ、帯電防止フィルムなどへの応用が実用化されている。また、近年、有機EL(Electroluminescence)又は有機LED(Light-Emitting Diode)の発光層への応用が検討されており、これらにBF法を適用し、ハニカムフィルム(構造体)を得ることも期待されている。   It is known that a π-conjugated polymer has a π electron that spreads along the main chain of the polymer, and thus functions as a conductive polymer or a light-emitting polymer. Examples of such a polymer include polyacetylene, polythiophene, polypyrrole, polyparaphenylene, polyparaphenylene vinylene (PPV), and the like. Since these have the advantage of being lighter and easier to process than metallic electronic materials, their application to lithium ion batteries, aluminum electrolytic capacitors, antistatic films and the like has been put into practical use. In recent years, application of organic EL (Electroluminescence) or organic LED (Light-Emitting Diode) to a light-emitting layer has been studied, and it is expected that a honeycomb film (structure) will be obtained by applying the BF method thereto. ing.

しかしながら、従来の直鎖状π共役系高分子、例えばPPVのような芳香環を主鎖骨格に有する、剛直な直鎖状ホモポリマーは、ほとんどの溶媒に不溶であり、そのままではBF法の適用が困難である。これまでに、PPVをPSとブロック共重合体化したものや、可溶化するための長いアルキル鎖を側鎖として導入して誘導体化したものに、BF法を適用し、ハニカムフィルムの作製を試みたことが報告されている(例えば、非特許文献2〜4参照)。しかしながら、これらは純粋なπ共役部のみからなるPPVではないため、導電性高分子又は発光性高分子としての性能や安定性が損なわれるおそれがある。
Widawski, G.ら、Nature 369, 387-389 (1994) de Boer, B.ら、Adv. Mater. 12, 1581-1583 (2000) de Boer, B.ら、Polymer 42, 9097-9109 (2001) Govor, L. V.ら、Adv. Mater. 13, 588-591 (2001) 特開2001−157574号公報
However, a conventional linear π-conjugated polymer, for example, a rigid linear homopolymer having an aromatic ring such as PPV in the main chain skeleton is insoluble in most solvents, and as it is, application of the BF method Is difficult. Up to now, the BF method has been applied to the PPV block copolymerized with PS or the derivative derived by introducing a long alkyl chain for solubilization as a side chain to produce a honeycomb film. (For example, refer nonpatent literatures 2-4). However, since these are not PPVs consisting of pure π-conjugated moieties, the performance and stability as a conductive polymer or a light-emitting polymer may be impaired.
Widawski, G. et al., Nature 369, 387-389 (1994) de Boer, B. et al., Adv. Mater. 12, 1581-1583 (2000) de Boer, B. et al., Polymer 42, 9097-9109 (2001) Govor, LV et al., Adv. Mater. 13, 588-591 (2001) JP 2001-157574 A

本発明の目的は、PPVのようなπ共役系高分子にBF法を適用し、ハニカム構造体を得るにあたり、他のモノマー単位とのブロック共重合体化や側鎖の導入による誘導体化などの化学的修飾をすることのない、新たなアプローチを提供することである。   An object of the present invention is to apply a BF method to a π-conjugated polymer such as PPV to obtain a honeycomb structure, such as block copolymerization with other monomer units or derivatization by introducing side chains. To provide a new approach without chemical modification.

本発明者らは、従来の直鎖状のものではなく、樹状構造を有するπ共役系高分子を採用することにより、BF法によりハニカム構造体が得られることを見出した。さらに、樹状π共役系高分子、特に樹状ポリ(フェニレンビニレン)等の芳香族π共役系高分子からなるハニカム構造体を光硬化又は熱処理に付すことにより、ハニカム構造を保持しながらも優れた特性を有する硬化物又は炭素質材料を提供しうることを見出し、以下の本発明を完成させた。   The present inventors have found that a honeycomb structure can be obtained by the BF method by employing a π-conjugated polymer having a dendritic structure instead of the conventional linear one. Furthermore, a honeycomb structure made of a dendritic π-conjugated polymer, particularly an aromatic π-conjugated polymer such as dendritic poly (phenylene vinylene), is subjected to photocuring or heat treatment, thereby maintaining an excellent honeycomb structure. The present inventors have found that a cured product or carbonaceous material having the above characteristics can be provided.

(1)樹状π共役系高分子からなるハニカム構造体。   (1) A honeycomb structure made of a dendritic π-conjugated polymer.

(2)樹状π共役系高分子を含む疎水性有機溶媒溶液を型又は基板上にキャストし、高湿度下で保持し、該溶液上に微小水滴を結露させた後又は結露させると同時に該有機溶媒を蒸発させ、該微小水滴を除去することにより得られる、ハニカム構造体。   (2) A hydrophobic organic solvent solution containing a dendritic π-conjugated polymer is cast on a mold or a substrate, held under high humidity, and minute water droplets are condensed on the solution or simultaneously with the condensation. A honeycomb structure obtained by evaporating an organic solvent and removing the fine water droplets.

(3)樹状π共役系高分子が、下記式:   (3) The dendritic π-conjugated polymer has the following formula:


より選択される芳香族π共役系の構成繰り返し単位からなる、上記(1)又は(2)記載のハニカム構造体。

The honeycomb structure according to the above (1) or (2), comprising a structural repeating unit of an aromatic π-conjugated system selected from the above.

(4)樹状π共役系高分子が、下記式(I):   (4) The dendritic π-conjugated polymer has the following formula (I):

で示される構成繰り返し単位からなる、樹状ポリ(フェニレンビニレン)である、上記(1)〜(3)のいずれか記載のハニカム構造体。 The honeycomb structure according to any one of the above (1) to (3), which is a dendritic poly (phenylene vinylene) composed of structural repeating units represented by:

(5)樹状π共役系高分子が、下記式(Ia)又は(Ib):   (5) The dendritic π-conjugated polymer is represented by the following formula (Ia) or (Ib):

で表される樹状ポリ(フェニレンビニレン)である、上記(1)〜(4)のいずれかに記載のハニカム構造体。 The honeycomb structure according to any one of the above (1) to (4), which is a dendritic poly (phenylene vinylene) represented by:

(6)上記(1)〜(5)のいずれか記載のハニカム構造体を光硬化することにより得られる、ハニカム構造を有する硬化物。   (6) A cured product having a honeycomb structure obtained by photocuring the honeycomb structure according to any one of (1) to (5).

(7)上記(1)〜(5)のいずれか記載のハニカム構造体を熱処理することにより得られる、ハニカム構造を有する炭素質材料。   (7) A carbonaceous material having a honeycomb structure obtained by heat-treating the honeycomb structure according to any one of (1) to (5).

(8)(a)樹状π共役系高分子を疎水性有機溶媒に溶解する工程、
(b)工程(a)で得られた溶液を型又は基板上にキャストする工程、
(c)高湿度下で保持し、該溶液上に微小水滴を結露させた後又は結露させると同時に該有機溶媒を蒸発させる工程、及び
(d)該微小水滴を除去する工程、
を含むことを特徴とする、ハニカム構造体の製造方法。
(8) (a) a step of dissolving the dendritic π-conjugated polymer in a hydrophobic organic solvent,
(B) a step of casting the solution obtained in step (a) on a mold or a substrate;
(C) holding under high humidity, condensing fine water droplets on the solution, or evaporating the organic solvent at the same time as condensing; and (d) removing the fine water droplets;
A method for manufacturing a honeycomb structure, comprising:

本発明は、従来、直鎖状π共役系高分子では作製することが困難であった、π共役系高分子からなるハニカム構造体を提供する。本発明の、樹状π共役系高分子からなるハニカム構造体は、そのπ共役系高分子に共役系を妨げる化学的修飾を必要としないため、導電性高分子又は発光性高分子としての性能や安定性が期待される。   The present invention provides a honeycomb structure made of a π-conjugated polymer, which has heretofore been difficult to produce with a linear π-conjugated polymer. The honeycomb structure made of a dendritic π-conjugated polymer of the present invention does not require chemical modification that hinders the conjugated system in the π-conjugated polymer, so that the performance as a conductive polymer or a light-emitting polymer is achieved. And stability is expected.

また、BF法は、その原理から溶媒に可溶な高分子にのみ適用可能な方法であるため、従来より得られるハニカム構造体には耐溶剤性の問題があった。本発明の樹状π共役系高分子、特に樹状ポリ(フェニレンビニレン)等の樹状芳香族π共役系高分子からなるハニカム構造体は、さらに光硬化処理に付すことにより、驚くべきことにこれまでにない耐溶剤性に優れたハニカム構造を有する硬化物を提供することができる。このようなハニカム構造を有する硬化物は、耐溶剤性を要する鋳型やろ過膜への応用が期待される。   Further, since the BF method is applicable only to a polymer soluble in a solvent because of its principle, the honeycomb structure obtained conventionally has a problem of solvent resistance. The honeycomb structure comprising the dendritic π-conjugated polymer of the present invention, particularly a dendritic aromatic π-conjugated polymer such as dendritic poly (phenylene vinylene), is surprisingly subjected to a photocuring treatment. A cured product having an unprecedented solvent structure and excellent honeycomb structure can be provided. The cured product having such a honeycomb structure is expected to be applied to a mold or a filtration membrane that requires solvent resistance.

さらに、活性炭に代表される従来の多孔性の炭素質材料は、植物等に由来する天然材料を原料とするため、孔径や孔の配列が不揃いであった。近年これらを揃えた高機能な多孔性炭素材料を合成する試みが盛んに行われているが、それらはゼオライトやメソポーラスシリカ等の多孔性材料の鋳型を必要とし、さらに最終的には鋳型を除去する煩雑なプロセスを経るものである。一方、本発明によれば、樹状π共役系高分子、特にポリ(フェニレンビニレン)等の樹状芳香族π共役系高分子からなるハニカム構造体を熱処理に付すという、極めて簡便な方法により一定の孔径と規則的な配列を有する多孔性の炭素質材料を提供することができる。   Furthermore, since the conventional porous carbonaceous material represented by activated carbon uses the natural material derived from a plant etc. as a raw material, the hole diameter and the arrangement | sequence of the hole were not uniform. In recent years, many attempts have been made to synthesize highly functional porous carbon materials, which require these, but they require a template of a porous material such as zeolite or mesoporous silica, and finally the template is removed. This is a complicated process. On the other hand, according to the present invention, a honeycomb structure composed of a dendritic π-conjugated polymer, especially a dendritic aromatic π-conjugated polymer such as poly (phenylene vinylene), is subjected to heat treatment, and thus is fixed by an extremely simple method. It is possible to provide a porous carbonaceous material having a regular pore size and a regular arrangement.

本発明は、樹状π共役系高分子からなるハニカム構造体に関する。本発明におけるハニカム構造体とは、樹状π共役系高分子から作製された多孔性の成形品であって、好ましくは薄膜(フィルム又はシート状のもの)を意味し、微少な孔(直径約0.1〜100μm)がその成形品の少なくとも一の表面(平面)に蜂の巣状、すなわちハニカム状に規則的な配置で設けられたものをいう。薄膜の厚さは約0.1〜100μm、好ましくは約0.1〜50μmであり、孔は膜を垂直方向に貫通していてもよく、また平面方向に隣接する周囲の孔と膜の内部で連通していてもよい。   The present invention relates to a honeycomb structure made of a dendritic π-conjugated polymer. The honeycomb structure in the present invention is a porous molded product made of a dendritic π-conjugated polymer, and preferably means a thin film (film or sheet-like) and has fine pores (diameter of about 0.1 to 100 μm) means that the honeycomb structure is provided in a regular arrangement in a honeycomb shape, that is, in a honeycomb shape, on at least one surface (plane). The thickness of the thin film is about 0.1 to 100 μm, preferably about 0.1 to 50 μm. The holes may penetrate the film in the vertical direction, and the surrounding holes adjacent to the plane direction and the inside of the film. You may communicate with.

本発明における樹状π共役系高分子としては、その枝分かれユニットがπ共役系の構成繰り返し単位からなる樹状構造をしたオリゴマー又はポリマーである、デンドリマー又はハイパーブランチポリマーが挙げられる。デンドリマーとハイパーブランチポリマーは、分子対称性によって区別され、厳密な反応操作によって高い対称性をもって合成されるものをデンドリマーと称し、ランダムな分枝に基づいて部分的に非対称性を示すものをハイパーブランチポリマーと称する。   Examples of the dendritic π-conjugated polymer in the present invention include dendrimers or hyperbranched polymers, which are oligomers or polymers having a dendritic structure in which the branching unit is composed of π-conjugated constituent repeating units. Dendrimers and hyperbranched polymers are distinguished by molecular symmetry and are synthesized with a high degree of symmetry through rigorous reaction operations.They are called dendrimers, and those that show partial asymmetry based on random branches are hyperbranched. It is called a polymer.

本発明の樹状π共役系高分子は、公知の化合物であるか、又は公知の方法に従って容易に製造することができる。一般に、樹状高分子(デンドリマー又はハイパーブランチポリマー)は、中心分子のコアから外側へ向かって世代(ジェネレーション)ごとに分子を結合させていくダイバージェント法、予め枝分かれユニットの部分を合成しておき最後にコアと反応させるコンバージェント法、又は互いに反応しうるA、B2種類の末端官能基をもつABx型モノマーの自己重合反応を利用する一段階合成法等の公知の手法により製造することができる。前二者の方法は、より分子対称性の高いデンドリマーの合成に適しており、後者の方法は、部分的に非対称性を示すハイパーブランチポリマーの合成に適している。   The dendritic π-conjugated polymer of the present invention is a known compound or can be easily produced according to a known method. In general, dendritic polymers (dendrimers or hyperbranched polymers) are synthesized in advance by a divergent method in which molecules are combined for each generation (generation) from the core of the central molecule to the outside. Finally, it can be produced by a known method such as a convergent method of reacting with the core, or a one-step synthesis method using a self-polymerization reaction of ABx type monomers having two types of terminal functional groups A and B that can react with each other. . The former two methods are suitable for synthesizing dendrimers having higher molecular symmetry, and the latter method is suitable for synthesizing hyperbranched polymers that partially exhibit asymmetry.

本発明の樹状π共役系高分子がデンドリマーの場合、中心分子(コア)は、所望の樹状π共役系高分子のサイズ、機能等に応じて適宜選択すればよく、特に限定はない。コアは、枝分かれユニットを構成するπ共役系の構成繰り返し単位と同一であっても、異なっていてもよいが、π共役系の構成繰り返し単位と同一であるのが好ましい。本発明の樹状π共役系高分子における、枝分かれユニットを構成するπ共役系の構成繰り返し単位は、π共役系の構造単位を含むものであればよく、例えば、アセチレン、フェニレン、チオフェン、ピロール、フェニレンビニレン、フェニレンエチニレン、フェニレンブタジイニレン等を挙げることができる。好ましくは、下記式:   When the dendritic π-conjugated polymer of the present invention is a dendrimer, the central molecule (core) may be appropriately selected according to the size, function, etc. of the desired dendritic π-conjugated polymer, and there is no particular limitation. The core may be the same as or different from the π-conjugated repeating unit constituting the branching unit, but is preferably the same as the π-conjugated repeating unit. In the dendritic π-conjugated polymer of the present invention, the structural repeating unit of the π-conjugated system that constitutes the branching unit may be any unit that includes a structural unit of π-conjugated system, such as acetylene, phenylene, thiophene, pyrrole, Examples include phenylene vinylene, phenylene ethynylene, and phenylene butadienylene. Preferably, the following formula:

で表される、フェニレン、フェニレンビニレン、フェニレンエチニレン、フェニレンブタジイニレンより選択される芳香族π共役系の構成繰り返し単位であり、特に好ましくは下記式(I): A structural repeating unit of an aromatic π-conjugated system selected from phenylene, phenylene vinylene, phenylene ethynylene, and phenylene butadienylene, particularly preferably represented by the following formula (I):

で表されるフェニレンビニレンである。 It is phenylene vinylene represented by these.

本発明において特に好ましい「フェニレンビニレン」単位からなる樹状π共役系高分子である、樹状ポリ(フェニレンビニレン)の例は、ハイパーブランチポリ(フェニレンビニレン)(以下、hypPPVとも称する)であり、具体的には、フェニル基とビニル基の置換位置により、下記式(Ia)又は(Ib)に示すような1,3,5−hypPPV又は1,2,4−hypPPV構造を有するものが挙げられる。   An example of a dendritic poly (phenylene vinylene), which is a dendritic π-conjugated polymer composed of “phenylene vinylene” units particularly preferred in the present invention, is hyperbranched poly (phenylene vinylene) (hereinafter also referred to as hypPPV), Specific examples include those having a 1,3,5-hypPPV or 1,2,4-hypPPV structure as shown in the following formula (Ia) or (Ib) depending on the substitution position of the phenyl group and the vinyl group. .

これらのhypPPVの合成は、例えば、以下の実施例に記載の方法に従って、1−ブロモ−2,4−ジビニルベンゼン又は1−ブロモ−3,5−ジビニルベンゼンをABモノマーとして用いる一段階合成法により達成することができる。 The synthesis of these hypPPVs is, for example, a one-step synthesis method using 1-bromo-2,4-divinylbenzene or 1-bromo-3,5-divinylbenzene as AB 2 monomer according to the method described in the following examples. Can be achieved.

本発明の樹状π共役系高分子の重量平均分子量(Mw)は、所望のハニカム構造体の特性や、用いる樹状π共役系高分子の溶解度等に応じて適宜選択されるが、約1,000〜200,000、特には約1,000〜20,000であることが好ましい。   The weight average molecular weight (Mw) of the dendritic π-conjugated polymer of the present invention is appropriately selected according to the desired characteristics of the honeycomb structure, the solubility of the dendritic π-conjugated polymer used, and the like. It is preferably from 1,000 to 200,000, particularly from about 1,000 to 20,000.

本発明の樹状π共役系高分子からなるハニカム構造体は、(a)樹状π共役系高分子を疎水性有機溶媒に溶解する工程、(b)工程(a)で得られた溶液を型又は基板上にキャストする工程、(c)高湿度下で保持し、該溶液上に微小水滴を結露させた後又は結露させると同時に該有機溶媒を蒸発させる工程、及び(d)該微小水滴を除去する工程、を含むことを特徴とする方法に従って製造することができる。   The honeycomb structure comprising the dendritic π-conjugated polymer of the present invention comprises: (a) a step of dissolving the dendritic π-conjugated polymer in a hydrophobic organic solvent; and (b) a solution obtained in step (a). A step of casting on a mold or a substrate, (c) a step of evaporating the organic solvent after or at the same time as condensing the fine water droplets on the solution, and (d) the fine water droplets. The method can be manufactured according to the method characterized by including the process of removing.

本発明のハニカム構造体の製造方法において、工程(a)は、樹状π共役系高分子を疎水性有機溶媒に溶解した疎水性有機溶媒溶液を調製する工程である。本発明で使用することのできる疎水性有機溶媒は、工程(c)において結露した水滴を保持し得る程度の疎水性を有するものであればよい。また溶媒の沸点は、10〜150℃、特には大気圧下で常温と同程度〜水の沸点以下の温度、具体的には20〜70℃であるものが好ましい。このような疎水性有機溶媒の例としては、四塩化炭素、ジクロロメタン、クロロホルム等のハロゲン化炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、酢酸エチル、酢酸ブチル等のエステル類、メチルイソブチルケトン等の疎水性のケトン類、二硫化炭素などを挙げることができ、使用する樹状π共役系高分子に対する溶解性等に応じて、適宜選択される。   In the method for manufacturing a honeycomb structure of the present invention, step (a) is a step of preparing a hydrophobic organic solvent solution in which a dendritic π-conjugated polymer is dissolved in a hydrophobic organic solvent. The hydrophobic organic solvent that can be used in the present invention may be any hydrophobic organic solvent as long as it has a degree of hydrophobicity that can retain the water droplets condensed in the step (c). Further, the solvent preferably has a boiling point of 10 to 150 ° C., particularly a temperature of about the same as normal temperature to the boiling point of water under atmospheric pressure, specifically 20 to 70 ° C. Examples of such hydrophobic organic solvents include halogenated hydrocarbons such as carbon tetrachloride, dichloromethane and chloroform, aromatic hydrocarbons such as benzene, toluene and xylene, esters such as ethyl acetate and butyl acetate, and methyl isobutyl. Hydrophobic ketones such as ketones, carbon disulfide and the like can be mentioned, and they are appropriately selected depending on the solubility in the dendritic π-conjugated polymer used.

溶液は、樹状π共役系高分子を、疎水性有機溶媒に対して0.01〜50g/L、好ましくは1〜10g/Lとなるように溶解して調製すればよい。濃度は、所望のハニカム構造体の特性、物性及び使用する溶媒に応じて適宜定めることができ、前記範囲を超える場合があってもよい。   The solution may be prepared by dissolving the dendritic π-conjugated polymer so as to be 0.01 to 50 g / L, preferably 1 to 10 g / L with respect to the hydrophobic organic solvent. The concentration can be appropriately determined according to the desired characteristics, physical properties of the honeycomb structure and the solvent used, and may exceed the above range.

本発明のハニカム構造体の製造方法において、工程(b)は、工程(a)で得られた溶液を型又は基板上にキャストする工程である。型又は基板の材料としては、キャスティングによるプラスチックの成形一般に使用されるものであればよく、例えば、ガラス、金属等の無機材料、又はポリエチレン、ポリプロピレン、シリコーン等の耐溶剤性を有する有機材料を挙げることができるが、これらに限定されない。型又は基板の形状は、所望のハニカム構造体の形状に応じて適宜選択すればよい。また、所望により、シランカップリング剤等を用いる公知の方法に従って、これらの型又は基板上の表面を改質してもよい。   In the method for manufacturing a honeycomb structured body of the present invention, step (b) is a step of casting the solution obtained in step (a) onto a mold or a substrate. The material of the mold or the substrate may be any material generally used for plastic molding by casting, and examples thereof include inorganic materials such as glass and metal, or organic materials having solvent resistance such as polyethylene, polypropylene, and silicone. Can be, but is not limited to. What is necessary is just to select the shape of a type | mold or a board | substrate suitably according to the shape of a desired honeycomb structure. If desired, the surface of the mold or the substrate may be modified according to a known method using a silane coupling agent or the like.

工程(a)で得られた溶液を型又は基板上にキャスト(注入又は流延)する方法は、前記溶液を直接注入又は流延する方法の他、バーコート法、ディップコート法、スピンコート法などの公知の方法から適宜選択すればよい。キャスト厚は、所望のハニカム構造体の厚さや、キャストに用いる溶液の濃度等に応じて適宜設定されるが、ハニカム構造を構成する孔の形成効率の点から、約1μm〜10mmの範囲が好ましい。   The method of casting (injecting or casting) the solution obtained in the step (a) onto a mold or a substrate is not only a method of directly injecting or casting the solution, but also a bar coating method, a dip coating method, and a spin coating method. What is necessary is just to select suitably from well-known methods, such as. The cast thickness is appropriately set according to the desired thickness of the honeycomb structure, the concentration of the solution used for casting, and the like, but is preferably in the range of about 1 μm to 10 mm from the viewpoint of the formation efficiency of the holes constituting the honeycomb structure. .

本発明のハニカム構造体の製造方法において、工程(c)は、工程(b)で得られたキャスト後の型又は基板を高湿度下で保持し、該溶液上に微小水滴を結露させた後又は結露させると同時に該有機溶媒を蒸発させる工程である。高湿度下とは、相対湿度30%以上、好ましくは50%以上の大気下を意味する。冷却は、疎水性有機溶媒の蒸発に伴う気化熱によって行うことができ、必要に応じて、工程(b)で得られたキャスト後の型又は基板自体を、冷所(但し、該溶液の凝固点以上の温度)に静置してもよい。蒸発は、微小水滴の結露とほぼ同時に進行する。基板又は型は、蒸発が完了するまで高湿度下で保持してもよいが、蒸発の完了前であっても結露の完了後であれば高湿度下より取り出してもよい。   In the method for manufacturing a honeycomb structure of the present invention, the step (c) is performed after the cast mold or substrate obtained in the step (b) is held under high humidity, and minute water droplets are condensed on the solution. Alternatively, it is a step of condensing and evaporating the organic solvent. Under high humidity means under an atmosphere with a relative humidity of 30% or higher, preferably 50% or higher. The cooling can be performed by the heat of vaporization accompanying the evaporation of the hydrophobic organic solvent. If necessary, the cast mold obtained in step (b) or the substrate itself can be placed in a cool place (however, the freezing point of the solution). You may stand still at the above temperature. Evaporation proceeds almost simultaneously with the condensation of fine water droplets. The substrate or the mold may be kept under high humidity until the evaporation is completed, but may be taken out from the high humidity before the evaporation is completed or after the condensation is completed.

蒸発は、常温常圧下での自然乾燥、気流による強制乾燥、水滴が蒸発しない減圧又は加温条件下での強制乾燥により行うことができ、使用した疎水性有機溶媒の沸点や揮発性等の性質に応じて適宜選択されるが、自然乾燥又は気流による強制乾燥を行うのが好ましい。したがって工程(c)は、例えば、相対湿度30%以上、好ましくは50%以上の、流速0.1〜100L/分、好ましくは1〜50L/分の気流下に、工程(b)で得られたキャスト後の型又は基板を静置することで、該溶液上に微小水滴を結露させると同時に疎水性有機溶媒を蒸発させる。相対湿度や気流の流速等の条件を、用いる疎水性有機溶媒の沸点や揮発性、溶液の濃度や比重、キャスト厚等に応じて適宜設定することにより、孔径を調製することができる。   Evaporation can be performed by natural drying under normal temperature and normal pressure, forced drying by airflow, reduced pressure at which water droplets do not evaporate or forced drying under heating conditions. Properties such as boiling point and volatility of the used hydrophobic organic solvent Although it is appropriately selected according to the above, it is preferable to perform natural drying or forced drying by airflow. Therefore, the step (c) is obtained in the step (b), for example, under an air flow having a relative humidity of 30% or more, preferably 50% or more and a flow rate of 0.1 to 100 L / min, preferably 1 to 50 L / min. The mold or the substrate after casting is allowed to stand, so that fine water droplets are condensed on the solution and at the same time the hydrophobic organic solvent is evaporated. The pore diameter can be adjusted by appropriately setting the conditions such as the relative humidity and the flow rate of the airflow according to the boiling point and volatility of the hydrophobic organic solvent to be used, the concentration and specific gravity of the solution, the cast thickness, and the like.

本発明のハニカム構造体の製造方法において、工程(d)は、該微小水滴を除去する工程である。疎水性有機溶媒の蒸発後、鋳型として働き、形成された孔内に残留した水滴は、減圧乾燥等の公知の方法により除去すればよい。次いで得られたハニカム構造体から、所望により型又は基板を取り除いてもよい。本発明の樹状π共役高分子からなるハニカム構造体は、適度な強度と自立性を有する。   In the method for manufacturing a honeycomb structure of the present invention, step (d) is a step of removing the minute water droplets. After evaporation of the hydrophobic organic solvent, water droplets that act as a template and remain in the formed holes may be removed by a known method such as drying under reduced pressure. Next, the mold or the substrate may be removed from the obtained honeycomb structure as desired. The honeycomb structure made of the dendritic π-conjugated polymer of the present invention has appropriate strength and self-supporting property.

さらに本発明は、上記のようにして得られた樹状π共役系高分子、特に樹状ポリ(フェニレンビニレン)等の樹状芳香族π共役系高分子からなるハニカム構造体を光硬化処理に付すことにより得られる、ハニカム構造を有する硬化物にも関する。光硬化処理は、200〜400nm、好ましくは250〜370nmの波長を有するUV光で、約2〜30分、好ましくは約2〜10分間、ハニカム構造体を照射することにより行うことができる。樹状ポリ(フェニレンビニレン)等の樹状芳香族π共役系高分子は、その分子構造に多くの二重結合を含んでいるため、UV照射によって架橋する。得られた本発明の硬化物は、ハニカム構造はそのままであるが、樹状ポリ(フェニレンビニレン)等の樹状芳香族π共役系高分子を溶解する種々の溶媒に対する耐溶剤性を獲得することができる。   Furthermore, the present invention provides a photopolymerization treatment of a honeycomb structure comprising a dendritic π-conjugated polymer obtained as described above, particularly a dendritic aromatic π-conjugated polymer such as dendritic poly (phenylene vinylene). The present invention also relates to a cured product having a honeycomb structure obtained by attaching. The photocuring treatment can be performed by irradiating the honeycomb structure with UV light having a wavelength of 200 to 400 nm, preferably 250 to 370 nm, for about 2 to 30 minutes, preferably about 2 to 10 minutes. Dendritic aromatic π-conjugated polymers such as dendritic poly (phenylene vinylene) contain many double bonds in their molecular structure, and thus are crosslinked by UV irradiation. The obtained cured product of the present invention has the honeycomb structure as it is, but acquires solvent resistance to various solvents that dissolve dendritic aromatic π-conjugated polymers such as dendritic poly (phenylene vinylene). Can do.

さらに本発明は、上記のようにして得られた樹状π共役高分子、特に樹状ポリ(フェニレンビニレン)等の樹状芳香族π共役系高分子からなるハニカム構造体を熱処理に付すことにより得られる、ハニカム構造を有する炭素質材料に関する。熱処理は、窒素のような不活性ガス雰囲気下、約400〜1200℃、好ましくは約500〜700℃の熱分解処理に付すことにより行うことができる。得られる炭素質材料は、処理前のハニカム構造体に対して約30〜50%の重量及び孔径の減少は生じるものの、ハニカム構造を維持するものである。したがって、本発明の樹状ポリ(フェニレンビニレン)等の樹状芳香族π共役系高分子からなるハニカム構造体は、一定の孔径と規則的な配列を有する多孔性炭素質材料の前駆体として有用である。   Furthermore, the present invention provides a honeycomb structure comprising a dendritic π-conjugated polymer obtained as described above, particularly a dendritic aromatic π-conjugated polymer such as dendritic poly (phenylene vinylene), by subjecting it to a heat treatment. The present invention relates to a carbonaceous material having a honeycomb structure. The heat treatment can be performed by subjecting to a thermal decomposition treatment at about 400 to 1200 ° C., preferably about 500 to 700 ° C., under an inert gas atmosphere such as nitrogen. The obtained carbonaceous material maintains the honeycomb structure although the weight and the pore diameter are reduced by about 30 to 50% with respect to the honeycomb structure before processing. Therefore, the honeycomb structure comprising a dendritic aromatic π-conjugated polymer such as dendritic poly (phenylene vinylene) of the present invention is useful as a precursor of a porous carbonaceous material having a constant pore size and a regular arrangement. It is.

以下に実施例を示し、本発明の詳細を説明するが、これらの実施例は本発明を限定することを意図するものではない。   The following examples illustrate the details of the present invention, but these examples are not intended to limit the present invention.

〔合成例〕hypPPVの合成
hypPPVの合成は、Macromolecules 39, 9-11 (2006)の記載を参考に下記のスキーム1に従い実施した。
[Synthesis Example] Synthesis of hypPPV
The synthesis of hypPPV was performed according to the following scheme 1 with reference to the description of Macromolecules 39, 9-11 (2006).

〔合成例1〕1,3,5−hypPPVの合成
1)化合物(2)の合成
1−ブロモ−3,5−ジメチルベンゼン(1)10g、N−ブロモコハク酸イミド(NBS、東京化成工業(株)製)23g、アゾジイソブチロニトリル(AIBN)50mg、及びCCl(関東化学(株)製)250mLの混合物を5時間還流した。室温まで冷却し、固体はろ過して除いた。得られたろ液を濃縮し、残渣をジクロロメタン200mLで再び薄めた。この有機層を飽和NaCO溶液で2回、蒸留水で2回洗浄した。有機層をMgSOで乾燥した後、濃縮し、ヘキサンから再結晶し、純粋な1,3,5−化合物(2)を得た(透明針状結晶、収率23%)。
1H NMR (400 MHz, CDCl3): δ 7.47(s, 2H), 7.34(s, 1H), 4.41(s, 1H)
[Synthesis Example 1] Synthesis of 1,3,5-hypPPV 1) Synthesis of Compound (2) 10 g of 1-bromo-3,5-dimethylbenzene (1), N-bromosuccinimide (NBS, Tokyo Chemical Industry Co., Ltd.) )) 23 g, azodiisobutyronitrile (AIBN) 50 mg, and CCl 4 (manufactured by Kanto Chemical Co., Inc.) 250 mL were refluxed for 5 hours. After cooling to room temperature, the solid was removed by filtration. The resulting filtrate was concentrated and the residue was diluted again with 200 mL of dichloromethane. The organic layer was washed twice with saturated Na 2 CO 3 solution and twice with distilled water. The organic layer was dried over MgSO 4 , concentrated and recrystallized from hexane to obtain pure 1,3,5-compound (2) (clear needle crystal, yield 23%).
1 H NMR (400 MHz, CDCl 3 ): δ 7.47 (s, 2H), 7.34 (s, 1H), 4.41 (s, 1H)

2)化合物(3)の合成
1,3,5−化合物(2)3.7g、PPh8.6g、及びベンゼン70mLの混合物を5時間還流した後、室温まで冷却し、ろ過によって固体を得た。これをジエチルエーテルで洗い、真空乾燥して1,3,5−化合物(3)を得た(白色粉末、収率83%)。これをさらに精製することなく次の工程に使用した。
1H NMR (400 MHz, CDCl3): δ 7.83-7.63(m, 30H), 6.95(s, 2H), 6.72(s, 1H), 5.63(d, 4H, J=14.6 Hz)
2) Synthesis of compound (3) A mixture of 3.7 g of 1,3,5-compound (2), 8.6 g of PPh 3 and 70 mL of benzene was refluxed for 5 hours, cooled to room temperature, and a solid was obtained by filtration. It was. This was washed with diethyl ether and dried in vacuo to give 1,3,5-compound (3) (white powder, 83% yield). This was used in the next step without further purification.
1 H NMR (400 MHz, CDCl 3 ): δ 7.83-7.63 (m, 30H), 6.95 (s, 2H), 6.72 (s, 1H), 5.63 (d, 4H, J = 14.6 Hz)

3)化合物(4)の合成
1,3,5−化合物(3)6.0g、ホルマリン1.4g、及びCHCl46mLの溶液に、t−BuOK 2.1gを含むEtOH23mL溶液をゆっくり滴下した後、室温で5時間攪拌した。有機層を蒸留水で2回洗い、MgSOで乾燥した後、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン)で精製し、1,3,5−化合物(4)を得た(透明オイル、収率48%)。
1H NMR (400 MHz, CDCl3): δ 7.44(s, 2H), 7.31(s, 1H), 6.64(dd, 2H, J=28.4, 6.78 Hz), 5.76(d, 2H, J=17.6 Hz), 5.31(d, 2H, J=11.0 Hz)
3) Synthesis of Compound (4) A solution of EtOH containing 2.1 g of t-BuOK was slowly added dropwise to a solution of 6.0 g of 1,3,5-compound (3), 1.4 g of formalin and 46 mL of CHCl 3. And stirred at room temperature for 5 hours. The organic layer was washed twice with distilled water, dried over MgSO 4 , concentrated, and purified by silica gel column chromatography (hexane) to give 1,3,5-compound (4) (clear oil, yield) 48%).
1 H NMR (400 MHz, CDCl 3 ): δ 7.44 (s, 2H), 7.31 (s, 1H), 6.64 (dd, 2H, J = 28.4, 6.78 Hz), 5.76 (d, 2H, J = 17.6 Hz ), 5.31 (d, 2H, J = 11.0 Hz)

4)1,3,5−hypPPVの合成
乾燥Pd(OAc) 13mg及びトリ−o−トリル−ホスフィン35mgを入れたフラスコに、窒素雰囲気下で、1,3,5−化合物(4)300mgを含むDMF(脱水)12mL溶液、次いでNEt(脱水)0.5mLを加えた。95℃で6時間攪拌した後、室温まで冷却し、MeOHを加えて沈殿させた。この沈殿をCHCl及びMeOHを用い再沈殿により精製し、1,3,5−hypPPVを得た(薄茶色粉末、収率15%)。
1H NMR (400 MHz, DMSO): δ 7.9-7.2, 6.79, 5.94, 5.34
4) Synthesis of 1,3,5-hypPPV In a flask containing 13 mg of dry Pd (OAc) 2 and 35 mg of tri-o-tolyl-phosphine, 300 mg of 1,3,5-compound (4) was added under a nitrogen atmosphere. A solution containing 12 mL of DMF (dehydrated) was added followed by 0.5 mL of NEt 3 (dehydrated). After stirring at 95 ° C. for 6 hours, the mixture was cooled to room temperature and precipitated by adding MeOH. This precipitate was purified by reprecipitation using CHCl 3 and MeOH to obtain 1,3,5-hypPPV (light brown powder, 15% yield).
1 H NMR (400 MHz, DMSO): δ 7.9-7.2, 6.79, 5.94, 5.34

得られた1,3,5−hypPPVのHNMR、UV−Visスペクトル、蛍光スペクトルは上記文献(Macromolecules 39, 9-11 (2006))の結果と一致した。GPC(ポリスチレン標準試料)の測定結果から得られた1,3,5−hypPPVの分子量はMn=1,400、Mw=1,700、PDI=1.2であった。 The 1 HNMR, UV-Vis spectrum, and fluorescence spectrum of the obtained 1,3,5-hypPPV coincided with the results of the above-mentioned document (Macromolecules 39, 9-11 (2006)). The molecular weight of 1,3,5-hypPPV obtained from the measurement results of GPC (polystyrene standard sample) was Mn = 1,400, Mw = 1,700, and PDI = 1.2.

〔合成例2〕1,2,4−hypPPVの合成
出発物質として1−ブロモ−3,5−ジメチルベンゼンに換えて、1−ブロモ−2,4−ジメチルベンゼンを用いた以外は、合成例1に記載の手順と同様にして、1,2,4−hypPPVを得た。得られた1,2,4−hypPPVのHNMR、UV−Visスペクトル、蛍光スペクトルは上記文献(Macromolecules 39, 9-11 (2006))の結果と一致した。
[Synthesis Example 2] Synthesis of 1,2,4-hypPPV Synthesis Example 1 except that 1-bromo-2,4-dimethylbenzene was used instead of 1-bromo-3,5-dimethylbenzene as a starting material. 1,2,4-hypPPV was obtained in the same manner as described in 1. The 1 HNMR, UV-Vis spectrum, and fluorescence spectrum of the obtained 1,2,4-hypPPV agreed with the results of the above-mentioned document (Macromolecules 39, 9-11 (2006)).

〔実施例1〕1,3,5−hypPPVからなるハニカムフィルムの作製
上記合成例1で得られた1,3,5−hypPPVのクロロホルム溶液(5mg/mL)100μLをガラス基板(18mm×18mm)の上に滴下し、ここにあらかじめ水の中をバブリングした湿った空気を20L/分で10cm上から吹き付けクロロホルムを蒸発させることで50μm厚(最大厚)のハニカムフィルムを作製した。
Example 1 Production of Honeycomb Film Consisting of 1,3,5-hypPPV 100 μL of 1,3,5-hypPPV chloroform solution (5 mg / mL) obtained in Synthesis Example 1 was applied to a glass substrate (18 mm × 18 mm). A honeycomb film having a thickness of 50 μm (maximum thickness) was produced by spraying moist air previously bubbled in water from 10 cm above at 10 L and evaporating chloroform.

孔の直径とその標準偏差は2つの独立なサンプルからランダムに選んだ10エリアのSEM(Scanning electron microscope, Keyence, VE 7800)写真から計算した。SEM写真は、加速電圧1.0kVで撮影した。撮影前に試料にPtを約5nm蒸着した(JEOL, JFC-1600)。試料はホルダーにカーボンテープで貼り付けた。光学顕微鏡(OM)像は、BX51(オリンパス)で観察した。対物レンズは主に20倍と40倍を用いた。レーザー走査型共焦点顕微鏡(LSCM:Laser scanning confocal microscope)は、Lasertech社のものとKeyence社(VK-9700)のものを用いて観察した。   The hole diameter and its standard deviation were calculated from SEM (Scanning electron microscope, Keyence, VE 7800) photographs of 10 areas randomly selected from two independent samples. SEM photographs were taken at an acceleration voltage of 1.0 kV. Prior to photographing, about 5 nm of Pt was deposited on the sample (JEOL, JFC-1600). The sample was attached to the holder with carbon tape. The optical microscope (OM) image was observed with BX51 (Olympus). The objective lens mainly used 20 times and 40 times. A laser scanning confocal microscope (LSCM) was observed using Lasertech and Keyence (VK-9700).

得られたハニカムフィルムのOM及びSEM写真を図2に示した。図2aはOMによって観察したフィルム(50μm×50μm)を示したものである。単結晶のようにきれに孔が最密六角形状にパッキングしており、フィルムの色は薄い茶色であった。   An OM and SEM photograph of the obtained honeycomb film are shown in FIG. FIG. 2a shows a film (50 μm × 50 μm) observed by OM. The holes were packed in a close-packed hexagonal shape like a single crystal, and the color of the film was light brown.

SEMや高性能のLSCMを用いると、ひとつひとつの孔まではっきりと観察することができた(図2b)。SEM写真から孔の直径の平均は860nm±120nm(mean ± S.D.)であった。LSCMはレーザーをあててスキャンするため3Dの情報が得られる。LSCMから孔の深さは1.4μmであった。   Using SEM or high-performance LSCM, it was possible to clearly observe every single hole (FIG. 2b). From the SEM photograph, the average pore diameter was 860 nm ± 120 nm (mean ± S.D.). Since LSCM scans with a laser, 3D information is obtained. The depth of the hole from LSCM was 1.4 μm.

〔実施例2〕1,2,4−hypPPVからなるハニカムフィルムの作製
合成例2で得られた1,2,4−hypPPVを用い、実施例1に記載の手順と同様にして、約50μm厚(最大厚)のハニカムフィルムを作製した。得られたフィルムのSEM写真を図3に示す。
[Example 2] Production of honeycomb film made of 1,2,4-hypPPV Using 1,2,4-hypPPV obtained in Synthesis Example 2, the thickness of about 50 μm was obtained in the same manner as described in Example 1. A (maximum thickness) honeycomb film was prepared. An SEM photograph of the obtained film is shown in FIG.

〔実施例3〕ハニカム構造を有する硬化物の作製
実施例1で得られたハニカムフィルム(1cm×1cm)に、1〜30分間、254nm及び365nmのUV光照射を実施した。UV光照射には、キセノン光源装置(LAX-Cute, Asahi Spectra, Band Pass Filters: UVB300-400 or UVB240-300, Optical Filters: HQBP365-UV or HQBP254-UV)を用いた。照射時、サンプルは光源から1cm離れた位置に置いた。
[Example 3] Preparation of cured product having honeycomb structure The honeycomb film (1 cm x 1 cm) obtained in Example 1 was irradiated with UV light at 254 nm and 365 nm for 1 to 30 minutes. A xenon light source device (LAX-Cute, Asahi Spectra, Band Pass Filters: UVB300-400 or UVB240-300, Optical Filters: HQBP365-UV or HQBP254-UV) was used for UV light irradiation. During irradiation, the sample was placed 1 cm away from the light source.

UVを照射していないハニカムフィルムは、クロロホルム、ジメチルホルムアミド、テトラヒドロフラン等の溶媒に即座に溶けた。一方波長254nm及び365nmのUV光を30分照射したハニカムフィルムは、これらの溶媒に対して不溶となった。波長365nmのUV光で照射時間を変化させたところ、2分で大部分のハニカム構造が不溶化し、5分で完全に不溶化した。UV照射では、ハニカム構造の崩壊などは起きなかった。   The honeycomb film not irradiated with UV was immediately dissolved in a solvent such as chloroform, dimethylformamide, tetrahydrofuran and the like. On the other hand, the honeycomb film irradiated with UV light having wavelengths of 254 nm and 365 nm for 30 minutes became insoluble in these solvents. When the irradiation time was changed with UV light having a wavelength of 365 nm, most of the honeycomb structure was insoluble in 2 minutes and completely insoluble in 5 minutes. With UV irradiation, the honeycomb structure did not collapse.

〔実施例4〕ハニカム構造を有する炭素質材料の作製
実施例1で得られたハニカムフィルム(1cm×1cm)を、OMにホットステージ(Linkam, THMS 600)をセットし、窒素雰囲気下、熱しながらその場で観察した。ホットステージの昇温限界である600℃まで熱してもハニカム構造は壊れなかった(図4上段)。600℃まで加熱後、ホットステージ上から取り出すと、もともと薄い茶色だったフィルムは光沢のある黒色に変色し、ハニカム構造を有する炭素質フィルムとなっていた(図3下段)。炭素化後の孔の直径の平均は620nm±80nm(mean ± S.D.)と30%程度減少していた。その後、より高温まで昇温可能なホットステージを備えたレーザー顕微鏡で観察した結果、少なくとも680℃までハニカム構造が維持されることを確認した。
[Example 4] Production of a carbonaceous material having a honeycomb structure The honeycomb film (1 cm x 1 cm) obtained in Example 1 was set on an OM with a hot stage (Linkam, THMS 600) and heated in a nitrogen atmosphere. Observed on the spot. The honeycomb structure did not break even when heated to 600 ° C., which is the temperature rise limit of the hot stage (the upper part of FIG. 4). When heated to 600 ° C. and taken out from the hot stage, the film that was originally light brown turned to glossy black and became a carbonaceous film having a honeycomb structure (bottom of FIG. 3). The average diameter of the pores after carbonization was reduced by about 30% to 620 nm ± 80 nm (mean ± SD). Then, as a result of observing with a laser microscope equipped with a hot stage capable of raising the temperature to a higher temperature, it was confirmed that the honeycomb structure was maintained at least up to 680 ° C.

実施例1で得られたハニカムフィルムの熱重量分析(TGA)を、熱分析装置(Rigaku Thermoplus TG8120)を用い、昇温速度は3℃/分、窒素を100mL/分で流しながら測定した。TGAカーブを図5に示した。500℃付近で一番大きな重量減少を起こし、それ以降もゆるやかな重量減少をしていき、600℃において重量は60%程度残っていた。温度を上げていくにつれて、重量減少と連動して、フィルムの収縮が見られたが、ハニカム構造はそのまま維持された(図4上段)。   The thermogravimetric analysis (TGA) of the honeycomb film obtained in Example 1 was measured using a thermal analyzer (Rigaku Thermoplus TG8120) while the heating rate was 3 ° C./min and nitrogen was flowed at 100 mL / min. The TGA curve is shown in FIG. The largest weight loss occurred at around 500 ° C., and thereafter the weight decreased gradually. At 600 ° C., the weight remained at about 60%. As the temperature was raised, film shrinkage was observed in conjunction with weight reduction, but the honeycomb structure was maintained as it was (top of FIG. 4).

本発明は、従来、直鎖状π共役系高分子では作製することが困難であった、π共役系高分子からなるハニカム構造体を提供する。本発明の、樹状π共役系高分子からなるハニカム構造体は、そのπ共役系高分子に共役系を妨げる化学的修飾を必要としないため、導電性高分子又は発光性高分子としての性能が期待される。   The present invention provides a honeycomb structure made of a π-conjugated polymer, which has heretofore been difficult to produce with a linear π-conjugated polymer. The honeycomb structure made of a dendritic π-conjugated polymer of the present invention does not require chemical modification that hinders the conjugated system in the π-conjugated polymer, so that the performance as a conductive polymer or a light-emitting polymer is achieved. There is expected.

また、樹状π共役系高分子、特に樹状ポリ(フェニレンビニレン)等の樹状芳香族π共役系高分子からなるハニカム構造体は、多くの二重結合を持つため光反応性が高く、光反応開始剤を必要とせず、光硬化処理に付すことができる。この光硬化処理により、これまでにない耐溶剤性に優れたハニカム構造を有する硬化物を提供することができる。このようなハニカム構造を有する硬化物は、耐溶剤性を要する鋳型やろ過膜への応用が期待される。また長時間UV照射をしてもハニカム構造が壊れるなどの変化は観察されていない。したがって得られたハニカム構造を有する硬化物を、さらに標準的なフォトリソグラフィーで微細加工することができる。   In addition, a honeycomb structure composed of a dendritic π-conjugated polymer, especially a dendritic aromatic π-conjugated polymer such as dendritic poly (phenylene vinylene) has a high photoreactivity because it has many double bonds, It does not require a photoinitiator and can be subjected to photocuring treatment. By this photo-curing treatment, a cured product having a honeycomb structure with an unprecedented solvent resistance can be provided. The cured product having such a honeycomb structure is expected to be applied to a mold or a filtration membrane that requires solvent resistance. In addition, changes such as the honeycomb structure being broken are not observed even after UV irradiation for a long time. Therefore, the obtained cured product having a honeycomb structure can be further finely processed by standard photolithography.

さらに本発明は、樹状π共役系高分子、特に樹状ポリ(フェニレンビニレン)等の樹状芳香族π共役系高分子からなるハニカム構造体を熱処理に付すという、極めて簡便な方法により一定の孔径と規則的な配列を有する多孔性の炭素質材料を提供することができる。これは固体鋳型を用いない多孔性炭素質材料の新しい合成法であり、得られた多孔性炭素質材料のさらなる応用展開が期待される。   Furthermore, the present invention provides a certain simple method for subjecting a honeycomb structure comprising a dendritic π-conjugated polymer, particularly a dendritic aromatic π-conjugated polymer such as dendritic poly (phenylene vinylene), to heat treatment. A porous carbonaceous material having a pore size and a regular arrangement can be provided. This is a new method for synthesizing a porous carbonaceous material without using a solid template, and further application development of the obtained porous carbonaceous material is expected.

上段はBF法の概略図である。下段はハニカムフィルムの例である。The upper part is a schematic diagram of the BF method. The lower row is an example of a honeycomb film. (a)は、実施例1で得られたハニカムフィルムのOM写真、(b)はSEM写真である。(A) is an OM photograph of the honeycomb film obtained in Example 1, and (b) is an SEM photograph. 実施例2で得られたハニカムフィルムのSEM写真である。4 is a SEM photograph of the honeycomb film obtained in Example 2. 上段は実施例1で得られたハニカムフィルムの経熱変化のOM写真である。下段左は熱処理前、下段右は熱処理後のハニカムフィルムの外観写真である。The upper row is an OM photograph of the heat change of the honeycomb film obtained in Example 1. The lower left is a photograph of the appearance of the honeycomb film before the heat treatment, and the lower right is the honeycomb film after the heat treatment. 実施例1で得られたハニカムフィルムのTGAカーブである。2 is a TGA curve of the honeycomb film obtained in Example 1. FIG.

Claims (8)

樹状π共役系高分子からなるハニカム構造体。   A honeycomb structure comprising a dendritic π-conjugated polymer. 樹状π共役系高分子を含む疎水性有機溶媒溶液を型又は基板上にキャストし、高湿度下で保持し、該溶液上に微小水滴を結露させた後又は結露させると同時に該有機溶媒を蒸発させ、次いで該微小水滴を除去することにより得られる、ハニカム構造体。   A hydrophobic organic solvent solution containing a dendritic π-conjugated polymer is cast on a mold or a substrate, held under high humidity, and after the minute water droplets are condensed on the solution or at the same time as the condensation, A honeycomb structure obtained by evaporating and then removing the fine water droplets. 樹状π共役系高分子が、下記式:

より選択される芳香族π共役系の構成繰り返し単位からなる、請求項1又は2記載のハニカム構造体。
The dendritic π-conjugated polymer has the following formula:

The honeycomb structure according to claim 1 or 2, comprising a structural repeating unit of an aromatic π-conjugated system selected more.
樹状π共役系高分子が、下記式(I):

で示される構成繰り返し単位からなる、樹状ポリ(フェニレンビニレン)である、請求項1〜3のいずれか記載のハニカム構造体。
The dendritic π-conjugated polymer has the following formula (I):

The honeycomb structure according to any one of claims 1 to 3, wherein the honeycomb structure is a dendritic poly (phenylene vinylene) composed of a repeating structural unit represented by:
樹状π共役系高分子が、下記式(Ia)又は(Ib):

で表される樹状ポリ(フェニレンビニレン)である、請求項1〜4のいずれかに記載のハニカム構造体。
The dendritic π-conjugated polymer is represented by the following formula (Ia) or (Ib):

The honeycomb structure according to any one of claims 1 to 4, which is a dendritic poly (phenylene vinylene) represented by:
請求項1〜5のいずれか記載のハニカム構造体を光硬化することにより得られる、ハニカム構造を有する硬化物。   A cured product having a honeycomb structure obtained by photocuring the honeycomb structure according to any one of claims 1 to 5. 請求項1〜5のいずれか記載のハニカム構造体を熱処理することにより得られる、ハニカム構造を有する炭素質材料。   A carbonaceous material having a honeycomb structure obtained by heat-treating the honeycomb structure according to any one of claims 1 to 5. (a)樹状π共役系高分子を疎水性有機溶媒に溶解する工程、
(b)工程(a)で得られた溶液を型又は基板上にキャストする工程、
(c)高湿度下で保持し、該溶液上に微小水滴を結露させた後又は結露させると同時に該有機溶媒を蒸発させる工程、及び
(d)該微小水滴を除去する工程、
を含むことを特徴とする、ハニカム構造体の製造方法。
(A) a step of dissolving the dendritic π-conjugated polymer in a hydrophobic organic solvent,
(B) a step of casting the solution obtained in step (a) on a mold or a substrate;
(C) holding under high humidity, condensing fine water droplets on the solution, or evaporating the organic solvent at the same time as condensing; and (d) removing the fine water droplets;
A method for manufacturing a honeycomb structure, comprising:
JP2008032995A 2008-02-14 2008-02-14 HONEYCOMB STRUCTURE COMPRISING DENDRITIC pi-CONJUGATED BASED POLYMER AND METHOD OF MANUFACTURING THE SAME Pending JP2009191152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008032995A JP2009191152A (en) 2008-02-14 2008-02-14 HONEYCOMB STRUCTURE COMPRISING DENDRITIC pi-CONJUGATED BASED POLYMER AND METHOD OF MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008032995A JP2009191152A (en) 2008-02-14 2008-02-14 HONEYCOMB STRUCTURE COMPRISING DENDRITIC pi-CONJUGATED BASED POLYMER AND METHOD OF MANUFACTURING THE SAME

Publications (1)

Publication Number Publication Date
JP2009191152A true JP2009191152A (en) 2009-08-27

Family

ID=41073462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008032995A Pending JP2009191152A (en) 2008-02-14 2008-02-14 HONEYCOMB STRUCTURE COMPRISING DENDRITIC pi-CONJUGATED BASED POLYMER AND METHOD OF MANUFACTURING THE SAME

Country Status (1)

Country Link
JP (1) JP2009191152A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172016B (en) * 2013-03-06 2015-10-28 浙江大学 A kind of preparation method of zinc oxide nano-wire pattern
CN105820371A (en) * 2016-06-02 2016-08-03 厦门大学 Method for preparing nano-porous material through reactive atmosphere
CN107188114A (en) * 2017-05-18 2017-09-22 南昌大学 A kind of surface micro-structure preparation method based on active refrigeration droplets agglomerate
CN109475822A (en) * 2017-05-02 2019-03-15 亥姆霍兹材料研究与海岸研究盖斯特哈赫特中心 The macropore or porous polymer film of doughnut geometry
CN109971159A (en) * 2019-02-20 2019-07-05 张文中 A kind of preparation method of mining reinforcement material
TWI669178B (en) * 2018-05-17 2019-08-21 國立雲林科技大學 Processing device for collecting laser light by using droplets and processing method thereof
US11866600B2 (en) 2018-12-07 2024-01-09 Kao Corporation Method for forming coating film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262993A (en) * 1993-05-31 1995-10-13 Honda Motor Co Ltd Alkaline ion adsorbing/desorbing material
JPH09281705A (en) * 1996-04-12 1997-10-31 Fujitsu Ltd Pattern forming method
JP2003092407A (en) * 2001-09-18 2003-03-28 Sharp Corp Transistor and display device using the same
JP2003114452A (en) * 2001-08-01 2003-04-18 Canon Inc Display element and manufacturing method thereof
JP2003324203A (en) * 2002-04-30 2003-11-14 Sharp Corp Static induction transistor
JP2004107651A (en) * 2002-08-26 2004-04-08 Sharp Corp Dendritic polymer and electronic device element using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262993A (en) * 1993-05-31 1995-10-13 Honda Motor Co Ltd Alkaline ion adsorbing/desorbing material
JPH09281705A (en) * 1996-04-12 1997-10-31 Fujitsu Ltd Pattern forming method
JP2003114452A (en) * 2001-08-01 2003-04-18 Canon Inc Display element and manufacturing method thereof
JP2003092407A (en) * 2001-09-18 2003-03-28 Sharp Corp Transistor and display device using the same
JP2003324203A (en) * 2002-04-30 2003-11-14 Sharp Corp Static induction transistor
JP2004107651A (en) * 2002-08-26 2004-04-08 Sharp Corp Dendritic polymer and electronic device element using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172016B (en) * 2013-03-06 2015-10-28 浙江大学 A kind of preparation method of zinc oxide nano-wire pattern
CN105820371A (en) * 2016-06-02 2016-08-03 厦门大学 Method for preparing nano-porous material through reactive atmosphere
CN109475822A (en) * 2017-05-02 2019-03-15 亥姆霍兹材料研究与海岸研究盖斯特哈赫特中心 The macropore or porous polymer film of doughnut geometry
CN109475822B (en) * 2017-05-02 2022-03-22 亥姆霍兹中心贺昂有限公司 Macroporous or mesoporous polymeric membranes of hollow fiber geometry
CN107188114A (en) * 2017-05-18 2017-09-22 南昌大学 A kind of surface micro-structure preparation method based on active refrigeration droplets agglomerate
TWI669178B (en) * 2018-05-17 2019-08-21 國立雲林科技大學 Processing device for collecting laser light by using droplets and processing method thereof
US11866600B2 (en) 2018-12-07 2024-01-09 Kao Corporation Method for forming coating film
CN109971159A (en) * 2019-02-20 2019-07-05 张文中 A kind of preparation method of mining reinforcement material

Similar Documents

Publication Publication Date Title
JP2009191152A (en) HONEYCOMB STRUCTURE COMPRISING DENDRITIC pi-CONJUGATED BASED POLYMER AND METHOD OF MANUFACTURING THE SAME
JP6042986B2 (en) Silicon oxide nanopattern formation method, metal nanopattern formation method, and magnetic recording medium for information storage using the same
KR101781685B1 (en) Block copolymer
CN103562245B (en) New Synthetic rubber, isoprene-styrene, hydrogenated, block, diblock, its preparation method and use it to form the method for nano-pattern
Chiu et al. Highly ordered luminescent microporous films prepared from crystalline conjugated rod-coil diblock copolymers of PF-b-PSA and their superhydrophobic characteristics
CN108912329B (en) Preparation method and application of patterned two-dimensional conjugated microporous polymer
Qiang et al. Synthesis of star-shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates for hydrophobic honeycomb porous film application
Hsieh et al. Unraveling the stress effects on the optical properties of stretchable rod-coil polyfluorene-poly (n-butyl acrylate) block copolymer thin films
JP2009149787A (en) Fluorescent material
Li et al. Formation of ceramic microstructures: honeycomb patterned polymer films as structure-directing agent
EP3105211A1 (en) Polymers
Han et al. Fabrication of conducting polypyrrole film with microlens arrays by combination of breath figures and replica molding methods
Ejima et al. Morphology-retaining carbonization of honeycomb-patterned hyperbranched poly (phenylene vinylene) film
Bai et al. Fabrication of morphology-controlled nano/microstructural polyfluorene in mixed nonsolvent vapor atmospheres
Xiao et al. Microporous aromatic polyimides derived from triptycene-based dianhydride
Li et al. Cyclotriphosphazene-containing polymeric nanotubes: synthesis, properties, and formation mechanism
CN113121302B (en) Monodisperse polymer with main chain containing fluorene-diacetylene structure and preparation method and application thereof
KR20170034879A (en) Methods for annealing block copolymers and articles manufactured therefrom
Hua et al. Preparation of oligoamide‐ended poly (ethylene glycol) and hydrogen‐bonding‐assisted formation of aggregates and nanoscale fibers
JP5028626B2 (en) Fluorescent material
Park et al. Effect of UV illumination on the fabrication of honeycomb-patterned film in the photo-responsive poly (methylmethacrylate/azobenzene) copolymer
Jiang et al. Novel amphipathic photoluminescent copolymers containing fluorene, pyridine and thiophene moieties: synthesis, characterization and self-assembly
Kim et al. Photo-controlled fabrication of self-organized structures in honeycomb-patterned thin films with light-sensitive amphiphilic copolymer
Deepa et al. Polyurethane–oligo (phenylenevinylene) random copolymers: π‐Conjugated pores, vesicles, and nanospheres via solvent‐induced self‐organization
JP5268742B2 (en) Water-repellent supramolecular organization and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

A131 Notification of reasons for refusal

Effective date: 20120821

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625