JP2009185631A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2009185631A
JP2009185631A JP2008024025A JP2008024025A JP2009185631A JP 2009185631 A JP2009185631 A JP 2009185631A JP 2008024025 A JP2008024025 A JP 2008024025A JP 2008024025 A JP2008024025 A JP 2008024025A JP 2009185631 A JP2009185631 A JP 2009185631A
Authority
JP
Japan
Prior art keywords
nox
amount
emission
emission amount
occlusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008024025A
Other languages
Japanese (ja)
Other versions
JP4895135B2 (en
Inventor
Masakuni Yokoyama
正訓 横山
Atsushi Kawamura
淳 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008024025A priority Critical patent/JP4895135B2/en
Publication of JP2009185631A publication Critical patent/JP2009185631A/en
Application granted granted Critical
Publication of JP4895135B2 publication Critical patent/JP4895135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of accurately detecting the degree of deterioration of a NOx catalyst without being affected by NOx emission amounts. <P>SOLUTION: In responses 100, 101, 102 indicating increase in a NOx storage amount with respect to time, NOx storage amounts A0, A1, A2 at points 200, 201, 202 where an integrated value of NOx emission amounts from the internal combustion engine becomes a predetermined first emission amount are calculated. In addition, NOx storage amounts B0, B1, B2 at points 203, 204, 205 where an integrated value of NOx emission amounts from the internal combustion engine becomes a predetermined second emission amount are calculated. Storage amount difference values Δ0, Δ1, Δ2 which are differences between B0, B1, B2 and A0, A1, A2 are calculated. When the storage amount difference value decreases in order of Δ2, Δ0, Δ1, it is determined that the degree of deterioration of the NOx catalyst is high in order of responses 102, 100, 101. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

例えばディーゼルエンジンやリーンバーンガソリンエンジンのように理論空燃比よりも高い空燃比のリーン燃焼を行う内燃機関においては、通常の三元触媒が使用できないために、排気中の窒素酸化物(NOx)の浄化のために吸蔵還元型NOx触媒(NOx触媒、Lean NOx Trap、LNT)が用いられることが多い。   For example, in an internal combustion engine that performs lean combustion at an air-fuel ratio higher than the stoichiometric air-fuel ratio, such as a diesel engine or a lean burn gasoline engine, an ordinary three-way catalyst cannot be used. An NOx storage reduction catalyst (NOx catalyst, Lean NOx Trap, LNT) is often used for purification.

LNTでは、リーン雰囲気において吸蔵剤にNOxが吸蔵される。そして理論空燃比よりも燃料過剰なリッチ雰囲気に切り替えることにより、吸蔵されたNOxを還元して排出するリッチパージと呼ばれる操作を行って排気を浄化する。リッチパージにおいては、空燃比がリッチ雰囲気であり、かつ所定の温度条件(例えば触媒が機能するために摂氏300度以上。以下では温度は全て摂氏を用いる。)が満たされることにより、吸蔵されたNOxが無害な窒素に還元される。   In LNT, NOx is stored in the storage agent in a lean atmosphere. Then, by switching to a rich atmosphere in which the fuel is greater than the stoichiometric air-fuel ratio, an operation called rich purge that reduces and discharges the stored NOx is performed to purify the exhaust. In the rich purge, the air-fuel ratio is a rich atmosphere and a predetermined temperature condition (for example, 300 degrees Celsius or higher for the function of the catalyst. In the following, temperatures are all used in Celsius) is occluded. NOx is reduced to harmless nitrogen.

LNTの使用では、硫黄成分による被毒の問題(硫黄被毒あるいはS被毒)と熱による劣化(熱劣化)に対する対策が必要である。硫黄被毒とは、触媒(あるいは吸蔵剤)が燃料中の硫黄と結合してしまうことであり、その結果、触媒が排気浄化のための機能を果たせなくなる現象のことで、特定の条件下でS被毒前の状態に戻すことが可能である。一方、熱劣化とは、触媒が所定の温度以上(例えば700度以上)にさらされることにより、白金などの触媒が周囲の触媒と結合することにより、表面積が減少することであり、その結果、触媒が排気浄化のための機能を果たせなくなる現象のことで、熱劣化前の状態に戻すことはできない。以下ではLNTの劣化とはS被毒と熱劣化の両方を指すとする。   The use of LNT requires countermeasures against the problem of poisoning due to sulfur components (sulfur poisoning or S poisoning) and deterioration due to heat (heat deterioration). Sulfur poisoning is a phenomenon in which a catalyst (or occluding agent) binds to sulfur in the fuel, and as a result, the catalyst can no longer function for exhaust purification under certain conditions. It is possible to return to the state before S poisoning. On the other hand, thermal degradation is a reduction in surface area due to the catalyst being exposed to a temperature higher than a predetermined temperature (for example, 700 ° C. or higher), and a catalyst such as platinum is combined with the surrounding catalyst. This is a phenomenon in which the catalyst cannot perform the function for exhaust purification, and it cannot be returned to the state before the heat deterioration. In the following, LNT degradation refers to both S poisoning and thermal degradation.

硫黄被毒(S被毒)から触媒を再生する(S被毒再生あるいはS再生)ためには、リッチ雰囲気とし、かつ所定の温度条件(例えば650度以上)を満たす必要がある。この目的のために、例えばメイン噴射のあとにポスト噴射を行う、あるいは排気管へ燃料添加弁から燃料を添加する等の方策がとられる。NOx触媒においてS被毒が進行したとみなされる毎に、通常こうしたS再生を行って、触媒の機能を維持し続ける。   In order to regenerate the catalyst from sulfur poisoning (S poisoning) (S poisoning regeneration or S regeneration), it is necessary to have a rich atmosphere and satisfy a predetermined temperature condition (for example, 650 degrees or more). For this purpose, for example, a post-injection is performed after the main injection, or a fuel is added to the exhaust pipe from the fuel addition valve. Each time it is considered that S poisoning has progressed in the NOx catalyst, such S regeneration is usually performed to keep the function of the catalyst.

触媒のS被毒が進行しているにも関わらずS再生を行わないと、LNTのNOx浄化機能が低減してしまう。逆に不必要な頻度で頻繁にS再生を行うと、S再生には燃料を用いるので、燃費の悪化を招いてしまう。また、触媒の熱劣化の場合は、触媒の機能を回復できないので、NOx浄化機能が低下していることを警告しなければならない。したがってLNTの劣化度を検出して、適切な時期にS再生を行ったり,S被毒と熱劣化の判別を行わなければならない。   If S regeneration is not performed in spite of the progress of S poisoning of the catalyst, the NOx purification function of LNT is reduced. Conversely, if the S regeneration is frequently performed at an unnecessary frequency, fuel is used for the S regeneration. Further, in the case of thermal degradation of the catalyst, the function of the catalyst cannot be recovered, so that it must be warned that the NOx purification function is degraded. Therefore, it is necessary to detect the degree of deterioration of the LNT and perform S regeneration at an appropriate time or to discriminate between S poisoning and thermal deterioration.

例えば下記特許文献1では、LNTにおいて吸蔵されたNOxの還元を開始してから終了するまでの時間からLNTに吸蔵されていたNOxの量を推定する技術が開示されている。そしてNOx還元のためにかかった時間が短いほどNOxの吸蔵量が小さいので、LNTの劣化が進行したと判断している。特許文献1では、NOx還元反応の終了をLNTから排出される排気ガスがリーンからリッチへかわることによって検出している。   For example, Patent Document 1 below discloses a technique for estimating the amount of NOx stored in the LNT from the time from the start to the end of the reduction of NOx stored in the LNT. Then, the shorter the time taken for NOx reduction, the smaller the stored amount of NOx, so it is determined that the deterioration of LNT has progressed. In Patent Document 1, the end of the NOx reduction reaction is detected by changing the exhaust gas discharged from the LNT from lean to rich.

特許第2692380号Japanese Patent No. 2692380

しかしNOxの吸蔵量は、エンジンから排出されるNOxの量の影響をうける。一般にエンジンからのNOx排出量は、エンジンなどの個々の装置ごとの特性や、制御系の遅れなどの要因から狙いどおりの値とはならない場合がある。上記特許文献1の手法は、エンジンからのNOx排出量が予め設定された値である状況下で有効な手法である。   However, the storage amount of NOx is affected by the amount of NOx discharged from the engine. In general, the NOx emission amount from the engine may not be a target value due to factors such as characteristics of individual devices such as the engine and delays in the control system. The technique disclosed in Patent Document 1 is an effective technique in a situation where the NOx emission amount from the engine is a preset value.

エンジンからのNOx排出量が小さければLNTが劣化していなくてもNOxの吸蔵量は少なくなるので、特許文献1の手法ではLNTが劣化していると誤判定されてしまう。また逆にLNTが劣化していてもエンジンからのNOx排出量が大きければLNTのNOx吸蔵量も大きくなるので、特許文献1の手法ではLNTは劣化していないと誤判定されてしまう。   If the NOx emission amount from the engine is small, the stored amount of NOx decreases even if the LNT is not deteriorated. Therefore, the method of Patent Document 1 erroneously determines that the LNT is deteriorated. On the other hand, even if the LNT is deteriorated, if the NOx emission amount from the engine is large, the NOx occlusion amount of the LNT also becomes large. Therefore, the method of Patent Document 1 erroneously determines that the LNT is not deteriorated.

したがってエンジンからのNOx排出量の影響をうけて誤判定することがないLNTの劣化度判定方法が必要となる。しかしそうした判定方法は従来技術では提案されていない。   Therefore, there is a need for a method for determining the degree of deterioration of LNT that is not erroneously determined due to the influence of NOx emission from the engine. However, such a determination method has not been proposed in the prior art.

本発明が解決しようとする課題は、上記問題点に鑑み、内燃機関からのNOxの排出量の増減の影響を受けることなく、NOx触媒の劣化度を検出できる内燃機関の排気浄化装置を提供することである。   In view of the above problems, the problem to be solved by the present invention is to provide an exhaust purification device for an internal combustion engine that can detect the degree of deterioration of the NOx catalyst without being affected by the increase or decrease of the NOx emission amount from the internal combustion engine. That is.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために、本発明の内燃機関の排気浄化装置は、リーン雰囲気時にNOxを吸蔵しリッチ雰囲気時にNOxを還元するNOx触媒を排気通路に備えた内燃機関の排気浄化装置であって、前記内燃機関からのNOxの排出量を取得する排出量算出手段と、前記NOx触媒におけるNOxの吸蔵量を取得する吸蔵量算出手段とを備え、前記排出量取得手段によって算出された前記NOxの排出量の積算値が所定の第1の排出量となった際に前記吸蔵量算出手段によって算出されたNOxの吸蔵量を第1の吸蔵量とし、前記排出量取得手段によって算出された前記NOxの排出量の積算値が所定の第2の排出量となった際に前記吸蔵量算出手段によって算出されたNOxの吸蔵量を第2の吸蔵量とし、前記第2の排出量は前記第1の排出量よりも大きいとし、前記第2の吸蔵量と前記第1の吸蔵量との差が所定の閾値よりも小さいことを判別する判別手段と、その判別手段によって前記第2の吸蔵量と前記第1の吸蔵量との差が前記閾値よりも小さいことが判別された際に前記NOx触媒を再生する再生手段とを備えたことを特徴とする。   In order to solve the above-described problems, an exhaust gas purification apparatus for an internal combustion engine according to the present invention is an exhaust gas purification apparatus for an internal combustion engine provided with an NOx catalyst in the exhaust passage for storing NOx in a lean atmosphere and reducing NOx in a rich atmosphere. , An emission amount calculating means for acquiring the NOx emission amount from the internal combustion engine, and an occlusion amount calculating means for acquiring the NOx occlusion amount in the NOx catalyst, and the NOx calculated by the emission amount acquiring means. The NOx occlusion amount calculated by the occlusion amount calculation means when the integrated value of the emission amount becomes a predetermined first emission amount is set as the first occlusion amount, and the NOx calculated by the emission amount acquisition means. The NOx occlusion amount calculated by the occlusion amount calculating means when the integrated value of the emission amount of the gas becomes the predetermined second emission amount is set as the second occlusion amount, and the second emission amount is the first emission amount. A determination means for determining that a difference between the second storage amount and the first storage amount is smaller than a predetermined threshold, and the second storage amount and the Regeneration means for regenerating the NOx catalyst when it is determined that the difference from the first occlusion amount is smaller than the threshold value.

これにより本発明の内燃機関の排気浄化装置では、内燃機関からの異なる2つのNOxの排出量積算値に対する2つのNOx吸蔵量の差が所定の閾値よりも小さいときにNOx触媒を再生する。したがって従来技術のようにNOx排出量の大小による誤判定を起こすことなく精度よくNOx触媒の劣化度が検出できて、NOx触媒の再生が行える。よってNOx触媒の劣化度が精度よく検出できることにより、適切なタイミングで触媒の再生処理が行えるので、触媒の性能を高く維持でき、かつ不必要に頻繁な再生によって燃費が悪化することも回避できる。   Thus, in the exhaust gas purification apparatus for an internal combustion engine according to the present invention, the NOx catalyst is regenerated when the difference between the two NOx occlusion amounts with respect to the two accumulated NOx emissions from the internal combustion engine is smaller than a predetermined threshold value. Therefore, it is possible to accurately detect the degree of deterioration of the NOx catalyst without causing erroneous determination due to the amount of NOx emission as in the prior art, and to regenerate the NOx catalyst. Therefore, since the degree of deterioration of the NOx catalyst can be accurately detected, the catalyst regeneration process can be performed at an appropriate timing, so that the performance of the catalyst can be maintained at a high level, and it is also possible to avoid deterioration of fuel consumption due to unnecessary frequent regeneration.

また前記第2の吸蔵量と前記第1の吸蔵量との差が、前記閾値よりも大きい第2閾値よりも大きいことを判別する第2判別手段と、前記第2判別手段によって前記第2の吸蔵量と前記第1の吸蔵量との差が前記第2閾値よりも大きいことが判別された際にNOx触媒の還元処理の間の間隔を広げる調節手段とを備えたとしてもよい。   Further, a second discriminating means for discriminating that a difference between the second occlusion amount and the first occlusion amount is larger than a second threshold value larger than the threshold value, and the second discriminating means by the second discriminating means. There may be provided adjusting means for increasing the interval between the reduction processes of the NOx catalyst when it is determined that the difference between the storage amount and the first storage amount is larger than the second threshold value.

これにより、内燃機関からの異なる2つのNOxの排出量積算値に対するNOx吸蔵量の差が所定の第2閾値よりも大きいときには、NOx触媒の還元処理の間隔を広げる。したがってNOx吸蔵量の差が所定の第2閾値よりも大きいことによってNOx触媒の劣化度が小さいことを精度よく検出して、劣化度が小さい場合にはNOx触媒の還元処理の間隔を広げて、還元処理による燃費の悪化を抑制できる。よって上記効果とあいまって、適切なタイミングで触媒の再生処理を行って触媒の性能を高く維持し、かつ不必要に頻繁な再生によって燃費が悪化することを回避するとともに、不必要に頻繁なNOx還元によって燃費が悪化することも回避できる。   Thereby, when the difference of the NOx occlusion amount with respect to two different NOx emission integrated values from the internal combustion engine is larger than the predetermined second threshold, the interval of the reduction process of the NOx catalyst is widened. Therefore, when the difference in the NOx occlusion amount is larger than the predetermined second threshold, it is accurately detected that the degree of deterioration of the NOx catalyst is small. When the degree of deterioration is small, the reduction processing interval of the NOx catalyst is increased, Deterioration of fuel consumption due to the reduction process can be suppressed. Therefore, combined with the above effects, the catalyst regeneration process is performed at an appropriate timing to maintain the catalyst performance high, and the unnecessary fuel consumption is prevented from deteriorating due to frequent regeneration, and unnecessary frequent NOx. It is also possible to avoid deterioration of fuel consumption due to reduction.

また前記NOx触媒に吸蔵されたNOxの量と前記NOxの排出量の積算量との比を浄化率として、前記NOxの排出量の積算値が前記第1の排出量となった時点での前記浄化率が所定の目標浄化率となるように前記第1の排出量は設定され、前記NOxの排出量の積算値が前記第2の排出量となる時点までの平均の前記浄化率が前記所定の目標浄化率となるように前記第2の排出量は設定されたとしてもよい。   The ratio of the NOx amount occluded in the NOx catalyst and the integrated amount of the NOx emission amount is used as a purification rate, and the integrated value of the NOx emission amount becomes the first emission amount when the NOx catalyst is integrated. The first emission amount is set so that the purification rate becomes a predetermined target purification rate, and the average purification rate until the integrated value of the NOx emission amount becomes the second emission amount is the predetermined purification rate. The second discharge amount may be set so as to achieve the target purification rate.

これにより、NOxの排出量の積算値が第1の排出量となった時点での浄化率が所定の目標浄化率となるので、その時点までの平均浄化率が目標浄化率以上とできる。さらにNOxの排出量の積算値が前記第2の排出量となる時点までの平均の前記浄化率が前記所定の目標浄化率となるので、第1及び第2の排出量になるまでの平均浄化率を目標浄化率以上とできる。したがってNOx触媒の劣化度を精度よく検出して、適切なタイミングでの触媒再生やNOx還元処理の間隔を設定するとともに、目標浄化率以上のNOx浄化率も達成することができる。   Thereby, the purification rate at the time when the integrated value of the NOx emission amount becomes the first emission amount becomes the predetermined target purification rate, so that the average purification rate up to that point can be equal to or higher than the target purification rate. Furthermore, since the average purification rate until the integrated value of the NOx emission amount becomes the second emission amount becomes the predetermined target purification rate, the average purification until the first and second emission amounts are reached. The rate can be higher than the target purification rate. Therefore, it is possible to accurately detect the degree of deterioration of the NOx catalyst, set an interval between catalyst regeneration and NOx reduction processing at an appropriate timing, and achieve a NOx purification rate that is equal to or higher than the target purification rate.

以下で本発明の内燃機関の排気浄化装置の実施形態について、添付図面を参照しつつ説明する。まず図1は、本発明の一実施形態に係る内燃機関の排気浄化装置1の装置構成の概略図である。図1における排気浄化装置1は、4気筒のディーゼルエンジン2(以下では単にエンジンと称する)に対して構成されている。図1の内燃機関及び排気浄化装置1は主に、エンジン2、吸気管3、排気管4、排気還流管5(EGR管)、電子制御装置7(ECU)からなる。   Embodiments of an exhaust emission control device for an internal combustion engine according to the present invention will be described below with reference to the accompanying drawings. First, FIG. 1 is a schematic diagram of a device configuration of an exhaust gas purification device 1 for an internal combustion engine according to an embodiment of the present invention. The exhaust purification device 1 in FIG. 1 is configured for a four-cylinder diesel engine 2 (hereinafter simply referred to as an engine). 1 mainly includes an engine 2, an intake pipe 3, an exhaust pipe 4, an exhaust recirculation pipe 5 (EGR pipe), and an electronic control unit 7 (ECU).

エンジン2への空気(新気、吸気)は吸気管3をとおって供給される。吸気管3には吸気スロットル31が配置されている。吸気スロットル31の開度が調節されることによってエンジン2に供給される吸気量が増減する。   Air (fresh air, intake air) to the engine 2 is supplied through the intake pipe 3. An intake throttle 31 is disposed in the intake pipe 3. The amount of intake air supplied to the engine 2 increases or decreases as the opening of the intake throttle 31 is adjusted.

エンジン2にはインジェクタ21、エンジン回転数センサ22が装備されている。インジェクタ21からの噴射によってシリンダ内に燃料が供給される。エンジン回転数センサ22によってエンジン2の(単位時間あたりの)回転数が計測される。エンジン回転数センサ22は、例えばエンジン2から連結されたクランクの回転角度を計測するクランク角センサとすればよい。そしてクランク角センサの検出値がECU7へ送られてエンジンの回転数が算出されるとすればよい。   The engine 2 is equipped with an injector 21 and an engine speed sensor 22. Fuel is supplied into the cylinder by injection from the injector 21. The engine speed sensor 22 measures the speed of the engine 2 (per unit time). The engine speed sensor 22 may be, for example, a crank angle sensor that measures the rotation angle of a crank connected from the engine 2. The detected value of the crank angle sensor may be sent to the ECU 7 to calculate the engine speed.

EGR管5は、排気管5から吸気管3への排気還流(Exhaust Gas Recirculation、EGR)をおこなう。EGR管5にはEGRバルブ51が装備されている。例えばリッチパージ時には、EGRバルブ51を開き、吸気スロットル31を絞って新気量を減らすことなどが行われる。またEGRバルブ51を開いて排ガスを還流することでエンジン内の燃焼温度を低下させて、エンジン2からのNOxの排出量を減少させることもできる。   The EGR pipe 5 performs exhaust gas recirculation (ExGR) from the exhaust pipe 5 to the intake pipe 3. The EGR pipe 5 is equipped with an EGR valve 51. For example, during a rich purge, the EGR valve 51 is opened and the intake air throttle 31 is throttled to reduce the amount of fresh air. Also, the combustion temperature in the engine can be lowered by opening the EGR valve 51 to recirculate the exhaust gas, so that the amount of NOx discharged from the engine 2 can be reduced.

エンジン2からの排気ガスは排気管4へ排出される。排気管4上には、LNT6(NOx触媒)が装備されている。LNT6は例えばセラミック製の基材上に担体の層が形成されて、担体上に吸蔵剤と触媒とが担持された構造であるとすればよい。担体としては例えばガンマアルミナを用いれば表面の凹凸による大きな表面積によって多くの吸蔵剤、触媒が担持できて好適である。また吸蔵剤としては例えばバリウム、リチウム、カリウムなど、触媒としては例えば白金などを用いればよい。   Exhaust gas from the engine 2 is discharged to the exhaust pipe 4. On the exhaust pipe 4, LNT6 (NOx catalyst) is equipped. The LNT 6 may have a structure in which, for example, a carrier layer is formed on a ceramic substrate, and a storage agent and a catalyst are supported on the carrier. As the carrier, for example, gamma alumina is suitable because it can carry a large amount of storage agent and catalyst due to its large surface area due to surface irregularities. Further, for example, barium, lithium, potassium or the like may be used as the occlusion agent, and platinum or the like may be used as the catalyst.

LNT6においては、理論空燃比よりも燃料が希薄な(通常、A/F値(空燃比値)は17以上)リーン雰囲気時に排気中のNOxが吸蔵剤に吸蔵される。そして理論空燃比よりも燃料が過剰な(通常、A/F値は14.5以下)リッチ雰囲気に空燃比が調節され、上述のように所定の温度条件が満たされると、吸蔵剤に吸蔵されていたNOxが、燃料中の成分から生成された還元剤によって還元されて無害な窒素となって排出される。リッチ雰囲気を形成するためには例えば、インジェクタ21からメイン噴射後に燃料を短いインターバルで噴射するリッチ燃焼や、長いインターバルで噴射するポスト噴射などの手法が用いられる。   In LNT6, the fuel is leaner than the stoichiometric air-fuel ratio (usually, the A / F value (air-fuel ratio value) is 17 or more), and NOx in the exhaust is occluded by the occlusion agent in a lean atmosphere. Then, when the air-fuel ratio is adjusted to a rich atmosphere in which the fuel is more than the stoichiometric air-fuel ratio (usually the A / F value is 14.5 or less) and the predetermined temperature condition is satisfied as described above, the fuel is stored in the storage agent. The NOx that has been reduced is reduced by the reducing agent generated from the components in the fuel and discharged as harmless nitrogen. In order to form a rich atmosphere, for example, a technique such as rich combustion in which fuel is injected at a short interval after main injection from the injector 21 or post injection at a long interval is used.

LNT6の入口側と出口側とにはA/Fセンサ61、62が配置されている。A/Fセンサ61、62によって空燃比が計測される。またアクセル開度センサ81が配置されて、運転者によるアクセルの踏み込みの情報が計測される。   A / F sensors 61 and 62 are arranged on the inlet side and the outlet side of the LNT 6. The air / fuel ratio is measured by the A / F sensors 61 and 62. In addition, an accelerator opening sensor 81 is arranged to measure information on accelerator depression by the driver.

上で述べたエンジン回転数センサ22、A/Fセンサ61、62、アクセル開度センサ81の計測値はECU7へ送られる。またECU7によりインジェクタ21によるエンジン2への燃料噴射のタイミングや噴射量、吸気スロットル31とEGRバルブ51との開度が調節される。ECU7は各種演算をおこなうCPUや各種情報の記憶を行うメモリ71を有する構造とすればよい。   The measured values of the engine speed sensor 22, the A / F sensors 61 and 62, and the accelerator opening sensor 81 described above are sent to the ECU 7. Further, the ECU 7 adjusts the timing and amount of fuel injection to the engine 2 by the injector 21 and the opening between the intake throttle 31 and the EGR valve 51. The ECU 7 may have a structure including a CPU that performs various calculations and a memory 71 that stores various types of information.

本実施形態では、以上の装置構成のもとで、LNT6における触媒の劣化度を判定する。そしてLNT6の触媒の劣化が進行していると判定された場合にはS再生を実行し、LNTが劣化していないと判定された場合にはNOx還元処理間の間隔を長くする操作をおこなう。そうした処理の手順が図2に示されている。図2の処理がECU7によって順次実行されるとすればよい。   In the present embodiment, the degree of catalyst deterioration in the LNT 6 is determined under the above-described apparatus configuration. When it is determined that the catalyst of the LNT 6 is deteriorating, S regeneration is performed. When it is determined that the LNT is not deteriorating, an operation for increasing the interval between the NOx reduction processes is performed. The procedure for such processing is shown in FIG. The processing in FIG. 2 may be executed sequentially by the ECU 7.

まず手順S10でエンジン2からのNOxの排出量を積算する。この処理のために例えば、エンジン回転数と負荷とを座標軸とする運転状態を示す平面を複数の領域に区画し、各々の領域におけるエンジン2からの単位時間当たりのNOx排出量をメモリ71に記憶しておけばよい。そしてS10では運転状態の推移に従って、対応する領域のNOx排出量を積算していく処理をおこなえばよい。ここでエンジン回転数はエンジン回転数センサ22によって計測すればよい。また負荷はアクセル開度センサ81の計測値とすればよい。また負荷ではなく、エンジン2における燃料の噴射量としてもよい。その場合、燃料の噴射量の値はECU7による指令値を用いればよい。   First, in step S10, NOx emissions from the engine 2 are integrated. For this process, for example, a plane showing the operating state with the engine speed and load as coordinate axes is divided into a plurality of regions, and the NOx emission amount per unit time from the engine 2 in each region is stored in the memory 71. You just have to. And in S10, the process of integrating | accumulating the NOx discharge | emission amount of a corresponding area | region may be performed according to transition of a driving | running state. Here, the engine speed may be measured by the engine speed sensor 22. The load may be a value measured by the accelerator opening sensor 81. The fuel injection amount in the engine 2 may be used instead of the load. In that case, a command value from the ECU 7 may be used as the value of the fuel injection amount.

次にS20では、S10で求められたNOx排出量の積算値が第1の排出量より大きいかどうかが判断される。ここで第1の排出量の値は予め定めておけばよい。NOx排出量の積算値が第1の排出量より大きい場合は(S20:YES)、S30へ進む。NOx排出量の積算値が第1の排出量以下の場合は(S20:NO)、S10へ戻り、積算値が第1の排出量を超えるまで上記手順を繰り返す。   Next, in S20, it is determined whether or not the integrated value of the NOx emission amount obtained in S10 is larger than the first emission amount. Here, the value of the first discharge amount may be determined in advance. When the integrated value of the NOx emission amount is larger than the first emission amount (S20: YES), the process proceeds to S30. If the integrated value of the NOx emission amount is equal to or less than the first emission amount (S20: NO), the process returns to S10 and the above procedure is repeated until the integrated value exceeds the first emission amount.

S30ではLNT6に吸蔵されたNOxの還元処理(リッチパージ)を実行する。この手順では上述のとおり、通常のリーン雰囲気がリッチ雰囲気に切り替えられ、所定の温度条件を達成することによって、LNT6に吸蔵されていたNOxが還元されて排出される。   In S30, a reduction process (rich purge) of NOx occluded in LNT6 is executed. In this procedure, as described above, the normal lean atmosphere is switched to the rich atmosphere, and by achieving a predetermined temperature condition, NOx stored in the LNT 6 is reduced and discharged.

S30でのNOx還元処理が終了したら、次にS40で、NOx還元のためにかかった時間からLNT6に吸蔵されていたNOxの量を推定する。推定方法を説明する。一般にNOxの還元を実行するために空燃比をリッチにすると、上流側のA/Fセンサ61の計測値はただちにリッチとなるが、下流側のA/Fセンサ62の計測値はNOxの還元中はほぼ理論空燃比が維持され、NOx還元終了後にリッチとなる。   When the NOx reduction process in S30 ends, next, in S40, the amount of NOx stored in the LNT 6 is estimated from the time taken for NOx reduction. An estimation method will be described. In general, when the air-fuel ratio is made rich to perform NOx reduction, the measured value of the upstream A / F sensor 61 immediately becomes rich, but the measured value of the downstream A / F sensor 62 is being reduced to NOx. Substantially maintains the stoichiometric air-fuel ratio, and becomes rich after the end of NOx reduction.

したがってNOx還元のためにかかった時間は、上流側のA/Fセンサ61の計測値がリッチとなってから下流側のA/Fセンサ62がリッチとなるまでの時間となる。そしてNOxの吸蔵量が少ないほど早くNOx還元処理が終了する性質があるので、NOx還元のためにかかった時間からNOx吸蔵量が推定できる。手順S30のためにNOx還元のためにかかった時間とLNT6に吸蔵されていたNOxの量(NOx吸蔵量)との間の関係を予め求めておいてメモリ71に記憶しておき、これを用いればよい。上記関係としては例えば、NOx還元のためにかかった時間にあらかじめ定めておいた係数を乗じた数値をLNT6におけるNOx吸蔵量としてもよい。   Therefore, the time taken for NOx reduction is the time from when the upstream A / F sensor 61 becomes rich until the downstream A / F sensor 62 becomes rich. Since the NOx occlusion amount is reduced as the NOx occlusion amount decreases, the NOx occlusion amount can be estimated from the time taken for NOx reduction. The relationship between the time taken for NOx reduction for step S30 and the amount of NOx stored in the LNT 6 (NOx storage amount) is obtained in advance and stored in the memory 71 and used. That's fine. As the above relationship, for example, a value obtained by multiplying the time taken for NOx reduction by a predetermined coefficient may be used as the NOx occlusion amount in the LNT6.

またS30では、NOx還元のためにかかった時間ではなく、横軸を時間、縦軸を空燃比としたときの上流側のA/Fセンサ61の計測値のプロットと下流側のA/Fセンサ62の計測値のプロットとの間の面積を用いてもよい。そして手順S30のために、同面積とLNT6のNOx吸蔵量との間の関係を予め求めておいてメモリ71に記憶しておき、これを用いればよい。上記関係としては例えば、上記面積値にあらかじめ定めておいた係数を乗じた数値をLNT6におけるNOx吸蔵量としてもよい。   In S30, not the time required for NOx reduction, but the horizontal axis represents time, and the vertical axis represents the air-fuel ratio plot of the measured value of the upstream A / F sensor 61 and the downstream A / F sensor. The area between the 62 measurement plots may be used. For the procedure S30, the relationship between the same area and the NOx occlusion amount of the LNT 6 is obtained in advance and stored in the memory 71, and this may be used. As the above relationship, for example, a numerical value obtained by multiplying the area value by a predetermined coefficient may be used as the NOx occlusion amount in the LNT 6.

さらに上で述べたような時間あるいは面積からNOx吸蔵量への関係において、排気ガス流量を上記時間あるいは面積に乗算してもよい。その理由は、排気ガス流量が多いほど一般に排気ガス中の還元剤も多いので、より多くの還元反応が行われたと考えられるからである。これにより排気ガス流量の大きさも考慮して、より精度よくNOx吸蔵量が算出できる。排気ガス流量は例えば吸気管3にエアフロメータを設置して、これにより計測された吸気量を排気量とみなしてもよい。   Furthermore, in the relationship from the time or area as described above to the NOx occlusion amount, the exhaust gas flow rate may be multiplied by the time or area. The reason is that as the exhaust gas flow rate is larger, the amount of reducing agent in the exhaust gas is generally larger, so that it is considered that more reduction reaction has been performed. Accordingly, the NOx occlusion amount can be calculated with higher accuracy in consideration of the exhaust gas flow rate. For the exhaust gas flow rate, for example, an air flow meter may be installed in the intake pipe 3, and the intake air amount measured thereby may be regarded as the exhaust air amount.

なお下流側のA/Fセンサ62を、酸素濃度を計測するO2センサに置き換えてもよい。O2センサの場合、A/Fセンサよりもオンオフ値に近いかたちでリッチかリーンかの情報が得られる特徴があるので、より明確にLNT6の出口側がリッチになったか否か、つまりNOxの還元が終了したか否かが検知できる。   The downstream A / F sensor 62 may be replaced with an O2 sensor that measures the oxygen concentration. In the case of the O2 sensor, there is a feature that information on whether it is rich or lean can be obtained in a form closer to the on / off value than the A / F sensor, so whether or not the outlet side of the LNT6 has become richer, that is, the reduction of NOx It can be detected whether or not it has been completed.

次に手順S50からS80で、上記S10からS40までと同じ手順を繰り返す。ただし第1の排出量を、より大きな値である第2の排出量に置き換える。   Next, in steps S50 to S80, the same procedure as in steps S10 to S40 is repeated. However, the first discharge amount is replaced with a second discharge amount having a larger value.

上記のとおり本実施形態では、リッチパージを実行するタイミングを、エンジン2からのNOx排出量の積算値が所定の値となる(あるいは、それを超える)ことによって決定している。上で述べた第1及び第2の排出量は、LNT6の劣化度を判定するために独自に設定された排出量としてもよい。あるいは第1及び第2の排出量のうちのどちらかは、通常用いているリッチパージを実行するタイミングを決定する排出量としてもよい。   As described above, in the present embodiment, the timing for executing the rich purge is determined by the integrated value of the NOx emission amount from the engine 2 becoming a predetermined value (or exceeding it). The first and second emission amounts described above may be emission amounts uniquely set in order to determine the degree of deterioration of the LNT 6. Alternatively, one of the first and second discharge amounts may be a discharge amount that determines the timing for executing the normally used rich purge.

次にS90で吸蔵量の差分値を算出する。ここで吸蔵量の差分値とは、S80で求められたNOx吸蔵量とS40で求められたNOx吸蔵量との差の値である。次にS100で、基準吸蔵量差分値を算出する。ここで基準吸蔵量差分値とは、予め基準として定めておいたLNT6の劣化度とエンジン2からのNOx排出量に設定された状況下において、NOx排出量積算値が第2の排出量のときのLNT6におけるNOx吸蔵量とNOx排出量積算値が第1の排出量のときのLNT6におけるNOx吸蔵量との差の値である。なおこの基準吸蔵量差分値は予め算出してメモリ71に記憶しておき、S100ではそれを呼び出すのみとしてもよい。   Next, the difference value of the amount of occlusion is calculated in S90. Here, the difference value of the storage amount is a value of a difference between the NOx storage amount obtained in S80 and the NOx storage amount obtained in S40. Next, in S100, a reference storage amount difference value is calculated. Here, the reference occlusion amount difference value is obtained when the integrated NOx emission amount is the second emission amount under the condition that the deterioration level of the LNT 6 and the NOx emission amount from the engine 2 set in advance are set as the reference. This is a difference value between the NOx occlusion amount in the LNT6 and the NOx occlusion amount in the LNT6 when the NOx emission amount integrated value is the first emission amount. The reference storage amount difference value may be calculated in advance and stored in the memory 71, and only it may be called in S100.

次にS110で第1閾値、第2閾値を算出する。以下で示されるように、第1閾値は、その値よりも吸蔵量差分値が小さければLNT6の劣化度が高く、S再生が必要と判断される閾値である。その目的のために第1閾値は、S100で求めた基準吸蔵量差分値よりも所定値分小さい値に設定すればよい。   Next, a first threshold value and a second threshold value are calculated in S110. As will be described below, the first threshold is a threshold at which the degree of deterioration of the LNT 6 is high and the S regeneration is determined to be necessary if the occlusion amount difference value is smaller than that value. For that purpose, the first threshold value may be set to a value smaller by a predetermined value than the reference storage amount difference value obtained in S100.

また第2閾値は、その値よりも吸蔵量差分値が大きければLNT6の劣化度が低いので、リッチパージ間の間隔を広げる処理を行う閾値である。その目的のために第2閾値は、S100で求めた基準吸蔵量差分値よりも所定値分大きい値に設定すればよい。第1閾値を設定するための上記所定値は第2閾値を設定するための上記所定値と異なる値としてもよい。   Further, the second threshold value is a threshold value for performing the process of widening the interval between the rich purges because the deterioration degree of the LNT 6 is low if the occlusion amount difference value is larger than that value. For this purpose, the second threshold value may be set to a value that is larger by a predetermined value than the reference storage amount difference value obtained in S100. The predetermined value for setting the first threshold may be a value different from the predetermined value for setting the second threshold.

次にS120及びS130ではS90で求めた吸蔵量差分値と、S110で設定された第1閾値、第2閾値との大小関係が判断される。図2のとおり、吸蔵量差分値が第1閾値よりも小さければ(S120:YES)、LNT6の劣化度が大きいと判断されるので、S140へ進んでS被毒再生が実行される。また吸蔵量差分値が第1閾値以上で(S120:NO)、第2閾値以下(S130:NO)ならば、劣化度が中程度であると判断されて、この一連の処理を終了する。   Next, in S120 and S130, the magnitude relationship between the storage amount difference value obtained in S90 and the first threshold value and the second threshold value set in S110 is determined. As shown in FIG. 2, if the occlusion amount difference value is smaller than the first threshold (S120: YES), it is determined that the degree of deterioration of LNT6 is large, so the routine proceeds to S140, where S poisoning regeneration is executed. If the occlusion amount difference value is not less than the first threshold value (S120: NO) and not more than the second threshold value (S130: NO), it is determined that the degree of deterioration is moderate, and this series of processing is terminated.

また吸蔵量差分値が第2閾値よりも大きい(S120:NOかつS130:YES)ならば、LNT6の劣化度が低いと判断して、S150へ進んでNOx還元処理の間の間隔を広げる操作をおこなう。ここでのNOx還元処理の間の間隔を広げる操作とは例えば、NOxの還元処理を実行するタイミングを決定するNOx排出量積算値を増加させることとすればよい。   If the occlusion amount difference value is larger than the second threshold value (S120: NO and S130: YES), it is determined that the degree of deterioration of LNT6 is low, and the operation proceeds to S150 to increase the interval between the NOx reduction processes. Do it. The operation of increasing the interval between the NOx reduction processes here may be, for example, increasing the NOx emission integrated value that determines the timing for executing the NOx reduction process.

以下で上記S120からS150の処理の効果を図3を用いて説明する。図3には横軸を時間、縦軸をNOx吸蔵量としたときの3つの応答例が示されている。図3の原点はLNT6が新品の時、あるいはリッチパージが実行されてNOx吸蔵量がゼロとなった状態に対応している。図3の応答100、101、102は、エンジン2が運転してNOxを排出し続けることによってLNT6におけるNOx吸蔵量が増加する様子を示している。   Hereinafter, the effects of the processing from S120 to S150 will be described with reference to FIG. FIG. 3 shows three response examples when the horizontal axis represents time and the vertical axis represents the NOx occlusion amount. The origin in FIG. 3 corresponds to a state where the LNT 6 is new or a rich purge is executed and the NOx occlusion amount becomes zero. Responses 100, 101, and 102 in FIG. 3 indicate how the NOx occlusion amount in the LNT 6 increases as the engine 2 operates and continues to discharge NOx.

応答100は基準となる特性であり、LNT6の劣化度が中程度で、かつエンジン2からのNOx排出量も中程度の場合の応答である。応答101はLNT6の劣化度が小さく、かつエンジン2からのNOx排出量も小さい場合の応答である。応答102はLNT6の劣化度が大きく、かつエンジン2からのNOx排出量も大きい場合の応答である。   The response 100 is a reference characteristic, and is a response when the degree of deterioration of the LNT 6 is medium and the NOx emission amount from the engine 2 is also medium. The response 101 is a response when the degree of deterioration of the LNT 6 is small and the NOx emission amount from the engine 2 is also small. The response 102 is a response when the degree of deterioration of the LNT 6 is large and the NOx emission amount from the engine 2 is also large.

劣化度の大きい場合ほど、つまり応答101、応答100、応答102の順で、早い時間でNOx吸蔵量が飽和状態に近づき、応答曲線が水平に近くなる。この理由は図4によって説明される。図4には横軸にNOx吸蔵量、縦軸にNOx浄化率をとった場合のLNT6の吸蔵特性が示されている。NOx吸蔵量が少ないうちは高いNOx浄化率を維持するが、NOx吸蔵量が増加することによって吸蔵性能が低減していき、あるところからNOx浄化率が低下していく。こうした吸蔵性能の低減は、図4のとおり、LNT6の劣化が進行するほど、少ないNOx吸蔵量からあらわれる。したがってLNT6の劣化度が大きいほど、NOx吸蔵量ははやい段階で頭打ちとなる。   As the degree of deterioration increases, that is, in the order of the response 101, the response 100, and the response 102, the NOx occlusion amount approaches the saturated state at an earlier time, and the response curve becomes closer to the horizontal. The reason for this is illustrated by FIG. FIG. 4 shows the storage characteristics of the LNT 6 when the horizontal axis represents the NOx storage amount and the vertical axis represents the NOx purification rate. While the NOx occlusion amount is small, a high NOx purification rate is maintained. However, as the NOx occlusion amount increases, the occlusion performance decreases, and the NOx purification rate decreases from a certain point. As shown in FIG. 4, such a reduction in the occlusion performance appears as the NOx occlusion amount decreases as the degradation of the LNT 6 progresses. Therefore, the greater the degree of deterioration of LNT6, the higher the NOx occlusion amount reaches its peak at a faster stage.

一般にエンジン2からのNOx排出量が同じならば、LNT6の劣化度が大きいほど、NOx吸蔵量が小さい。しかしNOx排出量が大きければ、例えLNT6の劣化度が大きくても、NOx吸蔵量は大きくなる場合がある。上述のとおり、図3の応答100、101、102においては、応答101,100,102の順でNOx排出量が大きい。その結果、図3では初期の時間帯では、劣化度から想像されるのとは逆に、劣化度の大きい応答102、100、101の順でNOx吸蔵量が大きくなっている。以上が図3のような応答曲線が得られる理由である。   In general, if the NOx emission amount from the engine 2 is the same, the greater the degree of deterioration of the LNT 6, the smaller the NOx occlusion amount. However, if the NOx emission amount is large, the NOx occlusion amount may become large even if the degree of deterioration of the LNT 6 is large. As described above, in the responses 100, 101, and 102 in FIG. 3, the NOx emission amount increases in the order of the responses 101, 100, and 102. As a result, in the initial time zone in FIG. 3, the NOx occlusion amount increases in the order of the responses 102, 100, and 101 with the higher deterioration level, contrary to what is imagined from the deterioration degree. The above is the reason why the response curve as shown in FIG. 3 is obtained.

点200、201、202はNOx排出量の積算値が第1の排出量に達した時点を示している。図3のように点200、201、202におけるNOx排出量はそれぞれA0、A1、A2である。図2における手順S40ではA0、A1、A2が算出される。また点203、204、205はNOx排出量の積算値が第2の排出量に達した時点を示している。図3のように点203、204、205におけるNOx排出量はそれぞれB0、B1、B2である。図2における手順S80ではB0、B1、B2が算出される。   Points 200, 201, and 202 indicate points in time when the integrated value of the NOx emission amount reaches the first emission amount. As shown in FIG. 3, the NOx emissions at points 200, 201, and 202 are A0, A1, and A2, respectively. In step S40 in FIG. 2, A0, A1, and A2 are calculated. Points 203, 204, and 205 indicate the time when the integrated value of the NOx emission amount reaches the second emission amount. As shown in FIG. 3, the NOx emissions at points 203, 204, and 205 are B0, B1, and B2, respectively. In step S80 in FIG. 2, B0, B1, and B2 are calculated.

図3のΔ0、Δ1、Δ2が、図2のS90で算出される吸蔵量差分値である。図3のとおり、Δ0、Δ1、Δ2はそれぞれB0−A0、B1−A1、B2−A2の値である。Δ0をS100で求める(あるいは呼び出す)基準吸蔵量差分値としてもよい。   Δ0, Δ1, and Δ2 in FIG. 3 are occlusion amount difference values calculated in S90 in FIG. As shown in FIG. 3, Δ0, Δ1, and Δ2 are values of B0-A0, B1-A1, and B2-A2, respectively. Δ0 may be a reference storage amount difference value obtained (or called) in S100.

上述のとおり、点200、201、202を比較すると、NOx排出量の影響で、LNT6の劣化度の大きい点202、200、201の順でNOx吸蔵量が大きい。従来技術においては、NOx吸蔵量が少ないほどLNT6が劣化していると判定していた。したがって例えば点200、201、202のみを見て劣化度を判定する場合には、A1、A0、A2の順でNOx吸蔵量が少ないので、応答101、100、102の順でLNT6の劣化度が高いと誤判定してしまう。   As described above, when the points 200, 201, and 202 are compared, the NOx occlusion amount is larger in the order of the points 202, 200, and 201 in which the degree of deterioration of the LNT 6 is larger due to the influence of the NOx emission amount. In the prior art, it has been determined that the smaller the NOx occlusion amount, the more the LNT 6 is degraded. Therefore, for example, when determining the deterioration level by looking only at points 200, 201, and 202, the NOx occlusion amount is small in the order of A1, A0, and A2, so the deterioration level of LNT6 is in the order of responses 101, 100, and 102. It is misjudged as high.

しかし本発明では上のように吸蔵量差分値Δ0、Δ1、Δ2を算出し、図2のS120でこれが小さいほどLNT6の劣化度が大きいと判定する。図3ではΔ2、Δ0、Δ1の順で小さい値となっている。これは上で説明したように劣化度が大きいほど早い時間でNOx吸蔵量が飽和に近づくからである。したがってLNT6の劣化度が大きい応答102、100、101の順に、吸蔵量差分値もΔ2、Δ0、Δ1の順で小さくなっている。したがって吸蔵量差分値の小ささからLNT6の劣化度が正確に検出できる。これが本発明の手法によってLNT6の劣化度が正確に検出できる理由である。   However, according to the present invention, the occlusion amount difference values Δ0, Δ1, and Δ2 are calculated as described above, and it is determined in S120 of FIG. In FIG. 3, the values become smaller in the order of Δ2, Δ0, and Δ1. This is because, as explained above, the NOx occlusion amount approaches saturation as soon as the degree of deterioration increases. Therefore, the occlusion amount difference value decreases in the order of Δ2, Δ0, and Δ1 in the order of responses 102, 100, and 101 in which the degree of deterioration of LNT6 is large. Therefore, the degree of deterioration of the LNT 6 can be accurately detected from the small amount of occlusion amount difference. This is the reason why the degradation degree of LNT 6 can be accurately detected by the method of the present invention.

図2のS140では、吸蔵量差分値がある第1閾値よりも小さいのでLNT6の劣化度が大きいと判断して、S被毒再生を実行する。そしてS150では、吸蔵量差分値がある第2閾値よりも大きいのでLNT6の劣化度が小さいと判断する。LNT6の劣化度が小さい場合には、より多くのNOxが吸蔵できるので、1回のNOx吸蔵時間を長くする、あるいは、NOx還元処理の間隔を広げる処理を行う。これによりリッチパージの実行による燃費の悪化を抑制できる。以上がS120からS150の処理の効果である。   In S140 of FIG. 2, since the occlusion amount difference value is smaller than a first threshold value, it is determined that the degree of deterioration of the LNT 6 is large, and S poisoning regeneration is executed. In S150, it is determined that the degree of deterioration of the LNT 6 is small because the storage amount difference value is larger than a second threshold value. When the degree of deterioration of the LNT 6 is small, more NOx can be occluded, so that a process of increasing the NOx occlusion time or increasing the interval of the NOx reduction process is performed. Thereby, deterioration of fuel consumption due to execution of rich purge can be suppressed. The above is the effect of the processing from S120 to S150.

第1の排出量および第2の排出量とを以下の様に目標浄化率から決定してもよい。ここで浄化率(あるいはNOx浄化率)とは、LNT6へのNOx吸蔵量とエンジンからのNOx排出量との比である。そして目標浄化率とは排気浄化のために必要とされる浄化率である。第1の排出量は例えば、NOx排出量の積算値が前記第1の排出量となった時点での浄化率が所定の目標浄化率となるように決定する。また第2の排出量は例えば、NOx排出量の積算値が第2の排出量となった時点までの平均の浄化率が所定の目標浄化率となるように決定する。   The first discharge amount and the second discharge amount may be determined from the target purification rate as follows. Here, the purification rate (or NOx purification rate) is the ratio between the amount of NOx stored in the LNT 6 and the amount of NOx discharged from the engine. The target purification rate is a purification rate required for exhaust purification. For example, the first emission amount is determined so that the purification rate at the time when the integrated value of the NOx emission amount becomes the first emission amount becomes a predetermined target purification rate. Further, the second emission amount is determined, for example, so that the average purification rate up to the time when the integrated value of the NOx emission amount becomes the second emission amount becomes the predetermined target purification rate.

その場合の算出方法は、例えば基準特性(図3の応答100)におけるNOx排出量積算値とNOx浄化率との関数関係を求めておく。その関数関係において、NOx浄化率が所定の目標浄化率である点におけるNOx排出量積算値が第1の排出量である。また、同じ関数関係において、ある点から原点までにおけるNOx浄化率の平均値が所定の目標浄化率であるとき、その点のNOx排出量積算値が第2の排出量である。   As a calculation method in that case, for example, a functional relationship between the NOx emission integrated value and the NOx purification rate in the reference characteristic (response 100 in FIG. 3) is obtained. In the functional relationship, the NOx emission amount integrated value at the point where the NOx purification rate is the predetermined target purification rate is the first emission amount. Further, in the same functional relationship, when the average value of the NOx purification rate from a certain point to the origin is a predetermined target purification rate, the NOx emission integrated value at that point is the second emission amount.

このとき図4などから明らかに、第1の排出量に至るまでのすべての時点での浄化率は目標浄化率よりも高くなる。したがって第1の排出量に至るまでの平均浄化率は目標浄化率よりも高くなる。また上記算出方法では、第2の排出量が第1の排出量よりも常に大きくなる。以上のように目標浄化率を用いて第1、第2の排出量を決定することによって、第1、第2の排出量に至るまでの浄化率を目標浄化率以上にすることができる。以上が本発明の実施形態である。   At this time, it is clear from FIG. 4 and the like that the purification rate at all times up to the first emission amount is higher than the target purification rate. Therefore, the average purification rate up to the first emission amount is higher than the target purification rate. In the above calculation method, the second discharge amount is always larger than the first discharge amount. As described above, by determining the first and second emission amounts using the target purification rate, the purification rate up to the first and second emission amounts can be made higher than the target purification rate. The above is the embodiment of the present invention.

上記実施形態においてS10、S50の手順が排出量算出手段を構成する。S40、S80の手順が吸蔵量算出手段を構成する。A0またはA1またはA2の値が第1の吸蔵量を構成する。B0またはB1またはB2の値が第2の吸蔵量を構成する。S120の手順が判断手段を構成する。第1閾値が閾値として機能する。S140の手順が再生手段を構成する。S130の手順が第2判別手段を構成する。S150の手順が調節手段を構成する。また上の実施形態で内燃機関はディーゼルエンジンでなく、リ−ンバーンガソリンエンジン等、リーン燃焼を行う他のエンジンでもよい。   In the above embodiment, the procedure of S10 and S50 constitutes an emission amount calculating means. The procedures of S40 and S80 constitute the occlusion amount calculation means. The value of A0 or A1 or A2 constitutes the first storage amount. The value of B0 or B1 or B2 constitutes the second occlusion amount. The procedure of S120 constitutes a determination means. The first threshold functions as a threshold. The procedure of S140 constitutes playback means. The procedure of S130 constitutes a second determination unit. The procedure of S150 constitutes the adjusting means. In the above embodiment, the internal combustion engine is not a diesel engine, but may be another engine that performs lean combustion, such as a lean burn gasoline engine.

本発明の実施例としての内燃機関及びその排気浄化装置の概要図。1 is a schematic diagram of an internal combustion engine and an exhaust purification device thereof as an embodiment of the present invention. 触媒劣化度判定処理のフローチャート。The flowchart of a catalyst deterioration degree determination process. NOx吸蔵量の時間応答を示す図。The figure which shows the time response of NOx occlusion amount. NOx浄化率とNOx吸蔵量との関係を示す図。The figure which shows the relationship between NOx purification rate and NOx occlusion amount.

符号の説明Explanation of symbols

1 排気浄化装置
2 ディーゼルエンジン(内燃機関)
3 吸気管
4 排気管(排気通路)
5 EGR管
6 NOx触媒(LNT)
7 ECU
22 エンジン回転数センサ
31 吸気スロットル
51 EGRバルブ
61、62 A/Fセンサ
81 アクセル開度センサ
1 Exhaust gas purification device 2 Diesel engine (internal combustion engine)
3 Intake pipe 4 Exhaust pipe (exhaust passage)
5 EGR pipe 6 NOx catalyst (LNT)
7 ECU
22 Engine speed sensor 31 Intake throttle 51 EGR valve 61, 62 A / F sensor 81 Accelerator opening sensor

Claims (3)

リーン雰囲気時にNOxを吸蔵しリッチ雰囲気時にNOxを還元するNOx触媒を排気通路に備えた内燃機関の排気浄化装置であって、
前記内燃機関からのNOxの排出量を取得する排出量算出手段と、
前記NOx触媒におけるNOxの吸蔵量を取得する吸蔵量算出手段とを備え、
前記排出量取得手段によって算出された前記NOxの排出量の積算値が所定の第1の排出量となった際に前記吸蔵量算出手段によって算出されたNOxの吸蔵量を第1の吸蔵量とし、
前記排出量取得手段によって算出された前記NOxの排出量の積算値が所定の第2の排出量となった際に前記吸蔵量算出手段によって算出されたNOxの吸蔵量を第2の吸蔵量とし、
前記第2の排出量は前記第1の排出量よりも大きいとし、
前記第2の吸蔵量と前記第1の吸蔵量との差が所定の閾値よりも小さいことを判別する判別手段と、
その判別手段によって前記第2の吸蔵量と前記第1の吸蔵量との差が前記閾値よりも小さいことが判別された際に前記NOx触媒を再生する再生手段とを備えたことを特徴とする内燃機関の排気浄化装置。
An exhaust gas purification apparatus for an internal combustion engine comprising a NOx catalyst in the exhaust passage for storing NOx in a lean atmosphere and reducing NOx in a rich atmosphere,
An emission amount calculating means for acquiring an NOx emission amount from the internal combustion engine;
A storage amount calculating means for acquiring a storage amount of NOx in the NOx catalyst,
The NOx occlusion amount calculated by the occlusion amount calculating means when the integrated value of the NOx emission amount calculated by the emission amount obtaining means becomes a predetermined first emission amount is defined as the first occlusion amount. ,
The NOx occlusion amount calculated by the occlusion amount calculating means when the integrated value of the NOx emission amount calculated by the emission amount obtaining means becomes a predetermined second emission amount is set as the second occlusion amount. ,
The second emission amount is larger than the first emission amount,
Discrimination means for discriminating that a difference between the second occlusion amount and the first occlusion amount is smaller than a predetermined threshold;
Regenerating means for regenerating the NOx catalyst when it is determined by the determining means that the difference between the second stored amount and the first stored amount is smaller than the threshold value. An exhaust purification device for an internal combustion engine.
前記第2の吸蔵量と前記第1の吸蔵量との差が、前記閾値よりも大きい第2閾値よりも大きいことを判別する第2判別手段と、
前記第2判別手段によって前記第2の吸蔵量と前記第1の吸蔵量との差が前記第2閾値よりも大きいことが判別された際にNOx触媒の還元処理の間の間隔を広げる調節手段とを備えた請求項1に記載の内燃機関の排気浄化装置。
Second discriminating means for discriminating that a difference between the second occlusion amount and the first occlusion amount is larger than a second threshold value which is larger than the threshold value;
Adjustment means for widening the interval between the NOx catalyst reduction processes when the second determination means determines that the difference between the second storage amount and the first storage amount is greater than the second threshold value. An exhaust emission control device for an internal combustion engine according to claim 1, comprising:
前記NOx触媒に吸蔵されたNOxの量と前記NOxの排出量の積算量との比を浄化率として、
前記NOxの排出量の積算値が前記第1の排出量となった時点での前記浄化率が所定の目標浄化率となるように前記第1の排出量は設定され、
前記NOxの排出量の積算値が前記第2の排出量となる時点までの平均の前記浄化率が前記所定の目標浄化率となるように前記第2の排出量は設定された請求項1または2に記載の内燃機関の排気浄化装置。
The ratio of the amount of NOx occluded in the NOx catalyst and the integrated amount of the NOx emission amount is used as a purification rate.
The first emission amount is set so that the purification rate when the integrated value of the NOx emission amount becomes the first emission amount becomes a predetermined target purification rate,
2. The second emission amount is set such that an average of the purification rate up to a time point when the integrated value of the NOx emission amount becomes the second emission amount becomes the predetermined target purification rate. 2. An exhaust emission control device for an internal combustion engine according to 2.
JP2008024025A 2008-02-04 2008-02-04 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4895135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008024025A JP4895135B2 (en) 2008-02-04 2008-02-04 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008024025A JP4895135B2 (en) 2008-02-04 2008-02-04 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009185631A true JP2009185631A (en) 2009-08-20
JP4895135B2 JP4895135B2 (en) 2012-03-14

Family

ID=41069135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024025A Expired - Fee Related JP4895135B2 (en) 2008-02-04 2008-02-04 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4895135B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692380B2 (en) * 1993-01-19 1997-12-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2001317344A (en) * 2000-04-28 2001-11-16 Mitsubishi Electric Corp Exhaust emission control device for internal combustion engine
JP2003269144A (en) * 2002-03-11 2003-09-25 Mitsubishi Electric Corp Exhaust emission control device and method of internal combustion engine
JP2003293742A (en) * 2002-03-29 2003-10-15 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004068694A (en) * 2002-08-06 2004-03-04 Mazda Motor Corp Exhaust emission control device for internal combustion engine
JP2005113762A (en) * 2003-10-07 2005-04-28 Mazda Motor Corp Exhaust emission control device for internal combustion engine
JP2005113763A (en) * 2003-10-07 2005-04-28 Mazda Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692380B2 (en) * 1993-01-19 1997-12-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2001317344A (en) * 2000-04-28 2001-11-16 Mitsubishi Electric Corp Exhaust emission control device for internal combustion engine
JP2003269144A (en) * 2002-03-11 2003-09-25 Mitsubishi Electric Corp Exhaust emission control device and method of internal combustion engine
JP2003293742A (en) * 2002-03-29 2003-10-15 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004068694A (en) * 2002-08-06 2004-03-04 Mazda Motor Corp Exhaust emission control device for internal combustion engine
JP2005113762A (en) * 2003-10-07 2005-04-28 Mazda Motor Corp Exhaust emission control device for internal combustion engine
JP2005113763A (en) * 2003-10-07 2005-04-28 Mazda Motor Corp Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP4895135B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP3674017B2 (en) Catalyst degradation detection device for exhaust gas purification
JP6477612B2 (en) Exhaust gas purification system for internal combustion engine
JP2009209839A (en) Exhaust emission control device of internal-combustion engine
JP5007845B2 (en) Exhaust gas purification device for internal combustion engine
US6484493B2 (en) Exhaust emission control device for internal combustion engine
JP2005002854A (en) Exhaust gas emission control device for engine
JP2007064132A (en) Control device for internal combustion engine
JP4561656B2 (en) Catalyst temperature estimation device for internal combustion engine
US10677136B2 (en) Internal combustion engine control device
JP2012087749A (en) Exhaust emission control device of internal combustion engine
JP2007170337A (en) Exhaust emission control device of internal combustion engine
JP4895333B2 (en) Exhaust gas purification device for internal combustion engine
US10392986B2 (en) Exhaust purification system, and control method for exhaust purification system
JP4506279B2 (en) Exhaust gas purification device for internal combustion engine
US10677128B2 (en) Exhaust purification system and catalyst regeneration method
JP4895135B2 (en) Exhaust gas purification device for internal combustion engine
JP5142048B2 (en) Exhaust gas purification device for internal combustion engine
JP2007162468A (en) Deterioration determination method and deterioration determination system for storage reduction type nox catalyst
JP3838139B2 (en) Exhaust gas purification device for internal combustion engine
JP2010090708A (en) Control device for internal combustion engine
JP4135372B2 (en) Control device for internal combustion engine
JP5093134B2 (en) Exhaust gas purification device for internal combustion engine
JP2007285156A (en) Exhaust emission control device of internal combustion engine
JP5142052B2 (en) Exhaust gas purification device for internal combustion engine
JP4315121B2 (en) Exhaust purification catalyst deterioration judgment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R151 Written notification of patent or utility model registration

Ref document number: 4895135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees