JP2009190294A - Method for producing composite molding - Google Patents

Method for producing composite molding Download PDF

Info

Publication number
JP2009190294A
JP2009190294A JP2008034016A JP2008034016A JP2009190294A JP 2009190294 A JP2009190294 A JP 2009190294A JP 2008034016 A JP2008034016 A JP 2008034016A JP 2008034016 A JP2008034016 A JP 2008034016A JP 2009190294 A JP2009190294 A JP 2009190294A
Authority
JP
Japan
Prior art keywords
mold
resin
piece
thermoplastic resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008034016A
Other languages
Japanese (ja)
Other versions
JP5128306B2 (en
Inventor
Yasumitsu Miyamoto
康満 宮本
Akihiro Mochizuki
章弘 望月
Tatsuya Kanezuka
竜也 金塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2008034016A priority Critical patent/JP5128306B2/en
Priority to CN2009801049845A priority patent/CN102089134A/en
Priority to PCT/JP2009/000583 priority patent/WO2009101822A1/en
Priority to KR1020107018052A priority patent/KR20100112167A/en
Publication of JP2009190294A publication Critical patent/JP2009190294A/en
Application granted granted Critical
Publication of JP5128306B2 publication Critical patent/JP5128306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite molding composed of a liquid crystal polymer and a metal which can curtail a molding cycle time and has good adhesion stably. <P>SOLUTION: In a method for producing the composite molding composed of at least one thermoplastic resin selected from a polyarylene sulfide resin and a polyamide resin and a metal component, (1) a mold is divided into a main mold and a piece mold including a part wherein a resin having heating and cooling circuits for temperature control and the metal component are brought into contact, and (2) a part contacted with a charged resin during molding is surface-treated to have a ten-point average roughness (Rz) of 0.5 μm or below, the volume of the piece mold is made to be 60 cm<SP>3</SP>or below, and the peripheral part contacting the main mold of the piece mold is subjected to insulation treatment. (3) The metal component is set in the mold, the resin is injected/packed while the piece mold is heated at a temperature within a specified range, after resin packing in the mold is completed, the heating circuit of the piece mold is cut off immediately, and quenching is carried out at a cooling speed of at least 7°C/s by the cooling circuit of the piece mold. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ポリアリーレンサルファイド樹脂及びポリアミド樹脂より選ばれる1種以上の熱可塑性樹脂と金属部品との複合成形品の製造方法に関し、詳しくは、樹脂−金属部品間の優れた密着性を確保すると共に成形サイクルを向上させた複合成形品の製造方法に関する。   The present invention relates to a method for producing a composite molded product of at least one thermoplastic resin selected from a polyarylene sulfide resin and a polyamide resin and a metal part, and in particular, ensures excellent adhesion between the resin and the metal part. In addition, the present invention relates to a method for manufacturing a composite molded article having an improved molding cycle.

インサート成形品に代表される樹脂と金属とから構成される複合成形品は、電機・電子部品、自動車部品等の製造に利用されている。しかし、金属インサートと樹脂界面の密着は通常の成形法では充分ではなく抜け落ちや界面からの気体・液体の漏れの原因となってしまう。このような欠点を改善するために、金属を表面処理することにより凹凸を形成させ、そこに溶融樹脂を射出する方法が知られている。この方法によれば、界面の密着性に優れた樹脂と金属の複合成形品が得られるが、表面処理に薬品を使用することから、設備導入や薬液の管理など、実質的な導入にはコストアップ等から難しい点が多い。   A composite molded product composed of a resin and a metal typified by an insert molded product is used for manufacturing electric / electronic parts, automobile parts and the like. However, the close contact between the metal insert and the resin interface is not sufficient by a normal molding method, and it causes dropout or gas / liquid leakage from the interface. In order to improve such a defect, a method is known in which irregularities are formed by surface treatment of a metal and a molten resin is injected there. According to this method, a resin-metal composite molded product with excellent interface adhesion can be obtained, but since chemicals are used for surface treatment, it is costly to introduce substantial equipment such as equipment and chemicals management. There are many difficult points from up.

また、インサート加熱による密着性の向上手法として、1)予め加熱した金属を金型に収めた後、射出成形を実施する、2)金型内で電気ヒーターや電磁誘導等の加熱手段を利用してインサート金属を加熱し、射出成形を実施する、3)金型温度を高温に保持し、射出成形後に冷却に切り替える成形方法、などが提案されているが、1)、2)では加熱完了後の射出までの時間によってインサート金属の温度が低下しやすく、特に小物、薄物のインサートではその効果を得ることが困難であった。また、3)については、加熱冷却において、金型全体の温度をコントロールする必要があり、熱容量の大きなヒーターと冷却システムを要すると共に、成形が非常に長くなることが問題となっていた。   In addition, as a technique for improving adhesion by heating the insert, 1) pre-heated metal is placed in a mold and then injection molding is performed. 2) heating means such as an electric heater or electromagnetic induction is used in the mold. The insert metal is heated to perform injection molding, and 3) a molding method that maintains the mold temperature at a high temperature and switches to cooling after injection molding has been proposed. The temperature of the insert metal is apt to be lowered depending on the time until injection, and it is difficult to obtain the effect particularly in small and thin inserts. As for 3), in heating and cooling, it is necessary to control the temperature of the entire mold, and a heater and a cooling system having a large heat capacity are required, and the molding becomes very long.

更に、特許文献1では、インサート加熱方法によって、融点以上に加熱した系内に溶融樹脂を流し込み、圧力を保持し、更に温度を低下させると共に負荷圧力を上げるというコントロールの実施により、樹脂と金属の密着性を向上させる手法が提案されているが、温度や圧力を厳密に制御することが求められ、付帯設備も増加する傾向にあり、実用性に富むものとは言えない。また、特許文献1は、低密度ポリエチレン樹脂、ポリプロピレン、ポリスチレン等を想定したものであり、ポリアリーレンサルファイド樹脂及びポリアミド樹脂の場合は、特許文献1の方法では樹脂と金属の密着性の良好な複合成形品を得ることができない。   Furthermore, in Patent Document 1, the molten resin is poured into the system heated to the melting point or higher by the insert heating method, the pressure is maintained, the temperature is further lowered and the load pressure is increased, and the load of the resin and the metal is increased. Although a method for improving the adhesion has been proposed, it is required to strictly control the temperature and pressure, and the incidental equipment tends to increase, so it cannot be said that it is practical. Patent Document 1 assumes low-density polyethylene resin, polypropylene, polystyrene, and the like. In the case of polyarylene sulfide resin and polyamide resin, the method of Patent Document 1 is a composite having good adhesion between resin and metal. A molded product cannot be obtained.

一方、特許文献2には、ダイヤモンド状炭素被膜により表面処理された金型を用いることにより、金属−樹脂間の密着強度を向上することが提案されているが、実用的な成形サイクル時間で成形することができないという課題があった。
特開2001−1382号公報 特開2005−342922号公報
On the other hand, Patent Document 2 proposes improving the adhesion strength between the metal and the resin by using a die surface-treated with a diamond-like carbon coating, but it can be molded in a practical molding cycle time. There was a problem that could not be done.
JP 2001-1382 A JP 2005-342922 A

本発明は、上記従来技術の課題を解決し、成形サイクル時間の短縮が可能であり、安定的に良好な密着性を有する樹脂と金属の複合成形品の提供を目的とする。   The object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a composite molded product of a resin and a metal that can shorten the molding cycle time and stably has good adhesion.

本発明者らは、上記目的を達成すべく鋭意検討した結果、成形用金型の温度等を特定条件に制御して成形すること、及びそのためには特定構造の成形用金型を用いることが極めて有効であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have performed molding by controlling the temperature of the molding die to a specific condition, and for that purpose, using a molding die having a specific structure. It has been found that it is extremely effective, and the present invention has been completed.

即ち本発明は、ポリアリーレンサルファイド樹脂及びポリアミド樹脂より選ばれる1種以上の熱可塑性樹脂と金属部品との複合成形品の製造方法であって、
(1)成形用金型が、成形機との連動性を制御するための主型と、温度制御のための加熱用回路と冷却用回路を有する熱可塑性樹脂と金属部品とが接する部分を内部に包含する駒型に分割され、
(2)成形用金型の成形時に樹脂が流入して接する部分が十点平均粗さ(Rz)が0.5μm以下に表面処理され、駒型の容積を60cm以下にし、駒型の主型に接する外周部が断熱処理された状態で主型に駒型が埋め込まれた成形用金型を用い、
(3)成形用金型内に金属部品を設置し、駒型の金型温度を200℃〜熱可塑性樹脂の融点の温度範囲に加熱した状態で熱可塑性樹脂を射出充填し、成形用金型内に熱可塑性樹脂が充填完了した後、直ちに駒型の加熱用回路を遮断すると共に駒型の冷却用回路により7℃/秒以上の冷却速度で急速冷却する
ことを特徴とする複合成形品の製造方法である。
That is, the present invention is a method for producing a composite molded product of at least one thermoplastic resin selected from polyarylene sulfide resin and polyamide resin and a metal part,
(1) The molding die has a main mold for controlling the interlocking with the molding machine, and a portion where a thermoplastic resin having a heating circuit and a cooling circuit for temperature control and a metal part are in contact with each other. Divided into pieces that are included in
(2) The portion where resin flows in and comes into contact with the mold during molding is surface-treated with a 10-point average roughness (Rz) of 0.5 μm or less, and the volume of the piece mold is 60 cm 3 or less. Using a molding die in which a piece mold is embedded in the main mold in a state where the outer peripheral portion in contact with the mold is thermally insulated,
(3) A metal part is placed in the molding die, and the molding die is injected and filled with a thermoplastic resin in a state where the die die temperature is heated to a temperature range of 200 ° C. to the melting point of the thermoplastic resin. Immediately after the thermoplastic resin is filled in, the piece-shaped heating circuit is immediately shut off, and the piece-shaped cooling circuit is rapidly cooled at a cooling rate of 7 ° C./second or more. It is a manufacturing method.

本発明によれば、従来手法では不十分であった熱可塑性樹脂−金属間の密着性の改良された複合成形品を製造することが可能になった。また、従来手法よりも簡便な温度制御により、より短い成形サイクルで、熱可塑性樹脂金属間の優れた密着性を確保できる。   According to the present invention, it has become possible to produce a composite molded article having improved adhesion between a thermoplastic resin and a metal, which has been insufficient with conventional methods. In addition, excellent adhesion between thermoplastic resin metals can be ensured with a shorter molding cycle by temperature control simpler than that of the conventional method.

[金属部品]
本発明で使用する金属部品は、材質には特に制限はなく、銅、アルミ、鉄などの金属、燐青銅、ステンレスなどの合金、異種金属の貼合わせ体、これらのメッキ処理品などが挙げられる。ステンレスは、マルテンサイト系、オーステナイト系などが挙げられる。
[Metal parts]
The metal parts used in the present invention are not particularly limited in materials, and examples thereof include metals such as copper, aluminum and iron, alloys such as phosphor bronze and stainless steel, bonded bodies of different metals, and plated products thereof. . Examples of stainless steel include martensite and austenite.

本発明で使用する金属部品は、所定形状に加工された形状物であって、その形状に特に制限はない。また、金属部品がインサート部品である場合にも、その形状には特に制限はなく、一つのインサート部品の両端が成形品の外部に露出あるいは突出しているもの、例えば電気・電子部品の端子などが挙げられる。   The metal part used in the present invention is a shape processed into a predetermined shape, and the shape is not particularly limited. In addition, when the metal part is an insert part, there is no particular limitation on the shape thereof, and one end part of the insert part is exposed or protrudes outside the molded product, for example, terminals of electric / electronic parts. Can be mentioned.

金属部品は、一般的に、圧延板等ではそのものが細かい凹凸を有しており、特別な粗化処理を行わなくても密着が可能であるが、表面を粗化処理等することにより更に密着性を良くするための表面加工を施すことはより好ましい。粗化処理としては、表面研磨や、メッキやエッチング処理などによる多孔質状にする処理方法が挙げられる。
[金型]
本発明では、成形用金型として、成形機との連動性を制御するための主型と、温度制御のための加熱用回路と冷却用回路を有する熱可塑性樹脂と金属部品とが接する部分を内部に包含する駒型に分割して構成されたものを用いる。
Metal parts generally have fine irregularities on rolled plates, etc., and can be adhered without special roughening treatment, but further adhesion can be achieved by roughening the surface. It is more preferable to perform surface treatment for improving the property. Examples of the roughening treatment include a method of forming a porous shape by surface polishing, plating, etching, or the like.
[Mold]
In the present invention, as a molding die, a main mold for controlling the interlocking with the molding machine, a portion where a thermoplastic resin having a heating circuit and a cooling circuit for temperature control and a metal part are in contact with each other are provided. A piece divided into pieces contained inside is used.

熱可塑性樹脂−金属間の密着性を向上させるには、熱可塑性樹脂と金属部品とが接する部分の金属部品の温度制御が重要であり、その温度制御を駒型を通して制御するため、熱可塑性樹脂と金属部品とが接する部分を内部に包含するように駒型を設計する必要がある。   In order to improve the adhesion between the thermoplastic resin and the metal, it is important to control the temperature of the metal part at the portion where the thermoplastic resin and the metal part are in contact. It is necessary to design the frame shape so as to include the part where the metal part and the metal part are in contact.

主型と駒型を分割し、主型はある一定の温度に保持しておき、駒型のみを温度制御することにより、瞬時の温度変化が可能となり、成形サイクルの短縮が可能となるのである。ここで、主型と駒型を分割するだけでは、目的の成形サイクルの短縮は図れず、駒型の容積を60cm以下にし、駒型の主型に接する外周部を断熱処理する必要がある。断熱処理としては、断熱層を設ける等の方法が簡便である。駒型の容積が60cmを超えると通常の設備では成形サイクルが長くなり好ましくない。 By dividing the main mold and the piece mold, keeping the main mold at a certain temperature, and controlling the temperature of only the piece mold, an instantaneous temperature change is possible and the molding cycle can be shortened. . Here, by simply dividing the main mold and the piece mold, the target molding cycle cannot be shortened, the volume of the piece mold must be 60 cm 3 or less, and the outer peripheral portion in contact with the main mold of the piece mold needs to be heat-insulated. . As the heat insulation treatment, a method such as providing a heat insulation layer is simple. When the volume of the piece shape exceeds 60 cm 3 , the molding cycle becomes long in normal equipment, which is not preferable.

また、駒型が主型に駒型が埋め込まれた状態で成形されるのであるが、断熱層を設けないと、駒型の瞬時の温度変化が不可能で、成形サイクルの短縮が図れない。   Further, although the piece shape is molded in a state where the piece shape is embedded in the main die, if the heat insulating layer is not provided, the instantaneous temperature change of the piece shape is impossible and the molding cycle cannot be shortened.

通常、断熱層としては断熱板が用いられるが、エアキャップ等の断熱層であっても構わず、特にこの方法に限定されるものではない。断熱板としては、ガラス強化ポリエステル、ガラスエポキシ積層板、フェノール樹脂等が挙げられる。   Usually, a heat insulating plate is used as the heat insulating layer, but it may be a heat insulating layer such as an air cap, and is not particularly limited to this method. Examples of the heat insulating plate include glass reinforced polyester, glass epoxy laminated plate, phenol resin and the like.

また、本発明で使用する成形用金型は、主型及び駒型の成形時に樹脂が流入して接する部分が十点平均粗さ(Rz)が0.5μm以下に表面処理されていることが必要である。十点平均粗さ(Rz)が0.5μmより大きいと、樹脂が金型(駒型)に密着してしまい、離型不良により良好な複合成形品が得られない。表面処理の方法としては、表面粗さが上記範囲内になれば、何れの表面処理でも良いが、具体的にはダイヤモンド状炭素被膜(DLC)、CrN、Crメッキ等の表面処理が挙げられ、耐蝕耐磨性等からダイヤモンド状炭素被膜による表面処理が好ましい。
[金属部品の加熱]
本発明では、成形用金型内に金属部品を設置し、熱可塑性樹脂と金属部品とが接する部分を内部に包含する駒型の金型温度を200℃〜熱可塑性樹脂の融点、より好ましくは230℃〜熱可塑性樹脂の融点の温度範囲に加熱した状態で熱可塑性樹脂を射出充填する。駒型の金型温度を200℃〜熱可塑性樹脂の融点の温度範囲にすることにより、十分な熱可塑性樹脂−金属間の密着性を得ることができる。駒型の金型温度が200℃より低いと熱可塑性樹脂と金属部品の密着性が低下し、熱可塑性樹脂の融点を超える場合は、金型内で樹脂が固化しにくくなり、成形工程上問題が生じる場合があり好ましくない。
Further, in the molding die used in the present invention, the portion where the resin flows in and comes into contact with the main mold and the piece mold is surface-treated so that the ten-point average roughness (Rz) is 0.5 μm or less. is necessary. If the ten-point average roughness (Rz) is greater than 0.5 μm, the resin will be in close contact with the mold (piece mold), and a good composite molded product cannot be obtained due to mold release failure. As the surface treatment method, any surface treatment may be used as long as the surface roughness is within the above range, but specifically, a surface treatment such as diamond-like carbon coating (DLC), CrN, Cr plating, etc. Surface treatment with a diamond-like carbon coating is preferred from the standpoint of corrosion resistance and abrasion resistance.
[Heating metal parts]
In the present invention, a metal part is placed in a molding die, and a piece mold temperature including a portion where the thermoplastic resin and the metal part are in contact is set to 200 ° C. to the melting point of the thermoplastic resin, more preferably. The thermoplastic resin is injection-filled while being heated to a temperature range of 230 ° C. to the melting point of the thermoplastic resin. Adhesiveness between the thermoplastic resin and the metal can be sufficiently obtained by setting the die mold temperature in the temperature range of 200 ° C. to the melting point of the thermoplastic resin. If the die temperature of the piece is lower than 200 ° C, the adhesion between the thermoplastic resin and the metal parts is reduced, and if the melting point of the thermoplastic resin is exceeded, the resin is difficult to solidify in the mold, causing problems in the molding process. May occur, which is not preferable.

また、熱可塑性樹脂が金属部品の周囲に充填され、熱可塑性樹脂が加熱された金属部品に射出圧力で十分押し付けられる必要があり、その前に、金属部品の温度が上記温度より低下すると、熱可塑性樹脂と金属部品との間の密着力が不十分となる問題が生じる。そのため、熱可塑性樹脂を射出充填し、成形用金型内に熱可塑性樹脂が充填完了した後に、離型のため直ちに駒型の加熱用回路を遮断すると共に駒型の冷却用回路により7℃/秒以上の冷却速度で急速冷却することが必要である。これにより短時間で熱可塑性樹脂と金属部品を密着させることが可能となる。
[成形用金型の加熱方法]
成形機との連動性を制御するための主型、温度制御のための加熱用回路と冷却用回路を有する駒型とも、加熱方法としては、通常金型を加熱する方法である発熱体により加熱する方法、熱媒体により加熱する方法等が挙げられる。
In addition, it is necessary that the thermoplastic resin is filled around the metal part and the thermoplastic resin is sufficiently pressed against the heated metal part by the injection pressure, and before that, if the temperature of the metal part falls below the above temperature, There arises a problem that the adhesion between the plastic resin and the metal part is insufficient. Therefore, after the thermoplastic resin is injected and filled, and the thermoplastic resin is completely filled in the molding die, the piece-shaped heating circuit is immediately shut off for release, and the piece-shaped cooling circuit is used. It is necessary to rapidly cool at a cooling rate of more than a second. As a result, the thermoplastic resin and the metal part can be brought into close contact with each other in a short time.
[Method of heating molding die]
Both the main mold for controlling the interlocking with the molding machine and the block mold having a heating circuit and a cooling circuit for temperature control are heated by a heating element which is a method for heating a normal mold. And a method of heating with a heat medium.

発熱体により加熱する方法としては、金型と電気絶縁されたヒータ、電磁誘導加熱ヒータ又は熱媒体により加熱する方法が挙げられる。金型と電気絶縁されたヒータにより加熱する方法としては、シース線ヒータなどを金型内に埋め込んだり、ヒータの埋め込まれた加熱板を金型表面に取り付ける方法などが例示される。   Examples of the heating method using a heating element include a heater electrically insulated from a mold, an electromagnetic induction heater, or a heating method. Examples of the method of heating with a heater electrically insulated from the mold include a method of embedding a sheath wire heater or the like in the mold, or a method of attaching a heating plate embedded with a heater to the mold surface.

熱媒体により加熱する方法としては、金型内に熱媒体流路を設け、所定の温度の熱媒体を外部から供給し、排出させる方法が挙げられる。熱媒体としては、特に制限はなく、油、水、空気、窒素、燃焼ガスなどの流体が挙げられ、蒸気の場合には液体への凝縮伝熱でもよい。   As a method of heating with a heat medium, there is a method in which a heat medium flow path is provided in a mold, and a heat medium having a predetermined temperature is supplied from the outside and discharged. There is no restriction | limiting in particular as a heat medium, Fluids, such as oil, water, air, nitrogen, a combustion gas, are mentioned, In the case of a vapor | steam, the condensation heat transfer to a liquid may be sufficient.

一定の温度を保つ主型については特に制限はないが、瞬時の温度制御をする必要のある駒型の加熱方法としては、ヒータ等の発熱体による加熱方法が好ましく用いられる。
[駒型の冷却方法]
本発明では、成形用金型内に熱可塑性樹脂が充填完了した後、直ちに駒型の加熱用回路を遮断すると共に駒型の冷却用回路により7℃/秒以上の冷却速度で急速冷却する。主型と駒型を分割し、駒型のみを温度制御することによって、以上の範囲での急速冷却が可能となるであり、駒型の冷却方法としては、瞬時に冷却可能な方法であれば、通常の冷却方法を用いてもよい。熱媒体として特に制限はなく、油、水、空気、窒素、燃焼ガス等の流体が挙げられるが、好ましくは、冷却回路として駒型内に冷却用流路を設け、その流路に空気中の水分が結露状態あるいは水分が固化し氷結状態にある低温空気を通過させ、氷分の融解熱あるいは水分の気化熱によって金属部品が接する駒型を冷却する方法等が挙げられる。
[成形品及び成形用金型]
本発明で用いられる金属部品及び複合成形品の形状の一例を、図2及び3に示す。
The main mold that maintains a constant temperature is not particularly limited, but as a piece-shaped heating method that requires instantaneous temperature control, a heating method using a heating element such as a heater is preferably used.
[Cool type cooling method]
In the present invention, after the thermoplastic resin is completely filled in the molding die, the piece heating circuit is immediately shut off and rapidly cooled at a cooling rate of 7 ° C./second or more by the piece cooling circuit. By dividing the main mold and the piece mold, and controlling the temperature of only the piece mold, rapid cooling in the above range is possible. Ordinary cooling methods may be used. The heat medium is not particularly limited, and examples thereof include fluids such as oil, water, air, nitrogen, and combustion gas. Preferably, a cooling flow path is provided in the block shape as a cooling circuit, and the flow path is in the air. Examples include a method in which low-temperature air in which moisture is condensed or solidified and frozen is allowed to pass, and the piece in contact with the metal part is cooled by heat of melting ice or heat of vaporization of moisture.
[Molded products and molds]
An example of the shape of the metal part and composite molded product used in the present invention is shown in FIGS.

図1は、本発明の手法により複合成形品を製造するために金属部品を保持するための駒型の一例を示す図である。図1は、金属部品全体を包含する駒型形状となっているが、金属部品全体を包含する必要はなく、熱可塑性樹脂と金属部品とが接する部分を内部に包含すれぎ、良好な密着性の複合成形品を得ることができる。   FIG. 1 is a view showing an example of a piece shape for holding a metal part in order to manufacture a composite molded article by the method of the present invention. Although FIG. 1 has a piece shape that includes the entire metal part, it is not necessary to include the entire metal part, and the portion where the thermoplastic resin and the metal part are in contact is included in the interior to provide good adhesion. The composite molded product can be obtained.

図1の駒型は、主型に、図1に示すように断熱板4が設けられ、主型(図示省略)に埋め込まれて成形用金型として用いられる。   1 is provided with a heat insulating plate 4 as shown in FIG. 1 and embedded in the main mold (not shown) to be used as a molding die.

加熱部品(棒ヒータ)3は、加熱用回路として、駒型を所定温度に昇温させるヒータである。   The heating component (bar heater) 3 is a heater that raises the piece shape to a predetermined temperature as a heating circuit.

流路2は、冷却用回路として、空気中の水分が結露状態あるいは水分が固化し氷結状態にある低温空気を通過させ、氷分の融解熱あるいは水分の気化熱によって駒型を冷却させる低温空気の流路となっている。   As the cooling circuit, the flow path 2 allows low-temperature air to pass through low-temperature air in which moisture in the air is dewed or solidified and frozen, and cools the block shape by heat of melting ice or heat of vaporization of water. It becomes the flow path.

流路2の出口からは、低温空気中の水分が駒型の熱を奪い蒸発気化したスチームの形で排出される。排出は、大気中への放出であっても、排出配管としても構わない。
[樹脂]
本発明に用いられる熱可塑性樹脂は、ポリアリーレンサルファイド樹脂及びポリアミド樹脂より選ばれる1種以上である。
From the outlet of the flow path 2, the moisture in the low-temperature air is discharged in the form of steam that takes the heat of the piece and evaporates. The discharge may be a discharge to the atmosphere or a discharge pipe.
[resin]
The thermoplastic resin used in the present invention is at least one selected from polyarylene sulfide resins and polyamide resins.

ポリアリーレンサルファイド樹脂は、繰返し単位として-(Ar-S)-(但しArはアリーレン基)で主として構成されたものである。アリーレン基としては、例えば、p−フェニレン基、m−フェニレン基、o−フェニレン基、置換フェニレン基、p,p’−ジフェニレンスルフォン基、p,p’−ビフェニレン基、p,p’−ジフェニレンエーテル基、p,p’−ジフェニレンカルボニル基、ナフタレン基などが使用できる。   The polyarylene sulfide resin is mainly composed of — (Ar—S) — (wherein Ar is an arylene group) as a repeating unit. Examples of the arylene group include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p′-diphenylene sulfone group, p, p′-biphenylene group, and p, p′-di. A phenylene ether group, p, p′-diphenylenecarbonyl group, naphthalene group, and the like can be used.

この場合、前記のアリーレン基から構成されるアリーレンサルファイド基の中で同一の繰返し単位を用いたポリマー、即ちホモポリマーの他に、組成物の加工性という点から、異種繰返し単位を含んだコポリマーが好ましい場合もある。   In this case, in addition to the polymer using the same repeating unit in the arylene sulfide group composed of the arylene group, that is, a homopolymer, a copolymer containing a different repeating unit is used from the viewpoint of processability of the composition. It may be preferable.

ホモポリマーとしては、アリーレン基としてp−フェニレン基を用いた、p−フェニレンサルファイド基を繰返し単位とするポリフェニレンサルファイドが好ましく用いられる。また、コポリマーとしては、前記のアリーレン基からなるアリーレンサルファイド基の中で、相異なる2種以上の組み合わせが使用できるが、中でもp−フェニレンサルファイド基とm−フェニレンサルファイド基を含む組み合わせが特に好ましく用いられる。この中で、p−フェニレンサルファイド基を70モル%以上、好ましくは80モル%以上含むものが、耐熱性、成形性、機械的特性等の物性上の点から適当である。   As the homopolymer, polyphenylene sulfide using p-phenylene group as an arylene group and having p-phenylene sulfide group as a repeating unit is preferably used. As the copolymer, among the arylene sulfide groups comprising the above-mentioned arylene groups, two or more different combinations can be used, and among them, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is particularly preferably used. It is done. Among these, those containing 70 mol% or more, preferably 80 mol% or more of p-phenylene sulfide groups are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties.

又、これらのポリアリーレンサルファイド樹脂の中で、2官能性ハロゲン芳香族化合物を主体とするモノマーから縮重合によって得られる実質的に直鎖状構造の高分子量ポリマーが好ましく使用できるが、直鎖状構造のポリアリーレンサルファイド樹脂以外にも、縮重合させるときに3個以上のハロゲン官能基を有するポリハロ芳香族化合物等のモノマーを少量用いて、部分的に分岐構造又は架橋構造を形成させたポリマーも使用できるし、低分子量の直鎖状構造ポリマーを酸素又は酸化剤の存在下、高温で加熱して酸化架橋又は熱架橋により溶融粘度を上昇させ、成形加工性を改良したポリマー、あるいはこれらの混合物も使用可能である。   Further, among these polyarylene sulfide resins, a high molecular weight polymer having a substantially linear structure obtained by condensation polymerization from a monomer mainly composed of a bifunctional halogen aromatic compound can be preferably used. In addition to the polyarylene sulfide resin having a structure, a polymer in which a branched structure or a crosslinked structure is partially formed by using a small amount of a monomer such as a polyhaloaromatic compound having three or more halogen functional groups at the time of condensation polymerization. A low molecular weight linear structure polymer that can be used and heated at a high temperature in the presence of oxygen or an oxidant to increase the melt viscosity by oxidative crosslinking or thermal crosslinking to improve molding processability, or a mixture thereof Can also be used.

また、ポリアリーレンサルファイド樹脂は、前記直鎖状ポリアリーレンサルファイド樹脂を主体とし、その一部(1〜30重量%、好ましくは2〜25重量%)が、比較的高粘度(樹脂温度310℃、剪断速度1200sec-1における溶融粘度が300〜3000Pa・s、好ましくは500〜2000Pa・s)の分岐又は架橋ポリアリーレンサルファイド樹脂との混合系も好適である。 The polyarylene sulfide resin is mainly composed of the linear polyarylene sulfide resin, and a part thereof (1 to 30% by weight, preferably 2 to 25% by weight) has a relatively high viscosity (resin temperature 310 ° C., A mixed system with a branched or crosslinked polyarylene sulfide resin having a melt viscosity of 300 to 3000 Pa · s, preferably 500 to 2000 Pa · s at a shear rate of 1200 sec −1 is also suitable.

また、本発明に用いるポリアリーレンサルファイド樹脂は、重合後、酸洗浄、熱水洗浄、有機溶剤洗浄(或いはこれらの組合せ)等を行って副生不純物等を除去精製したものが好ましい。   In addition, the polyarylene sulfide resin used in the present invention is preferably a polyarylene sulfide resin which is purified by removing acid by-product, hot water washing, organic solvent washing (or a combination thereof) and the like after polymerization to remove by-product impurities.

次に、ポリアミド樹脂としては、周知の種々のポリアミド系樹脂を挙げることができる。例えば、蓚酸、アジピン酸、スベリン酸、セバシン酸、テレフタル酸、イソフタル酸、1,4−シクロヘキシルジカルボン酸のようなジカルボン酸とエチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、デカメチレンジアミン、1,4−シクロヘキシルジアミン、m−キシリレンジアミンのようなジアミンとを重縮合して得られるポリアミド樹脂;カプロラクタム、ラウリンラクタムのような環状ラクタムを重合して得られるポリアミド樹脂;あるいは環状ラクタムとジアミンとの塩を共重合して得られるポリアミド樹脂等を挙げることができる。これらのポリアミド系樹脂のうち、好ましくは6ナイロン、66ナイロン、12ナイロン、46ナイロン、MXD6ナイロン及びこれらの共重合体等が挙げられる。   Next, examples of the polyamide resin include various known polyamide resins. For example, dicarboxylic acid such as succinic acid, adipic acid, suberic acid, sebacic acid, terephthalic acid, isophthalic acid, 1,4-cyclohexyldicarboxylic acid and ethylenediamine, pentamethylenediamine, hexamethylenediamine, decamethylenediamine, 1,4- Polyamide resins obtained by polycondensation with diamines such as cyclohexyldiamine and m-xylylenediamine; Polyamide resins obtained by polymerizing cyclic lactams such as caprolactam and laurin lactam; or salts of cyclic lactam and diamine Examples thereof include a polyamide resin obtained by copolymerization. Among these polyamide-based resins, 6 nylon, 66 nylon, 12 nylon, 46 nylon, MXD6 nylon, and copolymers thereof are preferable.

また、ポリアミドエラストマー樹脂もポリアミド系樹脂として使用することができる。ポリアミドエラストマー樹脂は、ポリアミドハードセグメントと他のソフトセグメントが結合した曲げ弾性率が10000kgf/cm2以下(50%相対湿度、23℃)のポリアミド系ブロックコポリマーである。かかるエラストマーのソフトセグメントとしては、ポリアルキレンオキシド(アルキレン基の炭素数2〜6)が代表的な例である。かかるポリアミドエラストマーの合成法については数多くの報告があるが、通常はナイロンオリゴマーの生成とエステル化による高分子量化の2段階に分けて行われている。ここで、ハードセグメントのポリアミド成分としては、ポリアミド6、ポリアミド66、ポリアミド6,12、ポリアミド11、ポリアミド12等のポリアミドが挙げられ、ソフトセグメントとしてのポリエーテル成分としてはポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール等が挙げられる。 A polyamide elastomer resin can also be used as the polyamide resin. The polyamide elastomer resin is a polyamide block copolymer having a flexural modulus of 10,000 kgf / cm 2 or less (50% relative humidity, 23 ° C.) in which a polyamide hard segment and other soft segments are bonded. A typical example of such an elastomer soft segment is polyalkylene oxide (alkylene having 2 to 6 carbon atoms). There are many reports on the synthesis method of such a polyamide elastomer, but it is usually carried out in two stages, namely, the formation of a nylon oligomer and the high molecular weight by esterification. Here, examples of the polyamide component of the hard segment include polyamides such as polyamide 6, polyamide 66, polyamide 6,12, polyamide 11, and polyamide 12. Polyether components as the soft segment include polyoxyethylene glycol, polyoxy Examples include propylene glycol and polyoxytetramethylene glycol.

本発明に用いる熱可塑性樹脂は、ポリアリーレンサルファイド樹脂、ポリアミド樹脂の何れでもよく、両者を併用してもよい。また、目的とする物性値を調節するためポリアリーレンサルファイド樹脂の2種以上を併用することも、ポリアミド樹脂の2種以上を併用することも可能である。   The thermoplastic resin used in the present invention may be either a polyarylene sulfide resin or a polyamide resin, or both may be used in combination. In addition, two or more polyarylene sulfide resins can be used in combination or two or more polyamide resins can be used in combination in order to adjust the target physical property value.

また、本発明に用いる熱可塑性樹脂は、エラストマーを含む樹脂組成物として用いることも可能であり、特にエラストマーを含有するポリフェニレンサルファイド樹脂組成物は、本発明の効果が顕著であり、好ましく用いられる。   The thermoplastic resin used in the present invention can also be used as a resin composition containing an elastomer. Particularly, a polyphenylene sulfide resin composition containing an elastomer has a remarkable effect of the present invention and is preferably used.

エラストマーとしては、熱可塑性樹脂の溶融加工時に著しい分解等が起こらない耐熱性を有するものであれば何れのものも含有させることが可能であるが、耐熱性の面から、エチレン共重合体が好ましい。   Any elastomer can be included as long as it has heat resistance that does not cause significant decomposition during the melt processing of the thermoplastic resin. From the viewpoint of heat resistance, an ethylene copolymer is preferred. .

エチレン共重合体としては、エチレンとα,β−不飽和酸のグリシジルエステルを主体としたエチレン共重合体、エチレンとα,β−不飽和酸のアルキルエステルを主体としたエチレン共重合体、エチレンと炭素数5以上のα−オレフィンとのエチレン共重合体等が挙げられる。これらのエチレンエチレン共重合体に、アクリル酸、アクリル酸メチル、メタクリル酸、アクリロニトリル、スチレン等の第三成分を分岐又は架橋構造的に化学結合させたグラフト共重合体でもかまわない。   Examples of the ethylene copolymer include an ethylene copolymer mainly composed of ethylene and a glycidyl ester of α, β-unsaturated acid, an ethylene copolymer mainly composed of ethylene and an alkyl ester of α, β-unsaturated acid, ethylene And an ethylene copolymer of an α-olefin having 5 or more carbon atoms. A graft copolymer in which a third component such as acrylic acid, methyl acrylate, methacrylic acid, acrylonitrile, styrene or the like is branched or crosslinked chemically bonded to these ethylene ethylene copolymers may be used.

エラストマーの含有量としては、組成物全体の1〜15重量%を占める量が好ましい。   The content of the elastomer is preferably an amount that occupies 1 to 15% by weight of the entire composition.

上記樹脂には、各種の樹脂添加剤や充填剤を含んでいてもよい。
[用途]
本発明により得られた複合成形品は、電機・電子部品、自動車部品等に広く使用することができる。
The resin may contain various resin additives and fillers.
[Usage]
The composite molded article obtained by the present invention can be widely used for electric / electronic parts, automobile parts and the like.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(樹脂材料の調製)
表1に示す(A)、(B)、(D)成分をヘンシェルミキサーで5分間混合し、次いでこれをシリンダー温度320℃の二軸押出機に投入後、(C)成分は押出機のサイドフィード部より別添加し、二軸押出機内の樹脂温度350℃にて溶融混練を行い、樹脂組成物をペレット状に調製した。(A)〜(D)成分の詳細は以下の通りである。
(A)ポリフェニレンサルファイド(PPS)樹脂
・(株)クレハ製、フォートロンKPS(樹脂温度310℃、剪断速度1200sec-1における溶融粘度30Pa・s)
(B)エラストマー
・(B-1)エチレン/エチルアクリレート共重合体70重量部にメチルメタクリレート/ブチルアクリレート共重合体(9/21)を30重量部グラフトさせた共重合体(日本油脂(株)製、モディパーA5300)
・(B-2)エチレン/オクテン共重合体(DuPont Dow Elastomers L.L.C製、エンゲージ8440)
・(B-3)エチレン/グリシジルメタクリレート共重合体70重量部にメチルメタクリレート/ブチルアクリレート共重合体(9/21)を30重量部グラフトさせた共重合体(日本油脂(株)製、モディパーA4300)
(C)無機充填剤
・(C-1)ガラス繊維(10μmφのチョップドストランド(ファイバーグラスジャパン(株)製、CS03JA-FT636))
・(C-2)ガラスフレーク(日本板ガラス(株)製ガラスフレーク、Eガラス平均粒径600μmφ)
・(C-3)炭酸カルシウム(東洋ファインケミカル(株)製ホワイトンP)
(D)離型剤
・日本油脂(株)製、ユニスターH−476
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
(Preparation of resin material)
Components (A), (B), and (D) shown in Table 1 were mixed with a Henschel mixer for 5 minutes, then charged into a twin-screw extruder with a cylinder temperature of 320 ° C, and then component (C) was the side of the extruder. Separately added from the feed section, melt kneading was performed at a resin temperature of 350 ° C. in the twin-screw extruder to prepare a resin composition in a pellet form. Details of the components (A) to (D) are as follows.
(A) Polyphenylene sulfide (PPS) resin, manufactured by Kureha Co., Ltd., Fortron KPS (melting viscosity 30 Pa · s at a resin temperature of 310 ° C. and a shear rate of 1200 sec −1 )
(B) Elastomer ・ (B-1) Copolymer obtained by grafting 30 parts by weight of methyl methacrylate / butyl acrylate copolymer (9/21) to 70 parts by weight of ethylene / ethyl acrylate copolymer (Nippon Yushi Co., Ltd.) Manufactured by Modiper A5300)
・ (B-2) Ethylene / octene copolymer (DuPont Dow Elastomers LLC, Engage 8440)
(B-3) A copolymer obtained by grafting 30 parts by weight of a methyl methacrylate / butyl acrylate copolymer (9/21) to 70 parts by weight of an ethylene / glycidyl methacrylate copolymer (manufactured by NOF Corporation, Modiper A4300 )
(C) Inorganic filler (C-1) Glass fiber (10μmφ chopped strand (manufactured by Fiberglass Japan Co., Ltd., CS03JA-FT636))
・ (C-2) Glass flakes (Nippon Sheet Glass Co., Ltd. glass flakes, E glass average particle size 600μmφ)
・ (C-3) Calcium carbonate (Whiteon P manufactured by Toyo Fine Chemical Co., Ltd.)
(D) Release agent, manufactured by NOF Corporation, Unistar H-476

Figure 2009190294
Figure 2009190294

実施例1
図1に示す加熱用回路と冷却用回路を有する駒型が埋め込まれた成形機との連動性を制御するための主型からなる成形用金型を用い、主型の温度を150℃に保った状態で、図2に示す金属部品を駒型にセット後、直ちに駒型の温度を150℃から所定温度(245℃)まで昇温した。245℃まで9.5秒かかった。同時に成形用金型を閉めた後、下記条件でPPS樹脂を射出成形することにより図3のような複合成形品を得た。
Example 1
Using a molding die composed of a main mold for controlling the interlocking between the heating circuit and the molding machine having the cooling mold shown in FIG. 1 and maintaining the temperature of the main mold at 150 ° C. In this state, the metal part shown in FIG. 2 was set in a piece shape, and immediately the temperature of the piece shape was raised from 150 ° C. to a predetermined temperature (245 ° C.). It took 9.5 seconds to reach 245 ° C. At the same time, the molding die was closed, and then a PPS resin was injection molded under the following conditions to obtain a composite molded product as shown in FIG.

PPS樹脂としては、表1の材料1を使用した。   As the PPS resin, the material 1 shown in Table 1 was used.

[成形条件]
駒型の表面処理;鋼材SUS420J2上に、ダイヤモンド状炭素被膜(DLC)を厚み1.0μmにコーティング処理した。表面粗さは、樹脂流動方向;十点平均粗さ(Rz)0.45μm、算術平均粗さ(Ra)0.1μmである。
気密性評価用試験品形状;幅10mm×長さ10mm×高さ3mm(図3参照)
成形機;ソディックプラステック(株)製TR40VR
金属部品;銅製リードフレーム(詳細については図2参照)
断熱板;ガラスエポキシ積層板
金型温度;主型は150℃
駒型容積;15cm
射出成形時の駒型温度;245℃
射出時間(保圧時間を含む);3秒
射出速度;200mm/秒
保圧;100MPa
冷却速度;10℃/秒
冷却時の駒型冷却方法;成形用金型内に熱可塑性樹脂が充填完了後、直ちに加熱用棒ヒータの電源をオフにし、空気中の水分が結露状態にある極低温圧縮空気−30℃、0.6MPaを流路2に流す。
[Molding condition]
Piece-shaped surface treatment; A steel film SUS420J2 was coated with a diamond-like carbon coating (DLC) to a thickness of 1.0 μm. The surface roughness is the resin flow direction; ten-point average roughness (Rz) of 0.45 μm and arithmetic average roughness (Ra) of 0.1 μm.
Test product shape for airtightness evaluation: width 10 mm x length 10 mm x height 3 mm (see Fig. 3)
Molding machine: TR40VR manufactured by Sodick Plustech Co., Ltd.
Metal parts; copper lead frame (see Figure 2 for details)
Insulation plate; Glass epoxy laminate Mold temperature; Main mold is 150 ° C
Piece volume; 15cm 3
Piece temperature during injection molding; 245 ° C
Injection time (including pressure holding time); 3 seconds Injection speed; 200 mm / second Pressure holding; 100 MPa
Cooling rate: 10 ° C / sec Cooling method when cooling: The pole where the heating rod heater is turned off immediately after the thermoplastic resin is completely filled in the molding die, and moisture in the air is in a dew condensation state Low-temperature compressed air—30 ° C. and 0.6 MPa are passed through the flow path 2.

成形品を成形用金型から取り出す際に、複合成形品の変形又は破壊が発生しない最短成形サイクル時間は24.5秒であった。成形した得た複合成形品を成形後48時間以上常温下に放置した後、下記気密試験を行い、樹脂−金属間の気密性を評価した。尚、成形サイクル時間は、金属部品を駒型にセット完了した時点から複合成形品を取り出す時点までの時間を言う。   When taking out the molded product from the molding die, the shortest molding cycle time at which the composite molded product does not deform or break was 24.5 seconds. The molded composite article thus obtained was left at room temperature for 48 hours or more after molding, and then the following airtightness test was performed to evaluate the airtightness between the resin and the metal. Incidentally, the molding cycle time refers to the time from the time when the metal part is set in the piece shape to the time when the composite molded product is taken out.

[気密性評価]
複合成形品を図4に示す装置にセットし、評価装置全体を水の中に入れた後、配管によりエアー加圧を行い、複合成形品の金属部品と樹脂の界面からのエアー(気泡)の漏れが発生する最大のエアー圧力を測定した。エアー圧力の数値が大きいほど、気密性が高いことになる。
[Airtight evaluation]
After the composite molded product is set in the apparatus shown in FIG. 4 and the entire evaluation apparatus is placed in water, air pressure is applied by piping, and air (bubbles) from the interface between the metal part of the composite molded product and the resin The maximum air pressure at which leakage occurred was measured. The larger the air pressure value, the higher the airtightness.

実施例2
PPS樹脂として、表1の材料2を使用した以外は実施例1と同様にして成形し、評価した。
Example 2
The PPS resin was molded and evaluated in the same manner as in Example 1 except that the material 2 shown in Table 1 was used.

実施例3
射出成形時の駒型温度を200℃とした以外は実施例1と同様にして成形し、評価した。
Example 3
Molding and evaluation were performed in the same manner as in Example 1 except that the piece temperature at the time of injection molding was 200 ° C.

実施例4〜5
PPS樹脂として、表1の材料3、材料4を使用した以外は実施例3と同様にして成形し、評価した。
Examples 4-5
The PPS resin was molded and evaluated in the same manner as in Example 3 except that the materials 3 and 4 in Table 1 were used.

比較例1
主型と駒型の間に断熱板を使用しない以外は実施例1と同様にして成形し、評価した。245℃まで昇温するのに10分以上を要した。
Comparative Example 1
It was molded and evaluated in the same manner as in Example 1 except that a heat insulating plate was not used between the main mold and the piece mold. It took 10 minutes or more to raise the temperature to 245 ° C.

比較例2
駒型の容積を250cmとした以外は実施例1と同様にして成形し、評価した。245℃まで昇温するのに10分以上を要した。
Comparative Example 2
Molding and evaluation were performed in the same manner as in Example 1 except that the volume of the piece was 250 cm 3 . It took 10 minutes or more to raise the temperature to 245 ° C.

比較例3
駒型の表面処理をせず、十点平均粗さ(Rz)3.0μmのままの駒型を用いた以外は実施例1と同様にして成形したが、離型不良のため試験品を得ることができなかった。
Comparative Example 3
It was molded in the same manner as in Example 1 except that the piece shape was not subjected to the surface treatment and the 10-point average roughness (Rz) of 3.0 μm was used. I couldn't.

比較例4
射出成形時の駒型温度を170℃とした以外は実施例1と同様にして成形し、評価した。
Comparative Example 4
Molding and evaluation were performed in the same manner as in Example 1 except that the piece temperature during injection molding was set to 170 ° C.

これらの結果を表2に示す。   These results are shown in Table 2.

Figure 2009190294
Figure 2009190294

実施例6
図5に示す加熱用回路と冷却用回路を有する駒型が埋め込まれた成形機との連動性を制御するための主型からなる成形用金型を用い、主型の温度を150℃に保った状態で、厚さ1mm、50mm×50mmの金属板を駒型にセット後、直ちに駒型の温度を150℃から所定温度(200℃)まで昇温した。200℃まで7秒かかった。同時に成形用金型を閉めた後、下記条件でPPS樹脂を射出成形することにより図6のような複合成形品を得た。
Example 6
Using a molding die consisting of a main mold for controlling the interlocking between the heating circuit and the molding machine embedded with the block mold having the cooling circuit shown in FIG. 5, the temperature of the main mold is maintained at 150 ° C. In this state, a metal plate having a thickness of 1 mm and 50 mm × 50 mm was set in a piece shape, and immediately the temperature of the piece shape was raised from 150 ° C. to a predetermined temperature (200 ° C.). It took 7 seconds to reach 200 ° C. At the same time, the molding die was closed, and then a PPS resin was injection molded under the following conditions to obtain a composite molded product as shown in FIG.

PPS樹脂としては、表1の材料1を使用した。   As the PPS resin, the material 1 shown in Table 1 was used.

[成形条件]
駒型の表面処理;鋼材SUS420J2上に、ダイヤモンド状炭素被膜(DLC)を厚み1.0μmにコーティング処理した。表面粗さは、樹脂流動方向;十点平均粗さ(Rz)0.35μm、算術平均粗さ(Ra)0.09μmである。
密着強度評価用試験品形状;図6参照
成形機;ソディックプラステック(株)製TR40VR
金属部品;厚さ1mm、50mm×50mmの金属板
断熱板;ガラスエポキシ積層板
金型温度;主型は150℃
駒型容積;50cm
シリンダー温度;320℃
射出成形時の駒型温度;200℃
射出時間(保圧時間を含む);5秒
射出速度;200mm/秒
保圧;100MPa
冷却速度;8℃/秒
冷却時の駒型冷却方法;成形用金型内に熱可塑性樹脂が充填完了後、直ちに加熱用棒ヒータの電源をオフにし、空気中の水分が結露状態にある極低温圧縮空気−30℃、0.6MPaを流路2に流す。
[Molding condition]
Piece-shaped surface treatment; A steel film SUS420J2 was coated with a diamond-like carbon coating (DLC) to a thickness of 1.0 μm. The surface roughness is the resin flow direction; ten-point average roughness (Rz) of 0.35 μm and arithmetic average roughness (Ra) of 0.09 μm.
Test article shape for adhesion strength evaluation; see FIG. 6 Molding machine; TR40VR manufactured by Sodick Plustech Co., Ltd.
Metal parts: 1mm thick, 50mm x 50mm metal plate Thermal insulation plate: Glass epoxy laminate Mold temperature; Main mold is 150 ° C
Piece volume; 50cm 3
Cylinder temperature: 320 ° C
Piece temperature during injection molding; 200 ° C
Injection time (including pressure holding time); 5 seconds Injection speed; 200 mm / second Pressure holding; 100 MPa
Cooling rate: 8 ° C / second Cooling method at the time of cooling: After the thermoplastic resin is completely filled in the molding die, the heating rod heater is turned off immediately, and moisture in the air is in a dew condensation state Low-temperature compressed air—30 ° C. and 0.6 MPa are passed through the flow path 2.

[密着強度評価]
図6の密着強度評価用試験品を、オリエンテック製テンシロンRTC−1325Aを用いて、押し込む速度を1mm/minとして、図7に示す方法で剥離強度を測定した。
[Adhesion strength evaluation]
The peel strength was measured by the method shown in FIG. 7 using the Tensilon RTC-1325A manufactured by Orientec Co., Ltd., and the indentation speed of 1 mm / min.

実施例7〜9
PPS樹脂として、表1の材料2、材料3、材料4を使用した以外は実施例6と同様にして成形し、評価した。
Examples 7-9
The PPS resin was molded and evaluated in the same manner as in Example 6 except that the materials 2, 3, and 4 shown in Table 1 were used.

実施例10
射出成形時の駒型温度を220℃とした以外は実施例6と同様にして成形し、評価した。
Example 10
Molding and evaluation were performed in the same manner as in Example 6 except that the piece mold temperature at the time of injection molding was 220 ° C.

実施例11〜13
PPS樹脂として、表1の材料2、材料3、材料4を使用した以外は実施例10と同様にして成形し、評価した。
Examples 11-13
The PPS resin was molded and evaluated in the same manner as in Example 10 except that the materials 2, 3, and 4 in Table 1 were used.

実施例14
樹脂としてナイロン樹脂(三菱エンジニアプラスチックス(株)製、ポリアミドMXD6樹脂レニー1025)を用い、射出成形機のシリンダー温度を280℃にした以外は実施例6と同様にして成形し、評価した。
Example 14
Nylon resin (manufactured by Mitsubishi Engineer Plastics Co., Ltd., polyamide MXD6 resin Reny 1025) was used as the resin, and molding was carried out in the same manner as in Example 6 except that the cylinder temperature of the injection molding machine was changed to 280 ° C.

実施例15
射出成形時の駒型温度を220℃とした以外は実施例14と同様にして成形し、評価した。
Example 15
Molding and evaluation were performed in the same manner as in Example 14 except that the piece mold temperature at the time of injection molding was set to 220 ° C.

比較例5
射出成形時の駒型の温度を170℃とした以外は実施例6と同様にして成形し、評価した。
Comparative Example 5
Molding and evaluation were performed in the same manner as in Example 6 except that the piece mold temperature at the time of injection molding was set to 170 ° C.

比較例6〜7
射出成形時の駒型の温度を170℃とし、PPS樹脂として、表1の材料3、材料4を使用した以外は実施例6と同様にして成形し、評価した。
比較例8
射出成形時の駒型の温度を170℃とした以外は実施例14と同様にして成形し、評価した。
Comparative Examples 6-7
It was molded and evaluated in the same manner as in Example 6 except that the piece-shaped temperature at the time of injection molding was 170 ° C., and the materials 3 and 4 in Table 1 were used as the PPS resin.
Comparative Example 8
Molding and evaluation were performed in the same manner as in Example 14 except that the piece mold temperature at the time of injection molding was set to 170 ° C.

これらの結果を表3に示す。   These results are shown in Table 3.

Figure 2009190294
Figure 2009190294

図1は本発明に使用する駒型の1例を示す図で、(a) は金属部品セット側の駒型の上面図、(b) は同じく側面断面図、(c) は金属部品反セット側の駒型の上面図、(d) は同じく側面断面図である。FIG. 1 is a view showing an example of a piece type used in the present invention. (A) is a top view of a piece type on the metal component set side, (b) is a side sectional view, and (c) is a metal component opposite set. A top view of the side piece type, (d) is a side sectional view. 図2は本発明に使用する金属部品の1例を示す図である。FIG. 2 is a view showing an example of a metal part used in the present invention. 図3は本発明により得られる複合成形品の1例を示す図であり、(a) 上面図、(b) は下面図、(c) は側面図、(d) は側面断面図である。FIG. 3 is a view showing an example of a composite molded product obtained by the present invention, in which (a) is a top view, (b) is a bottom view, (c) is a side view, and (d) is a side sectional view. 図4は気密性評価の状況を示す模式図であり、(a) は略示断面図、(b) は略示斜視図である。4A and 4B are schematic views showing the state of airtightness evaluation, where FIG. 4A is a schematic sectional view and FIG. 4B is a schematic perspective view. 図1は本発明に使用する駒型の別の1例を示す図で、(a) は金属部品セット側の駒型の上面図、(b) は同じく側面断面図、(c) は金属部品反セット側の駒型の上面図、(d) は同じく側面断面図である。FIG. 1 is a view showing another example of the piece shape used in the present invention, (a) is a top view of the piece shape on the metal component set side, (b) is a side sectional view, and (c) is a metal component. The top view of the piece shape on the side opposite to the set is shown, (d) is a side sectional view. 図6は本発明により得られる複合成形品の別の1例を示す図であり、(a) 上面図、(b) は側面図である。FIG. 6 is a view showing another example of the composite molded product obtained by the present invention, in which (a) is a top view and (b) is a side view. 図7は密着強度評価の状況を示す模式図であり、(a) は略示側面図、(b) は略示正面図である。FIG. 7 is a schematic diagram showing the situation of adhesion strength evaluation, (a) is a schematic side view, and (b) is a schematic front view.

符号の説明Explanation of symbols

1 金属部品位置決めピン
2 冷却エアー流路
3 棒ヒータ
4 断熱板
5 金属部品保持ピン
6 複合成形品
7 圧縮エアー挿入孔
8 エアー漏れ測定箇所
9 金属板セット部
10 ボス
11 試験品固定部分
DESCRIPTION OF SYMBOLS 1 Metal component positioning pin 2 Cooling air flow path 3 Bar heater 4 Heat insulation board 5 Metal component holding pin 6 Composite molded product 7 Compressed air insertion hole 8 Air leak measurement location 9 Metal plate set part 10 Boss 11 Test article fixed part

Claims (4)

ポリアリーレンサルファイド樹脂及びポリアミド樹脂より選ばれる1種以上の熱可塑性樹脂と金属部品との複合成形品の製造方法であって、
(1)成形用金型が、成形機との連動性を制御するための主型と、温度制御のための加熱用回路と冷却用回路を有する熱可塑性樹脂と金属部品とが接する部分を内部に包含する駒型に分割され、
(2)成形用金型の成形時に樹脂が流入して接する部分が十点平均粗さ(Rz)が0.5μm以下に表面処理され、駒型の容積を60cm以下にし、駒型の主型に接する外周部が断熱処理された状態で主型に駒型が埋め込まれた成形用金型を用い、
(3)成形用金型内に金属部品を設置し、駒型の金型温度を200℃〜熱可塑性樹脂の融点の温度範囲に加熱した状態で熱可塑性樹脂を射出充填し、成形用金型内に熱可塑性樹脂が充填完了した後、直ちに駒型の加熱用回路を遮断すると共に駒型の冷却用回路により7℃/秒以上の冷却速度で急速冷却する
ことを特徴とする複合成形品の製造方法。
A method for producing a composite molded product of at least one thermoplastic resin selected from polyarylene sulfide resin and polyamide resin and a metal part,
(1) The molding die has a main mold for controlling the interlocking with the molding machine, and a portion where a thermoplastic resin having a heating circuit and a cooling circuit for temperature control and a metal part are in contact with each other. Divided into pieces that are included in
(2) The portion where resin flows in and comes into contact with the mold during molding is surface-treated with a 10-point average roughness (Rz) of 0.5 μm or less, and the volume of the piece mold is 60 cm 3 or less. Using a molding die in which a piece mold is embedded in the main mold in a state where the outer peripheral portion in contact with the mold is thermally insulated,
(3) A metal part is placed in the molding die, and the molding die is injected and filled with a thermoplastic resin in a state where the die die temperature is heated to a temperature range of 200 ° C. to the melting point of the thermoplastic resin. Immediately after the thermoplastic resin is filled in, the piece-shaped heating circuit is immediately shut off, and the piece-shaped cooling circuit is rapidly cooled at a cooling rate of 7 ° C./second or more. Production method.
熱可塑性樹脂がエラストマーを含有する熱可塑性樹脂組成物である請求項1記載の複合成形品の製造方法。 The method for producing a composite molded article according to claim 1, wherein the thermoplastic resin is a thermoplastic resin composition containing an elastomer. 成形用金型の駒型の成形時に樹脂が流入して接する部分が、ダイヤモンド状炭素被膜により表面処理されたものである請求項1又は2記載の複合成形品の製造方法。 The method for producing a composite molded article according to claim 1 or 2, wherein a portion where the resin flows in and comes into contact with the molding die is molded with a diamond-like carbon coating. 急速冷却が、空気中の水分が結露状態あるいは水分が固化し氷結状態にある低温空気を用いるものである請求項1〜3の何れか1項記載の複合成形品の製造方法。 The method for producing a composite molded article according to any one of claims 1 to 3, wherein the rapid cooling uses low-temperature air in which moisture in the air is in a condensed state or in which the moisture is solidified and frozen.
JP2008034016A 2008-02-15 2008-02-15 Manufacturing method of composite molded product Expired - Fee Related JP5128306B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008034016A JP5128306B2 (en) 2008-02-15 2008-02-15 Manufacturing method of composite molded product
CN2009801049845A CN102089134A (en) 2008-02-15 2009-02-16 Process for producing composite molding
PCT/JP2009/000583 WO2009101822A1 (en) 2008-02-15 2009-02-16 Process for producing composite molding
KR1020107018052A KR20100112167A (en) 2008-02-15 2009-02-16 Process for producing composite molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008034016A JP5128306B2 (en) 2008-02-15 2008-02-15 Manufacturing method of composite molded product

Publications (2)

Publication Number Publication Date
JP2009190294A true JP2009190294A (en) 2009-08-27
JP5128306B2 JP5128306B2 (en) 2013-01-23

Family

ID=40956852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034016A Expired - Fee Related JP5128306B2 (en) 2008-02-15 2008-02-15 Manufacturing method of composite molded product

Country Status (4)

Country Link
JP (1) JP5128306B2 (en)
KR (1) KR20100112167A (en)
CN (1) CN102089134A (en)
WO (1) WO2009101822A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022144A1 (en) * 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 Method for producing three-dimensionally shaped moulded article, and three-dimensionally shaped moulded article
JP2017155221A (en) * 2016-02-26 2017-09-07 東レ株式会社 Polyphenylene sulfide resin composition and molded article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890406B1 (en) * 2016-05-12 2018-08-24 한국엔지니어링플라스틱 주식회사 Method of metal-resin bonded body
KR102275118B1 (en) 2017-09-28 2021-07-07 코오롱플라스틱 주식회사 High Temperature Blow Asistied Fabrication Method For Fiber Reinforced Thermoplastic Composites and That Apparatus
EP3705257B1 (en) * 2017-10-30 2023-07-12 Kuraray Co., Ltd. Waterproof component and electronic equipment provided with the same, method for waterproofing an insert molded body, and method for waterproofing electronic equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105076A (en) * 1997-10-03 1999-04-20 Suzuka Fuji Xerox Co Ltd Mold for insert injection molding, structure of mold for insert injection molding, production of insert molding, and insert molding
JP2001018229A (en) * 1999-05-06 2001-01-23 Ono Sangyo Kk Mold for molding synthetic resin, mold temperature regulating device, and method for regulating mold temperature
JP2002225088A (en) * 2001-01-30 2002-08-14 Polyplastics Co Mirror surface finished mold to which surface treatment is applied and molding method
JP2003211475A (en) * 2002-01-24 2003-07-29 Nippon Zeon Co Ltd Method for manufacturing molded product for optics
JP2004249681A (en) * 2003-02-21 2004-09-09 Polyplastics Co Insert molding method and mold
WO2005046957A1 (en) * 2003-11-14 2005-05-26 Ogura Clutch Co., Ltd. Resin coating method, insert molding, and resin coated metal gears
JP2005342922A (en) * 2004-05-31 2005-12-15 Polyplastics Co Mold having diamond like carbon film and molding method using it
JP2006076276A (en) * 2004-08-10 2006-03-23 Mitsubishi Plastics Ind Ltd Insert molding mold, manufacturing method for insert molded object, and insert molded object
JP2007021857A (en) * 2005-07-14 2007-02-01 Tadashi Komoto Method for coating metal rotor of fluid machine with resin and resin-coated metal rotor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105076A (en) * 1997-10-03 1999-04-20 Suzuka Fuji Xerox Co Ltd Mold for insert injection molding, structure of mold for insert injection molding, production of insert molding, and insert molding
JP2001018229A (en) * 1999-05-06 2001-01-23 Ono Sangyo Kk Mold for molding synthetic resin, mold temperature regulating device, and method for regulating mold temperature
JP2002225088A (en) * 2001-01-30 2002-08-14 Polyplastics Co Mirror surface finished mold to which surface treatment is applied and molding method
JP2003211475A (en) * 2002-01-24 2003-07-29 Nippon Zeon Co Ltd Method for manufacturing molded product for optics
JP2004249681A (en) * 2003-02-21 2004-09-09 Polyplastics Co Insert molding method and mold
WO2005046957A1 (en) * 2003-11-14 2005-05-26 Ogura Clutch Co., Ltd. Resin coating method, insert molding, and resin coated metal gears
JP2005342922A (en) * 2004-05-31 2005-12-15 Polyplastics Co Mold having diamond like carbon film and molding method using it
JP2006076276A (en) * 2004-08-10 2006-03-23 Mitsubishi Plastics Ind Ltd Insert molding mold, manufacturing method for insert molded object, and insert molded object
JP2007021857A (en) * 2005-07-14 2007-02-01 Tadashi Komoto Method for coating metal rotor of fluid machine with resin and resin-coated metal rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022144A1 (en) * 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 Method for producing three-dimensionally shaped moulded article, and three-dimensionally shaped moulded article
JP2017030223A (en) * 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
JP2017155221A (en) * 2016-02-26 2017-09-07 東レ株式会社 Polyphenylene sulfide resin composition and molded article

Also Published As

Publication number Publication date
JP5128306B2 (en) 2013-01-23
WO2009101822A1 (en) 2009-08-20
KR20100112167A (en) 2010-10-18
CN102089134A (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP5128306B2 (en) Manufacturing method of composite molded product
CN101454132B (en) Moldings of fiber-reinforced thermoplastic resin
JP2005161693A (en) Insert molded product
WO2002018495A1 (en) Resin composition, molded object thereof, and use thereof
TW201739843A (en) Liquid crystalline resin composition and insert molded article
JP5655547B2 (en) Polyarylene sulfide resin composition and sealing member for secondary battery sealing plate comprising the same
WO2020004597A1 (en) Resin metal composite body and method for producing same
JP2007276456A (en) Laminate
CN111372998B (en) Thermoplastic polyamide composition, preparation method and application thereof
JP6558030B2 (en) Polyarylene sulfide resin composition and sealing member for secondary battery sealing plate comprising the same
KR20110052503A (en) Method of manufacturing metallic complex laminated components
JP2022085734A (en) Liquid crystal polymer film, and laminate
WO2019020065A1 (en) Bonded body of thermoplastic resin composition and metal, and manufacturing method therefor
JPS61204263A (en) Thermoplastic resin composition having excellent oil-resistance and heat-resistance
CN114762065A (en) Conductive member, method for manufacturing conductive member, power conversion device, motor, secondary battery module, and secondary battery pack
JP2021181086A (en) Filter and filter assembly equipped with the same
TW201239015A (en) Resin-impregnated sheet and method for producing resin-impregnated sheet laminate with metal foil
JP5122320B2 (en) Manufacturing method of composite molded product
KR20220101661A (en) Polyarylene sulfide resin composition, molded article, laminate and manufacturing method thereof
JP3175889B2 (en) Polyamide resin composition and insulating material for slide switch comprising the same
EP2684670A1 (en) Production method for injection-molded article
JP2006051750A (en) Radiative resin molded product having multilayer structure
KR20120010134A (en) Solution composition and method for producing copper-clad laminate using the same
JP2003128944A (en) Resin composition and molded product
JP2008132756A (en) Manufacturing method of injection insert molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees