JP2012087749A - Exhaust emission control device of internal combustion engine - Google Patents
Exhaust emission control device of internal combustion engine Download PDFInfo
- Publication number
- JP2012087749A JP2012087749A JP2010237231A JP2010237231A JP2012087749A JP 2012087749 A JP2012087749 A JP 2012087749A JP 2010237231 A JP2010237231 A JP 2010237231A JP 2010237231 A JP2010237231 A JP 2010237231A JP 2012087749 A JP2012087749 A JP 2012087749A
- Authority
- JP
- Japan
- Prior art keywords
- lnt
- amount
- nitrogen oxides
- nox
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/002—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0871—Regulation of absorbents or adsorbents, e.g. purging
- F01N3/0885—Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/1441—Plural sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/04—Methods of control or diagnosing
- F01N2900/0412—Methods of control or diagnosing using pre-calibrated maps, tables or charts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/08—Parameters used for exhaust control or diagnosing said parameters being related to the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1612—SOx amount trapped in catalyst
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1614—NOx amount trapped in catalyst
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0802—Temperature of the exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0806—NOx storage amount, i.e. amount of NOx stored on NOx trap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
- F02D41/028—Desulfurisation of NOx traps or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1461—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
- F02D41/1462—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
- F02D41/405—Multiple injections with post injections
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
本発明は、内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust emission control device for an internal combustion engine.
近年の環境保護を重要視する傾向のなかで、自動車等に搭載された内燃機関からの排気を浄化する技術は必須である。例えばディーゼルエンジンにおいては、排出される窒素酸化物(NOx)を排気から除去することが必要である。この目的のために、排気管の途中にNOx吸蔵還元触媒(LNT:Lean NOx Trap)を装備する場合がある。 In the recent trend of emphasizing environmental protection, technology for purifying exhaust from internal combustion engines mounted on automobiles and the like is essential. For example, in a diesel engine, it is necessary to remove exhausted nitrogen oxides (NOx) from the exhaust. For this purpose, a NOx storage reduction catalyst (LNT: Lean NOx Trap) may be provided in the middle of the exhaust pipe.
ディーゼルエンジンにおいて基本となるリーン状態の間にLNTにNOxが吸蔵され、時間的な間隔をおいてリッチ状態に変更されたときにLNTに吸蔵されたNOxが燃料成分と反応して還元されて無害な窒素となって排出される。NOxを吸蔵するための吸蔵剤として例えばバリウムなどがLNTに担持される。 NOx is occluded in the LNT during the basic lean state in a diesel engine, and the NOx occluded in the LNT reacts with the fuel components and is harmless when the rich state is changed over time. It is discharged as fresh nitrogen. For example, barium is supported on the LNT as a storage agent for storing NOx.
しかしLNTにおいては、本来NOxを吸蔵するための吸蔵剤が燃料中の硫黄成分と結合してしまい、LNTのNOx吸蔵性能が低減する硫黄被毒(S被毒、S劣化)と呼ばれる現象が発生する。このS劣化からLNTを再生するために、リッチ雰囲気かつ高温(例えば摂氏600度以上)にするS再生をS劣化が進行した度ごとに行わなければならない。 However, in LNT, the storage agent that originally stores NOx is combined with the sulfur component in the fuel, and a phenomenon called sulfur poisoning (S poisoning, S deterioration) that reduces the NOx storage performance of LNT occurs. To do. In order to regenerate LNT from this S degradation, S regeneration to a rich atmosphere and high temperature (for example, 600 degrees Celsius or higher) must be performed every time S degradation progresses.
S再生においては、排気中に含まれる硫黄濃度が一定でないことから、高精度にLNTのNOX浄化性能を保つためには、LNTに吸蔵された硫黄量を検出する必要がある。この課題に対し、例えば下記特許文献1では、LNT下流側のA/Fセンサにより検出された空燃比がリーンからリッチに切り換わった時にLNTのNOx放出作用が完了したと判断し、NOx放出に要する反応時間、あるいは前後のA/Fセンサの差分面積に基づいてNOx吸蔵量の低下を検出する手法が開示されている。 In the S regeneration, since the concentration of sulfur contained in the exhaust gas is not constant, it is necessary to detect the amount of sulfur stored in the LNT in order to maintain the NOX purification performance of the LNT with high accuracy. In response to this problem, for example, in Patent Document 1 below, when the air-fuel ratio detected by the A / F sensor on the downstream side of the LNT is switched from lean to rich, it is determined that the NOx releasing action of the LNT is completed, and NOx release is performed. A technique for detecting a decrease in the NOx occlusion amount based on the required reaction time or the difference area between the front and rear A / F sensors is disclosed.
しかし、特許文献1の手法においては、以下の2点の問題があった。まずLNTに入るNOx量を高精度に検出する必要があり、LNT入りNOx量に誤差が生じると著しく劣化判定精度が低下する。そして、検出に用いるA/Fセンサは、排ガス成分の影響を受け易く、リッチ雰囲気下でずれが大きいことが知られている。この場合、劣化検出精度が著しく低下する。以上の問題点を解決する排気浄化装置の開発が望まれる。 However, the method of Patent Document 1 has the following two problems. First, it is necessary to detect the amount of NOx entering the LNT with high accuracy. If an error occurs in the amount of NOx entering the LNT, the accuracy of deterioration determination is significantly reduced. And it is known that the A / F sensor used for detection is easily affected by exhaust gas components and has a large deviation under a rich atmosphere. In this case, the deterioration detection accuracy is significantly reduced. It is desired to develop an exhaust purification device that solves the above problems.
そこで本発明が解決しようとする課題は、上記問題点に鑑み、LNT入りNOx量やA/Fセンサのずれ等の影響を受けにくく、高精度にLNTのS劣化を検出する内燃機関の排気浄化装置を提供することにある。 Therefore, in view of the above problems, the problem to be solved by the present invention is an exhaust gas purification of an internal combustion engine that is not easily affected by the amount of NOx contained in LNT, the deviation of the A / F sensor, etc., and detects the S deterioration of LNT with high accuracy. To provide an apparatus.
上記課題を達成するために、本発明に係る内燃機関の排気浄化装置は、内燃機関の排気通路に備えられて窒素酸化物を吸蔵する触媒部と、前記触媒部に吸蔵された窒素酸化物量の排気の流れ方向における空間的な分布を検出する分布検出手段と、その分布検出手段によって検出された前記触媒部における窒素酸化物の吸蔵量の空間的な分布を用いて、前記触媒部における硫黄劣化を判定する判定手段と、を備えたことを特徴とする。 In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention includes a catalyst unit that is provided in an exhaust passage of the internal combustion engine and stores nitrogen oxides, and an amount of nitrogen oxides stored in the catalyst unit. Sulfur degradation in the catalyst section using a distribution detection means for detecting a spatial distribution in the flow direction of the exhaust gas and a spatial distribution of the storage amount of nitrogen oxides in the catalyst section detected by the distribution detection means And determining means for determining.
これにより本発明に係る内燃機関の排気浄化装置では、触媒部内部における窒素酸化物の吸蔵の空間的な分布を検出して、その情報を用いて触媒部の硫黄劣化を判定するので、従来技術では行われていなかった窒素酸化物の吸蔵の空間的な分布を検出することによって、触媒部内における窒素酸化物の吸蔵の状態を従来よりも精緻に検出する。したがって、精緻に検出された吸蔵の空間的な分布の情報を用いて、高精度に触媒部の硫黄劣化を判定できる。 Thus, in the exhaust gas purification apparatus for an internal combustion engine according to the present invention, the spatial distribution of the storage of nitrogen oxides in the catalyst part is detected, and the sulfur deterioration of the catalyst part is determined using the information. By detecting the spatial distribution of the storage of nitrogen oxides, which has not been performed in the above, the state of storage of nitrogen oxides in the catalyst part is detected more precisely than before. Therefore, it is possible to determine the sulfur deterioration of the catalyst portion with high accuracy by using the information of the spatial distribution of the occlusion that is precisely detected.
また前記判定手段は、前記分布検出手段によって検出された前記触媒部における窒素酸化物の吸蔵量の空間的な分布において、排気の流れ方向における下流側吸蔵量の全体吸蔵量の割合が閾値よりも高い場合に、前記触媒部は硫黄劣化していると判定するとしてもよい。 Further, in the spatial distribution of the storage amount of nitrogen oxides in the catalyst unit detected by the distribution detection unit, the determination unit is configured such that the ratio of the total storage amount of the downstream storage amount in the exhaust flow direction is less than the threshold value. When it is high, it may be determined that the catalyst portion is sulfur-degraded.
これにより触媒部内で、排気の流れ方向における下流側の窒素酸化物の吸蔵量の全体吸蔵量に占める割合が閾値よりも高い場合に、触媒部は硫黄劣化していると判定するので、触媒部が硫黄劣化する場合には、流れ方向の上流側から硫黄酸化物が徐々に堆積していき、その影響で窒素酸化物の吸蔵場所が下流側に移行する性質があることを適切に用いて、窒素酸化物の吸蔵の空間的な分布から硫黄劣化を精度よく判定できる。 Thereby, in the catalyst part, when the ratio of the storage amount of nitrogen oxide on the downstream side in the exhaust flow direction to the total storage amount is higher than the threshold value, it is determined that the catalyst part has deteriorated sulfur. When sulfur deteriorates, sulfur oxide gradually accumulates from the upstream side in the flow direction, and appropriately using the fact that the storage location of nitrogen oxides moves to the downstream side due to the effect, Sulfur degradation can be accurately determined from the spatial distribution of nitrogen oxide storage.
また前記触媒部に還元剤を供給して吸蔵された窒素酸化物を還元する還元手段を備え、前記分布検出手段は、前記触媒部における、排気の流れ方向における上流の第1位置、下流の第3位置、その第1位置と第3位置との間の第2位置における少なくとも3つ以上の空燃比を検出する空燃比検出手段と、前記還元手段による還元の実行中に、前記空燃比検出手段によって検出された前記第1位置、前記第2位置、前記第3位置における少なくとも3つ以上の空燃比により、前記触媒部における窒素酸化物の吸蔵量の空間的な分布を算出する第1算出手段と、を備えたとしてもよい。 The catalyst unit further includes a reducing unit that supplies a reducing agent to reduce the stored nitrogen oxides. The distribution detecting unit includes a first position upstream of the catalyst unit in the exhaust flow direction, and a downstream first position. An air-fuel ratio detecting means for detecting at least three air-fuel ratios at a third position, a second position between the first position and the third position, and the air-fuel ratio detecting means during execution of the reduction by the reducing means First calculation means for calculating a spatial distribution of the amount of occluded nitrogen oxide in the catalyst unit based on at least three air-fuel ratios at the first position, the second position, and the third position detected by And may be provided.
これにより窒素酸化物の還元制御中に、触媒部の上流、中間、下流の少なくとも3つの位置で空燃比を検出して、その数値から窒素酸化物の吸蔵量の空間的な分布を算出する。よって窒素酸化物の還元制御中には、窒素酸化物の還元のために触媒部内で燃料が消費されるので、空燃比の検出により触媒部内で吸蔵されていた窒素酸化物の量が検知できる性質を効果的に利用して、空燃比検出手段を複数配置することにより、触媒部の内部における窒素酸化物の吸蔵量の空間的な分布を精度よく算出できる。 Thus, during the nitrogen oxide reduction control, the air-fuel ratio is detected at at least three positions upstream, intermediate, and downstream of the catalyst unit, and the spatial distribution of the storage amount of nitrogen oxides is calculated from the numerical values. Therefore, during the reduction control of nitrogen oxides, fuel is consumed in the catalyst unit for the reduction of nitrogen oxides, so that the amount of nitrogen oxides stored in the catalyst unit can be detected by detecting the air-fuel ratio. By effectively using this and arranging a plurality of air-fuel ratio detection means, it is possible to accurately calculate the spatial distribution of the storage amount of nitrogen oxides inside the catalyst portion.
また前記第1算出手段は、前記空燃比検出手段によって検出された少なくとも3つ以上の空燃比算出位置のうちのいずれか2つの位置における空燃比の差分値の積算により、その2つの位置の間における窒素酸化物の吸蔵量と相関を有する前記還元剤の消費量を算出する第2算出手段を備えたとしてもよい。 In addition, the first calculation means calculates the difference between the two positions by integrating the difference values of the air-fuel ratios at any two of the at least three air-fuel ratio calculation positions detected by the air-fuel ratio detection means. There may be provided a second calculation means for calculating the consumption of the reducing agent having a correlation with the amount of occlusion of nitrogen oxides.
これにより触媒部の上流、中間、下流の少なくとも3位置のうちのいずれか2位置の空燃比の差分値の積算により、その位置間の還元剤(燃料)の消費量を算出する。したがって、還元制御中の2つの位置での空燃比の差分値の積算により、その位置間で吸蔵されていた窒素酸化物の量が算出できることを効果的に利用して、空燃比検出手段を複数配置することにより、触媒部の内部における窒素酸化物の吸蔵量の空間的な分布を精度よく算出できる。 As a result, the consumption of reducing agent (fuel) between the positions is calculated by integrating the difference values of the air-fuel ratios at any two positions among at least three positions upstream, intermediate, and downstream of the catalyst section. Therefore, it is possible to effectively use the fact that the amount of nitrogen oxides occluded between the two positions can be calculated by integrating the difference values of the air-fuel ratios at the two positions during the reduction control. By arranging, the spatial distribution of the storage amount of nitrogen oxides inside the catalyst part can be calculated with high accuracy.
また前記第1算出手段は、前記空燃比検出手段によって検出された少なくとも3つ以上の空燃比検出位置のうちのいずれか2つの位置において、前記2つの位置のうちで上流側の位置がリッチ雰囲気となった時刻と前記2つの位置のうちで下流側の位置がリッチ雰囲気となる時刻との差分により、その2つの位置の間における窒素酸化物の吸蔵量と相関を有する前記還元剤の消費時間を算出する第3算出手段を備えたとしてもよい。 Further, the first calculating means may be configured such that, in any two positions among at least three or more air-fuel ratio detection positions detected by the air-fuel ratio detection means, the upstream position of the two positions has a rich atmosphere. The consumption time of the reducing agent having a correlation with the amount of occlusion of nitrogen oxides between the two positions due to the difference between the time when the two positions become the downstream atmosphere of the two positions and the rich atmosphere. There may be provided third calculation means for calculating.
これにより、窒素酸化物の還元制御中における2つの位置において、上流側の位置がリッチ雰囲気となった時刻から下流側の位置がリッチ雰囲気となった時刻との差分が両位置の間における還元剤の消費時間を表し、この消費時間が両位置の間における窒素酸化物の吸蔵量と相関を有するとの性質を有効に利用して、窒素酸化物の吸蔵量が精度よく算出できる。 Thereby, in two positions during the reduction control of nitrogen oxides, the difference between the time when the upstream position becomes rich atmosphere and the time when the downstream position becomes rich atmosphere is the reducing agent between the two positions. By effectively utilizing the property that the consumption time has a correlation with the storage amount of nitrogen oxide between both positions, the storage amount of nitrogen oxide can be calculated with high accuracy.
また前記分布検出手段は、前記触媒部における、排気の流れ方向における上流の第1位置、下流の第3位置、その第1位置と第3位置との間の第2位置における少なくとも3つ以上の窒素酸化物濃度を検出する窒素酸化物検出手段と、前記窒素酸化物検出手段によって検出された前記第1位置、前記第2位置、前記第3位置における少なくとも3つ以上の窒素酸化物濃度により、前記触媒部における窒素酸化物の吸蔵量の空間的な分布を算出する第4算出手段と、を備えたとしてもよい。 The distribution detecting means includes at least three or more at a first position upstream of the catalyst portion in the exhaust flow direction, a third position downstream, and a second position between the first position and the third position. Nitrogen oxide detection means for detecting a nitrogen oxide concentration, and at least three or more nitrogen oxide concentrations at the first position, the second position, and the third position detected by the nitrogen oxide detection means, And fourth calculating means for calculating a spatial distribution of the amount of occluded nitrogen oxides in the catalyst unit.
これにより触媒部の上流、中間、下流の少なくとも3つの位置で窒素酸化物濃度を検出して、その数値から窒素酸化物の吸蔵量の空間的な分布を算出する。よって窒素酸化物検出手段を複数配置することにより、触媒部の内部における窒素酸化物の吸蔵量の空間的な分布を精度よく算出できる。 Thereby, the nitrogen oxide concentration is detected at at least three positions upstream, intermediate, and downstream of the catalyst portion, and the spatial distribution of the storage amount of nitrogen oxide is calculated from the numerical values. Therefore, by arranging a plurality of nitrogen oxide detecting means, the spatial distribution of the storage amount of nitrogen oxide inside the catalyst portion can be calculated with high accuracy.
また前記第4算出手段は、前記窒素酸化物検出手段によって検出された少なくとも3つ以上の検出位置のうちのいずれか2つの位置における窒素酸化物濃度の差分値の積算により、その2つの位置の間における窒素酸化物の吸蔵量を算出する第5算出手段を備えたとしてもよい。 In addition, the fourth calculation means calculates the difference between the two positions by integrating the difference value of the nitrogen oxide concentration at any two positions among at least three detection positions detected by the nitrogen oxide detection means. There may be provided fifth calculation means for calculating the amount of occlusion of nitrogen oxides.
これにより触媒部の上流、中間、下流の少なくとも3位置のうちのいずれか2位置の窒素酸化物濃度の差分値の積算により、その位置間の窒素酸化物の吸蔵量を算出する。したがって、2つの位置での窒素酸化物濃度の差分値の積算により、その位置間で吸蔵される窒素酸化物の量が算出できることを効果的に利用して、窒素酸化物検出手段を複数配置することにより、触媒部の内部における窒素酸化物の吸蔵量の空間的な分布を精度よく算出できる。 As a result, the amount of occluded nitrogen oxide between the positions is calculated by integrating the difference value of the nitrogen oxide concentration at any two positions among at least three positions upstream, intermediate and downstream of the catalyst section. Therefore, a plurality of nitrogen oxide detecting means are arranged by effectively utilizing the fact that the amount of nitrogen oxide stored between the positions can be calculated by integrating the difference value of the nitrogen oxide concentration at the two positions. Thus, the spatial distribution of the storage amount of nitrogen oxides inside the catalyst part can be calculated with high accuracy.
また前記第2算出手段は、前記第1位置と前記第3位置との間の前記還元剤の消費量と、前記第2位置と前記第3位置との間の前記還元剤の消費量と、を算出し、前記判定手段は、前記第2算出手段によって算出された、前記第1位置と前記第3位置との間の前記還元剤の消費量に対する、前記第2位置と前記第3位置との間の前記還元剤の消費量の比率が閾値よりも大きい場合に、前記触媒部は硫黄劣化していると判定するとしてもよい。 In addition, the second calculation means, consumption of the reducing agent between the first position and the third position, consumption of the reducing agent between the second position and the third position, The determination means calculates the second position and the third position with respect to the amount of consumption of the reducing agent between the first position and the third position calculated by the second calculation means. When the ratio of consumption of the reducing agent during the period is larger than a threshold value, it may be determined that the catalyst unit is sulfur-degraded.
これにより還元制御中における触媒部全体の還元剤の消費量に対する触媒部後部の還元剤の消費量の比が閾値を超えると硫黄劣化と判定するので、触媒部の硫黄劣化が進行すると、より後部に窒素酸化物が吸蔵することとなり還元制御中の後部での還元剤(燃料)の消費量が大きくなる性質を効果的に利用して、精度よく硫黄劣化を判定できる。 As a result, when the ratio of the reducing agent consumption at the rear of the catalyst part to the reducing agent consumption of the entire catalyst part during the reduction control exceeds the threshold value, it is determined that the sulfur deterioration has occurred. Therefore, it is possible to accurately determine the sulfur deterioration by effectively utilizing the property that the nitrogen oxides are occluded and the consumption of the reducing agent (fuel) in the rear part during the reduction control is increased.
また前記第5算出手段は、前記第1位置と前記第3位置との間の窒素酸化物の吸蔵量と、前記第2位置と前記第3位置との間の窒素酸化物の吸蔵量と、を算出し、前記判定手段は、前記第5算出手段によって算出された、前記第1位置と前記第3位置との間の窒素酸化物の吸蔵量に対する、前記第2位置と前記第3位置との間の窒素酸化物の吸蔵量の比率が閾値よりも大きい場合に、前記触媒部は硫黄劣化していると判定するとしてもよい。 Further, the fifth calculation means includes a storage amount of nitrogen oxides between the first position and the third position, a storage amount of nitrogen oxides between the second position and the third position, The determination means calculates the second position and the third position with respect to the storage amount of nitrogen oxides between the first position and the third position calculated by the fifth calculation means. When the ratio of the amount of occluded nitrogen oxide is larger than the threshold value, it may be determined that the catalyst unit has deteriorated sulfur.
これにより触媒部全体の窒素酸化物の吸蔵量に対する触媒部後部の窒素酸化物の吸蔵量の比が閾値を超えると硫黄劣化と判定する。したがって、触媒部の硫黄劣化が進行すると、より後部に窒素酸化物が吸蔵する性質を効果的に利用して、精度よく硫黄劣化を判定できる。 Thus, when the ratio of the nitrogen oxide storage amount at the rear of the catalyst portion to the nitrogen oxide storage amount of the entire catalyst portion exceeds the threshold value, it is determined that the sulfur is deteriorated. Therefore, when the sulfur deterioration of the catalyst portion proceeds, the sulfur deterioration can be accurately determined by effectively utilizing the property that the nitrogen oxide is stored in the rear portion.
また前記触媒部に蓄積した硫黄を除去する再生手段と、その再生手段による硫黄の除去処理の実行の前後における前記触媒部の窒素酸化物の吸蔵量の分布を比較して前記触媒部の故障を判定する故障判定手段と、を備えたとしてもよい。 In addition, the regeneration unit for removing sulfur accumulated in the catalyst unit and the distribution of the nitrogen oxide storage amount in the catalyst unit before and after the execution of the sulfur removal process by the regeneration unit are compared to determine whether the catalyst unit has failed. Failure determination means for determining.
これにより、上記のとおり触媒部内における窒素酸化物の吸蔵量の空間的な分布を用いて硫黄劣化を判定することに加えて、さらに硫黄の除去処理の前後における窒素酸化物の吸蔵量の空間的な分布を検出して、その比較から触媒部の故障を高精度に判定する。したがって空間的な分布を用いて触媒部の故障も高精度に判定できる排気浄化装置が実現できる。 Thus, in addition to determining the sulfur deterioration using the spatial distribution of the nitrogen oxide storage amount in the catalyst portion as described above, the spatial storage of the nitrogen oxide storage amount before and after the sulfur removal treatment is further performed. And a failure of the catalyst part is determined with high accuracy from the comparison. Therefore, it is possible to realize an exhaust emission control device that can determine a failure of the catalyst portion with high accuracy using a spatial distribution.
以下、本発明の実施形態を図面を参照しつつ説明する。まず図1は、本発明に係る排気浄化装置1の実施例1の概略図である。排気浄化装置1は、ディーゼルエンジン2(以下では単にエンジンと称する)に対して構成されているとする。 Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 is a schematic diagram of Embodiment 1 of an exhaust purification device 1 according to the present invention. It is assumed that the exhaust emission control device 1 is configured for a diesel engine 2 (hereinafter simply referred to as an engine).
エンジン2及び排気浄化システム1は、吸気管3、排気管4、EGR管5を備える。排気管4には、NOx浄化のためのLNT6(Lean NOx Trap、触媒部)が装備されている。そしてこれらを制御する電子制御装置9(ECU:Electronic Control Unit)が装備されている。エンジン2及び排気浄化システム1は自動車に装備されているとすればよい。 The engine 2 and the exhaust purification system 1 include an intake pipe 3, an exhaust pipe 4, and an EGR pipe 5. The exhaust pipe 4 is equipped with LNT6 (Lean NOx Trap, catalyst part) for NOx purification. An electronic control unit 9 (ECU: Electronic Control Unit) for controlling these is provided. The engine 2 and the exhaust purification system 1 may be installed in an automobile.
吸気管3を通じてエンジン2に空気が供給される。吸気管3にはエアフロメータ31が配置されている。エアフロメータ31によって吸気量が計測される。ここでの吸気量は例えば単位時間当たりの質量流量とすればよい。エンジン2にはインジェクタ21が装備されている。インジェクタ21からの噴射によってシリンダ内に燃料が供給される。EGR管5は排気管4から吸気管3に排気を再循環させてエンジン筒内の燃焼を抑制してエンジン2からのNOx排出量を抑制する。 Air is supplied to the engine 2 through the intake pipe 3. An air flow meter 31 is disposed in the intake pipe 3. The intake air amount is measured by the air flow meter 31. The intake air amount here may be a mass flow rate per unit time, for example. The engine 2 is equipped with an injector 21. Fuel is supplied into the cylinder by injection from the injector 21. The EGR pipe 5 recirculates exhaust gas from the exhaust pipe 4 to the intake pipe 3 to suppress combustion in the engine cylinder and suppress NOx emission from the engine 2.
排気管4にエンジン2からの排気が排出される。排気管4に装備されたLNT6は、上流側のLNT60、下流側のLNT61と2つに分割して配置する。そしてLNT60よりも上流側にA/Fセンサ41、LNT60とLNT61との間にA/Fセンサ42、LNT61よりも下流側にA/Fセンサ43を装備して、それぞれの位置でのA/F(空燃比)を検出する。また排気管4のLNT6よりも上流には、排気管4内に燃料を添加する添加弁40が装備されている。排気管4のLNT6よりも上流には、排気温センサ47も装備されており、LNT6に流入する排気の温度を検出する。なお添加弁40は配置しないとしてもよい。 Exhaust gas from the engine 2 is discharged to the exhaust pipe 4. The LNT 6 equipped in the exhaust pipe 4 is divided into two parts, an upstream LNT 60 and a downstream LNT 61. An A / F sensor 41 is provided upstream of the LNT 60, an A / F sensor 42 is provided between the LNT 60 and the LNT 61, and an A / F sensor 43 is provided downstream of the LNT 61. (Air-fuel ratio) is detected. An addition valve 40 for adding fuel to the exhaust pipe 4 is provided upstream of the LNT 6 in the exhaust pipe 4. An exhaust temperature sensor 47 is also provided upstream of the LNT 6 in the exhaust pipe 4 to detect the temperature of the exhaust gas flowing into the LNT 6. The addition valve 40 may not be arranged.
LNT6(60、61)は例えばセラミック製の基材上に担体の層が形成されて、担体上に吸蔵剤と触媒とが担持された構造であるとすればよい。担体としては例えばガンマアルミナを用いれば表面の凹凸による大きな表面積によって多くの吸蔵剤、触媒が担持できて好適である。また吸蔵剤としては例えばバリウム、リチウム、カリウムなど、触媒としては例えば白金などを用いればよい。 LNT6 (60, 61) may have a structure in which a carrier layer is formed on a ceramic substrate, for example, and a storage agent and a catalyst are supported on the carrier. As the carrier, for example, gamma alumina is suitable because it can carry a large amount of storage agent and catalyst due to its large surface area due to surface irregularities. Further, for example, barium, lithium, potassium or the like may be used as the occlusion agent, and platinum or the like may be used as the catalyst.
LNT6(60、61)においては、理論空燃比よりも燃料が希薄な(通常、A/F値(空燃比値)は17以上)リーン雰囲気時に排気中のNOxが吸蔵剤に吸蔵される。そして理論空燃比よりも燃料が過剰な(通常、A/F値は14.5以下)リッチ雰囲気に空燃比が調節され、所定の温度条件が満たされると、吸蔵剤に吸蔵されていたNOxが、燃料中の成分から生成された還元剤によって還元されて無害な窒素となって排出される。リッチ雰囲気を形成し、昇温条件を満たすためには例えば、インジェクタ21から筒内にメイン噴射後に燃料を噴射したり(ポスト噴射)、添加弁45から燃料を添加したりして、LNT6(60、61)が担持する(酸化)触媒の作用で昇温させる手法がある。ポスト噴射を用いる場合は添加弁40を装備しなくともよい。 In LNT6 (60, 61), the fuel is leaner than the stoichiometric air-fuel ratio (usually the A / F value (air-fuel ratio value) is 17 or more), and NOx in the exhaust is occluded in the occlusion agent in a lean atmosphere. When the air-fuel ratio is adjusted to a rich atmosphere where the fuel is more than the stoichiometric air-fuel ratio (usually, the A / F value is 14.5 or less), and the predetermined temperature condition is satisfied, the NOx stored in the storage agent is reduced. It is reduced by the reducing agent generated from the components in the fuel and discharged as harmless nitrogen. In order to form a rich atmosphere and satisfy the temperature rising condition, for example, the fuel is injected from the injector 21 into the cylinder after the main injection (post injection), or the fuel is added from the addition valve 45, and the LNT6 (60 61), the temperature is raised by the action of an (oxidation) catalyst supported by the catalyst. When post injection is used, the addition valve 40 may not be provided.
LNT6の使用では、硫黄成分による被毒の問題(硫黄被毒、S被毒、硫黄劣化、S劣化)に対する対策が必要である。硫黄被毒とは、触媒(あるいは吸蔵剤)が燃料中の硫黄と結合してしまうことであり、その結果、触媒が排気浄化のための機能を果たせなくなる現象のことで、特定の条件下でS被毒前の状態に戻すことが可能である。 In the use of LNT6, it is necessary to take measures against poisoning problems caused by sulfur components (sulfur poisoning, S poisoning, sulfur degradation, S degradation). Sulfur poisoning is a phenomenon in which a catalyst (or occluding agent) binds to sulfur in the fuel, and as a result, the catalyst can no longer function for exhaust purification under certain conditions. It is possible to return to the state before S poisoning.
硫黄被毒(S被毒、S劣化)から触媒を再生する(S被毒再生あるいはS再生)ためには、リッチ雰囲気とし、かつ所定の温度条件(例えば600度以上)を満たす必要がある。この目的のために、例えばエンジン2筒内でのポスト噴射や、添加弁45から排気管4へ燃料を添加する等の方策がとられる。LNT6(60、61)においてS被毒が進行したとみなされる毎に、通常こうしたS再生を行って、触媒の機能を維持し続ける。 In order to regenerate the catalyst from sulfur poisoning (S poisoning, S degradation) (S poisoning regeneration or S regeneration), it is necessary to have a rich atmosphere and satisfy a predetermined temperature condition (for example, 600 degrees or more). For this purpose, for example, measures such as post-injection in the cylinder of the engine 2 or addition of fuel from the addition valve 45 to the exhaust pipe 4 are taken. Each time it is considered that S poisoning has progressed in LNT6 (60, 61), such S regeneration is usually performed to keep the function of the catalyst.
図1に示された点線は情報の伝達を示している。上で述べたエアフロメータ31、A/Fセンサ41、42、43、排気温センサ47の計測値はECU9へ送られる。またECU9によりインジェクタ21によるエンジン2への燃料噴射のタイミングや噴射量、添加弁40による排気管4への燃料噴射のタイミングや噴射量が調節、制御される。ECU9は通常のコンピュータと同様の構造を有するとして、各種演算をおこなうCPUや各種情報を記憶するメモリ90を備えるとすればよい。 A dotted line shown in FIG. 1 indicates transmission of information. The measured values of the air flow meter 31, the A / F sensors 41, 42, 43 and the exhaust temperature sensor 47 described above are sent to the ECU 9. Further, the ECU 9 adjusts and controls the timing and amount of fuel injection to the engine 2 by the injector 21 and the timing and amount of fuel injection to the exhaust pipe 4 by the addition valve 40. The ECU 9 may have a structure similar to that of a normal computer, and may include a CPU that performs various calculations and a memory 90 that stores various types of information.
以上の構成のもとで本実施例では、LNT6がS劣化しているか否かを判定する。その処理手順が図2に示されている。図2(および後述の図6)の手順はプログラム化しておいて例えばメモリ90に記憶しておき、ECU9が自動的にそれを実行すればよい。 In the present embodiment based on the above configuration, it is determined whether or not the LNT 6 is S-deteriorated. The processing procedure is shown in FIG. The procedure of FIG. 2 (and FIG. 6 described later) may be programmed and stored in the memory 90, for example, and the ECU 9 may automatically execute it.
図2の処理ではまずS10でECU9は、NOx還元制御を実行するための条件が満たされているか否かを判定する。NOx還元制御を実行するための条件とは、例えばLNT6に十分にNOxが吸蔵したこととすればよい。その際、LNT6におけるNOx吸蔵量の推定方法は、例えばエンジンの運転条件(エンジン負荷、エンジン回転数)とエンジンからのNOx排出量との関係を示すマップを予めメモリ90に記憶しておき、それを用いてエンジンからの時々刻々のNOxの排出量を算出し、それにLNT6で吸蔵される割合を乗算し、積算する等して推定すればよい。なお、LNT6で吸蔵される割合は、例えば吸蔵される割合とLNT6の温度及び瞬時のNOx吸蔵量との関係を示す2次元マップを予めメモリ90に記憶することで算出する。 In the process of FIG. 2, first, in S10, the ECU 9 determines whether or not a condition for executing the NOx reduction control is satisfied. The condition for executing the NOx reduction control may be, for example, that NOx is sufficiently occluded in the LNT6. At this time, the NOx occlusion amount estimation method in the LNT 6 stores, for example, a map indicating the relationship between the engine operating conditions (engine load, engine speed) and the NOx emission amount from the engine in advance in the memory 90. The amount of NOx emitted from the engine every moment from the engine is calculated using the above, multiplied by the ratio occluded by the LNT 6, and then accumulated. The ratio stored in the LNT 6 is calculated, for example, by storing in the memory 90 in advance a two-dimensional map showing the relationship between the stored ratio, the temperature of the LNT 6 and the instantaneous NOx storage amount.
NOx還元制御を実行するための条件が満たされている、すなわちNOx還元制御を実行するべきであると判定された場合(S10:Yes)は、S20に進み、NOx還元制御を実行するための条件が満たされておらずNOx還元制御を実行するべきでないと判定された場合(S10:No)は、図2の処理を終了する。 If it is determined that the conditions for executing the NOx reduction control are satisfied, that is, if the NOx reduction control should be executed (S10: Yes), the process proceeds to S20, and the conditions for executing the NOx reduction control If it is determined that NOx is not satisfied and NOx reduction control should not be executed (S10: No), the process of FIG. 2 ends.
次にS20でECU9は、NOx還元制御を実行する。NOx還元制御は具体的には上述のように、エンジン筒内におけるメイン噴射後のポスト噴射や、添加弁40からの燃料添加などを実行すればよい。 Next, in S20, the ECU 9 executes NOx reduction control. Specifically, as described above, the NOx reduction control may be performed by post injection after main injection in the engine cylinder, fuel addition from the addition valve 40, or the like.
次にS30でECU9は、LNT6の温度が、NOx吸蔵量分布を求めるのに適切な範囲内(例えば摂氏250度から400度)にあるか否かを判定する。LNT6の温度が低すぎる場合には十分なNOx還元が起こらず還元剤消費量から精度よくNOx吸蔵量(の分布)を算出することができない。またLNT6の温度が高すぎる場合にはLNT6から吸蔵したNOxの離脱が起きるので、NOx吸蔵量の分布が崩れて、同じく正しくNOx吸蔵量の分布を算出することができない。 Next, in S30, the ECU 9 determines whether or not the temperature of the LNT 6 is within an appropriate range (for example, 250 to 400 degrees Celsius) for obtaining the NOx storage amount distribution. When the temperature of the LNT 6 is too low, sufficient NOx reduction does not occur, and the NOx occlusion amount (distribution) cannot be accurately calculated from the reducing agent consumption. Further, when the temperature of the LNT 6 is too high, the NOx occluded from the LNT 6 is released, so that the distribution of the NOx occlusion amount is broken and the distribution of the NOx occlusion amount cannot be calculated correctly.
よってS30の処理によって、適切な温度範囲内にある場合のみLNT6のNOx吸蔵量分布を算出する。LNT6の温度は例えば排気温センサ47で検出した温度とすればよい。LNT6の温度が適切な範囲内にある場合(S30:Yes)はS40に進み、その範囲内にない場合(S30:No)は図2の処理を終了する。 Therefore, the NOx occlusion amount distribution of LNT6 is calculated by the process of S30 only when the temperature is within an appropriate temperature range. The temperature of the LNT 6 may be the temperature detected by the exhaust temperature sensor 47, for example. When the temperature of the LNT 6 is within an appropriate range (S30: Yes), the process proceeds to S40, and when it is not within the range (S30: No), the process of FIG.
S40に進んだらECU9は、還元剤(燃料)のNOx還元のための消費量を積算する。具体的には以下の式(E1)、(E2)、(E3)のうちのいずれか2つの式により算出する。ここでAFf、AFm、AFrはそれぞれA/Fセンサ41、42、43の計測値である。Gaはエアフロメータ31の計測値である。Δtは積算の周期を示す。なお図2のフローチャートはΔtごとに繰り返し実行すればよい。ΣはNOx還元制御の実行開始から現在時点までの積算を示す記号である(・は積)。
A1=Σ(1/AFf−1/AFm)・Ga・Δt (E1)
A2=Σ(1/AFm−1/AFr)・Ga・Δt (E2)
B=Σ(1/AFf−1/AFr)・Ga・Δt (E3)
After proceeding to S40, the ECU 9 integrates the amount of consumption of the reducing agent (fuel) for NOx reduction. Specifically, it is calculated by any two of the following formulas (E1), (E2), and (E3). Here, AFf, AFm, and AFr are measured values of the A / F sensors 41, 42, and 43, respectively. Ga is a measured value of the air flow meter 31. Δt indicates the period of integration. Note that the flowchart of FIG. 2 may be repeatedly executed every Δt. Σ is a symbol indicating the integration from the start of NOx reduction control to the current time (• is a product).
A1 = Σ (1 / AFf−1 / AFm) · Ga · Δt (E1)
A2 = Σ (1 / AFm−1 / AFr) · Ga · Δt (E2)
B = Σ (1 / AFf−1 / AFr) · Ga · Δt (E3)
式(E1)の意味を説明する。Gaはエアフロメータで計測された単位時間における新気量であるが、この数値は単位時間あたりの排気量とも等しいとみなされる。したがって例えば式(E1)においてGa/AFfは、LNT6の上流部における単位時間あたりの燃料の流量を示す。同様にGa/AFmは、LNT6の中間部における単位時間あたりの燃料の流量を示す。 The meaning of the formula (E1) will be described. Ga is the fresh air amount per unit time measured by the air flow meter, but this numerical value is considered to be equal to the exhaust amount per unit time. Therefore, for example, in the formula (E1), Ga / AFf indicates the flow rate of fuel per unit time in the upstream portion of the LNT6. Similarly, Ga / AFm indicates the flow rate of fuel per unit time in the intermediate portion of the LNT6.
したがって(1/AFf−1/AFm)・Gaは、LNT6の前部、すなわちLNT60における単位時間あたりの燃料の消費量を示す。よってΣ(1/AFf−1/AFm)Ga・Δtは、NOx還元制御の実行開始から現在時点までの、LNT6の前部、すなわちLNT60における燃料の消費量の積算値である。 Therefore, (1 / AFf−1 / AFm) · Ga indicates the amount of fuel consumed per unit time in the front portion of the LNT 6, that is, the LNT 60. Therefore, Σ (1 / AFf−1 / AFm) Ga · Δt is an integrated value of the fuel consumption in the front portion of the LNT 6, that is, the LNT 60 from the start of execution of the NOx reduction control to the current time point.
同様に式(E2)は、NOx還元制御の実行開始から現在時点までの、LNT6の後部、すなわちLNT61における燃料の消費量の積算値である。同様に式(E3)は、NOx還元制御の実行開始から現在時点までの、LNT60およびLNT61からなるLNT6の全体における燃料の消費量の積算値である。 Similarly, the equation (E2) is an integrated value of fuel consumption in the rear portion of the LNT 6, that is, the LNT 61 from the start of execution of the NOx reduction control to the current time point. Similarly, the equation (E3) is an integrated value of the fuel consumption in the entire LNT 6 including the LNT 60 and the LNT 61 from the start of execution of the NOx reduction control to the current time point.
NOx還元制御中におけるLNT6(60、61)での燃料(還元剤)の消費量は、LNT6(60、61)におけるNOxの吸蔵量と等しいとみなされる。したがって式(E1)、(E2)、(E3)はそれぞれ、LNT6の前部(LNT60)、後部(LNT61)、全体(LNT60、61)におけるNOxの吸蔵量を示している。あきらかにA1とA2との和はBに等しい。 The amount of fuel (reducing agent) consumed by the LNT6 (60, 61) during NOx reduction control is considered to be equal to the amount of NOx stored in the LNT6 (60, 61). Therefore, the equations (E1), (E2), and (E3) indicate the NOx occlusion amounts in the front part (LNT60), rear part (LNT61), and the whole (LNT60, 61) of LNT6, respectively. Clearly, the sum of A1 and A2 is equal to B.
続いてS50でECU9は、NOx還元制御を終了するか否かを判定する。NOx還元制御を終了する場合(S50:Yes)はS60に進み、NOx還元制御を終了しない場合(S50:No)はS40に戻って、NOx還元制御の終了まで還元剤(燃料)の消費量の積算を繰り返す。 Subsequently, in S50, the ECU 9 determines whether or not to end the NOx reduction control. When the NOx reduction control is finished (S50: Yes), the process proceeds to S60. When the NOx reduction control is not finished (S50: No), the process returns to S40, and the consumption of the reducing agent (fuel) is increased until the NOx reduction control is finished. Repeat integration.
図5にはNOx還元制御中におけるセンサ41、42、43の計測値の推移の例が示されている。図5は横軸が時間、縦軸が空燃比であり、図5において、LNT前、LNT中、LNT後と示されたプロットがそれぞれセンサ41、42、43の計測値を示している。S20におけるNOx還元制御の開始とともに、LNT6に流入する排気の空燃比(LNT前、センサ41の計測値)は理論空燃比より低くなりリッチ雰囲気となる。 FIG. 5 shows an example of transition of measured values of the sensors 41, 42, and 43 during NOx reduction control. In FIG. 5, the horizontal axis represents time, and the vertical axis represents the air-fuel ratio. In FIG. 5, the plots indicated before, during, and after LNT indicate the measured values of the sensors 41, 42, and 43, respectively. With the start of the NOx reduction control in S20, the air-fuel ratio of the exhaust gas flowing into the LNT 6 (before the LNT, the measured value of the sensor 41) becomes lower than the stoichiometric air-fuel ratio, resulting in a rich atmosphere.
しかしLNT6内のNOxの還元で燃料が消費されることにより、しばらくの間センサ42、43の計測値は理論空燃比に留まる。しばらくしてLNT6の前部(LNT60)に吸蔵されたNOxがすべて還元されると、LNT6の前部(LNT60)においてNOx還元のために燃料が消費されなくなるので、センサ42の計測値(LNT中)がセンサ41の計測値へと降下する。 However, as fuel is consumed by the reduction of NOx in the LNT 6, the measured values of the sensors 42 and 43 remain at the stoichiometric air-fuel ratio for a while. When all the NOx occluded in the front part (LNT60) of the LNT6 is reduced after a while, the fuel is not consumed for NOx reduction in the front part (LNT60) of the LNT6. ) Falls to the measured value of the sensor 41.
図3には横軸を排気の流れ方向の空間的位置とした、LNT6内のNOx吸蔵量、SOx吸蔵量の例が示されている。図3に示されているとおり、LNT6がS劣化する場合、SOx(硫黄酸化物)がLNT6の前部(上流側)の方から堆積する性質がある。したがってS劣化が進行するほどLNT6に吸蔵するNOxは後部(下流側)に吸蔵することとなる。よって図5において、S劣化が進行するほどLNT6の前部(LNT60)におけるNOx吸蔵量が減少するので、センサ42の計測値(LNT中)がセンサ41の計測値へと降下する時間が早まる。 FIG. 3 shows an example of the NOx occlusion amount and the SOx occlusion amount in the LNT 6 in which the horizontal axis is a spatial position in the exhaust flow direction. As shown in FIG. 3, when LNT 6 undergoes S degradation, SOx (sulfur oxide) has a property of being deposited from the front (upstream side) of LNT 6. Therefore, NOx stored in the LNT 6 is stored in the rear part (downstream side) as the S deterioration progresses. Therefore, in FIG. 5, the NOx occlusion amount at the front portion (LNT60) of LNT6 decreases as the S deterioration progresses, so the time for the measured value of sensor 42 (during LNT) to drop to the measured value of sensor 41 is accelerated.
さらに時間が経過すると、LNT6の後部(LNT61)でもNOx還元のために燃料が消費されなくなるので、センサ43の計測値(LNT後)がセンサ41の計測値へと降下する。センサ43の計測値(LNT後)がセンサ41の計測値と一致することが、LNT6において吸蔵されたNOxがすべて還元されたことを示す。よってセンサ43の計測値(LNT後)がセンサ41の計測値と一致したらS50でNOx還元制御を終了すればよい。 When the time further elapses, fuel is no longer consumed for NOx reduction even at the rear portion of the LNT 6 (LNT 61), and the measured value of the sensor 43 (after LNT) falls to the measured value of the sensor 41. The fact that the measured value of the sensor 43 (after LNT) matches the measured value of the sensor 41 indicates that all NOx occluded in the LNT 6 has been reduced. Therefore, if the measured value of the sensor 43 (after LNT) matches the measured value of the sensor 41, the NOx reduction control may be terminated in S50.
図2に戻ってS60に進んだらECU9は、後部NOx吸蔵量の割合Cを算出する。具体的には以下の式(E4)、(E5)、(E6)のいずれかで算出する。
C=(B−A1)/B (E4)
C=A2/B (E5)
C=A2/(A1+A2) (E6)
Returning to FIG. 2 and proceeding to S60, the ECU 9 calculates the ratio C of the rear NOx occlusion amount. Specifically, it is calculated by any of the following formulas (E4), (E5), and (E6).
C = (B−A1) / B (E4)
C = A2 / B (E5)
C = A2 / (A1 + A2) (E6)
式(E4)は、手順S40で(E1)と(E3)とを算出した場合に用いればよい。式(E5)は、手順S40で(E2)と(E3)とを算出した場合に用いればよい。式(E6)は、手順S40で(E1)と(E2)とを算出した場合に用いればよい。式(E4)、(E5)、(E6)ともに、あきらかにLNT6の全体(LNT60、61)のNOx吸蔵量(B=A1+A2)に対する、LNT6の後部(LNT61)のNOxの吸蔵量(A2=B−A1)の比率を示している。CはLNT6内におけるNOx吸蔵量の空間的な分布、さらにはSOx堆積量の空間的な分布を示す数値である。 Equation (E4) may be used when (E1) and (E3) are calculated in step S40. Equation (E5) may be used when (E2) and (E3) are calculated in step S40. Expression (E6) may be used when (E1) and (E2) are calculated in step S40. Obviously, in each of the formulas (E4), (E5), and (E6), the NOx occlusion amount (A2 = B) of the rear portion of the LNT6 (LNT61) with respect to the NOx occlusion amount (B = A1 + A2) of the entire LNT6 (LNT60, 61). The ratio of -A1) is shown. C is a numerical value indicating the spatial distribution of the NOx occlusion amount in the LNT 6 and further the spatial distribution of the SOx deposition amount.
上述のとおり、S劣化が進行するほどLNT6の前部(LNT60)におけるNOx吸蔵量が減少するので、センサ42の計測値(LNT中)がセンサ41の計測値へと降下する時間が早まる。したがってS劣化が進行するほど、Cの数値は大きくなる。 As described above, since the NOx occlusion amount at the front portion (LNT60) of the LNT6 decreases as the S deterioration progresses, the time during which the measured value of the sensor 42 (during the LNT) falls to the measured value of the sensor 41 is accelerated. Therefore, as S deterioration progresses, the numerical value of C increases.
図4には、Cの数値を縦軸にとり、横軸をLNT6に流入するNOx量(入りNOx量)とした両数値の関係が示されているが、この図が示すとおり、Cの数値は入りNOx量の変動に対してほぼ一定となる。したがってCを用いてS劣化判定を行えば、入りNOx量の変動に対してロバストに判定が行える。またCは比のかたちなので、排気中の残存酸素の存在によってA/Fセンサの検出値がずれた場合にも、分母と分子とのそれぞれにおけるずれが分母分子間で相殺されて、Cにはずれの影響が現れにくくなる。したがってA/F計測値のずれの影響も受けにくいS劣化判定が行える。 FIG. 4 shows the relationship between the numerical values of C, where the vertical axis is the vertical axis and the horizontal axis is the amount of NOx flowing into the LNT 6 (incoming NOx amount). As this figure shows, the numerical value of C is It becomes almost constant with respect to fluctuations in the amount of entering NOx. Therefore, if the S deterioration determination is performed using C, the determination can be made robustly with respect to fluctuations in the amount of incoming NOx. Also, since C is a ratio, even when the detection value of the A / F sensor is shifted due to the presence of residual oxygen in the exhaust, the shift in the denominator and the numerator is offset between the denominator and the shift to C. The effect of is less likely to appear. Therefore, it is possible to perform the S deterioration determination which is not easily affected by the deviation of the A / F measurement value.
続いてS70でECU9は、S60で算出した後部NOx吸蔵量の割合Cが閾値以上であるか否かを判定する。後部NOx吸蔵量の割合が閾値以上である場合(S70:Yes)はS80に進み、後部NOx吸蔵量の割合が閾値未満の場合(S70:No)はS90に進む。 Subsequently, in S70, the ECU 9 determines whether or not the ratio C of the rear NOx occlusion amount calculated in S60 is greater than or equal to a threshold value. When the ratio of the rear NOx occlusion amount is equal to or greater than the threshold (S70: Yes), the process proceeds to S80, and when the ratio of the rear NOx occlusion amount is less than the threshold (S70: No), the process proceeds to S90.
上述のとおり、LNT6におけるS堆積が大きいほど、後部NOx吸蔵量の割合Cは大きくなる。したがって例えば図4に示された破線のようにS再生が必要なほどS劣化が進行しているか否かを判定できる数値を予め求めておいて、それをS70で用いる閾値とすればよい。 As described above, the larger the S deposition in the LNT 6, the larger the rear NOx storage amount ratio C. Therefore, for example, as shown by the broken line in FIG. 4, a numerical value that can be used to determine whether or not S degradation has progressed to the extent that S regeneration is necessary is obtained in advance, and this may be used as the threshold value used in S70.
S80に進んだ場合は、後部NOx吸蔵量の割合Cが閾値よりも大きい場合である。したがってS80でECU9は、LNT6はS劣化していると判定する。そしてS90でECU9は、LNT6はS劣化していないと判定する(S劣化していると判定しない)。以上が図2の処理である。 When it progresses to S80, it is a case where the ratio C of rear NOx occlusion amount is larger than a threshold value. Therefore, in S80, the ECU 9 determines that the LNT 6 is S deteriorated. In S90, the ECU 9 determines that the LNT 6 is not S-degraded (not determined to be S-degraded). The above is the processing of FIG.
図2の処理手順では、LNT6のS劣化判定は式(E1)、(E2)、(E3)による差分面積の算出に基づいて行ったが、これを時間の計算に基づいて行ってもよい。具体的には、例えば図5においてNOx還元制御の開始時刻をT1、LNT中(センサ42)の計測値が下降する時刻をT2、LNT後(センサ43)の計測値が下降する時刻をT3としたとき、C=(T3−T2)/(T3−T1)とする。上述のとおりS劣化が進行するほどT2が早まるので、こうして算出されたCもS劣化の程度を示す数値となる。なお時間の計測は、例えばECU9に計時機能を持たせればよい。 In the processing procedure of FIG. 2, the S deterioration determination of the LNT 6 is performed based on the calculation of the difference area by the equations (E1), (E2), and (E3), but this may be performed based on the calculation of time. Specifically, for example, in FIG. 5, the start time of NOx reduction control is T1, the time when the measured value during LNT (sensor 42) decreases is T2, and the time when the measured value after LNT (sensor 43) decreases is T3. Then, C = (T3−T2) / (T3−T1). As described above, T2 gets earlier as S deterioration progresses, and thus C calculated in this way is also a numerical value indicating the degree of S deterioration. For example, the time measurement may be performed by providing the ECU 9 with a time measuring function.
次に本発明の実施例2を説明する。実施例2においても、実施例1と同様にLNT6における後部のNOx吸蔵量の割合を算出するが、その算出方法を変更する。実施例2においては、リーン期間中にNOxセンサを用いてLNT6の後部および全体におけるNOx吸蔵量を算出する。この目的のために、実施例1におけるA/Fセンサ41、42、43をNOxセンサ44、45、46に置き換える。NOxセンサ44、45、46によって排気中のNOx濃度が検出される。それ以外の装置構成は実施例1と同じとすればよい。 Next, a second embodiment of the present invention will be described. Also in the second embodiment, the ratio of the NOx occlusion amount in the rear part of the LNT 6 is calculated as in the first embodiment, but the calculation method is changed. In the second embodiment, the NOx occlusion amount in the rear part and the whole of the LNT 6 is calculated using the NOx sensor during the lean period. For this purpose, the A / F sensors 41, 42, 43 in the first embodiment are replaced with NOx sensors 44, 45, 46. The NOx concentration in the exhaust is detected by the NOx sensors 44, 45, and 46. Other apparatus configurations may be the same as those in the first embodiment.
実施例2におけるS劣化判定のための処理手順が図6に示されている。図6の手順ではまずS100でECU9は、リーン期間内であるか否かを判定する。リーン期間内である場合(S100:Yes)はS110に進み、リーン期間内でない場合(S100:No)は図6の処理を終了する。 A processing procedure for determining S deterioration in the second embodiment is shown in FIG. In the procedure of FIG. 6, first, in S100, the ECU 9 determines whether or not it is within the lean period. When it is within the lean period (S100: Yes), the process proceeds to S110, and when it is not within the lean period (S100: No), the process of FIG. 6 is terminated.
S110に進んだらECU9は、NOx吸蔵量を積算する。具体的には以下の式(E7)、(E8)、(E9)のうちのいずれか2つの式により算出する。
D1=Σ(NOxf−NOxm)・Ga・Δt (E7)
D2=Σ(NOxm−NOxr)・Ga・Δt (E8)
F=Σ(NOxf−NOxr)・Ga・Δt (E9)
After proceeding to S110, the ECU 9 integrates the NOx occlusion amount. Specifically, it is calculated by any two of the following formulas (E7), (E8), and (E9).
D1 = Σ (NOxf−NOxm) · Ga · Δt (E7)
D2 = Σ (NOxm−NOxr) · Ga · Δt (E8)
F = Σ (NOxf−NOxr) · Ga · Δt (E9)
ここでNOxf、NOxm、NOxrはそれぞれNOxセンサ44、45、46の計測値である。Gaはエアフロメータ31の計測値である。Δtは積算の周期を示す。なお図6のフローチャートはΔtごとに繰り返し実行すればよい。ΣはNOx吸蔵量の算出開始(リーン燃焼期間の開始)から現在時点までの積算を示す記号である。 Here, NOxf, NOxm, and NOxr are measured values of the NOx sensors 44, 45, and 46, respectively. Ga is a measured value of the air flow meter 31. Δt indicates the period of integration. Note that the flowchart of FIG. 6 may be repeatedly executed every Δt. Σ is a symbol indicating the integration from the start of calculation of NOx occlusion amount (start of lean combustion period) to the present time.
式(E7)の意味を説明する。Gaはエアフロメータで計測された単位時間における新気量であるが、この数値は単位時間あたりの排気量とも等しいとみなされる。したがって例えば式(E7)においてNOxf・Gaは、LNT6の上流部における単位時間あたりのNOxの流量を示す。同様にNOxm・Gaは、LNT6の中間部における単位時間あたりのNOxの流量を示す。 The meaning of the formula (E7) will be described. Ga is the fresh air amount per unit time measured by the air flow meter, but this numerical value is considered to be equal to the exhaust amount per unit time. Therefore, for example, in the formula (E7), NOxf · Ga indicates the flow rate of NOx per unit time in the upstream portion of the LNT6. Similarly, NOxm · Ga indicates the flow rate of NOx per unit time in the intermediate part of LNT6.
したがって(NOxf−NOxm)・Gaは、LNT6の前部、すなわちLNT60における単位時間あたりのNOxの吸蔵量を示す。よってΣ(NOxf−NOxm)Ga・Δtは、NOx吸蔵量の算出開始(リーン燃焼期間の開始)から現在時点までの、LNT6の前部、すなわちLNT60におけるNOxの吸蔵量の積算値である。 Therefore, (NOxf−NOxm) · Ga indicates the storage amount of NOx per unit time in the front portion of the LNT 6, that is, the LNT 60. Therefore, Σ (NOxf−NOxm) Ga · Δt is an integrated value of the NOx occlusion amount in the front portion of the LNT 6, that is, the LNT 60 from the start of calculation of the NOx occlusion amount (start of the lean combustion period) to the current time point.
同様に式(E8)は、NOx吸蔵量の算出開始(リーン燃焼期間の開始)から現在時点までの、LNT6の後部、すなわちLNT61におけるNOxの吸蔵量の積算値である。同様に式(E9)は、NOx吸蔵量の算出開始(リーン燃焼期間の開始)から現在時点までの、LNT60およびLNT61からなるLNT6の全体におけるNOxの吸蔵量の積算値である。 Similarly, the equation (E8) is an integrated value of the NOx occlusion amount in the rear portion of the LNT 6, that is, the LNT 61 from the start of calculation of the NOx occlusion amount (start of the lean combustion period) to the current time point. Similarly, the equation (E9) is an integrated value of the NOx occlusion amount in the entire LNT6 composed of the LNT60 and the LNT61 from the start of calculation of the NOx occlusion amount (start of the lean combustion period) to the current time point.
続いてS120でECU9は、LNT6においてNOx吸蔵が飽和したか否かを判定する。LNT6においてNOx吸蔵が飽和した場合(S120:Yes)はS130に進み、NOx吸蔵がまだ飽和していない場合(S120:No)はS110に戻って、NOx吸蔵が飽和するまでNOx吸蔵量の積算を実行する。 Subsequently, in S120, the ECU 9 determines whether or not the NOx occlusion is saturated in the LNT6. When the NOx occlusion is saturated in the LNT6 (S120: Yes), the process proceeds to S130, and when the NOx occlusion is not yet saturated (S120: No), the process returns to S110, and the NOx occlusion amount is integrated until the NOx occlusion is saturated. Execute.
図7にはNOx還元制御中におけるNOxセンサ44、45、46の計測値の推移の例が示されている。図7は横軸が時間、縦軸がNOx濃度であり、図7において、LNT前、LNT中、LNT後と示されたプロットがそれぞれセンサ44、45、46の計測値を示している。 FIG. 7 shows an example of transition of measured values of the NOx sensors 44, 45, and 46 during NOx reduction control. In FIG. 7, the horizontal axis represents time and the vertical axis represents NOx concentration. In FIG. 7, the plots indicated before, during, and after LNT indicate the measured values of the sensors 44, 45, and 46, respectively.
LNT6にNOxが吸蔵されていない状態でリーン雰囲気が開始されて、LNT6に流入する排気のNOx濃度(LNT前、センサ44の計測値)はほぼ一定値であるとする。このとき、最初はLNT6に流入したNOxがほぼすべてLNT6に吸蔵されることにより、センサ42、43の計測値は最初はゼロである。しかしNOxの吸蔵量が増加するにつれて、LNT6の前部(LNT60)、LNT6の後部(LNT61)をすり抜けるNOxが増加する。 It is assumed that the lean atmosphere is started in a state where NOx is not occluded in the LNT 6 and the NOx concentration of exhaust gas flowing into the LNT 6 (before the LNT, measured value of the sensor 44) is a substantially constant value. At this time, almost all NOx flowing into the LNT 6 is occluded in the LNT 6 at first, so that the measured values of the sensors 42 and 43 are initially zero. However, as the storage amount of NOx increases, NOx passing through the front part of LNT6 (LNT60) and the rear part of LNT6 (LNT61) increases.
これによりセンサ45の計測値(LNT中)、センサ46の計測値(LNY後)が上昇し始める。センサ44の計測値(LNT前)とセンサ45の計測値(LNT中)とが一致する時刻(図7のt1)がLNT6の前部(LNT60)におけるNOx吸蔵が飽和したとみなされる時刻である。 As a result, the measured value of the sensor 45 (during LNT) and the measured value of the sensor 46 (after LNY) begin to rise. The time (t1 in FIG. 7) at which the measured value of the sensor 44 (before LNT) matches the measured value of the sensor 45 (during LNT) is the time when the NOx occlusion at the front part (LNT60) of LNT6 is considered saturated. .
上述のとおりS劣化が進行するほどLNT6の前部(LNT60)においてSOxが堆積するので、LNT6の前部(LNT60)におけるNOx吸蔵量が減少する。したがって、S劣化が進行するほどセンサ45の計測値(LNT中)がセンサ44の計測値(LNT前)と一致する時刻t1が早まる。 As described above, as S deterioration progresses, SOx accumulates at the front portion (LNT60) of LNT6, so that the NOx occlusion amount at the front portion (LNT60) of LNT6 decreases. Therefore, the time t1 at which the measured value of the sensor 45 (during LNT) coincides with the measured value of the sensor 44 (before LNT) is advanced as the S deterioration progresses.
またセンサ44の計測値(LNT前)とセンサ46の計測値(LNT後)とが一致する時刻(図7のt2)がLNT6の全体(LNT60、61)におけるNOx吸蔵が飽和したとみなされる時刻である。よって時刻t2が、S120でNOx吸蔵が飽和したと判定される時刻である。 The time when the measured value of the sensor 44 (before LNT) and the measured value of the sensor 46 (after LNT) coincide (t2 in FIG. 7) is regarded as the NOx occlusion in the entire LNT6 (LNT60, 61) is saturated. It is. Therefore, time t2 is the time when NOx occlusion is determined to be saturated in S120.
図6に戻って、S130に進んだらECU9は、後部NOx吸蔵量の割合Cを算出する。具体的には以下の式(E10)、(E11)、(E12)のいずれかで算出する。
C=(F−D1)/F (E10)
C=D2/F (E11)
C=D2/(D1+D2) (E12)
Returning to FIG. 6, after proceeding to S <b> 130, the ECU 9 calculates the ratio C of the rear NOx occlusion amount. Specifically, it is calculated by any of the following formulas (E10), (E11), and (E12).
C = (F−D1) / F (E10)
C = D2 / F (E11)
C = D2 / (D1 + D2) (E12)
式(E10)は、手順S110で(E7)と(E9)とを算出した場合に用いればよい。式(E11)は、手順S110で(E8)と(E9)とを算出した場合に用いればよい。式(E12)は、手順S110で(E7)と(E8)とを算出した場合に用いればよい。式(E10)、(E11)、(E12)ともに、あきらかにLNT6の全体(LNT60、61)のNOx吸蔵量(F=D1+D2)に対する、LNT6の後部(LNT61)のNOxの吸蔵量(D2=F−D1)の比率を示している。 Equation (E10) may be used when (E7) and (E9) are calculated in step S110. Equation (E11) may be used when (E8) and (E9) are calculated in step S110. Equation (E12) may be used when (E7) and (E8) are calculated in step S110. The expressions (E10), (E11), and (E12) clearly show the NOx occlusion amount (D2 = F2) in the rear part (LNT61) of the LNT6 with respect to the NOx occlusion amount (F = D1 + D2) of the entire LNT6 (LNT60, 61). -D1) ratio.
続いてS140でECU9は、後部NOx吸蔵量の割合が閾値以上であるか否かを判定する。後部NOx吸蔵量の割合Cが閾値以上の場合(S140:Yes)はS150に進み、後部NOx吸蔵量の割合が閾値未満の場合(S140:No)はS160に進む。 Subsequently, in S140, the ECU 9 determines whether or not the ratio of the rear NOx occlusion amount is equal to or greater than a threshold value. When the rear NOx storage amount ratio C is equal to or greater than the threshold (S140: Yes), the process proceeds to S150, and when the rear NOx storage amount ratio is less than the threshold (S140: No), the process proceeds to S160.
上述のとおり、後部NOx吸蔵量の割合Cが大きいほどS劣化が進行しているとみなされる。したがって例えば図4に示された破線のようにS再生が必要なほどS劣化が進行しているか否かを判定できる数値を予め求めておいて、それをS140で用いる閾値とすればよい。そしてS150でECU9は、LNT6はS劣化していると判定する。S160でECU9は、LNT6はS劣化していないと判定する。以上が図6の処理である。 As described above, it is considered that the S deterioration progresses as the ratio C of the rear NOx storage amount increases. Therefore, for example, as shown by the broken line in FIG. 4, a numerical value that can be used to determine whether or not S deterioration has progressed to the extent that S regeneration is necessary is obtained in advance, and this may be used as the threshold value used in S140. In S150, the ECU 9 determines that the LNT 6 is S deteriorated. In S160, the ECU 9 determines that the LNT 6 is not S deteriorated. The above is the processing of FIG.
ECU9は、図2又は図6の処理によってS劣化であると判定された場合、LNT6をS劣化状態から再生させるS再生制御(S再生)を実行すればよい。S再生においては、リッチ雰囲気かつ所定温度(例えば摂氏600度)以上の状態を形成してLNT6に堆積したSOxを還元する。リッチ雰囲気の形成のためには、例えば添加弁40から燃料を添加するか、あるいはエンジン2のシリンダ内で燃焼反応が完了した後に再噴射するポスト噴射や、吸気を絞って燃焼ガスそのものをリッチ化するリッチ燃焼をおこなえばよい。 The ECU 9 may perform S regeneration control (S regeneration) for regenerating the LNT 6 from the S deteriorated state when it is determined that the S deterioration is caused by the processing of FIG. 2 or FIG. In the S regeneration, the SOx deposited on the LNT 6 is reduced by forming a rich atmosphere and a state of a predetermined temperature (for example, 600 degrees Celsius) or higher. In order to create a rich atmosphere, for example, fuel is added from the addition valve 40, or post-injection that is re-injected after the combustion reaction is completed in the cylinder of the engine 2, or the combustion gas itself is enriched by reducing the intake air. Rich combustion may be performed.
さらにECU9には、LNT6の故障検出機能を持たせてもよい。具体的には、例えばS再生の後でも上述のCの算出を行って、S再生前後でのCの値の差分値が所定の閾値よりも小さい場合は、S再生を実行してもCの値があまり改善されていないので、LNT6が故障していると判定する。上記のとおり、Cには精度よくS劣化の情報が反映されるので、LNT6の故障が精度よく検出できる。 Furthermore, the ECU 9 may have a failure detection function of the LNT 6. Specifically, for example, the above-described calculation of C is performed even after the S reproduction, and if the difference value of the C value before and after the S reproduction is smaller than a predetermined threshold, even if the S reproduction is executed, the C Since the value is not improved so much, it is determined that the LNT 6 has failed. As described above, since the information on S degradation is accurately reflected in C, a failure of LNT 6 can be detected with high accuracy.
上記実施例は、特許請求の範囲に記載された趣旨を逸脱しない範囲で適宜変更してよい。例えば上記ではLNT6をLNT60、61に2分割したが、分割数は3以上(4分割、5分割など)の任意の分割数として、それぞれの間にA/Fセンサ(NOxセンサ)を配置してもよい。そして、LNT6内のNOx吸蔵量(SOx堆積量)の空間的分布をより精緻に算出して(あるいは分割された区間のうち一部の区間のNOx吸蔵量(SOx堆積量)の全体のNOx吸蔵量(SOx堆積量)に対する比率を算出して)、後部にNOxが吸蔵されているほどS劣化していると判定すればよい。 The above embodiments may be changed as appropriate without departing from the scope of the claims. For example, in the above, LNT6 is divided into two parts LNT60 and 61, but the number of divisions is 3 or more (4 divisions, 5 divisions, etc.), and an A / F sensor (NOx sensor) is arranged between them. Also good. Then, the spatial distribution of the NOx occlusion amount (SOx accumulation amount) in the LNT 6 is calculated more precisely (or the entire NOx occlusion amount of the NOx occlusion amount (SOx accumulation amount) in a part of the divided intervals). The ratio to the amount (SOx accumulation amount) is calculated), and it may be determined that the S deterioration is caused as NOx is occluded in the rear part.
上記実施例において、LNT6が触媒部を構成する。S60、S130の手順とECU9とが分布検出手段を構成する。S70、S140の手順とECU9とが分布検出手段を構成する。S20の手順とECU9とが還元手段を構成する。センサ41、42、43が空燃比検出手段を構成する。S60の手順とECU9とが第1算出手段、第2算出手段を構成する。センサ44、45、46が窒素酸化物検出手段を構成する。ECU9が第3算出手段を構成する。S130の手順とECU9とが第4算出手段、第5算出手段を構成する。インジェクタ21又は添加弁40が再生手段を構成する。ECU9が故障判定手段を構成する。なお上記実施例ではディーゼルエンジンを用いたが、これはリーンバーンガソリンエンジンでもよい。 In the said Example, LNT6 comprises a catalyst part. The procedure of S60 and S130 and the ECU 9 constitute a distribution detecting means. The procedure of S70 and S140 and the ECU 9 constitute a distribution detecting means. The procedure of S20 and the ECU 9 constitute a reducing means. Sensors 41, 42 and 43 constitute air-fuel ratio detection means. The procedure of S60 and the ECU 9 constitute first calculation means and second calculation means. Sensors 44, 45, and 46 constitute nitrogen oxide detecting means. The ECU 9 constitutes third calculation means. The procedure of S130 and the ECU 9 constitute fourth calculation means and fifth calculation means. The injector 21 or the addition valve 40 constitutes a regeneration unit. The ECU 9 constitutes failure determination means. In the above embodiment, a diesel engine is used, but this may be a lean burn gasoline engine.
1 排気浄化装置
2 ディーゼルエンジン(内燃機関)
3 吸気管
5 排気管(排気通路)
6 NOx吸蔵触媒(LNT、触媒部)
1 Exhaust gas purification device 2 Diesel engine (internal combustion engine)
3 Intake pipe 5 Exhaust pipe (exhaust passage)
6 NOx storage catalyst (LNT, catalyst part)
Claims (10)
前記触媒部に吸蔵された窒素酸化物量の排気の流れ方向における空間的な分布を検出する分布検出手段と、
その分布検出手段によって検出された前記触媒部における窒素酸化物の吸蔵量の空間的な分布を用いて、前記触媒部における硫黄劣化を判定する判定手段と、
を備えたことを特徴とする内燃機関の排気浄化装置。 A catalyst portion that is provided in an exhaust passage of the internal combustion engine and stores nitrogen oxides;
A distribution detecting means for detecting a spatial distribution of the amount of nitrogen oxides occluded in the catalyst portion in the flow direction of the exhaust;
Determination means for determining sulfur deterioration in the catalyst unit using a spatial distribution of the storage amount of nitrogen oxides in the catalyst unit detected by the distribution detection unit;
An exhaust emission control device for an internal combustion engine, comprising:
前記分布検出手段は、
前記触媒部における、排気の流れ方向における上流の第1位置、下流の第3位置、その第1位置と第3位置との間の第2位置における少なくとも3つ以上の空燃比を検出する空燃比検出手段と、
前記還元手段による還元の実行中に、前記空燃比検出手段によって検出された前記第1位置、前記第2位置、前記第3位置における少なくとも3つ以上の空燃比により、前記触媒部における窒素酸化物の吸蔵量の空間的な分布を算出する第1算出手段と、
を備えた請求項1又は2に記載の内燃機関の排気浄化装置。 A reducing means for reducing the stored nitrogen oxides by supplying a reducing agent to the catalyst unit;
The distribution detecting means includes
An air-fuel ratio for detecting at least three air-fuel ratios at a first position upstream in the exhaust gas flow direction, a third position downstream, and a second position between the first position and the third position in the catalyst portion. Detection means;
During execution of reduction by the reduction means, nitrogen oxides in the catalyst unit are obtained by at least three or more air-fuel ratios in the first position, the second position, and the third position detected by the air-fuel ratio detection means. First calculating means for calculating the spatial distribution of the occlusion amount of
An exhaust emission control device for an internal combustion engine according to claim 1 or 2, further comprising:
前記触媒部における、排気の流れ方向における上流の第1位置、下流の第3位置、その第1位置と第3位置との間の第2位置における少なくとも3つ以上の窒素酸化物濃度を検出する窒素酸化物検出手段と、
前記窒素酸化物検出手段によって検出された前記第1位置、前記第2位置、前記第3位置における少なくとも3つ以上の窒素酸化物濃度により、前記触媒部における窒素酸化物の吸蔵量の空間的な分布を算出する第4算出手段と、
を備えた請求項1又は2に記載の内燃機関の排気浄化装置。 The distribution detecting means includes
In the catalyst unit, the concentration of at least three or more nitrogen oxides at a first position upstream in the exhaust flow direction, a third position downstream, and a second position between the first position and the third position is detected. Nitrogen oxide detection means;
The amount of occlusion of nitrogen oxides in the catalyst unit is spatially determined by the concentration of at least three or more nitrogen oxides at the first position, the second position, and the third position detected by the nitrogen oxide detecting means. A fourth calculation means for calculating the distribution;
An exhaust emission control device for an internal combustion engine according to claim 1 or 2, further comprising:
前記判定手段は、前記第2算出手段によって算出された、前記第1位置と前記第3位置との間の前記還元剤の消費量に対する、前記第2位置と前記第3位置との間の前記還元剤の消費量の比率が閾値よりも大きい場合に、前記触媒部は硫黄劣化していると判定する請求項4に記載の内燃機関の排気浄化装置。 The second calculating means includes: a consumption amount of the reducing agent between the first position and the third position; and a consumption amount of the reducing agent between the second position and the third position. Calculate
The determination means is calculated by the second calculation means and the consumption of the reducing agent between the first position and the third position is between the second position and the third position. The exhaust emission control device for an internal combustion engine according to claim 4, wherein when the ratio of the consumption of the reducing agent is larger than a threshold value, it is determined that the catalyst unit has deteriorated sulfur.
前記判定手段は、前記第5算出手段によって算出された、前記第1位置と前記第3位置との間の窒素酸化物の吸蔵量に対する、前記第2位置と前記第3位置との間の窒素酸化物の吸蔵量の比率が閾値よりも大きい場合に、前記触媒部は硫黄劣化していると判定する請求項7に記載の内燃機関の排気浄化装置。 The fifth calculation means includes a storage amount of nitrogen oxides between the first position and the third position, and a storage amount of nitrogen oxides between the second position and the third position. Calculate
The determination means is the nitrogen between the second position and the third position with respect to the storage amount of nitrogen oxides between the first position and the third position calculated by the fifth calculation means. The exhaust purification device for an internal combustion engine according to claim 7, wherein when the ratio of the amount of occluded oxide is larger than a threshold value, it is determined that the catalyst unit has deteriorated sulfur.
その再生手段による硫黄の除去処理の実行の前後における前記触媒部の窒素酸化物の吸蔵量の分布を比較して前記触媒部の故障を判定する故障判定手段と、
を備えた請求項1乃至9のいずれか1項に記載の内燃機関の排気浄化装置。 A regeneration means for removing sulfur accumulated in the catalyst part;
A failure determination means for comparing the distribution of the storage amount of nitrogen oxides in the catalyst portion before and after the execution of the sulfur removal process by the regeneration means, and determining failure of the catalyst portion;
An exhaust purification device for an internal combustion engine according to any one of claims 1 to 9, further comprising:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010237231A JP2012087749A (en) | 2010-10-22 | 2010-10-22 | Exhaust emission control device of internal combustion engine |
DE102011084986A DE102011084986A1 (en) | 2010-10-22 | 2011-10-21 | EXHAUST EMISSION CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010237231A JP2012087749A (en) | 2010-10-22 | 2010-10-22 | Exhaust emission control device of internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012087749A true JP2012087749A (en) | 2012-05-10 |
Family
ID=46259618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010237231A Pending JP2012087749A (en) | 2010-10-22 | 2010-10-22 | Exhaust emission control device of internal combustion engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012087749A (en) |
DE (1) | DE102011084986A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014162813A1 (en) | 2013-04-04 | 2014-10-09 | いすゞ自動車株式会社 | METHOD FOR DETERMINING DEGRADATION OF NOx STORAGE REDUCTION CATALYST IN EXHAUST GAS AFTERTREATMENT DEVICE |
JP2015086863A (en) * | 2013-09-25 | 2015-05-07 | トヨタ自動車株式会社 | Control device of internal combustion engine |
CN111219235A (en) * | 2018-11-23 | 2020-06-02 | 宝沃汽车(中国)有限公司 | Vehicle exhaust gas treatment method, device, storage medium and vehicle |
CN115653735A (en) * | 2022-12-27 | 2023-01-31 | 卓品智能科技无锡股份有限公司 | Method and system for recovering diesel engine SCR sulfur poisoning |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017200145B4 (en) * | 2016-01-22 | 2021-12-23 | Ford Global Technologies, Llc | Method for monitoring an exhaust gas aftertreatment system, in particular a NOx storage catalytic converter and control device for an exhaust gas aftertreatment system and vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000034943A (en) * | 1998-07-17 | 2000-02-02 | Denso Corp | Exhaust emission control device for internal combustion engine |
JP2009150282A (en) * | 2007-12-19 | 2009-07-09 | Toyota Motor Corp | Deterioration diagnosing device of nox catalyst |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4186259B2 (en) | 1998-07-17 | 2008-11-26 | 株式会社デンソー | Exhaust gas purification device for internal combustion engine |
-
2010
- 2010-10-22 JP JP2010237231A patent/JP2012087749A/en active Pending
-
2011
- 2011-10-21 DE DE102011084986A patent/DE102011084986A1/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000034943A (en) * | 1998-07-17 | 2000-02-02 | Denso Corp | Exhaust emission control device for internal combustion engine |
JP2009150282A (en) * | 2007-12-19 | 2009-07-09 | Toyota Motor Corp | Deterioration diagnosing device of nox catalyst |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014162813A1 (en) | 2013-04-04 | 2014-10-09 | いすゞ自動車株式会社 | METHOD FOR DETERMINING DEGRADATION OF NOx STORAGE REDUCTION CATALYST IN EXHAUST GAS AFTERTREATMENT DEVICE |
JP2015086863A (en) * | 2013-09-25 | 2015-05-07 | トヨタ自動車株式会社 | Control device of internal combustion engine |
CN111219235A (en) * | 2018-11-23 | 2020-06-02 | 宝沃汽车(中国)有限公司 | Vehicle exhaust gas treatment method, device, storage medium and vehicle |
CN115653735A (en) * | 2022-12-27 | 2023-01-31 | 卓品智能科技无锡股份有限公司 | Method and system for recovering diesel engine SCR sulfur poisoning |
Also Published As
Publication number | Publication date |
---|---|
DE102011084986A1 (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5067614B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP6036772B2 (en) | Control device for internal combustion engine | |
US9261007B2 (en) | Catalyst-degradation detection device | |
JP6287989B2 (en) | Abnormality diagnosis device for NOx storage reduction catalyst | |
JP5007845B2 (en) | Exhaust gas purification device for internal combustion engine | |
EP2052137B1 (en) | Catalyst monitoring system and method | |
JP2012087749A (en) | Exhaust emission control device of internal combustion engine | |
JP5665015B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2008019790A (en) | Exhaust emission control system for internal combustion engine | |
JP2019152167A (en) | Exhaust emission control device for internal combustion engine | |
JP2005264808A (en) | Exhaust emission control device for internal combustion engine | |
JP2012031761A (en) | Catalyst abnormality diagnostic device | |
EP3269954B1 (en) | Exhaust purification system, and control method for exhaust purification system | |
EP3267000B1 (en) | Exhaust purification system and catalyst regeneration method | |
JP2009138525A (en) | Sulfur accumulation degree estimation device of exhaust emission control device | |
CN110230527B (en) | Exhaust gas purification device for internal combustion engine | |
JP2017129037A (en) | Abnormality diagnosis device of nox occlusion reduction-type catalyst | |
JP4193790B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4259360B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4692906B2 (en) | NOx catalyst deterioration diagnosis device | |
JP5093134B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4895135B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2011043114A (en) | Exhaust emission purifying apparatus for internal combustion engine | |
JP2020060121A (en) | Exhaust emission control device of internal combustion engine | |
JP2020037929A (en) | Exhaust emission control system for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120301 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20121013 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130614 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131225 |