JP2009190078A - Flux cored wire for gas shielded arc welding - Google Patents

Flux cored wire for gas shielded arc welding Download PDF

Info

Publication number
JP2009190078A
JP2009190078A JP2008035566A JP2008035566A JP2009190078A JP 2009190078 A JP2009190078 A JP 2009190078A JP 2008035566 A JP2008035566 A JP 2008035566A JP 2008035566 A JP2008035566 A JP 2008035566A JP 2009190078 A JP2009190078 A JP 2009190078A
Authority
JP
Japan
Prior art keywords
oxide
terms
flux
bead
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008035566A
Other languages
Japanese (ja)
Other versions
JP5207766B2 (en
Inventor
Masao Kamata
政男 鎌田
Shushiro Nagashima
州司郎 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2008035566A priority Critical patent/JP5207766B2/en
Publication of JP2009190078A publication Critical patent/JP2009190078A/en
Application granted granted Critical
Publication of JP5207766B2 publication Critical patent/JP5207766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flux cored wire for gas shielded arc welding suitable to two electrode high speed horizontal fillet welding for a black skin steel sheet which can obtain a satisfactory bead shape reduced in the adhesion amount of spatters and free from undercut and the swelling of a toe part. <P>SOLUTION: The flux cored wire includes: C of ≤0.03 mass% in the outer skin made of steel; flux, by mass% to the whole wire, containing a Ti oxide of 1.8 to 2.8% by a value expressed in terms of TiO<SB>2</SB>, a Si oxide of 0.4 to 1.0% by a value expressed in terms of SiO<SB>2</SB>, a Zr oxide of 0.2 to 0.5% by a value expressed in terms of ZrO<SB>2</SB>and a Fe oxide of 0.1 to 0.6% by a value expressed in terms of FeO; the total of the outer skin made of steel and flux, containing 0.3 to 1.2% Si, 1.5 to 3.5% Mn, 0.4 to 1.0% Al, Na and K in the total of a value expressed in terms of Na<SB>2</SB>O and a value expressed in terms of K<SB>2</SB>O by 0.10 to 0.25%, a fluorine compound of 0.02 to 0.08% by a value expressed in terms of F; and the balance Fe component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、軟鋼および490N/mm級高張力鋼をはじめとする各種鋼構造物を製造する際に使用するガスシールドアーク溶接用フラックス入りワイヤに係わるものであり、特にショットブラスト加工がなく熱延スケールが生成したままの無塗装鋼板(以下、黒皮鋼板という。)の2電極高速水平すみ肉溶接に使用した場合でも、鋼板表面へのスパッタ付着が少なく、良好なビード形状が得られるガスシールドアーク溶接用フラックス入りワイヤ(以下、フラックス入りワイヤという。)に関する。 The present invention relates to a flux-cored wire for gas shielded arc welding used when manufacturing various steel structures including mild steel and 490 N / mm grade 2 high-strength steel. Even when it is used for two-electrode high-speed horizontal fillet welding of unpainted steel sheets (hereinafter referred to as black skin steel sheets) with a stretch scale generated, a gas that produces a good bead shape with little spatter adhesion to the steel sheet surface. The present invention relates to a flux cored wire for shielded arc welding (hereinafter referred to as a flux cored wire).

船舶、橋梁などの建造分野では、製造コスト低減のために特許文献1に記載されているようなフラックス入りワイヤを使用する2電極高速水平すみ溶接が行われている。2電極高速水平すみ肉溶接用フラックス入りワイヤとして、例えば特許文献2、特許文献3および特許文献4などが提案されている。しかし、これらに記載されたフラックス入りワイヤはショッププライマ塗装鋼板の耐気孔性向上を目的としたものであるために、黒皮鋼板の2電極高速水平すみ肉溶接に使用すると鋼板表面へのスパッタの付着やビード形状劣化が問題になる。すなわち、プライマ塗装鋼板の溶接ではワイヤ先端および溶融プールから発生したスパッタがプライマ膜に妨げられて鋼板にほとんど付着しないのに対し、黒皮鋼板の溶接ではスパッタが融着しやすく付着量も多くなる。この付着したスパッタの除去作業は大幅な能率低下となっている。また、黒皮鋼板の熱延スケールは、溶接時に溶融スラグの流動性を高めるのでビードの形成を左右するスラグによるビードの被包状態(以下、スラグ被包性という。)に悪影響をおよぼし、アンダーカットの発生や丸く凸状で止端部が膨らんだビード形状になる。このビード形状の劣化はすみ肉ビードの耐疲労強度性を著しく損なうので、さらに重厚な補修作業が必要となる。   In the construction field of ships, bridges, etc., two-electrode high-speed horizontal corner welding using a flux-cored wire as described in Patent Document 1 is performed to reduce manufacturing costs. For example, Patent Document 2, Patent Document 3, and Patent Document 4 have been proposed as flux-cored wires for two-electrode high-speed horizontal fillet welding. However, since the flux-cored wires described in these articles are intended to improve the pore resistance of shop primer coated steel plates, when used for two-electrode high-speed horizontal fillet welding of black skin steel plates, spattering on the steel plate surface will occur. Adhesion and bead shape degradation become a problem. That is, spatter generated from the wire tip and the molten pool is blocked by the primer film and hardly adheres to the steel plate in the welding of the primer coated steel plate, whereas the spatter is easily fused in the welding of the black skin steel plate and the amount of adhesion increases. . The removal work of the adhering spatter has greatly reduced the efficiency. In addition, the hot-rolled scale of black skin steel plate increases the fluidity of the molten slag during welding, so it adversely affects the bead encapsulation state (hereinafter referred to as slag encapsulation) that affects the formation of the bead. Occurrence of a cut or a rounded convex bead shape with a bulging toe. This deterioration of the bead shape significantly impairs the fatigue strength of the fillet bead, so that a more serious repair work is required.

図1は、黒皮鋼板の2電極高速水平すみ肉溶接において問題となる鋼板表面のスパッタ付着およびビード形状の欠陥例を説明するために示した模式図である。下板1と上板2の表面には熱延スケール3があり、4は付着したスパッタ粒、5はビード上脚側に発生したアンダーカット、6はビード下脚側の止端部の膨らみで全体的に丸く凸状のビード形状になる。   FIG. 1 is a schematic diagram for explaining an example of spatter adhesion and a bead shape defect on a steel sheet surface, which is a problem in two-electrode high-speed horizontal fillet welding of a black skin steel sheet. There are hot-rolled scales 3 on the surface of the lower plate 1 and the upper plate 2, 4 is sputtered particles adhering, 5 is an undercut generated on the upper leg side of the bead, and 6 is a bulge of the toe portion on the lower leg side of the bead. Round and convex bead shape.

図2は2電極高速水平すみ肉溶接状況を説明するために示した模式図である。良好なすみ肉ビードを形成するためには、後退角度θ1の先行電極ワイヤ7と前進角度θ2の後行電極ワイヤ8との間に湯溜り9を形成して、後行電極ワイヤ8後方の溶融プール10を安定に保持することが基本である。しかし、黒皮鋼板の熱延スケール3の悪影響で湯溜り9が断続的に乱れる現象が起こりやすく、このとき先行電極ワイヤ7から激しく粒径の大きいスパッタが発生し鋼板表面に融着する。また、湯溜まり9の乱れに連動して後行電極ワイヤ8後方の溶融プール10が著しく不安定になり、スラグ被包性が不十分となる。ビード全体のスラグ被包性が不十分になると、アンダーカットや止端部が膨らむなどビード形状の欠陥につながる。なお、11は溶融スラグ、12は凝固スラグ、13は溶接ビードを示す。   FIG. 2 is a schematic view for explaining the situation of two-electrode high-speed horizontal fillet welding. In order to form a good fillet bead, a sump 9 is formed between the leading electrode wire 7 with the receding angle θ1 and the trailing electrode wire 8 with the advancing angle θ2 to melt behind the trailing electrode wire 8. Basically, the pool 10 is held stably. However, a phenomenon in which the hot water pool 9 is intermittently disturbed easily due to the adverse effect of the hot-rolled scale 3 of the black skin steel sheet is likely to occur. At this time, spatter having a large particle size is generated from the leading electrode wire 7 and fused to the steel sheet surface. In addition, the molten pool 10 behind the trailing electrode wire 8 becomes extremely unstable in conjunction with the disturbance of the hot water pool 9, and the slag encapsulation is insufficient. Insufficient slag encapsulation of the entire bead leads to bead-shaped defects such as undercutting and swelling of the toe. Reference numeral 11 denotes a molten slag, 12 denotes a solidified slag, and 13 denotes a weld bead.

本出願人は先に特許文献5において、黒皮鋼板の水平すみ肉溶接の高速化要望に対応したすみ肉肉溶接用フラックス入りワイヤを提案したが、引き続き、鋼板表面へのスパッタ付着量低減および止端部形状を含めた良好なビード形状が得られるフラックス入りワイヤについて検討した。   The present applicant previously proposed a flux-cored wire for fillet welding for high-speed welding of black fillet steel in the case of Patent Document 5, but subsequently reduced the amount of spatter adhesion to the steel sheet surface, The flux-cored wire that can obtain a good bead shape including the toe shape was studied.

特開昭63−235077号公報JP 63-235077 A 特開平6−218578号公報JP-A-6-218578 特開平7−314181号公報JP-A-7-314181 特開2000−71096号公報JP 2000-71096 A 特開平2006−224178号公報JP 2006-224178 A

本発明は、黒皮鋼板の2電極高速水平すみ肉溶接に使用した場合に問題となる鋼板表面へのスパッタ付着量の低減およびアンダーカットや止端部の膨らみがない良好なビード形状が得られるガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention can reduce the amount of spatter adhering to the steel plate surface, which is a problem when used for two-electrode high-speed horizontal fillet welding of black skin steel plates, and provide a good bead shape without undercuts or swelling of the toe. An object is to provide a flux-cored wire for gas shielded arc welding.

本発明の要旨は、鋼製外皮内にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、
鋼製外皮のC:0.03質量%以下、
ワイヤ全質量に対する質量%で、フラックスに、
Ti酸化物:TiO換算値で1.8〜2.8%、
Si酸化物:SiO換算値で0.4〜1.0%、
Zr酸化物:ZrO換算値で0.2〜0.5%、
Fe酸化物:FeO換算値で0.1〜0.6%、
さらに、鋼製外皮とフラックスの合計で、
Si:0.3〜1.2%、
Mn:1.5〜3.5%、
Al:0.4〜1.0%、但し、
(Ti酸化物のTiO換算値+Si酸化物のSiO換算値)/Al=3.0〜7.0、
NaおよびK:NaO換算値およびKO換算値の合計で0.10〜0.25%、
弗素化合物:F換算値で0.02〜0.08%を含有し、
残部は、主に鋼製外皮のFe成分、フラックスの鉄粉、鉄合金等からのFe成分および不可避的不純物からなることを特徴とするガスシールドアーク溶接用フラックス入りワイヤにある。
The gist of the present invention is a flux-cored wire for gas shielded arc welding in which a flux is filled in a steel outer sheath,
Steel outer shell C: 0.03 mass% or less,
In mass% with respect to the total mass of the wire,
Ti oxide: 1.8 to 2.8% in terms of TiO 2 ,
Si oxide: 0.4 to 1.0% in terms of SiO 2
Zr oxide: 0.2 to 0.5% in terms of ZrO 2 ,
Fe oxide: 0.1 to 0.6% in terms of FeO,
Furthermore, the total of the steel outer shell and flux,
Si: 0.3-1.2%
Mn: 1.5 to 3.5%
Al: 0.4 to 1.0%, provided that
(SiO 2 converted value of the TiO 2 converted value + Si oxides of Ti oxide) /Al=3.0~7.0,
Na and K: 0.10 to 0.25% in total of Na 2 O converted value and K 2 O converted value,
Fluorine compound: containing 0.02 to 0.08% in terms of F,
The balance is a flux-cored wire for gas shielded arc welding, which is mainly composed of an Fe component of a steel outer sheath, an Fe component of flux iron powder, an iron alloy, and unavoidable impurities.

本発明のガスシールドアーク溶接用フラックス入りワイヤによれば、黒皮鋼板の2電極高速水平すみ肉溶接に使用した場合でも、鋼板表面へのスパッタ付着量が少なく、良好なビード形状が得られるので、溶接後のスパッタ除去やビード欠陥の補修作業を大幅に軽減でき、溶接の高能率化および溶接部の品質向上が図れる。   According to the flux-cored wire for gas shielded arc welding of the present invention, even when used for two-electrode high-speed horizontal fillet welding of a black skin steel plate, the amount of spatter adhesion to the steel plate surface is small and a good bead shape can be obtained. The spatter removal after welding and the repair work of bead defects can be greatly reduced, so that the efficiency of welding and the quality of welded parts can be improved.

本発明のフラックス入りワイヤは、鋼製外皮のC量規制とともに、スラグ形成剤としての酸化物(Ti酸化物、Si酸化物、Zr酸化物、Fe酸化物)、溶融スラグ組成となるSi、Mn、Alおよびアーク安定剤(Na、K、F)をそれぞれ適量含有させた構成にすることにより、黒皮鋼板の2電極高速水平すみ肉溶接に使用した場合に問題となる鋼板表面へのスパッタ付着量の低減およびビード形状の改善という初期の目的を達したものである。   The flux-cored wire of the present invention includes a C amount regulation of the steel outer sheath, an oxide (Ti oxide, Si oxide, Zr oxide, Fe oxide) as a slag forming agent, Si, Mn having a molten slag composition , Al and arc stabilizers (Na, K, F) are contained in appropriate amounts, so that spatter adheres to the steel plate surface, which is a problem when used for two-electrode high-speed horizontal fillet welding of black leather. The initial goal of reducing the amount and improving the bead shape has been achieved.

すなわち、黒皮鋼板の2電極高速水平すみ肉溶接におけるスパッタ発生量の低減については、安定したアーク状態にして、かつ、両電極ワイヤ間の安定した湯溜まりを保持させることが必須である。これに対し、鋼製外皮のC量を低く抑えアークの吹き付けを弱くすること、アーク集中性のよいAlを相当量含有させること、さらに適量のアーク安定剤を添加することが有効であった。   That is, in order to reduce the amount of spatter generated in the two-electrode high-speed horizontal fillet welding of the black skin steel plate, it is essential to maintain a stable arc state and to maintain a stable puddle between both electrode wires. On the other hand, it was effective to reduce the amount of C in the steel outer shell to weaken the arc spraying, to contain a substantial amount of Al with good arc concentration, and to add an appropriate amount of arc stabilizer.

ビード形状の改善については、上記アーク状態の安定化とともに、湯溜まりおよび後行電極ワイヤ後方の溶融プールを安定に保持して、むらがなく均一なスラグ被包状態にすることが基本である。これにはSiおよびMnを含めた全構成が溶融スラグとなり相乗的、相加的に作用し合うので、各々の適正な含有量に調整した。   The improvement of the bead shape is basically to stabilize the arc state and stably hold the hot water pool and the molten pool behind the succeeding electrode wire so that the slag is encapsulated uniformly. For this, the entire composition including Si and Mn becomes a molten slag, which acts synergistically and additively.

アンダーカットおよびビード止端部の膨らみの防止には、十分なスラグ被包性の下で、溶融プールの後退を極力抑えて後行電極に近い距離で凝固させることが有効であった。本発明で、スラグ剤として含有させるTi酸化物およびSi酸化物に対するAlの割合を限定することによって、Alの脱酸生成物であるAl酸化物を溶融スラグの主要成分として作用させて、溶融スラグの凝固開始温度および粘性を高め溶融プールの後退を抑えることができる。なお、Zr酸化物はアンダーカットの防止、Fe酸化物はビード止端部形状の改善に効果的に作用する。   In order to prevent the undercut and the bulge of the toe end of the bead, it was effective to solidify at a distance close to the trailing electrode while suppressing the retreat of the molten pool as much as possible under sufficient slag encapsulation. In the present invention, by limiting the ratio of Al to Ti oxide and Si oxide to be contained as a slag agent, Al oxide, which is a deoxidation product of Al, acts as a main component of molten slag, It is possible to increase the solidification start temperature and the viscosity of the melt and to prevent the melt pool from retreating. The Zr oxide effectively works to prevent undercutting, and the Fe oxide works effectively to improve the bead toe shape.

図3は、本発明のフラックス入りワイヤにおける溶融プールの凝固状況を説明するために示した模式図である。(a)は後行電極ワイヤ8後方の溶融プール10の後退を抑制したことにより溶融プール10の凝固開始線14がゆるやかな円弧状になっている。(b)は同溶融プール10の後退距離が大きい場合の溶融プール形状で、凝固開始線14が長く伸びている。アンダーカットおよびビード止端部形状のいずれに対して、Alを相当量含有させて溶融プール10の後退を抑制した方が有利であることがわかる。   FIG. 3 is a schematic diagram for explaining the solidification state of the molten pool in the flux-cored wire of the present invention. In (a), the solidification start line 14 of the molten pool 10 has a gentle arc shape because the backward movement of the molten pool 10 behind the trailing electrode wire 8 is suppressed. (B) is a molten pool shape when the retraction distance of the molten pool 10 is large, and the solidification start line 14 extends long. It can be seen that it is more advantageous to suppress the retreat of the molten pool 10 by containing a considerable amount of Al with respect to either the undercut or the bead toe shape.

以下に、本発明のフラックス入りワイヤの成分限定理由を黒皮鋼板の2電極高速水平すみ肉に使用した場合を例として述べる。   The reason for limiting the components of the flux-cored wire according to the present invention will be described below by taking as an example a case where it is used for a two-electrode high-speed horizontal fillet of a black leather plate.

鋼製外皮C:0.03質量%以下
鋼製外皮のCが0.03質量%(以下、%という。)以下のものを使用することにより両電極ワイヤのアークの吹きつけが弱くなり、湯溜まりおよび溶融プールが極めて安定に形成できるので、鋼板表面のスパッタ付着量が少なくなり、また、スラグ被包性も十分で良好なビード形状が得られる。一方、鋼製外皮のCが0.03%を超えるとアークの吹き付けが強くなり、湯溜まりおよび溶融プールが不安定になりやすく鋼板表面へのスパッタ付着量が増加し、スラグ被包むらも発生しやすくビード形状が劣化する。
Steel outer sheath C: 0.03% by mass or less By using a steel outer shell whose C is 0.03% by mass (hereinafter referred to as “%”) or less, the arc blowing of both electrode wires is weakened. Since the pool and the molten pool can be formed extremely stably, the amount of spatter adhesion on the steel sheet surface is reduced, and a good bead shape with sufficient slag encapsulation is obtained. On the other hand, if the C of the steel outer shell exceeds 0.03%, the arc spraying becomes stronger, the hot water pool and the molten pool tend to become unstable, the amount of spatter adhesion to the steel plate surface increases, and even slag encapsulation occurs. The bead shape deteriorates easily.

なお、溶接構造物に要求される溶接金属の強度、衝撃靱性を得るために、ワイヤ全体のCは鋼製外皮およびフラックスの合計で0.03〜0.08%であることが好ましい。   In order to obtain the weld metal strength and impact toughness required for the welded structure, the C of the entire wire is preferably 0.03 to 0.08% in total of the steel outer sheath and the flux.

Ti酸化物:TiO換算値で1.8〜2.8%
ルチール、チタンスラグなどのTi酸化物は、溶融スラグの粘性を高めスラグ被包性を向上させる作用を有する。しかし、Ti酸化物のTiO換算値の合計が1.8%未満では、スラグ生成量が不足してスラグ被包性が不十分で、アンダーカットが発生しやすくなる。一方、TiO換算値が2.8%を超えると、下脚側が厚いスラグ被包状態となり止端部が膨れたビード形状となる。したがって、Ti酸化物のTiO換算値は1.8〜2.8%とする。
Ti oxide: 1.8 to 2.8% in terms of TiO 2
Ti oxides such as rutile and titanium slag have the effect of increasing the viscosity of molten slag and improving the slag encapsulation. However, if the total TiO 2 equivalent value of the Ti oxide is less than 1.8%, the slag generation amount is insufficient, the slag encapsulation is insufficient, and undercut is likely to occur. On the other hand, if the TiO 2 equivalent value exceeds 2.8%, the lower leg side is in a thick slag-encapsulated state, resulting in a bead shape with the toe end swelled. Therefore, the TiO 2 equivalent value of the Ti oxide is set to 1.8 to 2.8%.

Si酸化物:SiO換算値で0.4〜1.0%
珪砂やジルコンサンドなどのSi酸化物も、溶融スラグの粘性を高めスラグ被包性を向上させる作用を有する。しかし、Si酸化物のSiO換算値が0.4%未満では、スラグ生成量が不足してスラグ被包性が不十分で、アンダ−カットが発生しやすくなる。一方、SiO換算値が1.0%を超えると、溶融スラグの生成量が過剰になり、止端部が膨れたビード形状となる。したがって、Si酸化物のSiO換算値は0.4〜1.0%とする。
Si oxide: 0.4 to 1.0% in terms of SiO 2
Si oxides such as silica sand and zircon sand also have the effect of increasing the viscosity of molten slag and improving the slag encapsulation. However, when the SiO 2 equivalent value of the Si oxide is less than 0.4%, the amount of slag generation is insufficient, the slag encapsulation is insufficient, and undercut is likely to occur. On the other hand, if the SiO 2 conversion value exceeds 1.0%, the amount of molten slag generated becomes excessive, and a bead shape with a toe portion swelled is formed. Therefore, the SiO 2 equivalent value of the Si oxide is 0.4 to 1.0%.

Zr酸化物:ZrO換算値で0.2〜0.5%
ジルコンサンド、酸化ジルコンなどのZr酸化物のZrO換算値が0.2%未満では、スラグ被包むらが現れてビード表面のなめらかさがなく、アンダーカットも発生しやすくなる。一方、ZrO換算値が0.5%を超えると、下板とのなじみ性が悪い丸く凸状のビード形状となる。したがって、Zr酸化物のZrO換算値は0.2〜0.5%とする。
Zr oxide: 0.2 to 0.5% in terms of ZrO 2
If the ZrO 2 conversion value of Zr oxide such as zircon sand or zircon oxide is less than 0.2%, slag encapsulation will appear, the bead surface will not be smooth, and undercut will easily occur. On the other hand, when the ZrO 2 conversion value exceeds 0.5%, a round and convex bead shape having poor compatibility with the lower plate is obtained. Therefore, the ZrO equivalent value of the Zr oxide is 0.2 to 0.5%.

Fe酸化物:FeO換算値で0.1〜0.6%
酸化鉄、ミルスケールなどのFe酸化物は、溶融スラグの粘性および凝固温度を調整し、ビード止端部の膨らみをなくし、下板とのなじみ性を良好にする。しかし、Fe酸化物のFeO換算値が0.1%未満では、ビード止端部形状が不良となる。一方、FeO換算値が0.6%を超えると、凸状のビード形状となる。したがって、Fe酸化物のFeO換算値は0.1〜0.6%とする。
Fe oxide: 0.1 to 0.6% in terms of FeO
Fe oxides such as iron oxide and mill scale adjust the viscosity and solidification temperature of the molten slag, eliminate the bulge of the bead toe, and improve the compatibility with the lower plate. However, when the FeO equivalent value of the Fe oxide is less than 0.1%, the bead toe shape is poor. On the other hand, when the FeO equivalent value exceeds 0.6%, a convex bead shape is obtained. Therefore, the FeO equivalent value of the Fe oxide is 0.1 to 0.6%.

Si:0.3〜1.2%
Siは、溶接金属の強度および衝撃靭性を得るための合金剤および脱酸剤として、鋼製外皮、金属Si、Fe−SiおよびFe−Si−Mnなどから含有させる。しかし、Siが鋼製外皮およびフラックスの合計で0.3%未満では、前記Si酸化物が還元されて減少するのでスラグ被包性が不十分で、アンダーカットが発生しやすくなる。一方、Siが1.2%を超えると、Siの脱酸反応により生成するSi酸化物が増加するので、止端部が膨れた丸いビード形状となる。したがって、Siは0.3〜1.2%とする。
Si: 0.3-1.2%
Si is contained as an alloying agent and a deoxidizing agent for obtaining the strength and impact toughness of the weld metal from a steel outer shell, metal Si, Fe—Si, Fe—Si—Mn, and the like. However, when the total amount of Si is less than 0.3% of the steel outer shell and the flux, the Si oxide is reduced and reduced, so that the slag encapsulation is insufficient and an undercut is likely to occur. On the other hand, when Si exceeds 1.2%, Si oxide generated by the deoxidation reaction of Si increases, so that a round bead shape in which the toe portion swells is formed. Therefore, Si is 0.3 to 1.2%.

Mn:1.5〜3.5%
Mnも同様に溶接金属の強度および衝撃靭性を得るための合金剤および脱酸剤として作用し、鋼製外皮、金属Mn、Fe−MnおよびFe−Si−Mnなどから含有させる。しかし、Mnの脱酸反応により生成するMn酸化物は溶融スラグの主要な成分となりビード形状にも影響をおよぼす。Mnが鋼製外皮およびフラックスの合計で1.5%未満では、Mn酸化物が不足して止端部の揃いが悪く膨れたビード形状となり、また、必要な溶接金属の強度、衝撃靱性が得られない。一方、Mnが3.5%を超えると、Mn酸化物の過剰生成により丸く凸状のビード形状となる。したがって、Mnは1.5〜3.5%とする。
Mn: 1.5 to 3.5%
Mn also acts as an alloying agent and a deoxidizing agent for obtaining the strength and impact toughness of the weld metal, and is contained from a steel shell, metal Mn, Fe—Mn, Fe—Si—Mn, and the like. However, the Mn oxide produced by the deoxidation reaction of Mn becomes a major component of the molten slag and affects the bead shape. If the total amount of Mn is less than 1.5% of the steel outer shell and flux, the bead shape will be inflated due to insufficient Mn oxide and poor toe alignment, and the required weld metal strength and impact toughness will be obtained. I can't. On the other hand, when Mn exceeds 3.5%, it becomes a round and convex bead shape due to excessive generation of Mn oxide. Therefore, Mn is 1.5 to 3.5%.

Al:0.4〜1.0%
Alは、鋼製外皮、金属Al、Fe−AlおよびAl−Mgなどで含有させる。Alは強脱酸剤として作用する以外に、本発明ではスパッタ低減およびビード形状改善の両方に極めて有効に作用する。Alを0.4%以上含有させると集中性のある安定したアーク状態となり、両電極ワイヤ間の湯溜まりの乱れにより発生するスパッタが減少する。また、脱酸生成物であるAl酸化物が溶融スラグの主要な成分となるので、溶融プールの過度の後退がなくなり、良好な止端部形状が得られる。Al酸化物が0.4%未満では、溶融スラグのAl酸化物の割合が少ないので溶融プールの後退を抑えられず丸く凸状のビード形状となる。一方、Alが1.0%を超えると、溶融スラグの粘性が過剰でごつごつしたビード表面となり、止端部のなじみ性がなくなる。したがって、Alは0.4〜1.0%とする。
Al: 0.4 to 1.0%
Al is contained in a steel outer shell, metal Al, Fe—Al, Al—Mg, or the like. In addition to acting as a strong deoxidizer, Al acts very effectively both in reducing spatter and improving bead shape in the present invention. When Al is contained in an amount of 0.4% or more, a concentrated and stable arc state is obtained, and spatter generated due to disturbance of the hot water pool between both electrode wires is reduced. Moreover, since Al oxide which is a deoxidation product becomes a main component of the molten slag, excessive retreat of the molten pool is eliminated, and a good toe shape can be obtained. If the Al oxide is less than 0.4%, the proportion of the Al oxide in the molten slag is small, so that the retraction of the molten pool cannot be suppressed and a round and convex bead shape is obtained. On the other hand, when Al exceeds 1.0%, the viscosity of the molten slag becomes excessive and the bead surface becomes rugged, and the conformability of the toe portion is lost. Therefore, Al is 0.4 to 1.0%.

(Ti酸化物のTiO換算値+Si酸化物のSiO換算値)/Al=3.0〜7.0
アンダーカットおよびビード止端部の膨らみを防止するには、図3(a)に示すように、溶融プールの後退を抑制した溶融プール形状とした方が有利である。溶融プール形状は、溶融スラグの流動性の影響を受け、溶融スラグの流動性が高い程溶融プールが後退する傾向がある。本発明では溶融プール形状に影響を与える溶融スラグの流動性を最適化すべく、溶融スラグの流動性を助長する成分であるTi酸化物およびSi酸化物と、溶融スラグの流動性を抑制する成分であるAlとの関係を最適化した。即ち、(Ti酸化物のTiO換算値+Si酸化物のSiO換算値)/Al=3.0〜7.0とすることで、溶融スラグの流動性を調整でき、止端部を含めビード形状を整えることができることを実験により見出した。
上記式において、TiO換算値とSiO換算値の合計とAlとの比が3.0未満では、溶融プールの後退は抑制できるが、下脚長が大きい不等脚で止端部が膨らんだビード形状となる。一方、同比が7.0を超えると、溶融プールが後退しすぎて凸状のビード形状となる。
(Ti oxide equivalent value of TiO 2 + Si oxide equivalent value of SiO 2 ) /Al=3.0 to 7.0
In order to prevent the undercut and the bulge of the bead toe, it is advantageous to use a molten pool shape that suppresses the retraction of the molten pool, as shown in FIG. The shape of the molten pool is affected by the fluidity of the molten slag, and the molten pool tends to recede as the fluidity of the molten slag increases. In the present invention, in order to optimize the fluidity of the molten slag that affects the shape of the molten pool, Ti oxide and Si oxide, which are components that promote the fluidity of the molten slag, and components that suppress the fluidity of the molten slag. The relationship with some Al was optimized. That is, the fluidity of the molten slag can be adjusted by adjusting (TiO 2 converted value of Ti oxide + SiO 2 converted value of Si oxide) /Al=3.0 to 7.0, and the bead including the toe portion can be adjusted. It was found through experiments that the shape can be adjusted.
In the above formula, when the ratio of the total of the TiO 2 converted value and the SiO 2 converted value to Al is less than 3.0, the retraction of the molten pool can be suppressed, but the toe portion swells with an unequal leg having a large lower leg length. It becomes a bead shape. On the other hand, if the ratio exceeds 7.0, the molten pool moves back too much to form a convex bead shape.

NaおよびK:NaO換算値およびKO換算値の合計で0.10〜0.25%
珪酸ソーダや珪酸カリなどの水ガラス、氷晶石、カリ長石などによるNaおよびKは、アーク安定剤として作用する。しかし、NaおよびKのNaO換算値およびKO換算値の合計が0.10%未満では、アークが不安定となりスパッタ発生量の増加やビード形状が不良となる。一方、NaO換算値およびKO換算値の合計が0.25%を超えると、溶融スラグの粘性が低下しすぎてスラグ被包性が悪くなり、ビード形状が不良となる。したがって、NaおよびKのNaO換算値およびKO換算値の合計は0.10〜0.25%とする。
Na and K: 0.10 to 0.25% in total of Na 2 O converted value and K 2 O converted value
Na and K by water glass such as sodium silicate and potassium silicate, cryolite, potassium feldspar and the like act as an arc stabilizer. However, if the total of Na and K converted to Na 2 O and K 2 O is less than 0.10%, the arc becomes unstable, resulting in an increased amount of spatter and a poor bead shape. On the other hand, if the total of Na 2 O converted value and K 2 O converted value exceeds 0.25%, the viscosity of the molten slag is excessively lowered and the slag encapsulation is deteriorated, resulting in a poor bead shape. Therefore, the total of Na and K converted to Na 2 O and K 2 O is set to 0.10 to 0.25%.

弗素化合物:F換算値で0.02〜0.08%
弗化ソーダや珪弗化カリなどの弗素化合物のFはアークに集中性を与えるとともに、溶融スラグの流動性を調整してスラグ被包性を良好にする。しかし、弗素化合物のF換算値が0.02%未満では、アークの集中性が弱く安定したアーク状態を得ることができない。一方、F換算値が0.08%を超えると、溶融スラグの流動性が過剰となりビード形状が凸状となり止端部形状が改善できない。したがって、弗素化合物のF換算値は0.02〜0.08%とする。
Fluorine compound: 0.02 to 0.08% in terms of F
Fluorine compound F such as sodium fluoride or potassium silicofluoride gives concentration to the arc and adjusts the fluidity of the molten slag to improve the slag encapsulation. However, if the F-converted value of the fluorine compound is less than 0.02%, the arc concentration is weak and a stable arc state cannot be obtained. On the other hand, if the F converted value exceeds 0.08%, the fluidity of the molten slag becomes excessive, the bead shape becomes convex, and the toe shape cannot be improved. Therefore, the F equivalent value of the fluorine compound is 0.02 to 0.08%.

以上、本発明のフラックス入りワイヤの構成要件の限定理由を述べたが、残部は、主に鋼製外皮のFe成分、フラックスの鉄粉、鉄合金等からのFe成分および不可避的不純物である。   The reasons for limiting the constituent requirements of the flux-cored wire of the present invention have been described above. The balance is mainly the Fe component of the steel outer sheath, the Fe component of the flux iron powder, the iron alloy, and the unavoidable impurities.

その他のワイヤ成分として、軟鋼、490N/mm級高張力鋼用以外にも、570〜590N/mm級高張力鋼用、低温用鋼用、耐候性鋼用などのフラックス入りワイヤの品種毎に規定されている溶着金属試験の機械的性質および化学成分を満足するためにMo、Cu、Ni、Crなどの必要な合金成分を含有させて適用鋼種を拡大することができる。 Other wire components, other than mild steel, 490 N / mm class 2 high strength steel, as well as 570 to 590 N / mm class 2 high strength steel, low temperature steel, weather resistant steel, etc. In order to satisfy the mechanical properties and chemical components of the weld metal test specified in the above, it is possible to expand the applicable steel types by including necessary alloy components such as Mo, Cu, Ni and Cr.

溶接金属の衝撃靱性を向上させるためにB(0.003〜0.010%)、スラグ剥離性を向上させるためにBi(0.3%以下)、S(0.3%以下)の添加は効果的である。   In order to improve the impact toughness of the weld metal, B (0.003 to 0.010%) is added. In order to improve the slag peelability, Bi (0.3% or less) and S (0.3% or less) are added. It is effective.

Mgは強脱酸剤として作用して溶接金属の衝撃靱性を高めるに有効であるが、本発明のフラックス入りワイヤはスラグ生成量が少ないので、脱酸生成物のMg酸化物がスラグ被包性を悪くする。   Mg acts as a strong deoxidizer and is effective in increasing the impact toughness of the weld metal. However, since the flux-cored wire of the present invention produces a small amount of slag, the Mg oxide of the deoxidation product is slag-encapsulating. Make it worse.

マグネシアクリンカーや天然マグネシアによるMgO、アルミナなどのAl酸化物を含有させることもスラグ被包むらを発生しやすくする。またこれらMg、MgOおよびAl酸化物はスパッタ発生量も増加させるので、それぞれ0.2%未満に抑えることが好ましい。   Inclusion of Al oxide such as MgO or alumina by magnesia clinker or natural magnesia also makes it easier to generate slag encapsulation. Moreover, since these Mg, MgO, and Al oxide also increase the amount of spatter generation, it is preferable to suppress each to less than 0.2%.

フラックス充填率は、アーク安定性および高溶着性に有効な鉄粉を多めに含有させて12〜18%程度にすることが好ましい。ワイヤ径は1.2〜2.0mm、断面構造も市販各種のフラックス入りワイヤと同じでよい。表面にCuなどのめっきを施して衝撃靭性や防錆効果を高めることも可能である。シールドガスはCOガスが一般的であるが、Ar−CO混合ガスも用いることができる。なお、本発明のフラックス入りワイヤは、黒皮鋼板に限定することなく無機ジンクプライマ塗装鋼板の1電極すみ肉溶接および2電極高速水平すみ肉溶接に使用できる。 The flux filling rate is preferably about 12 to 18% by containing a large amount of iron powder effective for arc stability and high weldability. The wire diameter may be 1.2 to 2.0 mm, and the cross-sectional structure may be the same as various commercially available flux-cored wires. It is also possible to increase the impact toughness and rust prevention effect by plating the surface with Cu or the like. The shield gas is generally CO 2 gas, but an Ar—CO 2 mixed gas can also be used. The flux-cored wire of the present invention can be used for one-electrode fillet welding and two-electrode high-speed horizontal fillet welding of inorganic zinc primer coated steel plates without being limited to black skin steel plates.

以下、実施例により本発明の効果をさらに詳細に説明する。   Hereinafter, the effect of the present invention will be described in more detail with reference to examples.

表1に示す2種類の成分の軟鋼製外皮を使用し、フラックスを充填後、縮径してワイヤ径1.6mmのフラックス入りワイヤを各種試作した。表2にそれぞれの試作ワイヤを示す。   Using soft steel outer skins with two kinds of components shown in Table 1, after filling with flux, various diameters of flux-cored wires having a diameter of 1.6 mm were prepared by reducing the diameter. Table 2 shows each prototype wire.

Figure 2009190078
Figure 2009190078

Figure 2009190078
Figure 2009190078

これら試作ワイヤを各々両電極に使用して、黒皮鋼板のT字すみ肉試験体を用いて表3に示す溶接条件で2電極高速水平すみ肉溶接試験を行った。なお、シールドガスは両電極ともCOガスである。 Using each of these prototype wires for both electrodes, a two-electrode high-speed horizontal fillet welding test was conducted under the welding conditions shown in Table 3 using a T-shaped fillet specimen of a black skin steel plate. The shield gas is CO 2 gas for both electrodes.

Figure 2009190078
Figure 2009190078

溶接試験体は、板厚16mm、試験体長さ1.0mの黒皮鋼板(490N/mm級高張力鋼用)であって、下板および立板の全面に熱延スケールが厚く付着しているものを用いた。 The welded test specimen is a black skin steel plate (for 490 N / mm grade 2 high strength steel) with a plate thickness of 16 mm and a test specimen length of 1.0 m. We used what is.

各試作ワイヤについて、溶接状況(アーク安定性、湯溜りおよび溶融プールの安定性)、溶接後のスラグ被包状態、ビード形状および鋼板に融着したスパッタの付着量を評価した。なお、ビード形状は目視により判定した。   For each prototype wire, the welding condition (arc stability, stability of molten metal and molten pool), the slag encapsulation state after welding, the bead shape, and the amount of spatter adhered to the steel plate were evaluated. The bead shape was visually determined.

各試験の評価基準は、溶接状況は○:アーク状態、湯溜り、溶融プールとも安定した状態、×:アーク状態、湯溜り、溶融プールのいずれかが不安定な状態を示す。スラグ被包性は○:ビード全面が十分な被包状態、×:部分的、または全線で被包むらが生じた不十分な被包状態を示す。ビード形状は○:アンダーカットがなく、ビード止端の膨らみがなく外観も良好なビード、×:アンダーカット、ビード止端の膨らみがありビードが凸状のいずれかが発生し不良なビード形状を示す。スパッタ付着量は○:上板および下板に融着したスパッタがビード長さ1m当たり5個未満の付着、×:同5個以上、または多数の付着を示す。それらの結果を表4にまとめて示す。   The evaluation criteria of each test indicate that the welding state is ◯: the arc state, the puddle, and the molten pool are both stable, and x: the arc state, the puddle, and the molten pool are unstable. The slag encapsulating property indicates ◯: the entire bead is sufficiently encapsulated, and X: the encapsulated state where the enveloping is uneven partially or entirely. The bead shape is ○: a bead with no undercut and a bead toe bulge and a good appearance, ×: an undercut and bead toe bulge with either a convex bead or a bead shape that is poor Show. Spatter adherence indicates ◯: less than 5 spatters fused to the upper and lower plates per 1 m bead length, x: 5 or more, or many adherence. The results are summarized in Table 4.

Figure 2009190078
Figure 2009190078

表4中ワイヤ記号W1〜W10が本発明例、ワイヤ記号W11〜W26は比較例である。   In Table 4, wire symbols W1 to W10 are examples of the present invention, and wire symbols W11 to W26 are comparative examples.

本発明例であるワイヤ記号W1〜W10は、鋼製外皮のC、Ti酸化物のTiO換算値、Si酸化物のSiO換算値、Zr酸化物のZrO換算値、Fe酸化物のFeO換算値、Si、Mn、Al、TiO換算値とSiO換算値の合計に対するAlの比、NaおよびKのNaO換算値およびKO換算値の合計、弗素化合物のF換算値が適正であるので、アーク状態が安定し、両電極間の湯溜り、後行電極ワイヤ後方の溶融プールの後退が抑えられて安定し、スラグ被包性が十分でビード形状も良好であった。また、鋼板のスパッタ付着量が少ないなど極めて満足な結果であった。 Wire Symbol W1~W10 are the examples of the present invention, the steel sheath C, TiO 2 converted value of Ti oxides, SiO 2 conversion value of Si oxide, ZrO 2 conversion value of Zr oxide, FeO of Fe oxide Conversion value, Si, Mn, Al, ratio of Al to the sum of TiO 2 conversion value and SiO 2 conversion value, Na and K Na 2 O conversion value and total of K 2 O conversion value, F compound conversion value of fluorine compound Since it was appropriate, the arc state was stable, the hot water pool between the two electrodes, the retreat of the molten pool behind the succeeding electrode wire was suppressed and stable, the slag encapsulation was sufficient, and the bead shape was also good. In addition, the results were extremely satisfactory, such as a small amount of spatter deposition on the steel sheet.

比較例中ワイヤ記号W11は、鋼製外皮S2のCが高いので、アークの吹き付けが強くなり、湯溜まりおよび溶融プールが不安定で鋼板表面へのスパッタ付着量多く、スラグ被包むらも発生してビード形状も不良であった。   In the comparative example, the wire symbol W11 has a high C of the steel outer sheath S2, so that the arc is strongly sprayed, the hot water pool and the molten pool are unstable, the amount of spatter adhering to the steel plate surface is large, and slag encapsulation is also generated. The bead shape was also poor.

ワイヤ記号W12は、Ti酸化物のTiO換算値が少ないので、スラグ被包性が不十分でアンダーカットが発生した。また、Fe酸化物のFeO換算値が多いので、ビード形状が凸となった。 Since the wire symbol W12 has a small TiO 2 equivalent value of Ti oxide, the slag encapsulation was insufficient and undercut occurred. Moreover, since there were many FeO conversion values of Fe oxide, the bead shape became convex.

ワイヤ記号W13は、Ti酸化物のTiO換算値が多いので、止端部が膨れたビード形状となった。また、弗素化合物のF換算値が少ないので、アークが不安定であった。 The wire symbol W13 has a bead shape in which the toe portion swells because there are many TiO 2 converted values of the Ti oxide. Further, since the F-converted value of the fluorine compound is small, the arc is unstable.

ワイヤ記号W14は、Si酸化物のSiO換算値が少ないので、スラグ被包性が不十分でアンダ−カットが発生した。また、Mnが多いのでビード形状が凸となった。 Since the wire symbol W14 has a small SiO 2 equivalent value of Si oxide, the slag encapsulation was insufficient and undercut occurred. Moreover, since there was much Mn, the bead shape became convex.

ワイヤ記号W15は、Si酸化物のSiO換算値が多いので、ビード止端部が膨れた。 Since the wire symbol W15 has many SiO 2 equivalent values of Si oxide, the bead toe portion swelled.

ワイヤ記号W16は、Zr酸化物のZrO換算値が少ないので、スラグ被包むらが現れてビード表面のなめらかさがなくアンダーカットも発生した。また、弗素化合物のF換算値が多いのでビード形状が凸となった。 In the wire symbol W16, since the ZrO 2 conversion value of the Zr oxide is small, slag enveloping unevenness appeared, the bead surface was not smooth, and undercut occurred. In addition, the bead shape became convex because of the large F-converted value of the fluorine compound.

ワイヤ記号W17は、Zr酸化物のZrO換算値が多いので、下板とのなじみ性が悪くビード形状が凸となった。 Since the wire symbol W17 has many ZrO 2 converted values of the Zr oxide, the conformity with the lower plate is poor and the bead shape is convex.

ワイヤ記号W18は、Fe酸化物のFeO換算値が少ないので、ビード止端部形状が不良であった。   The wire symbol W18 had a poor bead toe shape because the FeO value of Fe oxide was small.

ワイヤ記号W19は、Siが少ないので、スラグ被包性が不十分でアンダーカットが発生した。また、TiO換算値とSiO換算値の合計に対するAlの比が大きいのでビード形状が凸となった。 Since the wire symbol W19 has a small amount of Si, the slag encapsulation was insufficient and an undercut occurred. Moreover, since the ratio of Al to the sum of the TiO 2 converted value and the SiO 2 converted value was large, the bead shape became convex.

ワイヤ記号W20は、Siが多いので、止端部が膨れた丸いビード形状となった。   Since the wire symbol W20 has a large amount of Si, the wire symbol W20 has a round bead shape in which the toe portion is swollen.

ワイヤ記号W21は、Mnが少ないので、止端部の揃いが悪く膨れたビード形状となった。   Since the wire symbol W21 has a small amount of Mn, the toe portion has a poorly aligned bead shape.

ワイヤ記号W22は、Alが少ないので、溶融プールの後退を抑えられず丸く凸状のビード形状となった。   Since the wire symbol W22 has a small amount of Al, the retraction of the molten pool could not be suppressed, and a round and convex bead shape was formed.

ワイヤ記号W23は、Alが多いので、凹凸が大きいビード表面となった。   The wire symbol W23 has a large bead surface due to the large amount of Al.

ワイヤ記号W24は、TiO換算値とSiO換算値の合計に対するAlの比が小さいので、下脚長が大きい不等脚で止端部が膨らんだビード形状となった。 The wire symbol W24 has a bead shape in which the toe portion swells with an unequal leg having a large lower leg length because the ratio of Al to the total of the TiO 2 converted value and the SiO 2 converted value is small.

ワイヤ記号W25は、NaおよびKのNaO換算値およびKO換算値の合計が少ないので、アークが不安定となりスパッタ付着量が多くビード形状も不良であった。 In the wire symbol W25, the total of Na and K converted values of Na 2 O and K 2 O was small, so that the arc became unstable, the spatter deposition amount was large, and the bead shape was also poor.

ワイヤ記号W26は、NaおよびKのNaO換算値およびKO換算値の合計が多いので、スラグ被包性が悪くビード形状も不良であった。 The wire symbol W26 had a large sum of Na and K Na 2 O converted values and K 2 O converted values, so the slag encapsulation was poor and the bead shape was also poor.

黒皮鋼板の水平すみ肉溶接において発生するビード形状の欠陥例を説明するために示した模式図である。It is the schematic diagram shown in order to demonstrate the example of the defect of the bead shape which generate | occur | produces in the horizontal fillet welding of a black skin steel plate. 本発明の実施例に用いた2電極高速水平すみ肉溶接方法の溶接状況を説明するために示した模式図である。It is the schematic diagram shown in order to demonstrate the welding condition of the 2 electrode high-speed horizontal fillet welding method used for the Example of this invention. 本発明のフラックス入りワイヤにおける溶融プールの凝固状況を説明するために示した模式図である。It is the schematic diagram shown in order to demonstrate the solidification condition of the fusion pool in the flux cored wire of this invention.

符号の説明Explanation of symbols

1 下板
2 立板
3 熱延スケール
4 スパッタ粒
5 アンダーカット
6 ビード下脚側の膨らみ
7 先行電極ワイヤ
8 後行電極ワイヤ
9 湯溜り
10 溶融プール
11 溶融スラグ
12 凝固スラグ
13 溶接ビード
14 凝固開始線
DESCRIPTION OF SYMBOLS 1 Lower plate 2 Standing plate 3 Hot rolling scale 4 Sputtered grain 5 Undercut 6 Swelling 7 on the lower leg side of the bead Lead electrode wire 8 Subsequent electrode wire 9 Pool 10 Molten pool 11 Molten slag 12 Solidified slag 13 Weld bead 14 Solidification start line

Claims (1)

鋼製外皮内にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、
鋼製外皮のC:0.03質量%以下、
ワイヤ全質量に対する質量%で、フラックスに、
Ti酸化物:TiO換算値で1.8〜2.8%、
Si酸化物:SiO換算値で0.4〜1.0%、
Zr酸化物:ZrO換算値で0.2〜0.5%、
Fe酸化物:FeO換算値で0.1〜0.6%、
さらに、鋼製外皮とフラックスの合計で、
Si:0.3〜1.2%、
Mn:1.5〜3.5%、
Al:0.4〜1.0%、但し、
(Ti酸化物のTiO換算値+Si酸化物のSiO換算値)/Al=3.0〜7.0、
NaおよびK:NaO換算値およびKO換算値の合計で0.10〜0.25%、
弗素化合物:F換算値で0.02〜0.08%を含有し、
残部は、主に鋼製外皮のFe成分、フラックスの鉄粉、鉄合金等からのFe成分および不可避的不純物からなることを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。
In the flux-cored wire for gas shield arc welding formed by filling the steel outer shell with flux,
Steel outer shell C: 0.03 mass% or less,
In mass% with respect to the total mass of the wire,
Ti oxide: 1.8 to 2.8% in terms of TiO 2 ,
Si oxide: 0.4 to 1.0% in terms of SiO 2
Zr oxide: 0.2 to 0.5% in terms of ZrO 2 ,
Fe oxide: 0.1 to 0.6% in terms of FeO,
Furthermore, the total of the steel outer shell and flux,
Si: 0.3-1.2%
Mn: 1.5 to 3.5%
Al: 0.4 to 1.0%, provided that
(SiO 2 converted value of the TiO 2 converted value + Si oxides of Ti oxide) /Al=3.0~7.0,
Na and K: 0.10 to 0.25% in total of Na 2 O converted value and K 2 O converted value,
Fluorine compound: containing 0.02 to 0.08% in terms of F,
The balance is mainly composed of an Fe component of a steel outer sheath, an Fe component from a flux iron powder, an iron alloy, and the like, and an inevitable impurity, and a flux-cored wire for gas shielded arc welding.
JP2008035566A 2008-02-18 2008-02-18 Flux-cored wire for gas shielded arc welding Active JP5207766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008035566A JP5207766B2 (en) 2008-02-18 2008-02-18 Flux-cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008035566A JP5207766B2 (en) 2008-02-18 2008-02-18 Flux-cored wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2009190078A true JP2009190078A (en) 2009-08-27
JP5207766B2 JP5207766B2 (en) 2013-06-12

Family

ID=41072578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008035566A Active JP5207766B2 (en) 2008-02-18 2008-02-18 Flux-cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP5207766B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298912A (en) * 2003-03-31 2004-10-28 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for fillet welding
JP2006224178A (en) * 2005-02-21 2006-08-31 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas-shielded arc fillet welding
JP2008119720A (en) * 2006-11-13 2008-05-29 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas-shielded arc welding
JP2009082981A (en) * 2007-10-03 2009-04-23 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas-shielded arc welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298912A (en) * 2003-03-31 2004-10-28 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for fillet welding
JP2006224178A (en) * 2005-02-21 2006-08-31 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas-shielded arc fillet welding
JP2008119720A (en) * 2006-11-13 2008-05-29 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas-shielded arc welding
JP2009082981A (en) * 2007-10-03 2009-04-23 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas-shielded arc welding

Also Published As

Publication number Publication date
JP5207766B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP4986562B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP5384312B2 (en) Flux-cored wire for gas shielded arc welding for weathering steel
JP5557790B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2006289404A (en) Flux cored wire for gas shielded arc welding
JP5014189B2 (en) Two-electrode fillet gas shielded arc welding method
JP4300153B2 (en) Flux-cored wire for gas shielded arc welding
JP6017406B2 (en) Stainless steel flux cored wire for self shielded arc welding
JPH09239587A (en) Flux cored wire for gas shielded arc welding
JP6385879B2 (en) Flux-cored wire for gas shielded arc welding
JP6875232B2 (en) Multi-electrode gas shield arc single-sided welding method
JP6322096B2 (en) Flux-cored wire for gas shielded arc welding
JP4425756B2 (en) Flux-cored wire for horizontal fillet welding
JP4531586B2 (en) Flux-cored wire for gas shielded arc fillet welding
JP5938375B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
JP2021090980A (en) Flux-cored wire for gas shielded arc welding for coastal weather-resistant steel
JP5409132B2 (en) Flux-cored wire for gas shielded arc welding
JP5448497B2 (en) Flux-cored wire for 2-electrode horizontal fillet gas shielded arc welding
JP5361797B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
JP6085205B2 (en) Flux-cored wire for gas shielded arc welding
JP3793429B2 (en) Flux-cored wire for gas shielded arc welding
JP3288535B2 (en) Flux-cored wire for gas shielded arc welding
JP5207766B2 (en) Flux-cored wire for gas shielded arc welding
JP3464334B2 (en) Flux-cored wire for gas shielded arc welding used for fillet welding of primer-coated steel sheets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250