JP2009191008A - Method for extracting functional component derived from brown algae - Google Patents

Method for extracting functional component derived from brown algae Download PDF

Info

Publication number
JP2009191008A
JP2009191008A JP2008032899A JP2008032899A JP2009191008A JP 2009191008 A JP2009191008 A JP 2009191008A JP 2008032899 A JP2008032899 A JP 2008032899A JP 2008032899 A JP2008032899 A JP 2008032899A JP 2009191008 A JP2009191008 A JP 2009191008A
Authority
JP
Japan
Prior art keywords
extraction
brown algae
fucoxanthin
supercritical fluid
fucosterol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008032899A
Other languages
Japanese (ja)
Inventor
Masahiko Inami
匡彦 伊波
Keiko Oguchi
慶子 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOUTH PRODUCT KK
Original Assignee
SOUTH PRODUCT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOUTH PRODUCT KK filed Critical SOUTH PRODUCT KK
Priority to JP2008032899A priority Critical patent/JP2009191008A/en
Publication of JP2009191008A publication Critical patent/JP2009191008A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Epoxy Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Steroid Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for extracting functional components derived from brown algae, which solves problems in a conventional method for extracting functional components derived from brown algae and efficiently extracts functional components derived from brown algae being useful components contained in brown algae, further in a greatly shortened time. <P>SOLUTION: The method for extracting functional components derived from brown algae includes extracting brown algae with a supercritical fluid. Preferably the functional components derived from brown algae are fucoxanthin and fucosterol. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、海洋植物資源から褐藻類由来機能性成分を抽出するための方法に関するものである。   The present invention relates to a method for extracting brown algae-derived functional components from marine plant resources.

褐藻類はその有用性が認められているカロテノイドの1種であるフコキサンチンやステロールの1種であるフコステロール等の褐藻類由来機能性成分を有している。   Brown algae have functional components derived from brown algae such as fucoxanthin, which is one of carotenoids whose usefulness is recognized, and fucosterol, which is one of sterols.

上記褐藻類由来機能性成分のうち、フコキサンチンは以下の構造を有する既知の物質であり、その効果としては体内摂取による抗腫瘍効果(特許文献1)や神経細胞保護効果(特許文献2)、最近では血糖値上昇抑制効果(特許文献3)等が報告されている。   Among the functional components derived from the brown algae, fucoxanthin is a known substance having the following structure, and its effects include an antitumor effect (Patent Document 1) and a nerve cell protective effect (Patent Document 2) due to ingestion in the body, Recently, a blood glucose level increase suppressing effect (Patent Document 3) and the like have been reported.

Figure 2009191008
Figure 2009191008

上記のように、フコキサンチンは体内摂取により効果が得られるため、フコキサンチンの抽出溶媒は人体に無害なものを用いることが望ましい。しかし、上記報告で用いられているフコキサンチンはいずれも有機溶媒により抽出されている。そのため、フコキサンチンを精製する前の抽出の段階で、褐藻類からエタノールまたは含水エタノールを用いる技術(特許文献4および特許文献5)も報告されている。   As described above, since fucoxanthin is effective when ingested, it is desirable to use a fucoxanthin extraction solvent that is harmless to the human body. However, all fucoxanthins used in the above reports are extracted with an organic solvent. Therefore, a technique (Patent Document 4 and Patent Document 5) using ethanol or hydrous ethanol from brown algae at the stage of extraction before purifying fucoxanthin has also been reported.

しかしながら、溶媒の留去や抽出効率の面から、その抽出工程や使用する溶媒量は出来るだけ少ないことが望ましく、上記技術よりもさらなる工程の省略や溶媒の少量化が必要であった。   However, from the viewpoint of evaporation of the solvent and extraction efficiency, it is desirable that the extraction process and the amount of the solvent used be as small as possible, and it was necessary to omit further steps and to reduce the amount of the solvent compared to the above technique.

また、フコキサンチンの活性成分は光によって分解されやすいので、その抽出は遮光下で、迅速に行うのが望ましい。しかしながら、従来法では遮光下という条件やいくつかの抽出工程を経なければならないという煩雑さ、長時間の浸漬による抽出等、フコキサンチンの抽出までに時間を要するという問題があった。   In addition, since the active component of fucoxanthin is easily decomposed by light, it is desirable that the extraction be performed quickly under light shielding. However, the conventional method has a problem in that it takes time to extract fucoxanthin, such as the condition of being shielded from light, the complexity of having to go through several extraction steps, and extraction by soaking for a long time.

一方、上記褐藻類由来機能性成分のうち、フコステロールは以下の構造を有する既知の物質であり、その効果としては体内摂取による抗動脈硬化作用(特許文献6)やコレステロール低減作用、血栓予防作用等が一般的に提唱されている。そしてフコステロールは副作用のない天然物由来の機能性食品や健康食品として利用されている。   On the other hand, among the functional components derived from brown algae, fucosterol is a known substance having the following structure, and its effects include anti-arteriosclerosis action (Patent Document 6), cholesterol reduction action, and thrombus prevention action by ingestion in the body. Etc. are generally advocated. Fucosterol is used as a functional food or health food derived from natural products without side effects.

Figure 2009191008
Figure 2009191008

しかしながら、フコステロールの抽出にはヘキサン等の脂肪族炭化水素類や酢酸エチル等のエステル類、アセトン等のケトン類、またはこれらの混液等の有機溶媒が用いられ、さらに抽出までに1〜20日間を要するという、多段式の溶媒抽出法により行われているのが現状であり、このフコステロールについても上記フコキサンチンと同様に、抽出溶媒や抽出時間の問題があった。
特開平10−158156号公報 特開2001−335480号公報 特開2007−297370号公報 特開2004−75634号公報 特開2004−35528号公報 特開2005−104887号公報
However, organic solvents such as aliphatic hydrocarbons such as hexane, esters such as ethyl acetate, ketones such as acetone, or a mixture thereof are used for the extraction of fucosterol, and further 1 to 20 days until the extraction. As is the case with the fucoxanthin, there are problems with the extraction solvent and the extraction time.
Japanese Patent Laid-Open No. 10-158156 JP 2001-335480 A JP 2007-297370 A JP 2004-75634 A JP 2004-35528 A JP 2005-104887 A

従って、本発明は、上記した従来法における課題を解決し、褐藻類に含まれる有用成分であるフコキサンチン、フコステロール等の褐藻類由来機能性成分を効率的に、さらに、飛躍的に時間を短縮して抽出する方法を提供することを課題とするものである。   Therefore, the present invention solves the above-described problems in the conventional method, efficiently and functionally improves functional components derived from brown algae such as fucoxanthin and fucosterol, which are useful components contained in brown algae. It is an object of the present invention to provide a method for extracting by shortening.

本発明者らは上記課題を解決するために鋭意研究をした結果、超臨界流体を利用することにより褐藻類から褐藻類由来機能性成分を効率的に抽出できることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that a functional component derived from brown algae can be efficiently extracted from brown algae by utilizing a supercritical fluid, and completed the present invention. .

すなわち、本発明は褐藻類を超臨界流体で抽出することを特徴とする褐藻類由来機能性成分の抽出方法および前記抽出方法により得られる褐藻類由来機能性成分である。   That is, this invention is a brown algae origin functional component obtained by the extraction method of the brown algae origin functional component characterized by extracting brown algae with a supercritical fluid, and the said extraction method.

本発明の褐藻類由来機能性成分の抽出方法は、抽出時間を従来法と比較して大幅に短縮できるため、また、その簡便さから試料の露光時間、即ち、褐藻類由来機能性成分の光による劣化を最小限に抑えることができる。   Since the extraction method of the functional component derived from brown algae of the present invention can greatly shorten the extraction time compared with the conventional method, the exposure time of the sample, that is, the light of the functional component derived from brown algae is also simplified because of its simplicity. Degradation due to can be minimized.

また、上記抽出方法は、従来法には見られない、抽出時に夾雑物であるクロロフィルの混入が比較的少ないという特徴があり、その後の分離・精製に利用しやすい。   Further, the above extraction method is characterized by relatively little contamination with chlorophyll, which is a contaminant during extraction, not found in conventional methods, and is easy to use for subsequent separation and purification.

従って、本発明の褐藻類由来機能性成分の抽出方法で抽出された褐藻類由来機能性成分は、健康食品や医薬品に好適に用いることができる。   Therefore, the brown algae-derived functional component extracted by the brown algae-derived functional component extraction method of the present invention can be suitably used for health foods and pharmaceuticals.

本明細書において、褐藻類由来機能性成分とは、褐藻類に含まれ、カロテノイドであるフコキサンチン等の色素、フコステロール等の脂溶性成分、多糖類等のことをいい、好ましくはフコキサンチンおよびフコステロールのことをいう。なお、褐藻類由来機能性成分は常法に従って測定することができ、例えば、フコキサンチンであればHPLCで測定でき、フコステロールであればGC−MSで測定できる。   In the present specification, the functional component derived from brown algae is contained in brown algae and refers to pigments such as carotenoid fucoxanthin, fat-soluble components such as fucosterol, polysaccharides, etc., preferably fucoxanthin and It means fucosterol. The functional component derived from brown algae can be measured according to a conventional method. For example, fucoxanthin can be measured by HPLC, and fucosterol can be measured by GC-MS.

本発明の褐藻類由来機能性成分の抽出方法(以下、「本発明抽出法」という)は、褐藻類を抽出原料とし、これを超臨界流体を抽出溶媒とする超臨界流体抽出により行われるものである。   The method for extracting functional components derived from brown algae of the present invention (hereinafter referred to as “the present invention extraction method”) is performed by supercritical fluid extraction using brown algae as an extraction raw material and using this as a supercritical fluid as an extraction solvent. It is.

本発明抽出法において、抽出原料として用いられる褐藻類としては褐藻類由来機能性成分が含まれているものであれば広く採用することができる。このような褐藻類としては、例えば、ナガマツモ目(Chordaceae)、ヒバマタ目(Fucales)、コンブ目(Laminariales)等に属する褐藻類等が挙げられる。これら褐藻類の中でも、ナガマツモ目のナガマツモ科(Chordaceae)またはモズク科(Spermatochnaceae)、ヒバマタ目のホンダワラ科(Sargassaceae)、コンブ目のコンブ科(Laminariaceae)またはチガイソ科(Alariaceae)等に属する褐藻類が好ましく、前記科に属する褐藻類の中でも、ナガマツモ科のオキナワモズク(Cladosiphon okamuranus)またはモズク科のモズク(Nemacystus decipiens)、ホンダワラ科のホンダワラ(Sargassum fulvellum C.Agardh)またはヒジキ(Hizikia fusiformis)、コンブ科のアラメ(Eisenia bicyclis (Kjellman) Setchell)、マコンブ(Laminaria japonica)、オニコンブ(Laminaria diabolica)、リシリコンブ(Laminaria ochotensis)、ホソメコンブ(Laminaria religiosa)、ミツイシコンブ(Laminaria angustata)、ナガコンブ(Laminaria longissima)またはガゴメコンブ(Kjellmaniella crassiifolia)、チガイソ科のワカメ(Undaria pinnatifida)が好ましく、特にナガマツモ科のオキナワモズクは褐藻類由来機能性成分を高濃度で含有するためより好ましい。また、抽出原料となる褐藻類は、成熟体から遊走子の放出、遊走子から盤状体または糸状体の発生、盤状体または糸状体の着床による直立体の形成、直立体から成熟体への成長という生育サイクルのうちの、盤状体または糸状体〜成熟体の何れの成長段階のものであってもよいが、褐藻類由来機能性成分を豊富に含むことから盤状体または糸状体が好ましい。なお、盤状体または糸状体は、上記生育サイクルのうちの遊走子と直立体の中間に位置するものであり、別名で呼ばれることもがあるが、本発明においてはこれらの何れも含む。更に、これら抽出原料は、後記する超臨界流体による抽出前に必要に応じて適度な大きさに粉砕しておくことが好ましく、抽出に用いられる容器内の密度をできるだけ小さくするために顆粒状、特に粉末状としておくことが好ましい。   In the extraction method of the present invention, the brown algae used as the extraction raw material can be widely adopted as long as they contain functional components derived from brown algae. Examples of such brown algae include brown algae belonging to the order of Chordaceae, Fucales, and Laminariae. Among these brown algae, there are Chronaceae or Chronaceae, Spermatochaceae, Sargassaceae, Laminariaceae, and Alaeceae (Alaria). Preferably, among the brown algae belonging to the above family, the mosquitoes of the family Nymphalidae (Cladosiphon okamuranus) or the moss family (Nemacystus decipiens), the kingfisher family (Sargassum fulhum) The Alame (Eisenia bicyclis (Kjellman ) Setchell), Laminaria japonica (Laminaria japonica), Onikonbu (Laminaria diabolica), Rishirikonbu (Laminaria ochotensis), Hosomekonbu (Laminaria religiosa), Mitsuishikonbu (Laminaria angustata), Nagakonbu (Laminaria longissima) or Gagomekonbu (Kjellmaniella crassiifolia), of Chigaiso Department of seaweed (Undaria pinnatifida) is preferable, and particularly, the Okinawa Mosque of the Nagamatsue family is more preferable because it contains a functional component derived from brown algae at a high concentration. The brown algae used as the raw material for extraction is the release of zoospores from matured bodies, the generation of discoids or filaments from the zoospores, the formation of a solid body by the implantation of a disklike body or a filamentous body, Of the growth cycle of growth into a plate, it may be in any growth stage of a plate or filamentous body to a mature body, but since it contains abundant functional components derived from brown algae, it is a plate or filament. The body is preferred. In addition, although a board | plate-like body or a filamentous body is located in the middle of the zoospore and a direct solid in the said growth cycle, and may be called with another name, in the present invention, all of these are included. Furthermore, these extraction raw materials are preferably pulverized to an appropriate size as necessary before extraction with a supercritical fluid described later, in order to make the density in the container used for extraction as small as possible, In particular, it is preferable to use a powder form.

また、本発明抽出法において、抽出溶媒として用いられる超臨界流体としては、例えば、その圧力は高い方が好ましい傾向があるので、7.38MPa以上、好ましくは10MPa以上、特に好ましくは30MPa以上、その温度が25〜80℃、好ましくは30〜80℃、特に好ましくは70〜80℃の超臨界状態の二酸化炭素等が挙げられる。   In the extraction method of the present invention, as the supercritical fluid used as the extraction solvent, for example, a higher pressure tends to be preferable, and therefore, 7.38 MPa or more, preferably 10 MPa or more, particularly preferably 30 MPa or more, Examples thereof include carbon dioxide in a supercritical state at a temperature of 25 to 80 ° C., preferably 30 to 80 ° C., particularly preferably 70 to 80 ° C.

上記した褐藻類と超臨界流体を用いた褐藻類由来機能性成分の超臨界流体抽出は、超臨界流体を発生するためのポンプと、超臨界流体と褐藻類を接触させ、抽出を行うための容器、抽出液を貯留するための容器および系全体を昇温・保温するためのオーブン等を備える超臨界抽出装置で行われる。このような超臨界流体抽出装置としては各社から市販されている一般的なものを用いることができる。   Supercritical fluid extraction of functional components derived from brown algae using the above-mentioned brown algae and supercritical fluid is a pump for generating a supercritical fluid, and contacting the supercritical fluid and brown algae for extraction. It is carried out in a supercritical extraction apparatus comprising a container, a container for storing the extract, and an oven for heating and keeping the entire system. As such a supercritical fluid extraction device, a general device commercially available from each company can be used.

超臨界流体抽出における超臨界流体の流量や抽出時間等の抽出条件は、容器の大きさ等により変化するので一概に言えないが、例えば、内容積10mlの容器であれば、流量は後記するモディファイヤーと併せて1〜2ml/分、抽出時間は5〜30分が好ましく、5〜20分がより好ましい。   Although the extraction conditions such as the flow rate and extraction time of the supercritical fluid in the supercritical fluid extraction change depending on the size of the container and the like, it cannot be generally stated. For example, if the container has an internal volume of 10 ml, the flow rate is modified as described later. 1 to 2 ml / min in combination with the yarn, and the extraction time is preferably 5 to 30 minutes, more preferably 5 to 20 minutes.

また、上記超臨界流体抽出の際には、超臨界流体に、さらにモディファイヤーを加えることが好ましい。このようなモディファイヤーとしてはエタノールおよび/または水が挙げられ、エタノールおよび水が好ましく、エタノール単独がより好ましい。モディファイヤーとしてエタノールおよび水を用いる場合、エタノール濃度は1〜100質量%(以下、単に「%」という)、好ましくは50〜100%である。このモディファイヤーを超臨界流体に加えることにより抽出効率が向上し、褐藻類由来機能性成分の収量が高くなる。また、モディファイヤーの量は上記超臨界流体とモディファイヤーを併せた総流量の1〜50%が好ましく、特に2〜30%が好ましい。   In addition, it is preferable to add a modifier to the supercritical fluid during the supercritical fluid extraction. Examples of such a modifier include ethanol and / or water, ethanol and water are preferable, and ethanol alone is more preferable. When ethanol and water are used as a modifier, the ethanol concentration is 1 to 100% by mass (hereinafter simply referred to as “%”), preferably 50 to 100%. By adding this modifier to the supercritical fluid, the extraction efficiency is improved and the yield of functional components derived from brown algae is increased. Further, the amount of the modifier is preferably 1 to 50%, particularly preferably 2 to 30%, of the total flow rate of the supercritical fluid and the modifier combined.

上記超臨界抽出により、褐藻類から褐藻類由来機能性成分を含む抽出物が抽出される。褐藻類の成熟体から抽出される抽出物には褐藻類由来機能性成分のうち、例えば、フコキサンチンが抽出物1gあたり0.5〜100μg程度、フコステロールが抽出物1gあたり0.1〜2.5mg程度含有され、オキナワモズクの盤状体から抽出される抽出物には褐藻類由来機能成分のうち、例えば、フコキサンチンが抽出物1gあたり10〜2060μg程度、フコステロールが抽出物1gあたり1.0〜5.0mg程度含有されている。また、この抽出物は、従来法と比べてクロロフィル等の夾雑物が少ないものである。更に、この抽出物からクロマトグラフィー、HPLC等の一般的な精製方法で褐藻類由来機能性成分を分離・精製してもよい。   By the supercritical extraction, an extract containing brown algae-derived functional components is extracted from brown algae. Among the functional components derived from brown algae, for example, fucoxanthin is about 0.5 to 100 μg per gram of the extract, and fucosterol is 0.1 to 2 per gram of the extract. Among the functional components derived from brown algae, for example, fucoxanthin is about 10 to 2060 μg per gram of extract, and fucosterol is 1 per gram of extract. About 0.0 to 5.0 mg is contained. Moreover, this extract has few impurities, such as chlorophyll, compared with the conventional method. Furthermore, the functional component derived from brown algae may be separated and purified from this extract by a general purification method such as chromatography or HPLC.

斯くして得られる褐藻類由来機能性成分は上記したコレステロール低減作用や血栓予防作用を期待した各種健康食品や、抗腫瘍効果、神経細胞保護効果、血糖値上昇抑制効果等を目的とした医薬品等の用途に使用することができる。   The functional components derived from brown algae thus obtained include various health foods that are expected to have the above-described cholesterol-reducing action and thrombus-preventing action, pharmaceuticals for the purpose of antitumor effect, nerve cell protecting effect, blood sugar level increase inhibiting effect, etc. Can be used for

以下に、褐藻類由来機能性成分の抽出に関する実施例を示すが、本発明はこれら実施例に何ら限定されるものではない。   Although the Example regarding extraction of a functional component derived from brown algae is shown below, this invention is not limited to these Examples at all.

実 施 例 1
オキナワモズク成熟体の超臨界流体抽出(1):
(1)試料
オキナワモズク(Cladosiphon okamuranus)の成熟体を凍結乾燥後、冷凍保存し、ミル粉砕したもの(粉末状)を試料とした。
Example 1
Supercritical fluid extraction of mature Okinawa mozuku (1):
(1) Sample A matured body of Okinawa moss (Cladosiphon okamuranus) was freeze-dried, stored frozen and milled (powder).

(2)超臨界流体抽出
1検体当たり試料約1g(乾燥重)を内容積10mlの抽出容器に入れ、超臨界抽出システム(SCF series:日本分光(株)製)の所定の位置に設置後、カラムオーブンが40℃に達した後、設定圧力(10−45MPa)で超臨界二酸化炭素とモディファイヤーを2ml/分の総流量として20分間(総溶媒量40ml)抽出を行い抽出物を得た。なお、モディファイヤーとしてはエタノールを用い、その流量は0.1ml/分とした。
(2) Supercritical fluid extraction About 1 g (dry weight) of sample per specimen is placed in an extraction container having an internal volume of 10 ml, and placed in a predetermined position of a supercritical extraction system (SCF series: manufactured by JASCO Corporation). After the column oven reached 40 ° C., extraction was performed at a set pressure (10-45 MPa) with supercritical carbon dioxide and modifier at a total flow rate of 2 ml / min for 20 minutes (total solvent amount 40 ml). In addition, ethanol was used as a modifier, and the flow rate was set to 0.1 ml / min.

(3)フコキサンチンの測定
上記(2)で得られた抽出物をロータリーエバポレーターで乾固・濃縮後、エタノールに溶解させてHPLC分析の試料とし、それを以下の条件で定量した。表1に超臨界抽出時の圧力条件を10、30または45MPaとして抽出して得られた抽出物中のフコキサンチン量を示した。
<HPLC分析条件>
カラム:Wakosil−II 5C18 HG (φ4.6×150mm)
溶出液A:水
溶出液B:アセトニトリル
流速:1.0ml/分
検出波長:440nm
(3) Measurement of fucoxanthin The extract obtained in (2) above was dried and concentrated on a rotary evaporator, then dissolved in ethanol to prepare a sample for HPLC analysis, which was quantified under the following conditions. Table 1 shows the amount of fucoxanthin in the extract obtained by extracting the pressure conditions at the time of supercritical extraction at 10, 30 or 45 MPa.
<HPLC analysis conditions>
Column: Wakosil-II 5C18 HG (φ4.6 × 150 mm)
Eluent A: Water Eluent B: Acetonitrile Flow rate: 1.0 ml / min Detection wavelength: 440 nm

Figure 2009191008
Figure 2009191008

(4)フコステロールの測定
上記(2)で得られた抽出物をロータリーエバポレーターで乾固・濃縮後、GC−MS分析の試料とし、それを以下の条件で定量した。表2に超臨界抽出時の圧力条件を10、30または45MPaとして抽出して得られた抽出物中のフコステロール量を示した。
<GC−MS分析条件>
カラム:DB−5MB (φ0.25×30m、0.25μm film)
カラム温度:250℃(2分)−(3.0℃/分で昇温)−320℃(3分)
イオン源温度:200℃
インターフェース温度:320℃
イオン化法:EI
検出モード:SIM
(4) Measurement of fucosterol The extract obtained in (2) above was dried and concentrated on a rotary evaporator, and then used as a sample for GC-MS analysis, which was quantified under the following conditions. Table 2 shows the amount of fucosterol in the extract obtained by extracting the pressure conditions at the time of supercritical extraction at 10, 30 or 45 MPa.
<GC-MS analysis conditions>
Column: DB-5MB (φ0.25 × 30 m, 0.25 μm film)
Column temperature: 250 ° C. (2 minutes) − (temperature rise at 3.0 ° C./min)−320° C. (3 minutes)
Ion source temperature: 200 ° C
Interface temperature: 320 ° C
Ionization method: EI
Detection mode: SIM

Figure 2009191008
Figure 2009191008

(5)結果
上記結果より、フコキサンチンもフコステロールも抽出圧力が45MPaの場合に最も多く抽出されることが分かった。
(5) Results From the above results, it was found that both fucoxanthin and fucosterol are extracted most when the extraction pressure is 45 MPa.

実 施 例 2
オキナワモズク成熟体の超臨界流体抽出(2):
実施例1の超臨界流体抽出条件のうち抽出圧力を30MPaに設定し、温度条件を30、40または75℃として抽出した。得られた抽出物について実施例1と同様にフコキサンチン量およびフコステロール量を測定した。その結果を表3に示した。
Example 2
Supercritical fluid extraction of mature Okinawa mozuku (2):
Of the supercritical fluid extraction conditions of Example 1, the extraction pressure was set to 30 MPa, and the temperature conditions were 30, 40, or 75 ° C. About the obtained extract, the fucoxanthin amount and the fucosterol amount were measured in the same manner as in Example 1. The results are shown in Table 3.

Figure 2009191008
Figure 2009191008

上記結果より、フコキサンチンもフコステロールも抽出温度が75℃の場合に最も多く抽出されることが分かった。   From the above results, it was found that both fucoxanthin and fucosterol were extracted most when the extraction temperature was 75 ° C.

実 施 例 3
超臨界流体抽出におけるモディファイヤーの効果(1):
(1)試料
実施例1と同様の試料を抽出に供した。
Example 3
Effect of modifier in supercritical fluid extraction (1):
(1) Sample The sample similar to Example 1 was used for extraction.

(2)超臨界流体抽出
1検体当たり試料約1g(乾燥重)を内容積10mlの抽出容器に入れ、超臨界抽出システム(SCF series:日本分光(株)製)の所定の位置に設置後、カラムオーブンが40℃に達した後、圧力30MPaで超臨界二酸化炭素とモディファイヤー(エタノール)を2ml/分の総流量とし、モディファイヤーの流量を総流量の0、2、5、10または30%として20分間抽出を行い抽出物を得た。
(2) Supercritical fluid extraction About 1 g (dry weight) of sample per specimen is placed in an extraction container having an internal volume of 10 ml, and placed in a predetermined position of a supercritical extraction system (SCF series: manufactured by JASCO Corporation). After the column oven reaches 40 ° C., the supercritical carbon dioxide and modifier (ethanol) are brought to a total flow rate of 2 ml / min at a pressure of 30 MPa, and the modifier flow rate is 0, 2, 5, 10 or 30% of the total flow rate. As a result, extraction was performed for 20 minutes.

(3)測定
モディファイヤー流量を総流量の0、2、5、10または30%として抽出して得られた抽出物について実施例1と同様にフコキサンチン量およびフコステロール量を測定した。その結果を表4に示した。
(3) Measurement The amount of fucoxanthin and the amount of fucosterol was measured in the same manner as in Example 1 for the extract obtained by extracting the modifier flow rate with 0, 2, 5, 10 or 30% of the total flow rate. The results are shown in Table 4.

Figure 2009191008
Figure 2009191008

上記結果より超臨界流体抽出において、超臨界流体と共にモディファイヤーを用いると、その流量が総流量の2〜10%の場合に最も多くフコキサンチンおよびフコステロールが抽出されることが分かった。   From the above results, it was found that in the supercritical fluid extraction, when a modifier is used together with the supercritical fluid, fucoxanthin and fucostol are extracted most when the flow rate is 2 to 10% of the total flow rate.

実 施 例 4
超臨界流体抽出におけるモディファイヤーの効果(2):
実施例3の超臨界流体抽出条件のうちモディファイヤーの流量を5%に固定し、モディファイヤーをエタノール単独から水とエタノールの混液を用い、その比率をエタノール濃度50、70、90または100%として抽出した。得られた抽出物について実施例1と同様にフコキサンチン量およびフコステロール量を測定した。その結果を表5に示した。
Example 4
Effect of modifier in supercritical fluid extraction (2):
Of the supercritical fluid extraction conditions of Example 3, the flow rate of the modifier is fixed at 5%, the modifier is a mixture of ethanol and water and ethanol, and the ratio is ethanol concentration 50, 70, 90 or 100%. Extracted. About the obtained extract, the fucoxanthin amount and the fucosterol amount were measured in the same manner as in Example 1. The results are shown in Table 5.

Figure 2009191008
Figure 2009191008

上記結果より、モディファイヤーに含まれるエタノールの濃度が高いほどフコキサンチンおよびフコステロールが多く抽出されることが分かった。   From the above results, it was found that as the concentration of ethanol contained in the modifier is higher, more fucoxanthin and fucosterol are extracted.

実 施 例 5
オキナワモズク成熟体の超臨界流体抽出(3):
(1)試料
実施例1と同様の試料を抽出に供した。
Example 5
Supercritical fluid extraction of mature Okinawa mozuku (3):
(1) Sample The sample similar to Example 1 was used for extraction.

(2)超臨界流体抽出
1検体当たり試料約1g(乾燥重)を内容積10mlの抽出容器に入れ、超臨界抽出システム(SCF series:日本分光(株)製)の所定の位置に設置後、超臨界流体抽出の条件を、実施例1〜4の結果から、抽出圧力を45MPa、抽出温度を75℃、モディファイヤーとして100%エタノールを総流量(2ml/分)の5%(0.1ml/分)に設定して20分間抽出を行った。
(2) Supercritical fluid extraction About 1 g (dry weight) of sample per specimen is placed in an extraction container having an internal volume of 10 ml, and placed in a predetermined position of a supercritical extraction system (SCF series: manufactured by JASCO Corporation). From the results of Examples 1 to 4, the supercritical fluid extraction conditions were as follows: the extraction pressure was 45 MPa, the extraction temperature was 75 ° C., and 100% ethanol as a modifier was 5% (0.1 ml / min) of the total flow rate (2 ml / min). Min) and extraction was performed for 20 minutes.

(3)測定
上記で抽出して得られた抽出物について実施例1と同様にフコキサンチン量およびフコステロール量を測定した。また、抽出物のクロロフィル量を分光光度計で665nmにて測定した。なお、本測定では、クロロフィル量の測定結果を標品と比較しなかったため、クロロフィル量をクロロフィル/フコキサンチンとして示した。
(3) Measurement The amount of fucoxanthin and the amount of fucosterol were measured in the same manner as in Example 1 for the extract obtained by the above extraction. The amount of chlorophyll in the extract was measured with a spectrophotometer at 665 nm. In addition, in this measurement, since the measurement result of the amount of chlorophyll was not compared with the standard sample, the amount of chlorophyll was shown as chlorophyll / fucoxanthin.

比 較 例 1
オキナワモズク成熟体のエタノール抽出(1):
実施例1と同様の試料約1g(乾燥重)にエタノールを40ml添加し、1分間攪拌した。その後に3000回転/分で10分間遠心分離し、1時間静置し、さらに1分間攪拌して上澄みを採取した。この上澄みから溶媒を留去し抽出物を得た。この抽出物についても実施例5と同様にフコキサンチン量、フコステロール量およびクロロフィル量を測定した。
Comparative Example 1
Ethanol extraction of mature Okinawa mozuku (1):
40 ml of ethanol was added to about 1 g (dry weight) of the same sample as in Example 1 and stirred for 1 minute. Thereafter, the mixture was centrifuged at 3000 rpm for 10 minutes, allowed to stand for 1 hour, further stirred for 1 minute, and the supernatant was collected. The solvent was distilled off from this supernatant to obtain an extract. For this extract, the fucoxanthin content, fucosterol content and chlorophyll content were measured in the same manner as in Example 5.

比 較 例 2
オキナワモズク成熟体のエタノール抽出(2):
実施例1と同様の試料約1g(乾燥重)にエタノールを40ml添加し、攪拌した後に24時間静置し上澄みを採取した。この上澄みから溶媒を留去し抽出物を得た。この抽出物についても実施例5と同様にフコキサンチン量、フコステロール量およびクロロフィル量を測定した。
Comparative Example 2
Ethanol extraction of mature Okinawa mozuku (2):
40 ml of ethanol was added to about 1 g (dry weight) of the same sample as in Example 1, stirred and allowed to stand for 24 hours, and the supernatant was collected. The solvent was distilled off from this supernatant to obtain an extract. For this extract, the fucoxanthin content, fucosterol content and chlorophyll content were measured in the same manner as in Example 5.

試 験 例 1
全抽出物中におけるフコキサンチン量の比較:
実施例5(超臨界流体抽出法)、比較例1(従来法)および比較例2(従来法)で測定されたフコキサンチン量、フコステロール量およびクロロフィル量(クロロフィル/フコキサンチン)を表6に示した。
Test example 1
Comparison of fucoxanthin content in all extracts:
Table 6 shows the amounts of fucoxanthin, fucosterol and chlorophyll (chlorophyll / fucoxanthin) measured in Example 5 (supercritical fluid extraction method), Comparative Example 1 (conventional method) and Comparative Example 2 (conventional method). Indicated.

Figure 2009191008
Figure 2009191008

上記結果より、超臨界流体抽出法(実施例5)は、従来法(比較例1および2)よりも短時間かつ簡便な抽出にもかかわらず、フコキサンチンおよびフコステロールが多く得られた。また、超臨界流体抽出法はフコキサンチンと、フコキサンチンと共に抽出されるクロロフィルの比率が従来法と比較して低く、夾雑物の抽出も少ないことが分かった。   From the above results, in the supercritical fluid extraction method (Example 5), more fucoxanthin and fucosterol were obtained in spite of a shorter time and easier extraction than the conventional methods (Comparative Examples 1 and 2). In addition, it was found that the supercritical fluid extraction method has a lower ratio of fucoxanthin and chlorophyll extracted together with fucoxanthin than that of the conventional method, and extraction of impurities is small.

実 施 例 6
オキナワモズク盤状体の超臨界流体抽出(1):
(1)試料
オキナワモズク(Cladosiphon okamuranus)の盤状体を凍結乾燥後、冷凍保存し、ミル粉砕したもの(粉末状)を試料とした。
Example 6
Supercritical fluid extraction of Okinawa Mozuku board (1):
(1) Sample A sample obtained by freeze-drying a plate of Okinawa mozuku (Cladosiphon okamuranus), storing it frozen and milling (powder) was used as a sample.

(2)超臨界流体抽出
1検体当たり試料約1g(乾燥重)を内容積10mlの抽出容器に入れ、超臨界抽出システム(SCF series:日本分光(株)製)の所定の位置に設置後、カラムオーブンが40℃に達した後、設定圧力(10−45MPa)で超臨界二酸化炭素とモディファイヤーを2ml/分の総流量として20分間(総溶媒量40ml)抽出を行い抽出物を得た。なお、モディファイヤーとしてはエタノールを用い、その流量は0.1ml/分とした。
(2) Supercritical fluid extraction About 1 g (dry weight) of sample per specimen is placed in an extraction container having an internal volume of 10 ml, and placed in a predetermined position of a supercritical extraction system (SCF series: manufactured by JASCO Corporation). After the column oven reached 40 ° C., extraction was performed at a set pressure (10-45 MPa) with supercritical carbon dioxide and modifier at a total flow rate of 2 ml / min for 20 minutes (total solvent amount 40 ml). In addition, ethanol was used as a modifier, and the flow rate was set to 0.1 ml / min.

(3)フコキサンチンの測定
上記(2)で得られた抽出物をロータリーエバポレーターで乾固・濃縮後、エタノールに溶解させてHPLC分析の試料とし、それを以下の条件で定量した。表7に超臨界抽出時の圧力条件を10、30または45MPaとして抽出して得られた抽出物中のフコキサンチン量を示した。
<HPLC分析条件>
カラム:Wakosil−II 5C18 HG (φ4.6×150mm)
溶出液A:水
溶出液B:アセトニトリル
流速:1.0ml/分
検出波長:440nm
(3) Measurement of fucoxanthin The extract obtained in (2) above was dried and concentrated on a rotary evaporator, then dissolved in ethanol to prepare a sample for HPLC analysis, which was quantified under the following conditions. Table 7 shows the amount of fucoxanthin in the extract obtained by extracting the pressure conditions at the time of supercritical extraction at 10, 30 or 45 MPa.
<HPLC analysis conditions>
Column: Wakosil-II 5C18 HG (φ4.6 × 150 mm)
Eluent A: Water Eluent B: Acetonitrile Flow rate: 1.0 ml / min Detection wavelength: 440 nm

Figure 2009191008
Figure 2009191008

(4)フコステロールの測定
上記(2)で得られた抽出物をロータリーエバポレーターで乾固・濃縮後、GC−MS分析の試料とし、それを以下の条件で定量した。表8に超臨界抽出時の圧力条件を10、30または45MPaとして抽出して得られた抽出物中のフコステロール量を示した。
<GC−MS分析条件>
カラム:DB−5MB (φ0.25×30m、0.25μm film)
カラム温度:250℃(2分)−(3.0℃/分で昇温)−320℃(3分)
イオン源温度:200℃
インターフェース温度:320℃
イオン化法:EI
検出モード:SIM
(4) Measurement of fucosterol The extract obtained in (2) above was dried and concentrated on a rotary evaporator, and then used as a sample for GC-MS analysis, which was quantified under the following conditions. Table 8 shows the amount of fucosterol in the extract obtained by extracting the pressure conditions at the time of supercritical extraction at 10, 30 or 45 MPa.
<GC-MS analysis conditions>
Column: DB-5MB (φ0.25 × 30 m, 0.25 μm film)
Column temperature: 250 ° C. (2 minutes) − (temperature rise at 3.0 ° C./min)−320° C. (3 minutes)
Ion source temperature: 200 ° C
Interface temperature: 320 ° C
Ionization method: EI
Detection mode: SIM

Figure 2009191008
Figure 2009191008

(5)結果
上記結果より、オキナワモズクの盤状体からも成熟体と同様にフコキサンチンおよびフコキサンチンが抽出されることが明らかとなった。また、フコキサンチンは抽出圧力が45MPaの場合およびフコステロールは抽出圧力が30MPaの場合に最も多く抽出されることが分かった。
(5) Results From the above results, it was clarified that fucoxanthin and fucoxanthin were extracted from the plate of Okinawa mozuku as well as the mature body. It was also found that fucoxanthin was extracted most when the extraction pressure was 45 MPa and fucosterol was extracted when the extraction pressure was 30 MPa.

実 施 例 7
オキナワモズク盤状体の超臨界流体抽出(2):
実施例6の超臨界流体抽出条件のうち抽出圧力を30MPaに設定し、温度条件を30、40または75℃として抽出した。得られた抽出物について実施例6と同様にフコキサンチン量およびフコステロール量を測定した。その結果を表9に示した。
Example 7
Supercritical fluid extraction of Okinawa Mozuku board (2):
Of the supercritical fluid extraction conditions of Example 6, the extraction pressure was set to 30 MPa, and the temperature conditions were 30, 40, or 75 ° C. About the obtained extract, the fucoxanthin amount and the fucosterol amount were measured in the same manner as in Example 6. The results are shown in Table 9.

Figure 2009191008
Figure 2009191008

上記結果より、フコキサンチンもフコステロールも抽出温度が75℃の場合に最も多く抽出されることが分かった。   From the above results, it was found that both fucoxanthin and fucosterol were extracted most when the extraction temperature was 75 ° C.

実 施 例 8
超臨界流体抽出におけるモディファイヤーの効果(4):
(1)試料
実施例6と同様の試料を抽出に供した。
Example 8
Effect of modifier in supercritical fluid extraction (4):
(1) Sample The sample similar to Example 6 was used for extraction.

(2)超臨界流体抽出
1検体当たり試料約1g(乾燥重)を内容積10mlの抽出容器に入れ、超臨界抽出システム(SCF series:日本分光(株)製)の所定の位置に設置後、カラムオーブンが40℃に達した後、圧力30MPaで超臨界二酸化炭素とモディファイヤー(エタノール)を2ml/分の総流量とし、モディファイヤーの流量を総流量の0、2、5または30%として20分間抽出を行い抽出物を得た。
(2) Supercritical fluid extraction About 1 g (dry weight) of sample per specimen is placed in an extraction container having an internal volume of 10 ml, and placed in a predetermined position of a supercritical extraction system (SCF series: manufactured by JASCO Corporation). After the column oven reaches 40 ° C., the supercritical carbon dioxide and the modifier (ethanol) are brought to a total flow rate of 2 ml / min at a pressure of 30 MPa, and the modifier flow rate is 0, 2, 5 or 30% of the total flow rate. Extraction was performed by performing extraction for a minute.

(3)測定
モディファイヤー流量を総流量の0、2、5または30%として抽出して得られた抽出物について実施例6と同様にフコキサンチン量およびフコステロール量を測定した。その結果を表10に示した。
(3) Measurement The amount of fucoxanthin and the amount of fucosterol were measured in the same manner as in Example 6 for the extract obtained by extracting the modifier flow rate as 0, 2, 5 or 30% of the total flow rate. The results are shown in Table 10.

Figure 2009191008
Figure 2009191008

上記結果より超臨界流体抽出において、超臨界流体と共にモディファイヤーを用いると、その流量が総流量の2〜30%の場合に最も多くフコキサンチンおよびフコステロールが抽出されることが分かった。   From the above results, it was found that in the supercritical fluid extraction, when a modifier is used together with the supercritical fluid, fucoxanthin and fucosterol are extracted most when the flow rate is 2 to 30% of the total flow rate.

実 施 例 9
超臨界流体抽出におけるモディファイヤーの効果(5):
実施例8の超臨界流体抽出条件のうちモディファイヤーの流量を5%に固定し、モディファイヤーをエタノール単独から水とエタノールの混液を用い、その比率をエタノール濃度50、90または100%として抽出した。得られた抽出物について実施例6と同様にフコキサンチン量およびフコステロール量を測定した。その結果を表11に示した。
Example 9
Effect of modifier in supercritical fluid extraction (5):
Of the supercritical fluid extraction conditions of Example 8, the flow rate of the modifier was fixed at 5%, and the modifier was extracted from ethanol alone using a mixture of water and ethanol, and the ratio was extracted with an ethanol concentration of 50, 90, or 100%. . About the obtained extract, the fucoxanthin amount and the fucosterol amount were measured in the same manner as in Example 6. The results are shown in Table 11.

Figure 2009191008
Figure 2009191008

上記結果より、モディファイヤーに含まれるエタノールの濃度が高いほどフコキサンチンおよびフコステロールが多く抽出されることが分かった。   From the above results, it was found that as the concentration of ethanol contained in the modifier is higher, more fucoxanthin and fucosterol are extracted.

実 施 例 10
各種褐藻類からの超臨界流体抽出:
アラメ(Eisenia bicyclis (Kjellman) Setchell)、コンブ(種類不明)、ヒジキ(Hizikia fusiformis)、ホンダワラ(Sargassum fulvellum C. Agardh)またはワカメ(Undaria pinnatifida)の成熟体の乾物(市販品)を、それぞれミル粉砕し、小片状あるいは粉末状としたものを試料とし、それらについて実施例6と同様に超臨界流体抽出を行った。得られた抽出物について実施例6と同様にフコキサンチン量およびフコステロール量を測定した。その結果を表12に示した。
Example 10
Supercritical fluid extraction from various brown algae:
Arame (Eisenia bicyclis (Kjellman) Setchell), Kombu (unknown type), Hizuki (Fujii fusiformis), Hawksawara (Sargassum fulvalum C. Agardh) or Wakame (Undariamil) Then, a small piece or powder was used as a sample, and supercritical fluid extraction was performed in the same manner as in Example 6. About the obtained extract, the fucoxanthin amount and the fucosterol amount were measured in the same manner as in Example 6. The results are shown in Table 12.

Figure 2009191008
Figure 2009191008

上記結果より、何れの褐藻類の成熟体からもフコキサンチンおよびフコステロールが抽出されることが明らかになった。   From the above results, it was revealed that fucoxanthin and fucosterol were extracted from any mature body of brown algae.

本発明抽出法によれば、褐藻類から効率的に短時間でフコキサンチン、フコステロール等の褐藻類由来機能性成分を抽出することができる。   According to the extraction method of the present invention, functional components derived from brown algae such as fucoxanthin and fucosterol can be efficiently extracted from brown algae in a short time.

従って、本発明抽出法で抽出された褐藻類由来機能性成分は、健康食品、医薬品等に好適に用いることができる。

以 上
Therefore, the functional component derived from brown algae extracted by the extraction method of the present invention can be suitably used for health foods, pharmaceuticals and the like.

more than

Claims (5)

褐藻類を超臨界流体で抽出することを特徴とする褐藻類由来機能性成分の抽出方法。   A method for extracting functional components derived from brown algae, characterized by extracting brown algae with a supercritical fluid. 褐藻類由来機能性成分が、フコキサンチンおよびフコステロールである請求項1記載の褐藻類由来機能性成分の抽出方法。   The method for extracting a brown algae-derived functional component according to claim 1, wherein the functional component derived from a brown algae is fucoxanthin and fucosterol. 褐藻類が、褐藻類の盤状体または糸状体である請求項1または2に記載の褐藻類由来機能性成分の抽出方法。   The method for extracting a functional component derived from brown algae according to claim 1 or 2, wherein the brown algae is a plate-like body or a filamentous body of brown algae. 超臨界流体に、更に、モディファイヤーとしてエタノールおよび/または水を添加するものである請求項1〜3の何れかに記載の褐藻類由来機能性成分の抽出方法。   The method for extracting a functional component derived from brown algae according to any one of claims 1 to 3, wherein ethanol and / or water is further added to the supercritical fluid as a modifier. 請求項1〜4の何れかに記載の抽出方法によって得られた褐藻類由来機能性成分。   A functional component derived from brown algae obtained by the extraction method according to claim 1.
JP2008032899A 2008-02-14 2008-02-14 Method for extracting functional component derived from brown algae Pending JP2009191008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008032899A JP2009191008A (en) 2008-02-14 2008-02-14 Method for extracting functional component derived from brown algae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008032899A JP2009191008A (en) 2008-02-14 2008-02-14 Method for extracting functional component derived from brown algae

Publications (1)

Publication Number Publication Date
JP2009191008A true JP2009191008A (en) 2009-08-27

Family

ID=41073346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008032899A Pending JP2009191008A (en) 2008-02-14 2008-02-14 Method for extracting functional component derived from brown algae

Country Status (1)

Country Link
JP (1) JP2009191008A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184356A (en) * 2011-03-07 2012-09-27 Jx Nippon Oil & Energy Corp Method for producing hydrocarbon fuel
US8487148B2 (en) 2010-12-13 2013-07-16 Exxonmobil Research And Engineering Company Hydrothermal treatment of biomass with heterogeneous catalyst
JP2013194001A (en) * 2012-03-21 2013-09-30 Nippon Menaade Keshohin Kk Promotor for inducing melanocyte differentiation
US8624070B2 (en) 2010-12-13 2014-01-07 Exxonmobil Research And Engineering Company Phosphorus recovery from hydrothermal treatment of biomass
US8704020B2 (en) 2010-12-13 2014-04-22 Exxonmobil Research And Engineering Company Catalytic hydrothermal treatment of biomass
US8704019B2 (en) 2010-12-13 2014-04-22 Exxonmobil Research And Engineering Company Catalyst recovery in hydrothermal treatment of biomass
WO2016190689A3 (en) * 2015-05-26 2017-01-12 연세대학교 산학협력단 Composition for preventing, alleviating or treating muscle diseases or improving muscular function
KR20170132705A (en) * 2015-05-26 2017-12-04 (주)앗코스텍 Composition for prevention, improvement or treatment of muscular disorder or improvement of muscular functions
CN109198572A (en) * 2017-07-04 2019-01-15 铭友科技有限公司 The manufacturing method of brown algae extract seasoning and the seasoning made of this method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487148B2 (en) 2010-12-13 2013-07-16 Exxonmobil Research And Engineering Company Hydrothermal treatment of biomass with heterogeneous catalyst
US8624070B2 (en) 2010-12-13 2014-01-07 Exxonmobil Research And Engineering Company Phosphorus recovery from hydrothermal treatment of biomass
US8704020B2 (en) 2010-12-13 2014-04-22 Exxonmobil Research And Engineering Company Catalytic hydrothermal treatment of biomass
US8704019B2 (en) 2010-12-13 2014-04-22 Exxonmobil Research And Engineering Company Catalyst recovery in hydrothermal treatment of biomass
JP2012184356A (en) * 2011-03-07 2012-09-27 Jx Nippon Oil & Energy Corp Method for producing hydrocarbon fuel
JP2013194001A (en) * 2012-03-21 2013-09-30 Nippon Menaade Keshohin Kk Promotor for inducing melanocyte differentiation
WO2016190689A3 (en) * 2015-05-26 2017-01-12 연세대학교 산학협력단 Composition for preventing, alleviating or treating muscle diseases or improving muscular function
KR20170132705A (en) * 2015-05-26 2017-12-04 (주)앗코스텍 Composition for prevention, improvement or treatment of muscular disorder or improvement of muscular functions
KR101982326B1 (en) 2015-05-26 2019-05-24 (주)앗코스텍 Composition for prevention, improvement or treatment of muscular disorder or improvement of muscular functions
US10646498B2 (en) 2015-05-26 2020-05-12 Aat Costech Co., Ltd. Composition for preventing, alleviating or treating muscle diseases or improving muscular function
CN109198572A (en) * 2017-07-04 2019-01-15 铭友科技有限公司 The manufacturing method of brown algae extract seasoning and the seasoning made of this method

Similar Documents

Publication Publication Date Title
JP2009191008A (en) Method for extracting functional component derived from brown algae
Cheok et al. Current trends of tropical fruit waste utilization
Gosset-Erard et al. Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels
Sun et al. Characterization and antioxidant activities of degraded polysaccharides from two marine Chrysophyta
US8871217B2 (en) Method for producing fucoxanthin
Kalegari et al. Phytochemical constituents and preliminary toxicity evaluation of leaves from Rourea induta Planch.(Connaraceae)
Setha et al. Potential of seaweed Padina sp. as a source of antioxidant
CN103833692A (en) Method for extracting high-purity fucoxanthin from seaweeds
JP2011256153A (en) Method for producing fucoxanthin-containing brown algae extraction composition
Bui et al. Effect of extraction solvent on total phenol, flavonoid content, and antioxidant activity of Avicennia officinalis
JP2008231198A (en) Fucoxanthin-containing fat-soluble oil, method for producing the same, and method for producing fucoxanthin
Thimmaraju et al. Novel studies of characterization, antioxidant, anticoagulant and anticancer activity of purified polysaccharide from Hypsizygus ulmarius mushroom
KR101603733B1 (en) Method for extracting maysin and bioactive compounds with high yield from corn silk
JP2010006783A (en) Method and apparatus for extracting fucoxanthin from seaweed
Sudha et al. Analysis of bioactive compounds in Padina pavonica using HPLC, UV-VIS and FTIR techniques
Sasadara et al. Effect of extraction solvent on total phenolic content, total flavonoid content, and antioxidant activity of Bulung Sangu (Gracilaria sp.) Seaweed
Maheswari et al. Phlorotannin and its derivatives, a potential antiviral molecule from brown seaweeds, an overview
WO2004009206A1 (en) Method of extracting phenolic compounds from a residual plant material using a hydrothermal process
JP2013129627A (en) Simple preparation method of phlorotannins and use of the same
US20080306141A1 (en) Method of Extraction of Catechin Type-A Proanthocyanidins
RU2676271C1 (en) Method of complex processing of brown algae
Fleurence et al. Antiallergic properties
JP2004075634A (en) Method for purification of fucoxanthine
Zhao et al. Antioxidant activities of crude phlorotannins from Sargassum hemiphyllum
US7892580B2 (en) Process for producing a stable concentrated dietary supplement and supplement produced thereby