JP2009186031A - Turbo refrigerator - Google Patents

Turbo refrigerator Download PDF

Info

Publication number
JP2009186031A
JP2009186031A JP2008023275A JP2008023275A JP2009186031A JP 2009186031 A JP2009186031 A JP 2009186031A JP 2008023275 A JP2008023275 A JP 2008023275A JP 2008023275 A JP2008023275 A JP 2008023275A JP 2009186031 A JP2009186031 A JP 2009186031A
Authority
JP
Japan
Prior art keywords
flow rate
stage compression
compression mechanism
opening degree
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008023275A
Other languages
Japanese (ja)
Other versions
JP5141272B2 (en
Inventor
Yasutaka Takada
康孝 高田
Nobuhiro Umeda
信弘 梅田
Kenji Kinokami
憲嗣 紀ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008023275A priority Critical patent/JP5141272B2/en
Publication of JP2009186031A publication Critical patent/JP2009186031A/en
Application granted granted Critical
Publication of JP5141272B2 publication Critical patent/JP5141272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent suction of liquid refrigerant to a turbo compressor from an intermediate cooler while minimizing degradation of operation efficiency. <P>SOLUTION: An opening of IGV (suction flow rate control valve) is controlled according to refrigerating load. An opening of DDC (discharge flow rate control valve) is controlled to as large a value as possible, so far as it is a value smaller than a prohibited opening where a liquid level of the intermediate cooler is over an upper limit position determined in advance according to the opening of IGV. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、二段圧縮二段膨張冷凍サイクルのターボ冷凍機に関し、特に、中間冷却器からターボ圧縮機の中間段への液冷媒の吸込み防止に係るものである。     The present invention relates to a turbo chiller of a two-stage compression two-stage expansion refrigeration cycle, and particularly relates to prevention of liquid refrigerant suction from an intermediate cooler to an intermediate stage of the turbo compressor.

従来より、ビルや工場等の大型設備の冷却に用いられるターボ冷凍機として、エコノマイザ(中間冷却器)が設けられて二段圧縮二段膨張冷凍サイクルを行うものが知られている。例えば特許文献1に開示されているターボ冷凍機は、二段式の遠心圧縮機(ターボ圧縮機)と、凝縮器と、高圧膨張弁と、エコノマイザと、低圧膨張弁と、蒸発器とが順に接続されている。このターボ冷凍機では、凝縮器からの冷媒が高圧膨張弁で減圧された後エコノマイザに流入し、液冷媒とガス冷媒とに分離される。エコノマイザの液冷媒は、低圧膨張弁で減圧され後蒸発器で蒸発して、遠心圧縮機の低段側に吸入される。一方、エコノマイザのガス冷媒は、遠心圧縮機の中間段に導入されて高段側に吸入される。このように、エコノマイザ付きの二段圧縮二段膨張冷凍サイクルでは、冷凍機の成績係数(COP)が向上する。     2. Description of the Related Art Conventionally, as a centrifugal chiller used for cooling large facilities such as buildings and factories, an economizer (intermediate cooler) is provided to perform a two-stage compression and two-stage expansion refrigeration cycle. For example, a turbo refrigerator disclosed in Patent Document 1 includes a two-stage centrifugal compressor (turbo compressor), a condenser, a high-pressure expansion valve, an economizer, a low-pressure expansion valve, and an evaporator in this order. It is connected. In this turbo refrigerator, the refrigerant from the condenser is decompressed by the high-pressure expansion valve, and then flows into the economizer to be separated into liquid refrigerant and gas refrigerant. The economizer liquid refrigerant is depressurized by a low-pressure expansion valve, then evaporated by an evaporator, and sucked into the lower stage side of the centrifugal compressor. On the other hand, the economizer gas refrigerant is introduced into the intermediate stage of the centrifugal compressor and sucked into the higher stage. Thus, in the two-stage compression two-stage expansion refrigeration cycle with an economizer, the coefficient of performance (COP) of the refrigerator is improved.

ところで、上記のような遠心圧縮機(ターボ圧縮機)は、例えば特許文献2にあるように、回転数一定の電動機と、吸入流量を調節するためのインレットガイドベーン(吸入流量制御弁)と、吐出流量を調節するための流量調整弁(吐出流量制御弁)とを備えている。そして、この遠心圧縮機では、インレットガイドベーンおよび流量調整弁の開度を調節することにより、容量制御が行われる。また、上記のような吐出流量制御弁は、ターボ圧縮機の吐出路であるディフューザに設けられる場合もある。
特開平11−153097号公報 特開2004−353498号公報
By the way, the centrifugal compressor (turbo compressor) as described above is, for example, as disclosed in Patent Document 2, an electric motor having a constant rotation speed, an inlet guide vane (suction flow control valve) for adjusting a suction flow rate, and the like. And a flow rate adjustment valve (discharge flow rate control valve) for adjusting the discharge flow rate. And in this centrifugal compressor, capacity control is performed by adjusting the opening degree of an inlet guide vane and a flow regulating valve. Further, the discharge flow rate control valve as described above may be provided in a diffuser that is a discharge path of the turbo compressor.
Japanese Patent Laid-Open No. 11-153097 JP 2004-353498 A

ここで、上記特許文献1のターボ冷凍機において、二段式のターボ圧縮機を容量制御する場合、図9(A)に示すように、冷凍機の能力(冷凍能力)に応じて吸入流量制御弁(図ではIGVと記載。)および吐出流量制御弁(図ではDDCと記載。)を同一開度で制御することが考えられる。ところが、一般に、ターボ圧縮機の運転効率の面では、吐出流量制御弁の開度は全開のままで制御する方が望ましい。これは、一般に吸入流量制御弁による制御よりも吐出流量制御弁による制御の方が効率の低下が大きいためである。     Here, in the turbo chiller disclosed in Patent Document 1, when the capacity of the two-stage turbo compressor is controlled, as shown in FIG. 9A, the suction flow rate control is performed according to the capacity (refrigeration capacity) of the refrigerator. It is conceivable to control the valve (described as IGV in the figure) and the discharge flow rate control valve (described as DDC in the figure) at the same opening. However, in general, in terms of operating efficiency of the turbo compressor, it is desirable to control the opening of the discharge flow rate control valve with the valve fully open. This is because, in general, the efficiency of the control using the discharge flow control valve is larger than the control using the suction flow control valve.

そこで、図9(B)に示すように、吸入流量制御弁は冷凍機の能力に応じて開度制御するが、吐出流量制御弁は全開のまま維持することが考えられる。ところが、この場合、冷凍機の能力が低い範囲では、吸入流量制御弁と吐出流量制御弁の開度差が大きくなり、ターボ圧縮機において高段側羽根車(高段側インペラ)が低段側羽根車よりも能力が過大となってしまう。そうすると、エコノマイザ(中間冷却器)において、凝縮器からの冷媒流入量と蒸発器への冷媒流出量のバランスが崩れて冷媒液面が過上昇し、エコノマイザからターボ圧縮機へ液冷媒が吸入されるという問題があった。その結果、冷凍機の運転効率が低下し、最悪の場合はターボ圧縮機が破損してしまうという問題があった。     Therefore, as shown in FIG. 9B, the opening control of the suction flow rate control valve is controlled according to the capacity of the refrigerator, but it is conceivable that the discharge flow rate control valve is kept fully open. However, in this case, in the range where the capacity of the refrigerator is low, the opening degree difference between the intake flow rate control valve and the discharge flow rate control valve becomes large, and the high stage impeller (high stage side impeller) in the turbo compressor is on the low stage side. The ability will be greater than the impeller. Then, in the economizer (intercooler), the balance between the refrigerant inflow from the condenser and the refrigerant outflow to the evaporator is lost, the refrigerant liquid level rises excessively, and the liquid refrigerant is sucked from the economizer to the turbo compressor. There was a problem. As a result, the operating efficiency of the refrigerator is lowered, and in the worst case, the turbo compressor is damaged.

本発明は、かかる点に鑑みてなされたものであり、その目的は、中間冷却器を備えて二段圧縮二段膨張冷凍サイクルを行うターボ冷凍機において、運転効率をできるだけ維持しつつ、中間冷却器からターボ圧縮機への液冷媒の吸入を確実に防止すべく、吸入流量制御弁および吐出流量制御弁を制御することである。     The present invention has been made in view of the above points, and an object of the present invention is to provide an intercooler that maintains an operation efficiency as much as possible in a turbo refrigerator that includes an intercooler and performs a two-stage compression and two-stage expansion refrigeration cycle. The suction flow rate control valve and the discharge flow rate control valve are controlled in order to reliably prevent the liquid refrigerant from being sucked into the turbo compressor.

第1の発明は、低段圧縮機構(31)および高段圧縮機構(32)を有する二段式のターボ圧縮機(21)と、中間冷却器(24)と、上記低段圧縮機構(31)の吸入流量を調節するための吸入流量制御弁(46)と、上記高段圧縮機構(32)の吐出流量を調節するための吐出流量制御弁(47)とを有し、上記中間冷却器(24)の中間圧冷媒のうちガス冷媒が上記低段圧縮機構(31)の吐出冷媒と共に上記高段圧縮機構(32)へ吸入される二段圧縮二段膨張冷凍サイクルを行う冷媒回路(20)を備えたターボ冷凍機を前提としている。そして、本発明のターボ冷凍機は、冷凍負荷に応じて上記吸入流量制御弁(46)の開度を調節する一方、上記吐出流量制御弁(47)の開度を上記吸入流量制御弁(46)の開度よりも該開度に応じて予め定められた所定量だけ大きくなるように調節する制御手段(60)を備えているものである。     The first invention is a two-stage turbo compressor (21) having a low-stage compression mechanism (31) and a high-stage compression mechanism (32), an intermediate cooler (24), and the low-stage compression mechanism (31 ) And a discharge flow rate control valve (47) for adjusting the discharge flow rate of the high stage compression mechanism (32), and the intermediate cooler (24) A refrigerant circuit (20) that performs a two-stage compression and two-stage expansion refrigeration cycle in which gas refrigerant is sucked into the high-stage compression mechanism (32) together with refrigerant discharged from the low-stage compression mechanism (31). ) Equipped with a turbo refrigerator. The turbo refrigerator of the present invention adjusts the opening degree of the suction flow rate control valve (46) according to the refrigeration load, while adjusting the opening degree of the discharge flow rate control valve (47) to the suction flow rate control valve (46 ) Is provided with a control means (60) for adjusting the opening so as to be larger by a predetermined amount corresponding to the opening.

上記の発明では、冷凍負荷が低くなるに従って吸入流量制御弁(46)の開度が減少される。そのとき、吐出流量制御弁(47)は、吸入流量制御弁(46)の開度より所定量だけ大きい開度に制御される。この所定量は、中間冷却器(24)の液面が上限位置を超えない最大の値に設定されている。これにより、中間冷却器(24)の液面を上限位置以下にすることができる。さらに、吐出流量制御弁(47)の開度がそれ程小さくないため、その開度が小さくなることによる高段圧縮機構(32)の効率低下が抑えられる。     In the above invention, the opening degree of the suction flow rate control valve (46) is decreased as the refrigeration load becomes lower. At that time, the discharge flow rate control valve (47) is controlled to an opening larger than the opening of the suction flow rate control valve (46) by a predetermined amount. This predetermined amount is set to a maximum value at which the liquid level of the intercooler (24) does not exceed the upper limit position. Thereby, the liquid level of an intercooler (24) can be made below an upper limit position. Furthermore, since the opening degree of the discharge flow rate control valve (47) is not so small, the efficiency reduction of the high stage compression mechanism (32) due to the opening degree being small is suppressed.

第2の発明は、低段圧縮機構(31)および高段圧縮機構(32)を有する二段式のターボ圧縮機(21)と、中間冷却器(24)と、該中間冷却器(24)の下流側に設けられる膨張弁(25)と、上記低段圧縮機構(31)の吸入流量を調節するための吸入流量制御弁(46)と、上記高段圧縮機構(32)の吐出流量を調節するための吐出流量制御弁(47)とを有し、上記中間冷却器(24)の中間圧冷媒のうちガス冷媒が上記低段圧縮機構(31)の吐出冷媒と共に上記高段圧縮機構(32)へ吸入される二段圧縮二段膨張冷凍サイクルを行う冷媒回路(20)を備えたターボ冷凍機を前提としている。そして、本発明のターボ冷凍機は、冷凍負荷に応じて上記吸入流量制御弁(46)の開度を調節する一方、上記膨張弁(25)が全開状態で上記中間冷却器(24)の液面が上限位置以上となる上記吐出流量制御弁(47)の開度を上記吸入流量制御弁(46)の開度に応じた禁止開度として予め定められ、該禁止開度直近の開度に上記吐出流量制御弁(47)を調節する制御手段(60)を備えているものである。     The second invention is a two-stage turbo compressor (21) having a low-stage compression mechanism (31) and a high-stage compression mechanism (32), an intermediate cooler (24), and the intermediate cooler (24). An expansion valve (25) provided on the downstream side, a suction flow rate control valve (46) for adjusting a suction flow rate of the low stage compression mechanism (31), and a discharge flow rate of the high stage compression mechanism (32). A discharge flow rate control valve (47) for adjusting the gas refrigerant of the intermediate pressure refrigerant of the intermediate cooler (24) together with the refrigerant discharged from the low stage compression mechanism (31) It assumes a turbo chiller equipped with a refrigerant circuit (20) that performs a two-stage compression and two-stage expansion refrigeration cycle that is sucked into (32). The turbo refrigerator of the present invention adjusts the opening degree of the suction flow rate control valve (46) according to the refrigeration load, while the expansion valve (25) is fully opened and the liquid in the intermediate cooler (24) The opening of the discharge flow rate control valve (47) whose surface is equal to or higher than the upper limit position is determined in advance as a prohibited opening according to the opening of the suction flow rate control valve (46), Control means (60) for adjusting the discharge flow rate control valve (47) is provided.

上記の発明では、膨張弁(25)の開度が大きくなると、中間冷却器(24)の液面が低下する。冷凍負荷が低くなるに従って吸入流量制御弁(46)の開度が減少される。そのとき、吐出流量制御弁(47)は、吸入流量制御弁(46)の開度に応じて予め定められた禁止開度直近の開度に制御される。つまり、吐出流量制御弁(47)の開度は、禁止開度よりも小さい範囲であってできるだけ高い値に制御される。したがって、中間冷却器(24)の液面が上限位置以下となる。さらに、吐出流量制御弁(47)の開度ができるだけ高い値に設定されるため、開度が小さくなることによる高段圧縮機構(32)の効率低下が抑えられる。     In said invention, if the opening degree of an expansion valve (25) becomes large, the liquid level of an intercooler (24) will fall. As the refrigeration load becomes lower, the opening degree of the suction flow rate control valve (46) is reduced. At that time, the discharge flow rate control valve (47) is controlled to an opening degree closest to the prohibited opening degree that is predetermined according to the opening degree of the suction flow rate control valve (46). That is, the opening degree of the discharge flow rate control valve (47) is controlled to a value as high as possible within a range smaller than the prohibited opening degree. Therefore, the liquid level of the intercooler (24) is below the upper limit position. Furthermore, since the opening degree of the discharge flow rate control valve (47) is set as high as possible, the efficiency reduction of the high-stage compression mechanism (32) due to the opening degree being reduced is suppressed.

以上のように、第1および第2の発明によれば、吸入流量制御弁(46)の開度は冷凍負荷に応じて制御し、吐出流量制御弁(47)の開度は吸入流量制御弁(46)の開度に応じて中間冷却器(24)の液面高さおよび高段圧縮機構(32)の効率を考慮した値に制御する。したがって、高段圧縮機構(32)の効率をそれ程低下させることなく、中間冷却器(24)の液面を確実に上限位置以下にすることができる。これにより、ターボ圧縮機(21)の運転効率をできるだけ高く維持しつつ、中間冷却器(24)からターボ圧縮機(21)への液冷媒の吸込みを防止することができる。その結果、ターボ冷凍機(10)の信頼性を向上させることができる。     As described above, according to the first and second aspects of the invention, the opening degree of the suction flow rate control valve (46) is controlled according to the refrigeration load, and the opening degree of the discharge flow rate control valve (47) is the suction flow rate control valve. According to the opening degree of (46), the liquid level height of the intercooler (24) and the efficiency of the high stage compression mechanism (32) are controlled. Therefore, the liquid level of the intermediate cooler (24) can be surely brought to the upper limit position or less without reducing the efficiency of the high stage compression mechanism (32) so much. Accordingly, it is possible to prevent the liquid refrigerant from being sucked into the turbo compressor (21) from the intermediate cooler (24) while maintaining the operation efficiency of the turbo compressor (21) as high as possible. As a result, the reliability of the turbo refrigerator (10) can be improved.

以下、本発明の実施形態を図面に基づいて詳細に説明する。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示すように、本実施形態のターボ冷凍機(10)(遠心式冷凍機ともいう。)は、冷媒回路(20)およびコントローラ(60)を備えている。     As shown in FIG. 1, the turbo refrigerator (10) (also referred to as a centrifugal refrigerator) of the present embodiment includes a refrigerant circuit (20) and a controller (60).

〈冷媒回路の構成および動作〉
上記冷媒回路(20)は、ターボ圧縮機(21)(遠心圧縮機ともいう。)と、凝縮器(22)と、高段側膨張弁(23)と、中間冷却器(24)(エコノマイザともいう。)と、低段側膨張弁(25)と、蒸発器(26)とが順に接続されている。冷媒回路(20)は、冷媒が循環して二段圧縮二段膨張冷凍サイクルを行うように構成されている。
<Configuration and operation of refrigerant circuit>
The refrigerant circuit (20) includes a turbo compressor (21) (also referred to as a centrifugal compressor), a condenser (22), a high stage side expansion valve (23), and an intercooler (24) (also an economizer). ), A low stage side expansion valve (25), and an evaporator (26) are sequentially connected. The refrigerant circuit (20) is configured to perform a two-stage compression two-stage expansion refrigeration cycle by circulating the refrigerant.

上記凝縮器(22)および蒸発器(26)は、いわゆる満液式のものである。凝縮器(22)は、冷却塔との間で水配管(a)が接続されている。凝縮器(22)では、冷媒が水配管(a)の冷水へ放熱して凝縮する。蒸発器(26)は、室内機との間で水配管(b)が接続されている。蒸発器(26)では、冷媒が水配管(b)の水から吸熱して蒸発する。     The condenser (22) and the evaporator (26) are so-called full liquid type. The condenser (22) has a water pipe (a) connected to the cooling tower. In the condenser (22), the refrigerant dissipates heat to the cold water in the water pipe (a) and condenses. The evaporator (26) has a water pipe (b) connected to the indoor unit. In the evaporator (26), the refrigerant absorbs heat from the water in the water pipe (b) and evaporates.

上記中間冷却器(24)は、流入した冷媒をガス冷媒と液冷媒とに分離する気液分離器を構成している。中間冷却器(24)には、分離されたガス冷媒がターボ圧縮機(21)へ導入される導入配管(27)が接続されている。     The intermediate cooler (24) constitutes a gas-liquid separator that separates the inflowing refrigerant into a gas refrigerant and a liquid refrigerant. The intermediate cooler (24) is connected to an introduction pipe (27) through which the separated gas refrigerant is introduced into the turbo compressor (21).

図2に示すように、上記ターボ圧縮機(21)は、二段式(二段圧縮式)のものである。ターボ圧縮機(21)は、ケーシング(30)を備え、該ケーシング(30)内に低段圧縮機構(31)および高段圧縮機構(32)と、動力伝達機構(33)と、電動機(34)とを備えている。     As shown in FIG. 2, the turbo compressor (21) is of a two-stage type (two-stage compression type). The turbo compressor (21) includes a casing (30), and a low-stage compression mechanism (31) and a high-stage compression mechanism (32), a power transmission mechanism (33), and an electric motor (34) are provided in the casing (30). ).

上記ケーシング(30)は密閉容器により形成されている。ケーシング(30)の内部は、2つの圧縮機構(31,32)が収容される圧縮機構室(30a)と、動力伝達機構(33)が収容される伝達室(30b)と、冷凍機油(潤滑油)を貯留するオイル室(30c)と、電動機(34)が収容される電動機室(30d)とに区画されている。また、ケーシング(30)には、圧縮機構室(30a)に連通する吸入路(41)および吐出路(45)が形成されている。     The casing (30) is formed of a sealed container. The casing (30) includes a compression mechanism chamber (30a) in which the two compression mechanisms (31, 32) are accommodated, a transmission chamber (30b) in which the power transmission mechanism (33) is accommodated, and refrigerating machine oil (lubrication). (Oil) is divided into an oil chamber (30c) and an electric motor chamber (30d) in which the electric motor (34) is accommodated. The casing (30) is formed with a suction path (41) and a discharge path (45) communicating with the compression mechanism chamber (30a).

上記圧縮機構室(30a)において、低段圧縮機構(31)および高段圧縮機構(32)は吸入路(41)側から吐出路(45)側へ順に配置されている。低段圧縮機構(31)は吸入路(41)に連通し、高段圧縮機構(32)は吐出路(45)に連通している。低段圧縮機構(31)は低段羽根車(31a)を有し、高段圧縮機構(32)は高段羽根車(32a)を有している。低段羽根車(31a)と高段羽根車(32a)は、1本の回転軸(35)で一体に連結されている。回転軸(35)は、各羽根車(31a,32a)の間に設けられた軸受(52)と、低段羽根車(31a)とは反対側の端部に設けられた軸受(52)とによって回転自在に支持されている。上記軸受(52)および後述する軸受(53)の近傍には、冷凍機油の露出を防止するためのシール機構であるラビリンスシール(51)が設けられている。     In the compression mechanism chamber (30a), the low-stage compression mechanism (31) and the high-stage compression mechanism (32) are sequentially arranged from the suction path (41) side to the discharge path (45) side. The low stage compression mechanism (31) communicates with the suction path (41), and the high stage compression mechanism (32) communicates with the discharge path (45). The low stage compression mechanism (31) has a low stage impeller (31a), and the high stage compression mechanism (32) has a high stage impeller (32a). The low stage impeller (31a) and the high stage impeller (32a) are integrally connected by a single rotating shaft (35). The rotating shaft (35) includes a bearing (52) provided between the impellers (31a, 32a) and a bearing (52) provided at the end opposite to the low-stage impeller (31a). Is rotatably supported by. In the vicinity of the bearing (52) and a bearing (53) described later, a labyrinth seal (51), which is a seal mechanism for preventing the refrigerating machine oil from being exposed, is provided.

上記低段圧縮機構(31)および高段圧縮機構(32)には、それぞれ低段圧縮流路(42)および高段圧縮流路(44)が形成されている。低段圧縮機構(31)と高段圧縮機構(32)とは、連通路(43)によって接続されている。低段圧縮流路(42)は、流入側(吸入側)が吸入路(41)に連通し、流出側(吐出側)が連通路(43)の一端に連通している。高段圧縮流路(44)は、流入側(吸入側)が連通路(43)の他端に連通し、流出側(吐出側)が吐出路(45)に連通している。各圧縮流路(42,44)では、羽根車(31a,32a)の回転に伴う遠心力によって冷媒の速度エネルギが増大し、その速度エネルギが圧力エネルギに変換される。これにより、冷媒が圧縮される。したがって、この圧縮機構(31,32)では、低段圧縮機構(31)で圧縮された冷媒が連通路(43)を通って高段圧縮機構(32)へ流れ、さらに圧縮された後吐出路(45)から冷媒回路(20)の冷媒配管へ吐出される。     A low-stage compression flow path (42) and a high-stage compression flow path (44) are formed in the low-stage compression mechanism (31) and the high-stage compression mechanism (32), respectively. The low-stage compression mechanism (31) and the high-stage compression mechanism (32) are connected by a communication path (43). In the low-stage compression flow path (42), the inflow side (suction side) communicates with the suction path (41), and the outflow side (discharge side) communicates with one end of the communication path (43). The high-stage compression flow path (44) has an inflow side (suction side) communicated with the other end of the communication path (43) and an outflow side (discharge side) communicated with the discharge path (45). In each compression channel (42, 44), the velocity energy of the refrigerant increases due to the centrifugal force accompanying the rotation of the impeller (31a, 32a), and the velocity energy is converted into pressure energy. Thereby, the refrigerant is compressed. Therefore, in this compression mechanism (31, 32), the refrigerant compressed by the low-stage compression mechanism (31) flows through the communication path (43) to the high-stage compression mechanism (32), and is further compressed after the discharge passage (45) to the refrigerant pipe of the refrigerant circuit (20).

また、上記ケーシング(30)には、上述した導入配管(27)が連通路(43)に連通するように接続されている。これにより、中間冷却器(24)のガス冷媒が低段圧縮機構(31)で圧縮された冷媒と共に高段圧縮機構(32)で圧縮される。     In addition, the introduction pipe (27) described above is connected to the casing (30) so as to communicate with the communication path (43). Thereby, the gas refrigerant of the intercooler (24) is compressed by the high stage compression mechanism (32) together with the refrigerant compressed by the low stage compression mechanism (31).

上記吸入路(41)には、開度変更自在な吸入流量制御弁(46)(以下、単にIGV(46)という。)が設けられている。このIGV(46)は、吸入路(41)に吸入される冷媒量、即ちターボ圧縮機(21)の吸入流量を調節するためのものである。一方、吐出路(45)には、開度変更自在な吐出流量制御弁(47)(以下、単にDDC(47)という。)が設けられている。このDDC(47)は、高段圧縮機構(32)から吐出される冷媒量、即ちターボ圧縮機(21)の吐出流量を調節するためのものである。     The suction passage (41) is provided with a suction flow rate control valve (46) (hereinafter simply referred to as IGV (46)) whose opening can be changed. The IGV (46) is for adjusting the amount of refrigerant sucked into the suction passage (41), that is, the suction flow rate of the turbo compressor (21). On the other hand, the discharge passage (45) is provided with a discharge flow rate control valve (47) (hereinafter simply referred to as DDC (47)) whose opening degree can be changed. The DDC (47) is for adjusting the amount of refrigerant discharged from the high-stage compression mechanism (32), that is, the discharge flow rate of the turbo compressor (21).

上記動力伝達機構(33)は、駆動歯車(33a)と、該駆動歯車(33a)と噛み合う従動歯車(33b)とによって構成されている。駆動歯車(33a)は後述する電動機(34)の回転軸(34a)に取り付けられ、従動歯車(33b)は前述の回転軸(35)に取り付けられている。この動力伝達機構(33)は、電動機(34)の回転数を増速して羽根車(31a,32a)の回転軸(35)に伝える。     The power transmission mechanism (33) includes a drive gear (33a) and a driven gear (33b) that meshes with the drive gear (33a). The driving gear (33a) is attached to a rotating shaft (34a) of an electric motor (34) described later, and the driven gear (33b) is attached to the rotating shaft (35). The power transmission mechanism (33) increases the rotational speed of the electric motor (34) and transmits it to the rotating shaft (35) of the impeller (31a, 32a).

上記電動機(34)は、回転軸(34a)と、回転軸(34a)に取り付けられて回転軸(34a)と共に回転するロータ(34b)と、ロータ(34b)を取り巻くようにケーシング(30)の内壁面に固定されたステータ(34c)とによって構成されている。回転軸(34a)は、両端に設けられた軸受(53)によって回転自在に支持されている。     The electric motor (34) includes a rotating shaft (34a), a rotor (34b) attached to the rotating shaft (34a) and rotating together with the rotating shaft (34a), and a casing (30) so as to surround the rotor (34b). And a stator (34c) fixed to the inner wall surface. The rotating shaft (34a) is rotatably supported by bearings (53) provided at both ends.

上記オイル室(30c)は、本発明に係る油貯留部であり、いわゆる油タンクを構成している。オイル室(30c)には、オイルポンプ(36)が設けられている。このターボ圧縮機(21)では、オイル室(30c)の冷凍機油がオイルポンプ(36)によって各軸受(52,53)や動力伝達機構(33)に供給され、再び冷凍機油がオイル室(30c)に戻るように構成されている。つまり、オイル室(30c)と各軸受(52,53)等との間で冷凍機油が循環される。     The oil chamber (30c) is an oil reservoir according to the present invention, and constitutes a so-called oil tank. An oil pump (36) is provided in the oil chamber (30c). In the turbo compressor (21), the refrigeration oil in the oil chamber (30c) is supplied to the bearings (52, 53) and the power transmission mechanism (33) by the oil pump (36), and the refrigeration oil is again supplied to the oil chamber (30c). ). That is, refrigeration oil is circulated between the oil chamber (30c) and the bearings (52, 53).

また、上記ケーシング(30)には、均圧管(48)が設けられている。この均圧管(48)は、一端が吸入路(41)に連通し、他端が伝達室(30b)に連通している。したがって、伝達室(30b)が低圧雰囲気(低圧空間)となっている。そして、オイル室(30c)は、伝達室(30b)に連通し、低圧雰囲気(低圧空間)となっている。このように、オイル室(30c)が低圧雰囲気に維持されるため、各軸受(52,53)等へ供給された冷凍機油がオイル室(30c)へ戻り易くなる。     The casing (30) is provided with a pressure equalizing pipe (48). One end of the pressure equalizing pipe (48) communicates with the suction passage (41), and the other end communicates with the transmission chamber (30b). Therefore, the transmission chamber (30b) is in a low pressure atmosphere (low pressure space). The oil chamber (30c) communicates with the transmission chamber (30b) and forms a low pressure atmosphere (low pressure space). Thus, since the oil chamber (30c) is maintained in a low pressure atmosphere, the refrigerating machine oil supplied to the bearings (52, 53) and the like easily returns to the oil chamber (30c).

次に、上記冷媒回路(20)の運転動作について、図3も参照しながら説明する。     Next, the operation of the refrigerant circuit (20) will be described with reference to FIG.

先ず、上記電動機(34)を起動してターボ圧縮機(21)を駆動させると、高段圧縮機構(32)で圧縮された冷媒が吐出路(45)から吐出される(図3のD点の状態)。この状態では、冷媒の圧力が冷凍サイクルにおける高圧PHとなっている。吐出された冷媒は、凝縮器(22)へ流れ、水配管(a)の水へ放熱して凝縮する(図3のE点の状態)。凝縮した液冷媒は、高段側膨張弁(23)で減圧された後、中間冷却器(24)へ流れて液冷媒(図3のF点)とガス冷媒(図3のG点)とに分離される。この液冷媒およびガス冷媒の圧力は、共に冷凍サイクルにおける中間圧PMとなっている。     First, when the electric motor (34) is started to drive the turbo compressor (21), the refrigerant compressed by the high-stage compression mechanism (32) is discharged from the discharge passage (45) (point D in FIG. 3). State). In this state, the pressure of the refrigerant is the high pressure PH in the refrigeration cycle. The discharged refrigerant flows to the condenser (22), dissipates heat to the water in the water pipe (a), and condenses (state of point E in FIG. 3). The condensed liquid refrigerant is depressurized by the high stage side expansion valve (23), and then flows to the intercooler (24) to become a liquid refrigerant (point F in FIG. 3) and a gas refrigerant (point G in FIG. 3). To be separated. The pressures of the liquid refrigerant and the gas refrigerant are both intermediate pressure PM in the refrigeration cycle.

上記中間冷却器(24)のガス冷媒は、導入配管(27)を通ってターボ圧縮機(21)へ流れる。一方、中間冷却器(24)の液冷媒は、低段側膨張弁(25)で減圧される(図3のH点の状態)。減圧された冷媒は、蒸発器(26)へ流れ、水配管(b)の水から吸熱して蒸発し(図3のA点の状態)、水が冷却される。蒸発した冷媒の圧力は、冷凍サイクルにおける低圧PLとなっている。なお、冷却された水は室内機へ送られて室内空気と熱交換し、室内空気が冷却される。     The gas refrigerant in the intermediate cooler (24) flows to the turbo compressor (21) through the introduction pipe (27). On the other hand, the liquid refrigerant in the intercooler (24) is depressurized by the low stage side expansion valve (25) (state of point H in FIG. 3). The decompressed refrigerant flows into the evaporator (26), absorbs heat from the water in the water pipe (b), and evaporates (state A in FIG. 3), thereby cooling the water. The pressure of the evaporated refrigerant is the low pressure PL in the refrigeration cycle. The cooled water is sent to the indoor unit to exchange heat with room air, and the room air is cooled.

上記蒸発器(26)で蒸発したガス冷媒は、ターボ圧縮機(21)の吸入路(41)から低段圧縮機構(31)へ吸入されて圧縮される(図3のB点の状態)。低段圧縮機構(31)で圧縮された冷媒は、連通路(43)へ流れて導入配管(27)のガス冷媒と合流する(図3のC点の状態)。合流した冷媒は、高段圧縮機構(32)へ流れて再び圧縮される(図3のD点の状態)。     The gas refrigerant evaporated in the evaporator (26) is sucked into the low-stage compression mechanism (31) from the suction passage (41) of the turbo compressor (21) and compressed (state B in FIG. 3). The refrigerant compressed by the low-stage compression mechanism (31) flows into the communication path (43) and joins with the gas refrigerant in the introduction pipe (27) (the state at point C in FIG. 3). The merged refrigerant flows into the high stage compression mechanism (32) and is compressed again (state of point D in FIG. 3).

〈コントローラの構成および動作〉
上記コントローラ(60)は、本発明に係る制御手段を構成している。コントローラ(60)は、各膨張弁(23,25)の開度制御を行うように構成されている。
<Configuration and operation of controller>
The controller (60) constitutes a control means according to the present invention. The controller (60) is configured to control the opening degree of each expansion valve (23, 25).

具体的には、上記高段側膨張弁(23)の開度を調節することで、凝縮器(22)内の冷媒量が制御され、結果として蒸発器(26)内の冷媒量が制御される。したがって、冷凍サイクルにおける高圧PHおよび低圧PLは高段側膨張弁(23)の開度によって変化する。例えば、高段側膨張弁(23)の開度が増大すると、凝縮器(22)の冷媒量は減少する一方、蒸発器(26)の冷媒量は増大する。そのため、高圧PHが低下する一方、低圧PLは上昇し、冷凍サイクルにおける高低圧差が小さくなる。逆に、高段側膨張弁(23)の開度が減少すると、凝縮器(22)の冷媒量は増大する一方、蒸発器(26)の冷媒量は減少する。そのため、高圧PHが上昇する一方、低圧PLは低下し、冷凍サイクルにおける高低圧差が大きくなる。     Specifically, the amount of refrigerant in the condenser (22) is controlled by adjusting the opening of the high stage side expansion valve (23), and as a result, the amount of refrigerant in the evaporator (26) is controlled. The Therefore, the high pressure PH and the low pressure PL in the refrigeration cycle vary depending on the opening degree of the high stage side expansion valve (23). For example, when the opening degree of the high stage side expansion valve (23) increases, the refrigerant amount of the condenser (22) decreases while the refrigerant amount of the evaporator (26) increases. For this reason, the high pressure PH decreases, while the low pressure PL increases, and the high / low pressure difference in the refrigeration cycle decreases. Conversely, when the opening degree of the high stage side expansion valve (23) decreases, the refrigerant amount of the condenser (22) increases while the refrigerant amount of the evaporator (26) decreases. Therefore, while the high pressure PH increases, the low pressure PL decreases and the high / low pressure difference in the refrigeration cycle increases.

上記低段側膨張弁(25)の開度を調節することで、中間冷却器(24)内の液冷媒量(液面高さ)が制御され、結果として中間圧PMが変化する。つまり、中間冷却器(24)内の液面高さは、低段圧縮機構(31)への吸入冷媒量と高段圧縮機構(32)からの吐出冷媒量によってほぼ決まる。そして、低段側膨張弁(25)の開度によって中間圧PMが変化すると、低段圧縮機構(31)の圧力ヘッドと高段圧縮機構(32)の圧力ヘッドが変化して、各羽根車(31a,32a)の能力(風量)が変化する。そして、最終的に中間圧PMが平衡状態となる。
ターボ圧縮機(21)の例えば、低段側膨張弁(25)の開度が増大すると、中間冷却器(24)の液面が低下し、中間圧PMが低下する。逆に、低段側膨張弁(25)の開度が減少すると、中間冷却器(24)の液面が上昇し、中間圧PMが上昇する。
By adjusting the opening of the low stage side expansion valve (25), the amount of liquid refrigerant (liquid level height) in the intermediate cooler (24) is controlled, and as a result, the intermediate pressure PM changes. That is, the liquid level in the intermediate cooler (24) is substantially determined by the amount of refrigerant sucked into the low-stage compression mechanism (31) and the amount of refrigerant discharged from the high-stage compression mechanism (32). When the intermediate pressure PM changes depending on the opening degree of the low stage side expansion valve (25), the pressure head of the low stage compression mechanism (31) and the pressure head of the high stage compression mechanism (32) change, and each impeller The capacity (air volume) of (31a, 32a) changes. And finally, intermediate pressure PM will be in an equilibrium state.
For example, when the opening of the low stage side expansion valve (25) of the turbo compressor (21) increases, the liquid level of the intermediate cooler (24) decreases, and the intermediate pressure PM decreases. Conversely, when the opening of the low stage side expansion valve (25) decreases, the liquid level of the intermediate cooler (24) rises and the intermediate pressure PM rises.

また、上記コントローラ(60)は、本発明の特徴として、IGV(46)およびDDC(47)の開度制御を行うように構成されている。     Moreover, the said controller (60) is comprised so that the opening degree control of IGV (46) and DDC (47) may be performed as the characteristics of this invention.

具体的に、上記コントローラ(60)は、冷凍機の必要能力(冷凍負荷)に応じてIGV(46)の開度制御を行う。つまり、冷凍負荷が小さくなるに従って、IGV(46)の開度が減少され、冷媒の吸入流量が減少される。     Specifically, the controller (60) controls the opening degree of the IGV (46) according to the required capacity (refrigeration load) of the refrigerator. That is, as the refrigeration load becomes smaller, the opening degree of the IGV (46) is decreased, and the refrigerant suction flow rate is decreased.

ここで、冷凍負荷が低い範囲(低負荷領域)において、従来のように、DDC(47)を全開にしたまま、IGV(46)のみを冷凍負荷に応じた開度に設定した場合、冷凍サイクルの状態は図4に示すとおりとなる。つまり、中間圧PMが著しく低くなっているのが分かる。この状態では、IGV(46)とDDC(47)との開度差が大きくなり、ターボ圧縮機(21)において高段羽根車(32a)の能力(風量)が低段羽根車(31a)の能力(風量)に比べて過大となる。そうすると、中間冷却器(24)では、凝縮器(22)からの流入冷媒量が蒸発器(26)への流出冷媒量に比べて過大となり液面高さが上昇するが、低段側膨張弁(25)の開度が増大されて中間圧PMが低下する。さらに、高段羽根車(32a)の風量が過大であるため、中間冷却器(24)から導入配管(27)を介してターボ圧縮機(21)へ流れる冷媒の流量が増大する。これによっても、中間圧PMが低下することとなる。ところが、高段羽根車(32a)の風量がさらに過大となると、低段側膨張弁(25)を全開にしても中間冷却器(24)の液面が低下せず上限位置を超える虞がある。その場合、液冷媒がターボ圧縮機(21)に吸入されてしまう。それを防止するために、DDC(47)の開度を減少させると、高段羽根車(32a)の効率が悪くなりターボ圧縮機(21)の運転効率が低下してしまう。     Here, in a range where the refrigeration load is low (low load region), when only the IGV (46) is set to an opening corresponding to the refrigeration load while the DDC (47) is fully opened as in the conventional case, the refrigeration cycle The state is as shown in FIG. That is, it can be seen that the intermediate pressure PM is extremely low. In this state, the opening difference between the IGV (46) and the DDC (47) becomes large, and the capacity (air volume) of the high stage impeller (32a) in the turbo compressor (21) is that of the low stage impeller (31a). Excessive capacity (air flow). Then, in the intercooler (24), the amount of refrigerant flowing from the condenser (22) becomes excessive compared with the amount of refrigerant flowing out to the evaporator (26), and the liquid level rises. The opening degree of (25) is increased and the intermediate pressure PM is reduced. Furthermore, since the air volume of the high stage impeller (32a) is excessive, the flow rate of the refrigerant flowing from the intermediate cooler (24) to the turbo compressor (21) via the introduction pipe (27) increases. This also lowers the intermediate pressure PM. However, if the air volume of the high stage impeller (32a) becomes excessive, even if the low stage side expansion valve (25) is fully opened, the liquid level of the intermediate cooler (24) does not decrease and may exceed the upper limit position. . In this case, the liquid refrigerant is sucked into the turbo compressor (21). In order to prevent this, if the opening degree of the DDC (47) is decreased, the efficiency of the high stage impeller (32a) is deteriorated and the operation efficiency of the turbo compressor (21) is lowered.

そこで、本実施形態では、コントローラ(60)がIGV(46)の開度に応じてDDC(47)の開度を制御するように構成されている。図5および図6に示すように、IGV(46)は上述したように冷凍負荷に応じて開度が制御される。例えば、冷凍機の必要能力が100%(定格)の場合は、IGV(46)の開度は100%に設定される。一方、DDC(47)の開度は、予め設定された範囲(図5におけるハッチング部分、以下「禁止開度」という。)に入らないように、その境界線に沿って制御される。つまり、DDC(47)は禁止開度とならない範囲で、できるだけ大きい開度に制御される。     Therefore, in the present embodiment, the controller (60) is configured to control the opening degree of the DDC (47) in accordance with the opening degree of the IGV (46). As shown in FIGS. 5 and 6, the opening degree of the IGV (46) is controlled according to the refrigeration load as described above. For example, when the required capacity of the refrigerator is 100% (rated), the opening degree of the IGV (46) is set to 100%. On the other hand, the opening degree of the DDC (47) is controlled along the boundary line so as not to enter a preset range (hatched portion in FIG. 5, hereinafter referred to as “prohibited opening degree”). That is, the DDC (47) is controlled to be as large as possible within a range where the prohibited opening is not reached.

図6に示すように、必要能力が100%のとき、IGV(46)およびDDC(47)は何れも開度が100%である。必要能力が80%のときは、IGV(46)の開度は60%に減少するが、DDC(47)の開度は100%のままである。必要能力が60%に低くなると、IGV(46)の開度はそれに応じて40%に減少し、DDC(47)の開度は60%に減少する。この60%が禁止開度に入らない範囲でできるだけ高い開度ととなる。そして、必要能力が20%のときは、IGV(46)およびDDC(47)の何れも開度が0%となる。なお、この開度0%は、IGV(46)およびDDC(47)の最小開度を意味している。     As shown in FIG. 6, when the required capacity is 100%, the opening degree of both IGV (46) and DDC (47) is 100%. When the required capacity is 80%, the opening of the IGV (46) decreases to 60%, but the opening of the DDC (47) remains 100%. When the required capacity is reduced to 60%, the opening degree of the IGV (46) is correspondingly reduced to 40%, and the opening degree of the DDC (47) is reduced to 60%. This 60% is as high as possible within the range not entering the prohibited opening. When the required capacity is 20%, the opening degree of both IGV (46) and DDC (47) is 0%. The opening degree 0% means the minimum opening degree of IGV (46) and DDC (47).

上記禁止開度は、IGV(46)の開度に応じて予め設定された領域であり、中間冷却器(24)の液面が上限位置を超える領域である。具体的に、禁止開度は次のように設定される。低段側膨張弁(25)が全開状態の条件の下、各羽根車(31a,32a)の特性に基づいて禁止開度が定められる。低段羽根車(31a)の特性は、図7に示すように、低段風量FLと、IGV(46)の開度と、断熱ヘッドと、効率との関係である。高段羽根車(32a)の特性は、図8に示すように、高段風量FLと、DDC(47)の開度と、断熱ヘッドと、効率との関係である。ここに、低段風量FLおよび高段風量FLは、それぞれ低段羽根車(31a)および高段羽根車(32a)における冷媒流量に相当する。断熱ヘッドは、各羽根車(31a,32a)における圧力ヘッド、即ち各羽根車(31a,32a)の吸入圧力と吐出圧力の差に相当する。効率は、各羽根車(31a,32a)の運転効率である。     The forbidden opening is a region preset according to the opening of the IGV (46), and is a region where the liquid level of the intermediate cooler (24) exceeds the upper limit position. Specifically, the prohibited opening is set as follows. Under the condition that the low-stage side expansion valve (25) is fully opened, the prohibited opening is determined based on the characteristics of each impeller (31a, 32a). As shown in FIG. 7, the characteristics of the low stage impeller (31a) are the relationship between the low stage air volume FL, the opening degree of the IGV (46), the heat insulation head, and the efficiency. As shown in FIG. 8, the characteristic of the high stage impeller (32a) is the relationship between the high stage air flow rate FL, the opening degree of the DDC (47), the heat insulation head, and the efficiency. Here, the low-stage air volume FL and the high-stage air volume FL correspond to the refrigerant flow rates in the low-stage impeller (31a) and the high-stage impeller (32a), respectively. The heat insulating head corresponds to the pressure head in each impeller (31a, 32a), that is, the difference between the suction pressure and the discharge pressure of each impeller (31a, 32a). Efficiency is the operating efficiency of each impeller (31a, 32a).

冷凍機の必要能力から低段羽根車(31a)の必要風量FLが定まり、その必要風量FLから最適効率のIGV(46)の開度および断熱ヘッド(圧力ヘッド)が定まる。次に、低段羽根車(31a)の必要風量FLから高段羽根車(32a)の必要風量FLが定まる。続いて、各羽根車(31a,32a)の必要風量FLと凝縮器(22)および蒸発器(26)の水温度とから、低圧PLおよび高圧PHが定まる。そして、この高低圧差(高圧PH−低圧PL)から、高段圧縮機構(32)の断熱ヘッド(圧力ヘッド)が定まり、最適効率のDDC(47)の開度が定まると共に、中間圧PMが定まる。この中間圧PMから、中間冷却器(24)における液面位置が推定される。その液面位置が上限位置を超えると、そのときのDDC(47)の開度が禁止開度として設定される。これを繰り返すことにより、IGV(46)の開度に応じて、DDC(47)の禁止開度の範囲が定まる。     The required air volume FL of the low stage impeller (31a) is determined from the required capacity of the refrigerator, and the opening degree of the optimal efficiency IGV (46) and the heat insulation head (pressure head) are determined from the required air volume FL. Next, the required air volume FL of the high stage impeller (32a) is determined from the required air volume FL of the low stage impeller (31a). Subsequently, the low pressure PL and the high pressure PH are determined from the required air volume FL of each impeller (31a, 32a) and the water temperature of the condenser (22) and the evaporator (26). And from this high-low pressure difference (high pressure PH-low pressure PL), the heat insulation head (pressure head) of the high-stage compression mechanism (32) is determined, the opening degree of the optimum efficiency DDC (47) is determined, and the intermediate pressure PM is determined. . From this intermediate pressure PM, the liquid level position in the intermediate cooler (24) is estimated. When the liquid level position exceeds the upper limit position, the opening degree of the DDC (47) at that time is set as the prohibited opening degree. By repeating this, the range of the prohibited opening of the DDC (47) is determined according to the opening of the IGV (46).

このように、IGV(46)の開度に応じて定められた禁止開度以下の範囲でDDC(47)の開度を制御することにより、中間冷却器(24)における液面位置が確実に上限以下となる。これにより、中間冷却器(24)からターボ圧縮機(21)への液冷媒の吸込みが確実に防止される。そして、禁止開度にできるだけ近い、即ち禁止開度にならない範囲でできるだけ大きい開度にDDC(47)を設定することにより、高段羽根車(32a)の運転効率低下引いてはターボ圧縮機(21)の運転効率低下が最小限に抑えられる。     Thus, by controlling the opening degree of the DDC (47) within the range of the prohibited opening degree or less determined according to the opening degree of the IGV (46), the liquid level position in the intercooler (24) is ensured. Below the upper limit. Thereby, the suction of the liquid refrigerant from the intercooler (24) to the turbo compressor (21) is reliably prevented. Then, by setting the DDC (47) as close as possible to the prohibited opening, that is, as large as possible within the range where the prohibited opening is not reached, the operating efficiency of the high stage impeller (32a) is reduced and the turbo compressor ( 21) Reduction in operating efficiency is minimized.

言い換えれば、DDC(47)の開度は、IGV(46)の開度に応じて予め定められた所定量だけIGV(46)の開度よりも大きく設定される。そして、上記所定量は、IGV(46)の開度とそれに対応する禁止開度の領域との差にほぼ相当する。     In other words, the opening degree of the DDC (47) is set larger than the opening degree of the IGV (46) by a predetermined amount that is predetermined according to the opening degree of the IGV (46). The predetermined amount substantially corresponds to the difference between the opening degree of the IGV (46) and the corresponding prohibited opening degree region.

−実施形態の効果−
本実施形態によれば、IGV(46)の開度は冷凍負荷に応じて制御し、DDC(47)の開度はIGV(46)の開度に応じて予め定められた禁止開度(低段膨張弁(25)が全開状態で中間冷却器(24)の液面高さが上限位置を超える開度)以下の範囲でできるだけ大きい値に制御するようにした。したがって、高段圧縮機構(32)の運転効率をそれ程低下させることなく、中間冷却器(24)の液面を確実に上限位置以下にすることができる。これにより、ターボ圧縮機(21)の運転効率低下を最小限に抑えつつ、中間冷却器(24)からターボ圧縮機(21)への液冷媒の吸込みを防止することができる。その結果、ターボ冷凍機(10)の信頼性を向上させることができる。
-Effect of the embodiment-
According to this embodiment, the opening degree of the IGV (46) is controlled according to the refrigeration load, and the opening degree of the DDC (47) is set to a prohibited opening degree (low) that is predetermined according to the opening degree of the IGV (46). The stage expansion valve (25) is controlled to be as large as possible within the range of the opening of the intermediate cooler (24) with the liquid level height exceeding the upper limit position) or less. Therefore, the liquid level of the intercooler (24) can be reliably kept below the upper limit position without significantly reducing the operating efficiency of the high stage compression mechanism (32). Accordingly, it is possible to prevent the liquid refrigerant from being sucked into the turbo compressor (21) from the intercooler (24) while minimizing a decrease in the operation efficiency of the turbo compressor (21). As a result, the reliability of the turbo refrigerator (10) can be improved.

なお、上記実施形態では、IGV(46)およびDDC(47)をターボ圧縮機(21)のケーシング(30)内に設けるようにしたが、本発明はターボ圧縮機(21)とは別個独立(別体)に設けるようにしてもよい。つまり、本発明は、IGV(46)をターボ圧縮機(21)の吸入側(吸入路(41)側)の冷媒配管に設け、DDC(47)をターボ圧縮機(21)の吐出側(吐出路(45)側)の冷媒配管に設けるようにしてもよい。     In the above embodiment, the IGV (46) and the DDC (47) are provided in the casing (30) of the turbo compressor (21). However, the present invention is independent of the turbo compressor (21) ( It may be provided separately. That is, in the present invention, the IGV (46) is provided in the refrigerant pipe on the suction side (suction passage (41) side) of the turbo compressor (21), and the DDC (47) is provided on the discharge side (discharge) of the turbo compressor (21). You may make it provide in refrigerant | coolant piping of a channel | path (45) side).

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、エコノマイザを備えて二段圧縮二段膨張冷凍サイクルを行うターボ冷凍機について有用である。     As described above, the present invention is useful for a turbo refrigerator that includes an economizer and performs a two-stage compression / two-stage expansion refrigeration cycle.

実施形態に係るターボ冷凍機の冷媒回路図である。It is a refrigerant circuit figure of the turbo refrigerator concerning an embodiment. 実施形態に係るターボ圧縮機の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the turbo compressor which concerns on embodiment. 定格運転時の冷媒回路における冷媒状態を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant state in the refrigerant circuit at the time of rated operation. 低負荷運転時の冷媒回路における冷媒状態を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant state in the refrigerant circuit at the time of low load driving | operation. IGVおよびDDCの開度制御範囲を説明するための図である。It is a figure for demonstrating the opening degree control range of IGV and DDC. IGVの開度とDDCの開度の組合せの一例を示す表である。It is a table | surface which shows an example of the combination of the opening degree of IGV, and the opening degree of DDC. 低段羽根車の性能特性図である。It is a performance characteristic figure of a low stage impeller. 高段羽根車の性能特性図である。It is a performance characteristic figure of a high stage impeller. IGVの開度とDDCの開度の関係を示す表である。It is a table | surface which shows the relationship between the opening degree of IGV, and the opening degree of DDC.

符号の説明Explanation of symbols

10 ターボ冷凍機
20 冷媒回路
21 ターボ圧縮機
24 中間冷却器
25 低段側膨張弁(膨張弁)
31 低段圧縮機構
32 高段圧縮機構
46 吸入流量制御弁(IGV)
47 吐出流量制御弁(DDC)
60 コントローラ(制御手段)
10 Turbo refrigerator
20 Refrigerant circuit
21 Turbo compressor
24 Intercooler
25 Low stage expansion valve (expansion valve)
31 Low stage compression mechanism
32 High compression mechanism
46 Suction flow control valve (IGV)
47 Discharge flow control valve (DDC)
60 Controller (control means)

Claims (2)

低段圧縮機構(31)および高段圧縮機構(32)を有する二段式のターボ圧縮機(21)と、中間冷却器(24)と、上記低段圧縮機構(31)の吸入流量を調節するための吸入流量制御弁(46)と、上記高段圧縮機構(32)の吐出流量を調節するための吐出流量制御弁(47)とを有し、上記中間冷却器(24)の中間圧冷媒のうちガス冷媒が上記低段圧縮機構(31)の吐出冷媒と共に上記高段圧縮機構(32)へ吸入される二段圧縮二段膨張冷凍サイクルを行う冷媒回路(20)を備えたターボ冷凍機であって、
冷凍負荷に応じて上記吸入流量制御弁(46)の開度を調節する一方、上記吐出流量制御弁(47)の開度を上記吸入流量制御弁(46)の開度よりも該開度に応じて予め定められた所定量だけ大きくなるように調節する制御手段(60)を備えている
ことを特徴とするターボ冷凍機。
The two-stage turbo compressor (21) with the low-stage compression mechanism (31) and the high-stage compression mechanism (32), the intercooler (24), and the intake flow rate of the low-stage compression mechanism (31) are adjusted. A suction flow rate control valve (46) for adjusting the discharge flow rate control valve (47) for adjusting the discharge flow rate of the high stage compression mechanism (32), and the intermediate pressure of the intermediate cooler (24) Turbo refrigeration having a refrigerant circuit (20) that performs a two-stage compression and two-stage expansion refrigeration cycle in which gas refrigerant out of the refrigerant is sucked into the high-stage compression mechanism (32) together with the refrigerant discharged from the low-stage compression mechanism (31) Machine,
While adjusting the opening degree of the suction flow rate control valve (46) according to the refrigeration load, the opening degree of the discharge flow rate control valve (47) is set to be larger than the opening degree of the suction flow rate control valve (46). A turbo chiller characterized by comprising control means (60) for adjusting to increase by a predetermined amount in response.
低段圧縮機構(31)および高段圧縮機構(32)を有する二段式のターボ圧縮機(21)と、中間冷却器(24)と、該中間冷却器(24)の下流側に設けられる膨張弁(25)と、上記低段圧縮機構(31)の吸入流量を調節するための吸入流量制御弁(46)と、上記高段圧縮機構(32)の吐出流量を調節するための吐出流量制御弁(47)とを有し、上記中間冷却器(24)の中間圧冷媒のうちガス冷媒が上記低段圧縮機構(31)の吐出冷媒と共に上記高段圧縮機構(32)へ吸入される二段圧縮二段膨張冷凍サイクルを行う冷媒回路(20)を備えたターボ冷凍機であって、
冷凍負荷に応じて上記吸入流量制御弁(46)の開度を調節する一方、上記膨張弁(25)が全開状態で上記中間冷却器(24)の液面が上限位置以上となる上記吐出流量制御弁(47)の開度を上記吸入流量制御弁(46)の開度に応じた禁止開度として予め定められ、該禁止開度直近の開度に上記吐出流量制御弁(47)を調節する制御手段(60)を備えている
ことを特徴とするターボ冷凍機。
A two-stage turbo compressor (21) having a low-stage compression mechanism (31) and a high-stage compression mechanism (32), an intermediate cooler (24), and a downstream side of the intermediate cooler (24) A discharge flow rate control valve (46) for adjusting the suction flow rate of the expansion valve (25), the low stage compression mechanism (31), and a discharge flow rate for adjusting the discharge flow rate of the high stage compression mechanism (32) And a gas refrigerant out of the intermediate pressure refrigerant of the intermediate cooler (24) is sucked into the high stage compression mechanism (32) together with the refrigerant discharged from the low stage compression mechanism (31). A turbo chiller including a refrigerant circuit (20) for performing a two-stage compression and two-stage expansion refrigeration cycle,
The discharge flow rate at which the opening of the intake flow rate control valve (46) is adjusted according to the refrigeration load, while the expansion valve (25) is fully open and the liquid level of the intermediate cooler (24) is equal to or higher than the upper limit position. The opening degree of the control valve (47) is determined in advance as a prohibited opening degree corresponding to the opening degree of the intake flow rate control valve (46), and the discharge flow rate control valve (47) is adjusted to the opening degree nearest to the prohibited opening degree. A turbo chiller comprising control means (60) for performing
JP2008023275A 2008-02-01 2008-02-01 Turbo refrigerator Active JP5141272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023275A JP5141272B2 (en) 2008-02-01 2008-02-01 Turbo refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023275A JP5141272B2 (en) 2008-02-01 2008-02-01 Turbo refrigerator

Publications (2)

Publication Number Publication Date
JP2009186031A true JP2009186031A (en) 2009-08-20
JP5141272B2 JP5141272B2 (en) 2013-02-13

Family

ID=41069458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023275A Active JP5141272B2 (en) 2008-02-01 2008-02-01 Turbo refrigerator

Country Status (1)

Country Link
JP (1) JP5141272B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181904A (en) * 2013-03-15 2014-09-29 Daikin Applied Americas Inc Refrigeration device, and control device of refrigerator
JP2014181905A (en) * 2013-03-15 2014-09-29 Daikin Applied Americas Inc Refrigeration device, and control device of refrigerator
JP2016079846A (en) * 2014-10-14 2016-05-16 株式会社日立製作所 Control device of fluid machine and control method of fluid machine
JP2020510185A (en) * 2017-03-14 2020-04-02 シーメンス アクティエンゲゼルシャフト Heat pump and method of operating heat pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739840B2 (en) * 1986-07-30 1995-05-01 株式会社神戸製鋼所 Control method of multi-stage centrifugal compressor
JPH0968192A (en) * 1995-09-01 1997-03-11 Hitachi Ltd Centrifugal compressor having diffuser with blade and control method thereof
JP2002327700A (en) * 2001-04-27 2002-11-15 Mitsubishi Heavy Ind Ltd Centrifugal compressor and refrigerating machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739840B2 (en) * 1986-07-30 1995-05-01 株式会社神戸製鋼所 Control method of multi-stage centrifugal compressor
JPH0968192A (en) * 1995-09-01 1997-03-11 Hitachi Ltd Centrifugal compressor having diffuser with blade and control method thereof
JP2002327700A (en) * 2001-04-27 2002-11-15 Mitsubishi Heavy Ind Ltd Centrifugal compressor and refrigerating machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181904A (en) * 2013-03-15 2014-09-29 Daikin Applied Americas Inc Refrigeration device, and control device of refrigerator
JP2014181905A (en) * 2013-03-15 2014-09-29 Daikin Applied Americas Inc Refrigeration device, and control device of refrigerator
US10539353B2 (en) 2013-03-15 2020-01-21 Daikin Applied Americas Inc. Refrigerating apparatus and control device for refrigerating machine
JP2016079846A (en) * 2014-10-14 2016-05-16 株式会社日立製作所 Control device of fluid machine and control method of fluid machine
JP2020510185A (en) * 2017-03-14 2020-04-02 シーメンス アクティエンゲゼルシャフト Heat pump and method of operating heat pump

Also Published As

Publication number Publication date
JP5141272B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP4715615B2 (en) Refrigeration equipment
JP4816220B2 (en) Refrigeration equipment
JP5495499B2 (en) Turbo refrigerator, refrigeration system, and control method thereof
JP4967435B2 (en) Refrigeration equipment
JP2007285681A5 (en)
JP5141272B2 (en) Turbo refrigerator
JP2007232230A (en) Refrigerating device
JP2011017455A (en) Turbo refrigerator
JP4591402B2 (en) Refrigeration equipment
JP2009186028A (en) Turbo refrigerator
JP6370593B2 (en) Oil-cooled multistage screw compressor and oil draining method thereof
JP2013139890A (en) Refrigeration apparatus
JP2009186030A (en) Turbo refrigerator
JPWO2012042698A1 (en) Refrigeration air conditioner
JP2007147228A (en) Refrigerating device
JP2005180810A (en) Air conditioner
JP3934600B2 (en) Cooling system
WO2015104822A1 (en) Refrigeration cycle device
JP2009236430A (en) Compression type refrigerating machine and its capacity control method
JP4798145B2 (en) Turbo refrigerator
JP4952599B2 (en) Turbo refrigerator
JP4720594B2 (en) Refrigeration equipment
JP4720593B2 (en) Refrigeration equipment
WO2015104823A1 (en) Refrigeration cycle device
JP2013139897A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5141272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151