JP2009184921A - Potassium octatitanate particle - Google Patents

Potassium octatitanate particle Download PDF

Info

Publication number
JP2009184921A
JP2009184921A JP2009125866A JP2009125866A JP2009184921A JP 2009184921 A JP2009184921 A JP 2009184921A JP 2009125866 A JP2009125866 A JP 2009125866A JP 2009125866 A JP2009125866 A JP 2009125866A JP 2009184921 A JP2009184921 A JP 2009184921A
Authority
JP
Japan
Prior art keywords
particles
potassium titanate
major axis
less
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009125866A
Other languages
Japanese (ja)
Other versions
JP5448573B2 (en
Inventor
Hidefumi Konnai
秀文 近内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2009125866A priority Critical patent/JP5448573B2/en
Publication of JP2009184921A publication Critical patent/JP2009184921A/en
Application granted granted Critical
Publication of JP5448573B2 publication Critical patent/JP5448573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide potassium titanate particles giving no fear of oncogenicity and the like. <P>SOLUTION: The potassium titanate particles have a major axis of the particles of <2 μm, a major axis/minor axis ratio of <5, and a number proportion of the particles having the ratio of <2 of ≥90% and that having the ratio of <3 of ≥97%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、プラスチック、摩擦材、塗料、潤滑材、耐熱材、断熱材、紙の添加剤等に使用されるチタン酸カリウムに関し、特に衛生面に関わる形状的特性を重視したチタン酸カリウム粒子に関する。   The present invention relates to potassium titanate used for plastics, friction materials, paints, lubricants, heat-resistant materials, heat-insulating materials, paper additives, and the like, and particularly relates to potassium titanate particles that emphasize shape characteristics related to hygiene. .

チタン酸カリウムは、元来、長さが数μm〜数十μm、径が1μm以下の形状を有し、その形状は一般的に繊維状、針状、ウィスカー等と呼ばれている。その繊維形状を生かし、プラスチック、塗料、摩擦材等の分野で主に補強材として実用化され、広く普及している。しかし、繊維状粉末は、嵩高く、流動性が悪く、扱いにくいという性質がある。さらに繊維状粉末は粉塵が発生しやすく作業環境上の問題もある。   Potassium titanate originally has a shape with a length of several μm to several tens of μm and a diameter of 1 μm or less, and the shape is generally called a fiber shape, a needle shape, a whisker or the like. Taking advantage of its fiber shape, it has been put to practical use as a reinforcing material mainly in the fields of plastics, paints, friction materials, etc., and is widely spread. However, fibrous powders are bulky, have poor fluidity, and are difficult to handle. Furthermore, the fibrous powder is liable to generate dust and has a problem in the working environment.

アスベストの発ガン性が問題になっているが、その原因は繊維状の形状に関係するとの見方もある。アスベストに限らず、繊維材料について、スタントン(Stanton)の仮説では、繊維の径が0.25μm以下で長さが8μm以上の繊維が催腫瘍性が高いとしている。しかし、工業的に有用な繊維材料は作業環境での規準を設け利用されている。ILO(世界労働機関)では直径が3μm以下、長さが5μm以上かつ長さと直径との比が3以上の繊維を吸入性繊維としている。AIA(国際石綿協会)、DFG(Deutsche Forschungsgemeinschaft:ドイツ調査協会)も同様の繊維を繊維状ダストとして管理するものとしている。   The carcinogenicity of asbestos has become a problem, but there is a view that the cause is related to the fibrous shape. Not only asbestos, but also fiber materials, Stanton's hypothesis states that fibers having a fiber diameter of 0.25 μm or less and a length of 8 μm or more are highly tumorigenic. However, industrially useful fiber materials are used with standards in the working environment. In the ILO (World Labor Organization), fibers having a diameter of 3 μm or less, a length of 5 μm or more, and a length to diameter ratio of 3 or more are used as inhalable fibers. AIA (International Asbestos Association) and DFG (Deutsche Forschungsgeinschaft) also manage similar fibers as fibrous dust.

本発明は安全性の観点に立脚して、形状特性の優れた、吸入性繊維の形状、寸法を有しない、チタン酸カリウム粒子を提供することを目的とする。   An object of the present invention is to provide potassium titanate particles having excellent shape characteristics and not having the shape and dimensions of respirable fibers based on the viewpoint of safety.

本発明者はこの点に立脚して特願平11−103033号を出願しているが、本発明はさらに安全性の高いチタン酸カリウムに関するものである。   The present inventor has applied for Japanese Patent Application No. 11-103033 based on this point, but the present invention relates to potassium titanate having higher safety.

本発明は、上記目的を達成するために鋭意開発されたもので、粒子の長径が2μm未満であることを特徴とするチタン酸カリウム粒子を提供する。より好ましくは1μm未満である粒子からなるものである。また、このチタン酸カリウムは、長径/短径比が5未満であることを特徴とする。   The present invention has been developed in order to achieve the above object, and provides potassium titanate particles characterized in that the major axis of the particles is less than 2 μm. More preferably, it consists of particles that are less than 1 μm. The potassium titanate has a major axis / minor axis ratio of less than 5.

さらに、本発明のチタン酸カリウム粒子の長径/短径比が2未満の粒子が90%以上、3未満の粒子が97%以上の個数割合であるものを提供する。   Furthermore, the present invention provides the potassium titanate particles according to the present invention in which the ratio of the major axis / minor axis ratio is less than 2 and the number ratio is less than 90% and less than 3%.

本発明のチタン酸カリウムはK2O・nTiO2(n=1〜12)のものである。上記長径が2μm未満の特性を有する本発明に係るチタン酸カリウム粒子は、焼成によりK2Oを生成するK源として炭酸塩、水酸化物、硝酸塩、硫酸塩等の1種以上とTiO2や水酸化チタン等の1種以上のTi源の混合物を焼成し、長径が2μm未満の粒子を生成させ、水を加えてスラリー化し、酸を加えて余分のKを溶出して目的組成に変換し、脱水後、熱処理を経て製造することができる。 The potassium titanate of the present invention is K 2 O · nTiO 2 (n = 1 to 12). The potassium titanate particles according to the present invention having the characteristic that the major axis is less than 2 μm are one or more of carbonate, hydroxide, nitrate, sulfate and the like as a K source for producing K 2 O by firing, TiO 2 and A mixture of one or more Ti sources such as titanium hydroxide is baked to produce particles having a major axis of less than 2 μm, added water to form a slurry, and acid is added to elute excess K to convert it to the target composition. It can be manufactured through heat treatment after dehydration.

また、K源とTi源にK以外のアルカリ金属(Li,Na,Rb,Cs)の炭酸塩、水酸化物、硝酸塩、硫酸塩、ハロゲン化アルカリ等の1種以上を少量添加配合した混合物を焼成し、長径が2μm未満の粒子を生成させることもできる。K以外のアルカリ金属の添加は、焼成時の融点を低下させることで、より低温での合成反応が完結し、繊維状への結晶成長が抑制されるものと思われる。   In addition, a mixture in which a small amount of one or more of carbonates, hydroxides, nitrates, sulfates, alkali halides, etc. of alkali metals (Li, Na, Rb, Cs) other than K is added to the K source and Ti source. It is possible to generate particles having a major axis of less than 2 μm by firing. The addition of an alkali metal other than K is considered to lower the melting point during firing, thereby completing the synthesis reaction at a lower temperature and suppressing the crystal growth into a fibrous form.

なお、アルカリ金属は、本発明のチタン酸カリウムの結晶構造に若干固溶するが、目的のX線回折図を満足する範囲内で使用される。   The alkali metal is slightly dissolved in the crystal structure of potassium titanate of the present invention, but is used within the range satisfying the target X-ray diffraction pattern.

このようにして得られた長径が短かく、長径/短径比の小さいチタン酸カリウム粒子はX線回折において、回折強度が弱く、半価幅の拡い回折線を示す。このことは結晶性が乏しいことを示しており、繊維状でないことを示している。また、合成条件によっては、粒子が厚さの薄い扁平な形状の粒子が得られる。この扁平な粒子をX線回折するとその回折図の特徴の1つに、(hkl)で示されるミラー指数の(h00)面/(0k0)面の回折強度が3以下であることが認められる。これは、(0k0)の結晶面が配向していることに起因しているものと思われる。従来の繊維状のチタン酸カリウムが、b軸方向に伸長しているのに対し、本発明のチタン酸カリウムは厚さが薄く扁平な粒子が観察されることからもa軸、c軸の2方向への成長が大きいものと考えられる。このようなチタン酸カリウム粒子もまた繊維性がなく安全上好適なものである。   The thus obtained potassium titanate particles having a short major axis and a small major axis / minor axis ratio show a diffraction line having a weak diffraction intensity and a wide half-value width in X-ray diffraction. This indicates that the crystallinity is poor and it is not fibrous. In addition, depending on the synthesis conditions, particles having a flat shape with thin particles can be obtained. When this flat particle is X-ray diffracted, one of the features of the diffraction diagram shows that the diffraction intensity of the (h00) plane / (0k0) plane of the Miller index indicated by (hkl) is 3 or less. This seems to be due to the fact that the (0k0) crystal plane is oriented. The conventional fibrous potassium titanate extends in the b-axis direction, whereas the potassium titanate of the present invention has thin and flat particles. Growth in the direction is considered to be large. Such potassium titanate particles also have no fiber property and are suitable for safety.

なお、本発明のチタン酸カリウム粒子には用途上問題のない範囲のものにはK源との未反応のTiO2やチタン酸カリウムの熱分解で生成したTiO2が少量共存していてもよい。さらに、1次粒子が集合した2次粒子を含んでいてもよい。 Note that a range no application problem to potassium titanate particles of the present invention may coexist small amount TiO 2 produced by thermal decomposition of TiO 2, potassium titanate unreacted with K source . Furthermore, secondary particles in which primary particles are aggregated may be included.

本発明のチタン酸カリウムは粒子である。又は、扁平で配向し易い特性を持つ。従って均一な摺動面を形成し、ブレーキ材等として優れた摺動特性を有する。また、プラスチック等に配合すれば寸法精度が高く、剛性の向上や表面平滑性の付与等精密成型品等として適している。また、繊維状のチタン酸カリウムに比べ高配合が可能なこと等の特性を生かした補強性を必要としない分野への応用が期待される。   The potassium titanate of the present invention is a particle. Or it has the characteristic of being flat and easily oriented. Therefore, it forms a uniform sliding surface and has excellent sliding characteristics as a brake material or the like. Moreover, if it mix | blends with a plastic etc., a dimensional accuracy is high, and it is suitable as precision molding goods, such as an improvement in rigidity and provision of surface smoothness. Moreover, application to the field | area which does not require the reinforcement | strengthening which utilized the characteristics of being able to mix | blend high compared with fibrous potassium titanate etc. is anticipated.

本発明によれば長径が2μm未満のチタン酸カリウム粒子が提供される。この粒子は長径/短径比も小さく、人体への悪影響がないものであり、吸入性繊維を含まないので、安全に各種用途に用いることができる。   According to the present invention, potassium titanate particles having a major axis of less than 2 μm are provided. These particles have a small major axis / minor axis ratio, have no adverse effects on the human body, and do not contain inhalable fibers, so they can be safely used for various applications.

実施例のチタン酸カリウム粒子の10,000倍の顕微鏡写真である。It is a 10,000 times microscope picture of the potassium titanate particle of an Example. 従来のチタン酸カリウム粒子の1,500倍の顕微鏡写真である。It is a 1,500 times microscope picture of the conventional potassium titanate particle. 実施例の粒子の長径/短径比の関係を示すグラフである。It is a graph which shows the relationship of the major axis / minor axis ratio of the particle | grains of an Example. 実施例及び従来例のX線回折図である。It is an X-ray diffraction pattern of an Example and a prior art example.

長径/短径比の大きい粒子が、一般的に繊維状、針状、ウィスカー等と表現されているが、従来、長径/短径比の具体的な数値でその定義はされていない。そこで、本発明では安全性と生産性のバランスで長径/短径比を5未満とした。また長径/短径比を3未満、2未満で定義して本発明の粒子形状分布の指標とした。   Particles having a large major axis / minor axis ratio are generally expressed as fibers, needles, whiskers, or the like, but conventionally, the specific value of the major axis / minor axis ratio has not been defined. Therefore, in the present invention, the major axis / minor axis ratio is set to less than 5 in order to balance safety and productivity. The major axis / minor axis ratio was defined as less than 3 and less than 2, and was used as an index of the particle shape distribution of the present invention.

長径2μm未満に注目した理由はマクロ的には繊維による人体への悪影響に対する疑念を回避するためである。例えば、中皮腫患者の肺の中にあった石綿小体をSEM(走査型電子顕微鏡)で見たものが発表されている。中皮腫、肺ガンといった悪性腫瘍と石綿との関係や発ガンのメカニズムは未だ解明されていないが、最もポピュラーな考え方として、次のものがある。石綿が肺胞に到達すると、マクロファージ(貧食細胞)という異物退治の細胞が動員され、石綿を飲み込みタンパク質分解酸素を分泌して無害化しようと働く。ところが、3〜5μmほどのマクロファージはそれより大きな繊維長を有する石綿を飲み込むことができず、逆に膜が破られてしまう。すると、タンパク質分解酸素が周囲に漏れ始めタンパク質を成分とする肺胞細胞を破壊して炎症を生ずると云われている。一方、繊維性の低い粒子はたとえ肺胞に到達しても長径が1μm以下であれば呼気と共に体外に排出されると云われている。従って、本発明では長径が2μm未満、より好ましくは1μm未満のチタン酸カリウムであって、長径/短径比の小さい粒子を提供するものである。   The reason for paying attention to the major axis of less than 2 μm is to avoid the suspicion of adverse effects on the human body caused by the fibers. For example, an asbestos corpuscle found in the lungs of a mesothelioma patient is observed with an SEM (scanning electron microscope). The relationship between malignant tumors such as mesothelioma and lung cancer and asbestos and the mechanism of carcinogenesis have not yet been elucidated, but the most popular idea is as follows. When the asbestos reaches the alveoli, a foreign body extermination cell called macrophage (phagocytic cell) is mobilized, and it works by swallowing it and secreting proteolytic oxygen to make it harmless. However, macrophages of about 3 to 5 μm cannot swallow asbestos having a fiber length larger than that, and the membrane is broken. Then, it is said that proteolytic oxygen begins to leak to the surroundings, destroying alveolar cells containing the protein as components, and causing inflammation. On the other hand, it is said that even if the particles having low fibrous properties reach the alveoli, they are discharged out of the body with exhalation if the major axis is 1 μm or less. Therefore, the present invention provides a potassium titanate having a major axis of less than 2 μm, more preferably less than 1 μm, and having a small major axis / minor axis ratio.

従来の繊維状のチタン酸カリウムが呼吸器系などの健康に影響を生ずる可能性については明らかではないが、繊維性が不要な用途に用いる場合には、危険な繊維のサイズとして考えられる吸入性繊維は無いことが望ましい。   Although it is not clear that conventional fibrous potassium titanate may affect the health of the respiratory system, etc., when used in applications that do not require fiber, inhalability is considered as a dangerous fiber size It is desirable that there is no fiber.

また、厚さの薄い扁平な形状の粒子から成るチタン酸カリウムも同様に吸入性繊維ではないので好適である。   Further, potassium titanate composed of thin particles having a flat shape is also preferable because it is not an inhalable fiber.

チタン酸カリウムは、高白色度、低モース硬度、低熱伝導率、高屈折率といった物性を持ち、耐熱性、耐薬品性、摺動特性に優れる物質としての特性を有している。従って、補強材としての用途以外に、プラスチック、摩擦材、塗料、紙等への添加剤や潤滑剤、耐熱材、断熱材、電気絶縁材、イオン交換体、触媒等として利用することもできる。更に、繊維状粉末が、嵩高く流動性が悪く扱いにくいのに対し、本発明のチタン酸カリウムは、これらの欠点が改良されている点で、適用範囲は広い。その適用において、目的に沿うよう、カップリング処理等の表面処理を施すこともでき、また、必要に応じ造粒することも可能である。   Potassium titanate has physical properties such as high whiteness, low Mohs hardness, low thermal conductivity, and high refractive index, and has properties as a substance excellent in heat resistance, chemical resistance, and sliding properties. Therefore, in addition to the use as a reinforcing material, it can also be used as an additive or lubricant for plastics, friction materials, paints, paper, etc., heat resistant materials, heat insulating materials, electrical insulating materials, ion exchangers, catalysts, and the like. Furthermore, while the fibrous powder is bulky and poor in fluidity and difficult to handle, the potassium titanate of the present invention has a wide range of applications in that these drawbacks are improved. In the application, a surface treatment such as a coupling treatment can be applied to meet the purpose, and granulation can be performed as necessary.

チタン酸カリウム粒子は、プラスチック等に配合することによって、耐摩擦摩耗特性を付与するため、摺動部品等の用途に適している。   Potassium titanate particles are suitable for applications such as sliding parts because they impart frictional wear resistance properties when blended with plastics.

ブレーキ等の摩擦材に用いた場合には、従来のチタン酸カリウム繊維を用いるよりも、摩擦係数が安定する等のすぐれた摩擦性能を発揮することが見い出されている。   When used for a friction material such as a brake, it has been found that it exhibits superior friction performance such as stabilization of the friction coefficient, compared to the conventional potassium titanate fiber.

2CO3とTiO2に加えて、K以外のアルカリ金属を少量加えた混合物の配合割合、焼成条件を変えることによって、粒子形状や分布の異なる焼成物を得た。次いで、それぞれの焼成物に水を加えてスラリー化し、更にHClを加えてK+イオンを溶出させることによってTiO2/K2Oモル比を調整した後、熱処理を加え、K2O・8TiO2粒子を得た。 In addition to K 2 CO 3 and TiO 2 , a mixture obtained by adding a small amount of an alkali metal other than K and a firing condition were changed to obtain fired products having different particle shapes and distributions. Next, water was added to each fired product to form a slurry, and HCl was further added to elute K + ions to adjust the TiO 2 / K 2 O molar ratio, followed by heat treatment, and K 2 O · 8TiO 2. Particles were obtained.

それぞれ得られたK2O・8TiO2微粒子を化学分析すると、K以外のアルカリ金属量は、R2Oで3wt%以下(R:アルカリ金属)であった。 When the K 2 O · 8TiO 2 fine particles obtained were chemically analyzed, the amount of alkali metal other than K was 3 wt% or less (R: alkali metal) in R 2 O.

更にK2O・8TiO2微粒子の電子顕微鏡画像を解析処理し、個々の粒子の長径と短径の寸法及び長径/短径比を求め、長径/短径比が3未満と2未満の個数割合、及びそれぞれの最小値、最大値、平均値を調べた。 Further, an electron microscope image of K 2 O · 8TiO 2 fine particles is analyzed and processed to determine the major axis and minor axis dimensions and the major axis / minor axis ratio of each particle, and the ratio of the major axis / minor axis ratio is less than 3 and less than 2. The minimum value, maximum value, and average value of each were examined.

また、水中で超音波分散処理し、フランホーファ回折とミー散乱を測定原理とするレーザ式の粒度分布測定装置により粒度分布を測定し、累積篩下100%径(重量%)と50%径(重量%)を求めた。   In addition, ultrasonic dispersion treatment is performed in water, and the particle size distribution is measured with a laser-type particle size distribution measuring device based on the principle of Franhofer diffraction and Mie scattering. The 100% diameter (weight%) and 50% diameter (weight) %).

X線回折測定はDS=1°、SS=1°、RS=0.3mmのスリットを用い、CuKa線で測定した。K2O・8TiO2の(200)/(020)の回折強度比を求めた。結果を表1に示す。 X-ray diffraction measurement was performed with CuKa line using a slit of DS = 1 °, SS = 1 °, and RS = 0.3 mm. The (200) / (020) diffraction intensity ratio of K 2 O · 8TiO 2 was determined. The results are shown in Table 1.

実施例1〜3で得られたチタン酸カリウムの粒子形状は、表1に示すように長径は最大で0.74〜1.73μmであり、長径/短径比は最大で2.95〜4.56である。また長径/短径比5未満の粒子の個数割合は100%、3未満の粒子個数割合は98.7〜100%、2未満の粒子個数割合は93.8〜98.0%である。(200)/(020)X線回折強度比は0.65〜2.54であった。   As shown in Table 1, the major axis of the potassium titanate particles obtained in Examples 1 to 3 has a major axis of 0.74 to 1.73 μm at the maximum and the major axis / minor axis ratio of 2.95 to 4 at the maximum. .56. The ratio of the number of particles having a major axis / minor axis ratio of less than 5 is 100%, the ratio of the number of particles less than 3 is 98.7 to 100%, and the ratio of the number of particles less than 2 is 93.8 to 98.0%. The (200) / (020) X-ray diffraction intensity ratio was 0.65 to 2.54.

図1は実施例1で得られた本発明のチタン酸カリウム粒子の10,000倍の代表的な顕微鏡写真、比較として示した図2は従来のチタン酸カリウムの1,500倍の顕微鏡写真である。図2に示す従来のチタン酸カリウムは、繊維形状を呈しているのに対し、図1に示す実施例の粒子は、長径が1μm以下でその大部分は長径/短径比が2以下である。また、厚さが薄い扁平な粒子形状が観察される。   FIG. 1 is a representative photomicrograph of 10,000 times the potassium titanate particles of the present invention obtained in Example 1, and FIG. 2 shown as a comparison is a photomicrograph of 1,500 times that of conventional potassium titanate. is there. The conventional potassium titanate shown in FIG. 2 has a fiber shape, whereas the particles of the example shown in FIG. 1 have a major axis of 1 μm or less and most of them have a major axis / minor axis ratio of 2 or less. . In addition, a flat particle shape with a small thickness is observed.

図3は、本発明の実施例1の粒子についてその短径と長径の関係をプロットしたものである。図中に長径/短径比=1,2,3,4,5の線を記入した。長径/短径比が5を越える粒子は皆無である。なお長径5μm以上、短径3μm以下、長径/短径比が3以上の有害繊維とされる領域を併せて示した。   FIG. 3 is a plot of the relationship between the minor axis and the major axis of the particles of Example 1 of the present invention. In the figure, lines of major axis / minor axis ratio = 1, 2, 3, 4, 5 were entered. There are no particles having a major axis / minor axis ratio exceeding 5. In addition, the area | region made into a harmful fiber whose major axis is 5 micrometers or more, minor axis 3 micrometers or less, and a major axis / minor axis ratio is 3 or more was shown collectively.

図1、図2に示す粒子のX線回折パターンを図4に示した。従来の8チタン酸カリウムは、鋭い回折ピークを示すのに対し本発明の8チタン酸カリウムは低結晶性である。(200)/(020)回折強度比は、従来品では6.3を示したが、実施例1では0.65である。実施例2、3においても(200)/(020)回折強度比は、3以下である。   The X-ray diffraction patterns of the particles shown in FIGS. 1 and 2 are shown in FIG. The conventional potassium 8 titanate shows a sharp diffraction peak, whereas the 8 potassium titanate of the present invention has low crystallinity. The (200) / (020) diffraction intensity ratio was 6.3 in the conventional product, but 0.65 in Example 1. In Examples 2 and 3, the (200) / (020) diffraction intensity ratio is 3 or less.

Claims (3)

粒子が厚さの薄い扁平な形状であることを特徴とするチタン酸カリウム粒子。   Potassium titanate particles characterized in that the particles are flat and thin. X線回折において(h00)面/(0k0)面の回折強度比が3以下であることを特徴とする請求項1記載のチタン酸カリウム粒子。   The potassium titanate particles according to claim 1, wherein a diffraction intensity ratio of (h00) plane / (0k0) plane is 3 or less in X-ray diffraction. K以外のアルカリ金属を含有していることを特徴とする請求項1又は2記載のチタン酸カリウム粒子。   3. The potassium titanate particles according to claim 1, comprising an alkali metal other than K. 4.
JP2009125866A 2009-05-25 2009-05-25 Low crystalline potassium potassium titanate particles for friction materials Expired - Lifetime JP5448573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125866A JP5448573B2 (en) 2009-05-25 2009-05-25 Low crystalline potassium potassium titanate particles for friction materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125866A JP5448573B2 (en) 2009-05-25 2009-05-25 Low crystalline potassium potassium titanate particles for friction materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11225610A Division JP2001019430A (en) 1999-07-06 1999-07-06 Potassium titanate particles

Publications (2)

Publication Number Publication Date
JP2009184921A true JP2009184921A (en) 2009-08-20
JP5448573B2 JP5448573B2 (en) 2014-03-19

Family

ID=41068548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125866A Expired - Lifetime JP5448573B2 (en) 2009-05-25 2009-05-25 Low crystalline potassium potassium titanate particles for friction materials

Country Status (1)

Country Link
JP (1) JP5448573B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144997A (en) * 1990-10-06 1992-05-19 Toyo Commun Equip Co Ltd Alkali titanate spherical coagulated whisker and production of the same
JPH04280815A (en) * 1991-03-06 1992-10-06 Sanyo Shikiso Kk Fine particulate alkali titanate and its production
JPH05170439A (en) * 1991-12-19 1993-07-09 Kawatetsu Mining Co Ltd Alkali titanate crystal, its production and its composite material
JPH069948A (en) * 1992-06-24 1994-01-18 Kubota Corp Friction material
JPH0665000A (en) * 1992-08-21 1994-03-08 Titan Kogyo Kk Potassium titanate whisker and composite material comprising the same
JPH0664999A (en) * 1992-08-21 1994-03-08 Titan Kogyo Kk Potassium titanate whisker and composite material comprising the same
JPH0753214A (en) * 1993-08-10 1995-02-28 Kawatetsu Mining Co Ltd Alkali titanate powder, its production, composite material containing the powder and production of alkali titanate sintered compact
JPH0826726A (en) * 1994-07-15 1996-01-30 Kawatetsu Mining Co Ltd Potassium titanate, its composite material and production of same
JPH09309728A (en) * 1996-03-18 1997-12-02 Ishihara Sangyo Kaisha Ltd Lithium titanate, its production and lithium battery using the same
JPH10236823A (en) * 1997-02-28 1998-09-08 Kawatetsu Mining Co Ltd Nonfibrous potassium titanate and its production
JPH10316428A (en) * 1997-05-14 1998-12-02 Otsuka Chem Co Ltd Fine whisker and its production

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144997A (en) * 1990-10-06 1992-05-19 Toyo Commun Equip Co Ltd Alkali titanate spherical coagulated whisker and production of the same
JPH04280815A (en) * 1991-03-06 1992-10-06 Sanyo Shikiso Kk Fine particulate alkali titanate and its production
JPH05170439A (en) * 1991-12-19 1993-07-09 Kawatetsu Mining Co Ltd Alkali titanate crystal, its production and its composite material
JPH069948A (en) * 1992-06-24 1994-01-18 Kubota Corp Friction material
JPH0665000A (en) * 1992-08-21 1994-03-08 Titan Kogyo Kk Potassium titanate whisker and composite material comprising the same
JPH0664999A (en) * 1992-08-21 1994-03-08 Titan Kogyo Kk Potassium titanate whisker and composite material comprising the same
JPH0753214A (en) * 1993-08-10 1995-02-28 Kawatetsu Mining Co Ltd Alkali titanate powder, its production, composite material containing the powder and production of alkali titanate sintered compact
JPH0826726A (en) * 1994-07-15 1996-01-30 Kawatetsu Mining Co Ltd Potassium titanate, its composite material and production of same
JPH09309728A (en) * 1996-03-18 1997-12-02 Ishihara Sangyo Kaisha Ltd Lithium titanate, its production and lithium battery using the same
JPH10236823A (en) * 1997-02-28 1998-09-08 Kawatetsu Mining Co Ltd Nonfibrous potassium titanate and its production
JPH10316428A (en) * 1997-05-14 1998-12-02 Otsuka Chem Co Ltd Fine whisker and its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7012003897; 金属・無機・高分子材料 第9集, 19910121, 第777頁、第822〜823頁, 財団法人科学技術広報財団 *

Also Published As

Publication number Publication date
JP5448573B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
Kannan et al. Synthesis and mechanical performance of biological-like hydroxyapatites
KR20140016310A (en) Hexagonal-plate-shaped zinc oxide particles, production method therefor, and cosmetic material, heat-dissipating filler, heat-dissipating resin composition, heat-dissipating grease, and heat-dissipating coating composition having same blended therein
KR102015305B1 (en) Spherical zinc oxide particles of aggregated lamellar zinc oxide, method of preparing same, cosmetic and heat-dissipating filler
KR101888864B1 (en) Hexagonal-cylinder-shaped zinc oxide particles, production method for same, and cosmetic material, heat-dissipating filler, heat-dissipating resin composition, heat-dissipating grease, and heat-dissipating coating composition having same blended therein
Kheradmandfard et al. Fabrication and characterization of nanocrystalline Mg-substituted fluorapatite by high energy ball milling
WO2014155764A1 (en) Magnesium oxide particles, resin composition, rubber composition, and molded article
JP6744193B2 (en) Garnet type lithium-lanthanum-zirconium composite oxide and method for producing the same
JPWO2010123142A1 (en) Columnar zinc oxide particles and method for producing the same
JP2000256013A (en) Potassium titanate fine particle
JP2001019430A (en) Potassium titanate particles
Kouhi et al. Synthesis, characterization, in vitro bioactivity and biocompatibility evaluation of hydroxyapatite/bredigite (Ca 7 MgSi 4 O 16) composite nanoparticles
JP5448573B2 (en) Low crystalline potassium potassium titanate particles for friction materials
JP4982397B2 (en) Non-fibrous potassium titanate
KR101768924B1 (en) Filler particles, resin composition, grease, and coating composition
Deepa et al. Preparation and antimicrobial observations of zinc doped nanohydroxyapatite
JP4090530B2 (en) Method for producing non-fibrous potassium titanate
JP2009007215A (en) Spherical magnesium oxide particles and method for producing the same
Benevides et al. Reduced graphene oxide-zinc oxide flower-like composite for glass-ionomer materials reinforcement
KR100711871B1 (en) Potassium Titanate Powder
JP7355501B2 (en) Snow crystal-like zinc carbonate particles, snow crystal-like zinc oxide particles and their production method
JP5552883B2 (en) Low-conductivity zinc oxide particles, heat-dissipating filler, heat-dissipating resin composition, heat-dissipating grease, heat-dissipating coating composition, and method for producing low-conducting zinc oxide particles
JP6625308B1 (en) Hexagonal boron nitride powder
Barandehfard et al. The evaluation of the mechanical characteristics of the synthesized glass-ionomer cements (GICs): The effect of hydroxyapatite and fluorapatite nanoparticles and glass powders
KR20210028712A (en) Hexagonal boron nitride powder
Onoda et al. Influence of pH-control in phosphoric acid treatment of zinc oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121122

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Ref document number: 5448573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term