JP2009184973A - Sustained release antimicrobial agent preparation using carbon nanohorn as carrier - Google Patents

Sustained release antimicrobial agent preparation using carbon nanohorn as carrier Download PDF

Info

Publication number
JP2009184973A
JP2009184973A JP2008026970A JP2008026970A JP2009184973A JP 2009184973 A JP2009184973 A JP 2009184973A JP 2008026970 A JP2008026970 A JP 2008026970A JP 2008026970 A JP2008026970 A JP 2008026970A JP 2009184973 A JP2009184973 A JP 2009184973A
Authority
JP
Japan
Prior art keywords
sustained
antibacterial
antibacterial agent
release preparation
carbon nanohorn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008026970A
Other languages
Japanese (ja)
Other versions
JP5397726B2 (en
Inventor
Masako Yudasaka
雅子 湯田坂
Sumio Iijima
澄男 飯島
Akira Han
晶 范
Kenkun Jo
建▲くん▼ 徐
Hiroshi Tabuse
洋 田伏
Yuhei Yamamoto
有平 山本
Mitsuru Sekido
充 関堂
Yoshio Kouraba
祥夫 小浦場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
NEC Corp
Original Assignee
Japan Science and Technology Agency
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, NEC Corp filed Critical Japan Science and Technology Agency
Priority to JP2008026970A priority Critical patent/JP5397726B2/en
Publication of JP2009184973A publication Critical patent/JP2009184973A/en
Application granted granted Critical
Publication of JP5397726B2 publication Critical patent/JP5397726B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sustained release antimicrobial agent preparation containing an antimicrobial agent, the release of which is sustained by using carbon nanohorns as a carrier. <P>SOLUTION: The sustained release antimicrobial agent preparation involves the antimicrobial agent containing an inorganic antimicrobial agent such as silver, a synthetic organic antimicrobial agent, a natural antimicrobial agent or the like, and the antimicrobial agent has the opened carbon nanohorns including at least one kind of a germicidal agent and an antibiotic as the carrier. Chemical modification for controlling the release rate of the involved chemical may be applied to the sidewall, the tip or the edge of the opening part of the carbon nanohorn. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、カーボンナノホーンをキャリアとする抗菌剤徐放化製剤に関するものである。   The present invention relates to an antibacterial sustained-release preparation using carbon nanohorn as a carrier.

また、抗菌剤を含有する製剤として、無機系抗菌剤を吸着剤に吸着したものが提案されている(例えば、特許文献1、参照)。特許文献1に記載された抗菌製品は、吸着剤として、活性炭、木炭、カーボンナノチューブ等の炭素系、シリカゲルなどが例示されている。しかしながら、カーボンナノチューブは口径が1.4nm程度と小さく、その中に有機系の抗菌剤を包含させるには、容易ではない。   Moreover, what adsorb | sucked the inorganic type antimicrobial agent to the adsorption agent as a formulation containing an antimicrobial agent is proposed (for example, refer patent document 1). The antibacterial product described in Patent Document 1 is exemplified by carbon such as activated carbon, charcoal, and carbon nanotube, silica gel, and the like as an adsorbent. However, the carbon nanotube has a small diameter of about 1.4 nm, and it is not easy to include an organic antibacterial agent therein.

更に、特許文献2には、特許文献1と同様な製品に関するものであるが、吸着剤として、カーボンナノホーンを用いることが開示されている。しかしながら、特許文献2には、被吸着物質の開示はない。   Further, Patent Document 2 relates to a product similar to Patent Document 1, but discloses the use of carbon nanohorns as an adsorbent. However, Patent Document 2 does not disclose an adsorbed substance.

また、特許文献3には、カーボンナノホーンにデキソメタゾンやシスプラチン等の抗癌剤などのステロイド系ホルモンを含有させることが開示されているが抗菌剤ではない。   Patent Document 3 discloses that carbon nanohorns contain steroidal hormones such as anticancer agents such as dexomethasone and cisplatin, but are not antibacterial agents.

特開2003−40718号公報Japanese Patent Laid-Open No. 2003-40718 特開2006−007217号公報JP 2006007217 A 特開2005−343885号公報JP-A-2005-343885

まず、抗菌剤の製剤の徐放化の必要性について、抗生剤の一つである塩酸バンコマイシンを例にとって説明する。塩酸バンコマイシンは細菌感染症起因菌として重大な問題となっているメチシリン耐性黄色ブドウ球菌(MRSA)の治療薬として広く用いられているが、副作用として腎毒性を有し、至適血中濃度と毒性発現濃度が近接しているため血中濃度の測定のもと厳密な投与量・間隔の調整が必要である。   First, the necessity of sustained release of the antibacterial agent preparation will be described by taking vancomycin hydrochloride, which is one of the antibiotics, as an example. Vancomycin hydrochloride is widely used as a remedy for methicillin-resistant Staphylococcus aureus (MRSA), which is a serious problem causing bacterial infections. However, it has nephrotoxicity as a side effect, and has an optimal blood concentration and toxicity. Since the expression levels are close to each other, it is necessary to strictly adjust the dose and interval based on the measurement of blood levels.

また、抗生剤一般の性質として、手術部位・感染部位への局所投与では薬剤濃度が維持できず急激に減少するためほとんど効果がない。   Further, as a general property of antibiotics, local administration to a surgical site or infected site has little effect because the drug concentration cannot be maintained and decreases rapidly.

これらの欠点を解決する手段として、薬剤を徐放化する方法が知られており、塩酸バンコマイシンの徐放化製剤としてpoly(lactide−co−glycolide)(PLGA)のmicroparticleをキャリアとした製剤の報告があるが、この製剤では含有する塩酸バンコマイシンの約90%が24時間以内に放出されてしまい、長時間の至適濃度の維持はできない。   As a means for solving these drawbacks, a method of sustained release of a drug is known, and a preparation using a microparticulate of poly (lactide-co-glycolide) (PLGA) as a carrier as a sustained release preparation of vancomycin hydrochloride is reported. However, in this preparation, about 90% of vancomycin hydrochloride contained is released within 24 hours, and the optimum concentration cannot be maintained for a long time.

前述したように、塩酸バンコマイシンの場合、poly(lactide−co−glycolide)(PLGA)のmicroparticleをキャリアとした徐放化製剤技術では1日1回の投与が必要となり、塩酸バンコマイシン単独投与と比べてメリットが少ない。   As described above, in the case of vancomycin hydrochloride, the sustained release preparation technique using a microparticulate of poly (lactide-co-glycolide) (PLGA) requires administration once a day, compared with vancomycin hydrochloride alone administration. There are few benefits.

また、徐放が長時間継続する製剤を開発する事で1回の投与で長時間の抗菌作用維持が可能となり、投与間隔延長や、手術部位への局所使用のように投与機会が1度しかない局面での抗菌効果の長期維持に有用となる。   In addition, by developing a formulation that allows sustained release over a long period of time, it is possible to maintain the antibacterial action for a long time with a single administration, and there is only one administration opportunity, such as extended administration intervals or local use at the surgical site. This is useful for long-term maintenance of antibacterial effects in situations where there is no such thing.

そこで、本発明の技術的課題は、カーボンナノホーンをキャリアとすることによって、徐放化が図られた抗菌剤を包含する抗菌剤徐放化製剤を提供することにある。   Then, the technical subject of this invention is providing the antimicrobial agent sustained release formulation containing the antimicrobial agent with which sustained release was achieved by using carbon nanohorn as a carrier.

本発明によれば、抗菌剤を内包したカーボンナノホーンをキャリアとして有することを特徴とする抗菌剤徐放化製剤が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the antimicrobial agent sustained release formulation characterized by having as a carrier the carbon nanohorn which included the antimicrobial agent is obtained.

また、本発明によれば、前記抗菌剤徐放化製剤において、前記抗菌剤は、無機系抗菌剤や合成系有機物抗菌剤、天然物系抗菌剤などを含むことを特徴とする抗菌剤徐放化製剤が得られる。ここで本発明において、無機系抗菌剤として銀、及び銀系抗菌剤を例示することができるが、これらに限定されるものではない。   Further, according to the present invention, in the antibacterial agent sustained-release preparation, the antibacterial agent includes an inorganic antibacterial agent, a synthetic organic antibacterial agent, a natural product antibacterial agent, and the like. A modified preparation is obtained. In the present invention, examples of the inorganic antibacterial agent include silver and silver antibacterial agents, but the present invention is not limited thereto.

また、本発明によれば、前記抗菌剤徐放化製剤において、前記抗菌剤は、殺菌剤及び抗菌剤の少なくとも一種を含むことを特徴とする抗菌剤徐放化製剤。   Moreover, according to the present invention, the antibacterial agent sustained release preparation, wherein the antibacterial agent contains at least one of a bactericidal agent and an antibacterial agent.

ここで、本発明において、殺菌剤としては、ヨウ素を例示することができ、また、抗菌剤としては、塩酸バンコマイシンなどの抗生剤などを例示することができるが、これらに限定されるものではない。   Here, in the present invention, examples of the bactericidal agent include iodine, and examples of the antibacterial agent include antibiotics such as vancomycin hydrochloride, but are not limited thereto. .

また、本発明によれば、前記いずれか一つの抗菌剤徐放化製剤において、前記カーボンナノホーンは開孔部を有するカーボンナノホーンであることを特徴とする抗菌剤徐放化製剤が得られる。   Moreover, according to the present invention, in any one of the antibacterial agent sustained-release preparations, an antibacterial agent sustained-release preparation is obtained, wherein the carbon nanohorn is a carbon nanohorn having an opening.

また、本発明によれば、前記抗菌剤徐放化製剤において、前記カーボンナノホーンの側壁、先端、あるいは、開孔部縁は、内包薬剤の放出速度を制御するための化学修飾が施されていることを特徴とする抗菌剤徐放化製剤が得られる。   Further, according to the present invention, in the antibacterial agent sustained-release preparation, the side wall, tip, or opening edge of the carbon nanohorn is chemically modified to control the release rate of the encapsulated drug. Thus, an antibacterial sustained-release preparation is obtained.

また、本発明によれば、前記抗菌剤徐放化製剤において、カーボンナノホーンの側壁、先端、あるいは、開孔部縁には、疎水性である当該カーボンナノホーンの親水性を高めるための化学修飾または細網内皮系の貪食作用を回避するための化学修飾が施されていることを特徴とする抗菌剤徐放化製剤が得られる。   Moreover, according to the present invention, in the antibacterial agent sustained-release preparation, the side wall, the tip, or the opening edge of the carbon nanohorn is chemically modified to increase the hydrophilicity of the carbon nanohorn, which is hydrophobic, or An antibacterial sustained-release preparation characterized by chemical modification for avoiding phagocytosis of the reticuloendothelial system is obtained.

また、本発明によれば、前記抗菌剤徐放化製剤において、前記カーボンナノホーンの側壁、先端、あるいは、開孔部縁に、前記患部に選択的に到達するように患部に特異的に発現している抗体等に選択的に付着する分子が付加されていることを特徴とする抗菌剤徐放化製剤が得られる。   Further, according to the present invention, in the antibacterial agent sustained-release preparation, it is specifically expressed in the affected part so as to selectively reach the affected part at the side wall, tip, or edge of the opening of the carbon nanohorn. An antibacterial sustained-release preparation characterized in that a molecule that selectively adheres to an antibody or the like is added.

また、本発明によれば、前記いずれか一つの抗菌剤徐放化製剤において、前記カーボンナノホーンまたは化学修飾カーボンナノホーンに機能性物質を物理吸着させたことを特徴とする抗菌剤徐放化製剤が得られる。   Further, according to the present invention, there is provided an antibacterial agent sustained-release preparation characterized in that in any one of the antibacterial agent sustained-release preparations, a functional substance is physically adsorbed on the carbon nanohorn or the chemically modified carbon nanohorn. can get.

また、本発明によれば、前記抗菌剤徐放化製剤において、前記機能性物質の機能は、内包抗菌剤の徐放制御、抗菌作用、薬剤、親水性分子、標的分子などであることを特徴とする抗菌剤徐放化製剤が得られる。   Further, according to the present invention, in the antibacterial agent sustained-release preparation, the function of the functional substance is controlled release of the encapsulated antibacterial agent, antibacterial action, drug, hydrophilic molecule, target molecule, etc. Thus, an antibacterial sustained-release preparation is obtained.

また、本発明によれば、前記いずれか一つの抗菌剤徐放化製剤において、前記抗菌剤内包カーボンナノホーンを、皮膚疾患治療用として用いることを特徴とする抗菌剤徐放化製剤が得られる。   In addition, according to the present invention, there can be obtained an antibacterial agent sustained-release preparation characterized in that the antibacterial agent-encapsulated carbon nanohorn is used for skin disease treatment in any one of the antibacterial agent sustained-release preparations.

また、本発明によれば、前記抗菌剤内包カーボンナノホーンを皮膚などに塗布しやすくなるような機能を備えた物質と混合して用いることを特徴とする抗菌剤徐放化製剤が得られる。   In addition, according to the present invention, an antibacterial agent sustained-release preparation characterized by using the antibacterial agent-encapsulating carbon nanohorn mixed with a substance having a function that facilitates application to the skin or the like can be obtained.

また、本発明によれば、前記いずれか一つに記載の抗菌剤徐放化製剤において、前記抗菌剤内包カーボンナノホーンを、皮膚疾患治療用として体内投与して用いることを特徴とする抗菌剤徐放化製剤が得られる。   Further, according to the present invention, in the antibacterial agent sustained-release preparation according to any one of the above, the antibacterial agent-containing carbon nanohorn is used by being administered in the body for the treatment of skin diseases. A release formulation is obtained.

また、本発明によれば、キャリアとしてカーボンナノホーンを開孔処理し、抗菌剤を内包させることを特徴とする抗菌剤徐放化製剤の製造方法が得られる。   In addition, according to the present invention, there can be obtained a method for producing a sustained-release preparation of an antibacterial agent characterized in that carbon nanohorns are subjected to pore opening treatment as a carrier and the antibacterial agent is encapsulated.

また、本発明によれば、前記抗菌剤徐放化製剤の製造方法において、前記抗菌剤は、無機系抗菌剤や合成系有機物抗菌剤、天然物系抗菌剤などを含むことを特徴とする抗菌剤徐放化製剤の製造方法が得られる。   According to the present invention, in the method for producing a sustained-release preparation for an antibacterial agent, the antibacterial agent includes an inorganic antibacterial agent, a synthetic organic antibacterial agent, a natural product antibacterial agent, and the like. A method for producing a sustained-release preparation is obtained.

また、本発明によれば、前記抗菌剤徐放化製剤の製造方法において、前記抗菌剤は、殺菌剤及び抗生剤の内の少なくとも一種を含むことを特徴とする抗菌剤徐放化製剤の製造方法が得られる。   According to the present invention, in the method for producing an antibacterial agent sustained-release preparation, the antibacterial agent comprises at least one of a bactericidal agent and an antibiotic agent. A method is obtained.

本発明によれば、カーボンナノホーンをキャリアとすることによって、徐放化が図られた抗菌剤を包含する抗菌剤徐放化製剤を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the antimicrobial agent sustained release formulation containing the antimicrobial agent with which sustained release was achieved can be provided by using carbon nanohorn as a carrier.

本発明をより詳しく説明する。   The present invention will be described in more detail.

本発明において、カーボンナノホーン(CNH)はグラファイトシートが円筒状に丸まり、端が円錐状の形態をした単層カーボンナノチューブがほぼ放射状に並んで直径80〜100nm球形集合体を形成したものである。   In the present invention, the carbon nanohorn (CNH) is formed by forming a spherical aggregate having a diameter of 80 to 100 nm in which graphite sheets are rounded in a cylindrical shape and single-walled carbon nanotubes having a conical end shape are arranged almost radially.

CNHはチューブ壁に孔を開けることが可能であり、開孔制御、化学修飾によりチューブへの薬剤の内包・放出をコントロールすることができ、薬剤の徐放化製剤のキャリアとしての有用性が報告されている。   CNH can make a hole in the tube wall, and can control the encapsulation and release of the drug to the tube by controlling the opening and chemical modification, and the usefulness of the drug as a sustained-release preparation carrier has been reported. Has been.

本発明では、薬剤キャリアとしてCNHを用いることで、より優れた塩酸バンコマイシンなどの抗菌剤の徐放化製剤を設計したものである。   In the present invention, a superior sustained release preparation of an antibacterial agent such as vancomycin hydrochloride is designed by using CNH as a drug carrier.

本発明の抗菌剤所放化製剤は、抗菌剤を内包したカーボンナノホーンをキャリアとして有する。   The antimicrobial agent release preparation of the present invention has carbon nanohorns containing an antibacterial agent as a carrier.

ここで、カーボンナノホーンは、過酸化水素等の開孔処理によって設けられた開孔部を有する開孔カーボンナノホーンであることが好ましい。   Here, the carbon nanohorn is preferably an apertured carbon nanohorn having an aperture provided by an aperture treatment such as hydrogen peroxide.

また、前記抗菌剤として、無機系抗菌剤やさらに合成系有機物抗菌剤、各種天然物系抗菌剤なども含むことができる。   The antibacterial agent may also include an inorganic antibacterial agent, a synthetic organic antibacterial agent, and various natural product antibacterial agents.

無機系抗菌剤としては、銀や銀系抗菌剤のほかにマンガン(Mn2+)、鉄(Fe3+)、コバルト(Co2+)、ニッケル(Ni2+)、銅(Cu2+)等の金属イオンなどを含む酸化物又は水酸化物等の化合物が好ましい。 Examples of inorganic antibacterial agents include metal ions such as manganese (Mn 2+ ), iron (Fe 3+ ), cobalt (Co 2+ ), nickel (Ni 2+ ), and copper (Cu 2+ ) in addition to silver and silver antibacterial agents. Compounds such as oxides or hydroxides containing are preferred.

また、合成系有機物抗菌剤としては、2−(4−チアゾリル)ベンズイミダゾールなどイミダゾール誘導体、シクロフルアニドなどN−ハロアルキルチオ系化合物、10、10’−オキシビスフェノキサアルシンなどフェニルエーテル誘導体、セシルジメチルエチルアンモニウムブロミドなど第4級アンモニウム塩および2、3、5、6テトラコロル−4−(メチルスルホニル)ピリジンなどスルホン誘導体、アミド類、トリアジン誘導体、トリアゾール誘導体、メチロール基含有化合物、活性ハロゲン含有化合物、活性化されたN−S結合含有化合物、イソチアゾロン系、有機ヨウ素系、ベンズイソチアゾロン系、およびピリチオン系等が挙げられるが、これに限定されるものではない。   Synthetic organic antibacterial agents include imidazole derivatives such as 2- (4-thiazolyl) benzimidazole, N-haloalkylthio compounds such as cyclofuranide, phenyl ether derivatives such as 10, 10′-oxybisphenoxaarsine, and cecil. Quaternary ammonium salts such as dimethylethylammonium bromide and sulfone derivatives such as 2,3,5,6tetracolol-4- (methylsulfonyl) pyridine, amides, triazine derivatives, triazole derivatives, methylol group-containing compounds, active halogen-containing compounds, Examples include activated NS bond-containing compounds, isothiazolones, organic iodines, benzisothiazolones, and pyrithiones, but are not limited thereto.

また、前記抗菌剤は、殺菌剤及び抗生剤の内の少なくとも一種を含み、殺菌剤としては、ヨウ素、抗生剤としては、塩酸バンコマイシンなどが例示できるが、これらに限定されるものではない。   The antibacterial agent includes at least one of a bactericidal agent and an antibiotic. Examples of the bactericidal agent include iodine, and examples of the antibiotic include vancomycin hydrochloride, but are not limited thereto.

また、本発明の抗菌剤徐放化製剤において、前記カーボンナノホーンの側壁、先端、あるいは、開孔部縁は、内包薬剤の放出速度を制御するための化学修飾が施されていることが好ましい。   In the antibacterial agent sustained-release preparation of the present invention, it is preferable that the side wall, the tip, or the opening edge of the carbon nanohorn is chemically modified to control the release rate of the encapsulated drug.

また、本発明の前記抗菌剤徐放化製剤において、前記カーボンナノホーンの側壁、先端、あるいは、開孔部縁は、疎水性である当該カーボンナノホーンの親水性を高めるための化学修飾または細網内皮系の貪食作用を回避するための化学修飾が施されているが施されていることが好ましい。親水性は、例えば、スパッタ等によって酸素原子を化学修飾させることで得られるが、これらに限定されるものではないことは勿論である。   Further, in the antibacterial agent sustained-release preparation of the present invention, the side wall, tip, or opening edge of the carbon nanohorn is hydrophobic. Chemical modification for enhancing the hydrophilicity of the carbon nanohorn or reticuloendothelium Although it has been chemically modified to avoid the phagocytosis of the system, it is preferably applied. The hydrophilicity can be obtained, for example, by chemically modifying oxygen atoms by sputtering or the like, but is not limited thereto.

また、本発明の前記抗菌剤徐放化製剤において、前記カーボンナノホーンの側壁、先端、あるいは、開孔部縁に、前記患部に選択的に到達するように患部に特異的に発現している抗体等に選択的に付着する分子が付加されていることが好ましい。   Further, in the antibacterial sustained-release preparation of the present invention, an antibody that is specifically expressed in the affected part so as to selectively reach the affected part at the side wall, tip, or opening edge of the carbon nanohorn It is preferable that a molecule that selectively adheres to a molecule is added.

また、本発明の前記抗菌剤徐放化製剤において、前記カーボンナノホーンまたは化学修飾カーボンナノホーンに機能性物質を物理吸着させることが好ましい。   In the antibacterial sustained-release preparation of the present invention, it is preferable that a functional substance is physically adsorbed on the carbon nanohorn or the chemically modified carbon nanohorn.

この機能物質は、内包抗菌剤の徐放制御、抗菌作用、薬剤、親水性分子、標的分子などを有する。親水性分子としては、酸素含有分子を用いることができる。   This functional substance has a controlled release of an encapsulated antibacterial agent, an antibacterial action, a drug, a hydrophilic molecule, a target molecule, and the like. An oxygen-containing molecule can be used as the hydrophilic molecule.

また、本発明の前記抗菌剤徐放化製剤は、前記抗菌剤内包カーボンナノホーンを、皮膚疾患治療用として用いる。この抗菌剤徐放化製剤としては、前記抗菌剤内包カーボンナノホーンを皮膚などに塗布しやすくなるような機能を備えた物質と混合して用いることが好ましい。   The antibacterial agent sustained-release preparation of the present invention uses the antibacterial agent-encapsulated carbon nanohorn for treating skin diseases. As this antibacterial agent sustained-release preparation, it is preferable to use the antibacterial agent-encapsulated carbon nanohorn mixed with a substance having a function that facilitates application to the skin or the like.

また、本発明の前記抗菌剤徐放化製剤において、前記抗菌剤内包カーボンナノホーンを、皮膚疾患治療用として体内投与して用いることが好ましい。   In the antibacterial agent sustained-release preparation of the present invention, the antibacterial agent-encapsulated carbon nanohorn is preferably administered by administration into the body for the treatment of skin diseases.

以下に本発明の実施例を説明するが、本発明は、以下の実施例に限定されるものではないことは勿論である。   Examples of the present invention will be described below, but the present invention is of course not limited to the following examples.

本発明の実施例1では、塩酸バンコマイシン(VCM)内包カーボンナノホーンについて説明する。   In Example 1 of the present invention, a vancomycin hydrochloride (VCM) -encapsulated carbon nanohorn will be described.

VCM約18mgを水100ccに溶解させ、その中に開孔単層カーボンナノホーン(SWNHox)約25mgを分散させる。分散液を大気圧窒素気流中に1週間放置したところ、VCM内包SWNHox(以下、VCM@SWNHoxと表わす)の黒色粉末を得ることができた。He中での熱重量分析により、内包されたVCMは約30〜40%(0.4〜0.7g/g)であった。収率は95%程度であった。   About 18 mg of VCM is dissolved in 100 cc of water, and about 25 mg of open-hole single-walled carbon nanohorn (SWNHox) is dispersed therein. When the dispersion was left in an atmospheric pressure nitrogen stream for 1 week, a black powder of VCM-encapsulated SWNHox (hereinafter referred to as VCM @ SWNHox) could be obtained. Encapsulated VCM was about 30-40% (0.4-0.7 g / g) by thermogravimetric analysis in He. The yield was about 95%.

VCM@SWNHox1.85mgを緩衝液4mlに分散させ、一定時間経過後、10,000rpmで5分間遠心分離して上澄み液を回収し、さらに、孔サイズ200nmのメンブレンを用いてろ過した。ろ液の紫外可視吸収スペクトルを測定し、〜280nmのピークの強度からVCMの濃度を見積もった。遠心分離管の底に残ったVCM@SWNHoxを再び4mlの緩衝液に分散させて、実験をくりかえした。その結果を図1に示す。   VCM @ SWNHox (1.85 mg) was dispersed in 4 ml of a buffer solution, and after a certain period of time, the supernatant was collected by centrifugation at 10,000 rpm for 5 minutes, and further filtered using a membrane having a pore size of 200 nm. The UV-visible absorption spectrum of the filtrate was measured, and the concentration of VCM was estimated from the intensity of the peak at ˜280 nm. The experiment was repeated with VCM @ SWNHox remaining at the bottom of the centrifuge tube dispersed again in 4 ml of buffer. The result is shown in FIG.

図1は、VCM@SWNHoxから緩衝液中へのVCM放出量を示す図であり、図の数字はデータポイントの測定順を示している。   FIG. 1 is a diagram showing the amount of VCM released from VCM @ SWNHox into a buffer solution, and the numbers in the figure indicate the measurement order of data points.

図1から、ナノホーンからのVCM放出は特殊であり、緩衝液にはじめて浸漬したときに現れたVCM初期バースト放出(図1の点1と2)以外は、VCM放出量は低かった。しかも、緩衝液浸漬15分以内に、VCMの放出と取り込みが平衡に達し、見かけ上放出がとまった。これは、生体内で放出したVCMが周辺にあるときには、過剰放出しないことを示唆し、これまでにない、薬剤放出パターンである。なお、初期バーストは、SWNHox外壁に付着したVCMの溶け出しが原因である。   From FIG. 1, the release of VCM from the nanohorn was special, and the amount of VCM released was low except for the VCM initial burst release (points 1 and 2 in FIG. 1) that appeared when first immersed in the buffer solution. Moreover, the release and uptake of VCM reached equilibrium within 15 minutes of buffer soaking, and the release was apparently stopped. This is an unprecedented drug release pattern, suggesting that there is no excessive release when VCM released in vivo is in the vicinity. The initial burst is caused by the dissolution of VCM attached to the outer wall of SWNHox.

上記放出特性は、臨床において、過剰投与を防ぐ好ましい特徴であると思われ、1回の本製剤の投与で少なくとも200時間以上に渡り薬剤の濃度を一定に保つ事が可能となる。血中に投与する際は抗菌効果の長期間に渡る維持が可能となり、通常1日に1〜4回の投与が必要な薬剤の投与間隔を大幅に延長する事が可能となる。また手術・処置の際にMRSA感染の可能性がある部位に局所投与することで長期間に渡る抗菌効果が可能となる。   The release characteristics seem to be a preferable feature for preventing overdose in clinical practice, and it is possible to keep the drug concentration constant for at least 200 hours or more by one administration of the preparation. When administered into the blood, it is possible to maintain the antibacterial effect for a long period of time, and it is possible to greatly extend the administration interval of a drug that normally needs to be administered 1 to 4 times a day. In addition, antibacterial effect over a long period of time can be achieved by local administration to a site where MRSA infection is possible during surgery or treatment.

また塩酸バンコマイシンは、腸管で吸収されないため内服薬として骨髄移植の前処置の際の消化管内殺菌や一部の細菌感染症の治療に用いられているが(1日4回の内服が必要)、本製剤を使用する事により投与間隔を延長し、かつ持続的な抗菌力の維持が可能となる。   Vancomycin hydrochloride is not absorbed by the intestinal tract and is used as an internal medicine for sterilization of the digestive tract during bone marrow transplantation pretreatment and treatment of some bacterial infections (necessary to take 4 times a day). By using the preparation, it is possible to prolong the administration interval and maintain a continuous antibacterial activity.

(抗バクテリア試験)
大腸菌(E.coli:JM101)抗菌性試験に用いた。最初に、トリプトン(DIFCO研究所)、酵母エキス(DIFCO研究所)、NaCl,寒天(BD),及び水を2:1:2:3:200の重量比率で混ぜて、LB寒天固体培養培地を作製した。この培地を1.5時間高圧滅菌して、それから50℃まで冷却された時に、培養皿(100mm)に移動した。大腸菌は、LB液体培地に接種されて、37℃で一夜で培養された。細菌の溶液のほんの一部分は、個々のLBプレートに接種されて、寒天表面に広がり、それから、後の使用のために4℃で蓄えた。
(Anti-bacteria test)
It was used for E. coli (JM101) antibacterial test. First, tryptone (DIFCO Laboratories), yeast extract (DIFCO Laboratories), NaCl, agar (BD), and water are mixed at a weight ratio of 2: 1: 2: 3: 200 to prepare an LB agar solid culture medium. Produced. The medium was autoclaved for 1.5 hours and then transferred to a culture dish (100 mm) when cooled to 50 ° C. E. coli was inoculated into LB liquid medium and cultured overnight at 37 ° C. A small portion of the bacterial solution was inoculated into individual LB plates and spread over the agar surface and then stored at 4 ° C. for later use.

VCMを内包したSWNHox(VCM@SWNHoxで示す)の活性を調査するために、約3mgサンプル(約1.2mgVCM包含)を、図2に示すようにバクテリアを接種する寒天表面に置いた。比較のために、1.2mgVCMおよび1.8mgSWNHoxを同じ皿に入れた。その皿は、一晩中37℃で培養された。   In order to investigate the activity of SWNHox containing VCM (indicated as VCM @ SWNHox), about 3 mg sample (including about 1.2 mg VCM) was placed on the agar surface inoculated with bacteria as shown in FIG. For comparison, 1.2 mg VCM and 1.8 mg SWNHox were placed in the same dish. The dish was incubated overnight at 37 ° C.

図2はVCM,SWNHox、VCM@SWNHoxを使用した大腸菌(E.coli)実験結果を示している。固体培地の白色は大腸菌(E.coli.)が存在することを示している。挿入物から、バクテリアがVCM(図2上図)及びVCM@SWNHox(図2左下図)付近で殺菌されているのに対して、SWNHoxはバクテリアに対して殺菌効果がない(非中毒性)である(図2右下図)ことが分かる。   FIG. 2 shows the results of E. coli experiments using VCM, SWNHox, and VCM @ SWNHox. The white color of the solid medium indicates the presence of E. coli. From the insert, bacteria are sterilized near VCM (Figure 2 top) and VCM @ SWNHox (Figure 2 bottom left), whereas SWNHox has no bactericidal effect on bacteria (non-toxic) It can be seen that there is a lower right figure in FIG.

図2から、VCM及びVCM@SWNHox試料の周囲に、バクテリアが存在しないことによる抑制リングがあることが分かった。これは、VCM@SWNHoxがバクテリアの増殖の抑制効果を有することを示している。しかしながら、SWNHoxはそれ自身は抗生作用を有してはいない。   From FIG. 2, it was found that there is an inhibition ring due to the absence of bacteria around the VCM and VCM @ SWNHox samples. This indicates that VCM @ SWNHox has an effect of suppressing bacterial growth. However, SWNHox does not itself have antibiotic action.

本発明の実施例2では、ナノホーンを用いたヨウ素吸着剤について説明する。   In Example 2 of the present invention, an iodine adsorbent using a nanohorn will be described.

1.<ナノホーンのヨウ素吸着能について>
カーボンナノホーン(CNH)を過酸化水素(100℃、3時間加熱)処理にて開孔した。開孔カーボンナノホーン(CNHox)(52mg)をヨウ素粒(0.5g)とともに密閉ガラス容器中にいれ、放置し、ヨウ素ガスをCNHoxに吸着させた(I/CNHox)。ヨウ素吸着によるCNHoxの重量増加を調べた結果を図3に示す。図3はCNHoxに吸着されたヨウ素量の時間依存性を示している。図4は、I/CNHoxのラマンスペクトルを示している。CNHoxに内包されたヨウ素はI5−やI3−となっていることがわかった。CNHoxのGバンドは通常のCNHox1592cm−1より約8cm−1ブルーシフトしていた。これより、CNHoxからヨウ素に電子移動したことが明らかである。
1. <About iodine adsorption capacity of nanohorn>
Carbon nanohorns (CNH) were opened by hydrogen peroxide (100 ° C., 3 hours heating) treatment. Open carbon nanohorn (CNHox) (52 mg) was placed in a sealed glass container together with iodine particles (0.5 g) and allowed to stand to adsorb iodine gas to CNHox (I 2 / CNHox). The results of examining the weight increase of CNHox due to iodine adsorption are shown in FIG. FIG. 3 shows the time dependence of the amount of iodine adsorbed on CNHox. FIG. 4 shows the Raman spectrum of I 2 / CNHox. It was found that iodine contained in CNHox was I 5− or I 3− . G band of CNHox had about 8cm -1 blue shift than normal CNHox1592cm -1. From this, it is clear that electrons were transferred from CNHox to iodine.

2.<I/CNHoxからのヨウ素放出>
/CNHoxからのIの放出は、取り込み速度よりもよりゆっくり進行した。I/NHoxは、室温で空気にさらされた。I/CNHoxからのヨウ素放出に伴うI/NHoxの重量減少を図5に示す。図5に示すように、I/CNHoxの初期の重量は、180.5mg(128.5mgのIと52mgのCNHox)であった。それは、52日間のIがCNHoxに包含された結果である。I/CNHoxを64日間空気にさらした後に、その重量は120.6mgに減少しただけで、まだ、59.9mgのI2がCNHox中に残存していた。吸着量半減期は約2000時間(約83日)であった。
2. <Iodine release from the I 2 / CNHox>
The release of I 2 from I 2 / CNHox proceeded more slowly than the uptake rate. I 2 / NHox was exposed to air at room temperature. The weight loss of the I 2 / NHox with iodine release from I 2 / CNHox shown in FIG. As shown in FIG. 5, the initial weight of I 2 / CNHox was 180.5 mg (128.5 mg of I 2 and 52 mg of CNHox). It is a result of I 2 was included in CNHox the 52 days. After exposure of I 2 / CNHox to air for 64 days, its weight only decreased to 120.6 mg and still 59.9 mg of I2 remained in the CNHox. The adsorption half-life was about 2000 hours (about 83 days).

3.<放出ヨウ素の抗菌作用>
/NHoxの抗菌性の効果を、大腸菌(colon bacilli)において研究した。CNHoxにIを26日間吸着後、CNHoxに含まれているIの重量比率は2:1であった。0.15mgのI/CNHoxは、その上に大腸菌が増殖した培養皿上に置かれた。対比のために、20μlの水および20μlのペニシリンが、同じ培養皿に滴下された。図6に示すように、1日の定温培養の後に、ペニシリンとI/CNHoxは、大腸菌への成長抑制効果があることが判明した。
3. <Antimicrobial action of released iodine>
The antimicrobial effect of I 2 / NHox, was studied in E. coli (colon bacilli). 26 days after the adsorption of I 2 in CNHox, the weight ratio of I 2 contained in CNHox was 2: 1. 0.15 mg of I 2 / CNHox was placed on a culture dish on which E. coli had grown. For comparison, 20 μl water and 20 μl penicillin were dropped into the same culture dish. As shown in FIG. 6, it was found that penicillin and I 2 / CNHox had an effect of inhibiting the growth of Escherichia coli after one day of constant temperature culture.

以上の説明の通り、本発明においては、カーボンナノホーンをキャリアとすることで抗菌剤を徐放化する製剤に適用される。   As described above, in the present invention, the present invention is applied to a preparation that gradually releases an antibacterial agent by using carbon nanohorn as a carrier.

本発明の実施例1によるVCM@SWNHoxから緩衝液中へのVCM放出量を示す図で、図中の数字はデータポイントの測定順を示している。It is a figure which shows the amount of VCM discharge | released into the buffer solution from VCM @ SWNHox by Example 1 of this invention, The number in a figure has shown the measurement order of the data point. VCM,SWNHox、VCM@SWNHoxを使用した大腸菌(E.coli)実験結果を示す写真である。It is a photograph which shows the colon_bacillus | E._coli (E. coli) experiment result using VCM, SWNHox, and VCM @ SWNHox. 本発明の実施例2によるCNHoxに吸着されたヨウ素量の時間依存性を示している。The time dependence of the amount of iodine adsorbed on CNHox according to Example 2 of the present invention is shown. 本発明の実施例2によるI/CNHoxのラマンスペクトルを示す図である。It is a diagram showing a Raman spectrum of the I 2 / CNHox according to Example 2 of the present invention. 本発明の実施例2によるI/CNHoxからのヨウ素放出に伴うI/NHoxの重量減少を示す図である。It shows a weight loss of I 2 / NHox with iodine release from I 2 / CNHox according to Example 2 of the present invention. 1日の定温培養の後のペニシリンとI/CNHoxの大腸菌への成長抑制効果を示す写真である。Is a photograph showing the penicillin and growth inhibitory effects of I 2 / CNHox to E. coli after the constant temperature culture day.

Claims (15)

抗菌剤を内包したカーボンナノホーンをキャリアとして有することを特徴とする抗菌剤徐放化製剤。   An antibacterial sustained-release preparation comprising a carbon nanohorn containing an antibacterial agent as a carrier. 請求項1に記載の抗菌剤徐放化製剤において、前記抗菌剤は、無機系抗菌剤や合成系有機物抗菌剤、天然物系抗菌剤などを含むことを特徴とする抗菌剤徐放化製剤。   The antibacterial sustained-release preparation according to claim 1, wherein the antibacterial agent comprises an inorganic antibacterial agent, a synthetic organic antibacterial agent, a natural product antibacterial agent, and the like. 請求項1又は2に記載の抗菌剤徐放化製剤において、前記抗菌剤は、殺菌剤及び抗生剤の内の少なくとも一種を含むことを特徴とする抗菌剤徐放化製剤。   The antibacterial sustained-release preparation according to claim 1 or 2, wherein the antibacterial agent contains at least one of a bactericidal agent and an antibiotic. 請求項1乃至3の内のいずれか一つに記載の抗菌剤徐放化製剤において、前記カーボンナノホーンは開孔部を有するカーボンナノホーンであることを特徴とする抗菌剤徐放化製剤。   The antibacterial sustained-release preparation according to any one of claims 1 to 3, wherein the carbon nanohorn is a carbon nanohorn having an opening. 請求項4に記載の抗菌剤徐放化製剤において、前記カーボンナノホーンの側壁、先端、あるいは、開孔部縁には、内包薬剤の放出速度を制御するための化学修飾が施されていることを特徴とする抗菌剤徐放化製剤。   5. The antibacterial sustained release preparation according to claim 4, wherein the carbon nanohorn is subjected to chemical modification for controlling the release rate of the encapsulated drug on the side wall, tip, or edge of the opening. An antibacterial sustained release formulation. 請求項4に記載の抗菌剤徐放化製剤において、前記カーボンナノホーンの側壁、先端、あるいは、開孔部縁には、疎水性である当該カーボンナノホーンの親水性を高めるための化学修飾または細網内皮系の貪食作用を回避するための化学修飾が施されていることを特徴とする抗菌剤徐放化製剤。   5. The antibacterial sustained release preparation according to claim 4, wherein the carbon nanohorn is chemically modified or reticulated on a side wall, a tip, or a hole edge of the carbon nanohorn to increase the hydrophilicity of the carbon nanohorn. An antibacterial sustained-release preparation characterized by chemical modification for avoiding phagocytosis of endothelial system. 請求項4に記載の抗菌剤徐放化製剤において、前記カーボンナノホーンの側壁、先端、あるいは、開孔部縁に、前記患部に選択的に到達するように患部に特異的に発現している抗体等に選択的に付着する分子が付加されていることを特徴とする抗菌剤徐放化製剤。   The antibacterial sustained-release preparation according to claim 4, wherein the antibody is specifically expressed in the affected part so as to selectively reach the affected part on the side wall, tip, or edge of the opening of the carbon nanohorn. A sustained release preparation of an antibacterial agent, characterized in that a molecule that selectively adheres to, etc. is added. 請求項1乃至6の内のいずれか一つに記載された抗菌剤徐放化製剤において、前記カーボンナノホーンまたは化学修飾カーボンナノホーンに機能性物質を物理吸着させたことを特徴とする抗菌剤徐放化製剤。   The antibacterial agent sustained-release preparation according to any one of claims 1 to 6, wherein a functional substance is physically adsorbed on the carbon nanohorn or the chemically modified carbon nanohorn. Preparation. 請求項8に記載の抗菌剤徐放化製剤において、前記機能性物質の機能は、内包抗菌剤の徐放制御、抗菌作用、薬剤、親水性分子、または標的分子などであることを特徴とする抗菌剤徐放化製剤。   The antibacterial sustained-release preparation according to claim 8, wherein the function of the functional substance is controlled release of the encapsulated antibacterial agent, antibacterial action, drug, hydrophilic molecule, or target molecule. Antibacterial sustained release formulation. 請求項1乃至9の内のいずれか一つに記載の抗菌剤徐放化製剤において、前記抗菌剤内包カーボンナノホーンを、皮膚疾患治療用として用いることを特徴とする抗菌剤抗菌剤徐放化製剤。   The antibacterial agent sustained-release preparation according to any one of claims 1 to 9, wherein the antibacterial agent-encapsulated carbon nanohorn is used for skin disease treatment. . 請求項1乃至9の内のいずれか一つに記載の抗菌剤徐放化製剤において、あるいは、抗菌剤内包カーボンナノホーンを皮膚などに塗布しやすくなるような機能を備えた物質と混合して用いることを特徴とする抗菌剤徐放化製剤。   The antibacterial agent sustained-release preparation according to any one of claims 1 to 9, or the antibacterial agent-encapsulated carbon nanohorn mixed with a substance having a function that facilitates application to the skin or the like. An antibacterial sustained-release preparation characterized by that. 請求項1乃至9の内のいずれか一つに記載の抗菌剤徐放化製剤において、前記抗菌剤内包カーボンナノホーンを、皮膚疾患治療用として体内投与して用いることを特徴とする抗菌剤徐放化製剤。   10. The antibacterial agent sustained-release preparation according to any one of claims 1 to 9, wherein the antibacterial agent-encapsulated carbon nanohorn is administered and used in the body for the treatment of skin diseases. Preparation. キャリアとしてカーボンナノホーンを開孔処理し、抗菌剤を内包させることを特徴とする抗菌剤徐放化製剤の製造方法。   A method for producing a sustained-release preparation of an antibacterial agent, characterized in that carbon nanohorns are subjected to pore opening treatment as a carrier and the antibacterial agent is included. 請求項13に記載の抗菌剤徐放化製剤の製造方法において、前記抗菌剤は、無機系抗菌剤や合成系有機物抗菌剤、天然物系抗菌剤などを含むことを特徴とする抗菌剤徐放化製剤の製造方法。   The antibacterial sustained-release preparation according to claim 13, wherein the antibacterial agent includes an inorganic antibacterial agent, a synthetic organic antibacterial agent, a natural product antibacterial agent, and the like. A method for producing a pharmaceutical preparation. 請求項13に記載の抗菌剤徐放化製剤の製造方法において、前記抗菌剤は、殺菌剤及び抗生剤の内の少なくとも一種を含むことを特徴とする抗菌剤徐放化製剤の製造方法。   The method for producing an antibacterial sustained-release preparation according to claim 13, wherein the antibacterial agent includes at least one of a bactericide and an antibiotic.
JP2008026970A 2008-02-06 2008-02-06 Antibacterial sustained-release preparation with carbon nanohorn as carrier Expired - Fee Related JP5397726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008026970A JP5397726B2 (en) 2008-02-06 2008-02-06 Antibacterial sustained-release preparation with carbon nanohorn as carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008026970A JP5397726B2 (en) 2008-02-06 2008-02-06 Antibacterial sustained-release preparation with carbon nanohorn as carrier

Publications (2)

Publication Number Publication Date
JP2009184973A true JP2009184973A (en) 2009-08-20
JP5397726B2 JP5397726B2 (en) 2014-01-22

Family

ID=41068593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008026970A Expired - Fee Related JP5397726B2 (en) 2008-02-06 2008-02-06 Antibacterial sustained-release preparation with carbon nanohorn as carrier

Country Status (1)

Country Link
JP (1) JP5397726B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116754534A (en) * 2023-08-09 2023-09-15 长春中医药大学 Method for rapidly detecting metal ion tin and alkaline substances and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345663A (en) * 1993-06-08 1994-12-20 Sumitomo Pharmaceut Co Ltd Liposome preparation containing vancomycin
JPH10265408A (en) * 1997-03-25 1998-10-06 Lion Corp Sterilizer composition
JP2005343885A (en) * 2004-05-07 2005-12-15 Japan Science & Technology Agency Drug carbon nanohorn composite and method for producing the same
JP2006104083A (en) * 2004-10-01 2006-04-20 Toto Ltd Sustained-release material
WO2007004545A1 (en) * 2005-07-01 2007-01-11 Japan Science And Technology Agency Nanocarbon-supported object, process for producing the same, and drug for dds comprising the same
JP2007007599A (en) * 2005-07-01 2007-01-18 Japan Science & Technology Agency Catalyst for methane steam reforming, manufacturing method thereof, and manufacturing method of hydrogen using the same
WO2007078007A1 (en) * 2006-01-06 2007-07-12 Japan Science And Technology Agency Carbon nanohorn structure, composition capable of controlling the release of organic substance included therein, and method for the controlled release
WO2007091663A1 (en) * 2006-02-06 2007-08-16 Nec Corporation Carbon nanohorn complex having substance encapsulated therein and method of producing the same
WO2008004532A1 (en) * 2006-07-07 2008-01-10 Nec Corporation Substance-containing carbon nanohorn composite having polyamine plug and process for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345663A (en) * 1993-06-08 1994-12-20 Sumitomo Pharmaceut Co Ltd Liposome preparation containing vancomycin
JPH10265408A (en) * 1997-03-25 1998-10-06 Lion Corp Sterilizer composition
JP2005343885A (en) * 2004-05-07 2005-12-15 Japan Science & Technology Agency Drug carbon nanohorn composite and method for producing the same
JP2006104083A (en) * 2004-10-01 2006-04-20 Toto Ltd Sustained-release material
WO2007004545A1 (en) * 2005-07-01 2007-01-11 Japan Science And Technology Agency Nanocarbon-supported object, process for producing the same, and drug for dds comprising the same
JP2007007599A (en) * 2005-07-01 2007-01-18 Japan Science & Technology Agency Catalyst for methane steam reforming, manufacturing method thereof, and manufacturing method of hydrogen using the same
WO2007078007A1 (en) * 2006-01-06 2007-07-12 Japan Science And Technology Agency Carbon nanohorn structure, composition capable of controlling the release of organic substance included therein, and method for the controlled release
WO2007091663A1 (en) * 2006-02-06 2007-08-16 Nec Corporation Carbon nanohorn complex having substance encapsulated therein and method of producing the same
WO2008004532A1 (en) * 2006-07-07 2008-01-10 Nec Corporation Substance-containing carbon nanohorn composite having polyamine plug and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116754534A (en) * 2023-08-09 2023-09-15 长春中医药大学 Method for rapidly detecting metal ion tin and alkaline substances and application thereof
CN116754534B (en) * 2023-08-09 2023-10-27 长春中医药大学 Method for rapidly detecting metal ion tin and alkaline substances and application thereof

Also Published As

Publication number Publication date
JP5397726B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
Cavalieri et al. Nanomedicines for antimicrobial interventions
Grumezescu et al. In vitro activity of the new water-dispersible Fe 3 O 4@ usnic acid nanostructure against planktonic and sessile bacterial cells
Woźniak-Budych et al. Green synthesis of rifampicin-loaded copper nanoparticles with enhanced antimicrobial activity
Hadiya et al. Levofloxacin-loaded nanoparticles decrease emergence of fluoroquinolone resistance in Escherichia coli
JP6573286B2 (en) Therapeutic agents for use in the treatment of infection
ES2549685B2 (en) ANTIMICROBIAL SYSTEM
Murugesan et al. Stimulus-responsive zinc oxide-functionalized macromolecular humic acid nanocarrier for enhancement of antibacterial activity of ciprofloxacin hydrochloride
Praba et al. Bactericidal effect of silver nanoparticles against Mycobacterium tuberculosis
Fakhroueian et al. Enhanced engineered ZnO nanostructures and their antibacterial activity against urinary, gastrointestinal, respiratory and dermal genital infections
Hoseini‐Alfatemi et al. Antibacterial and antibiofilm activity of nanochelating based silver nanoparticles against several nosocomial pathogens
Singh et al. PVA/PMMA polymer blended composite electrospun nanofibers mat and their potential use as an anti‐biofilm product
Khan et al. Nanotechnology: A new strategy to combat bacterial infections and antibiotic resistant bacteria
Kalita et al. Prompt antibacterial activity of silver nanoparticle decorated on HAp embedded NiFe2O4 nanocomposite (NiFe2O4@ HAp-Ag) against pathogenic strains and investigation of its photocatalytic activity towards degradation of antibiotics
JP5397726B2 (en) Antibacterial sustained-release preparation with carbon nanohorn as carrier
Shaikh et al. Nanobiotechnological approaches against multidrug resistant bacterial pathogens: An update
Gomaa et al. Knocking down Pseudomonas aeruginosa virulence by oral hypoglycemic metformin nano emulsion
Malmsten Nanomaterials as antimicrobial agents
Tudose et al. Antibacterial activity evaluation of silver nanoparticles entrapped in silica matrix functionalized with antibiotics
Wu et al. Synthesis and Evaluation of Chitosan‐Heparin‐Minocycline Composite Membranes for Potential Antibacterial Applications
Wang et al. Ag/MoS2 nanozyme-modified ZnO nanopillar surface for enhanced synergistic mechanical and chemical antibacterial activity
Husain et al. Nanoparticles as new emerging antibacterials: Potentials and limitations
Chen et al. Capture and elimination of Staphylococcus aureus based on Langmuir–Blodgett MnO 2 nanowire monolayer promotes infected wound healing
Sharma et al. Nanoparticles: Boon to mankind and bane to pathogens
Lee et al. New routes to the preparation of silver-soft liner nanocomposites as an antibacterial agent
Murthy et al. Potential of Metal Oxide Nanoparticles and Nanocomposites as Antibiofilm Agents: Leverages and Limitations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131010

R150 Certificate of patent or registration of utility model

Ref document number: 5397726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees