JP4982397B2 - Non-fibrous potassium titanate - Google Patents

Non-fibrous potassium titanate Download PDF

Info

Publication number
JP4982397B2
JP4982397B2 JP2008016231A JP2008016231A JP4982397B2 JP 4982397 B2 JP4982397 B2 JP 4982397B2 JP 2008016231 A JP2008016231 A JP 2008016231A JP 2008016231 A JP2008016231 A JP 2008016231A JP 4982397 B2 JP4982397 B2 JP 4982397B2
Authority
JP
Japan
Prior art keywords
potassium titanate
potassium
fibrous
titanate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008016231A
Other languages
Japanese (ja)
Other versions
JP2008110918A (en
Inventor
秀文 近内
喜夫 鈴木
良雄 阿曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2008016231A priority Critical patent/JP4982397B2/en
Publication of JP2008110918A publication Critical patent/JP2008110918A/en
Application granted granted Critical
Publication of JP4982397B2 publication Critical patent/JP4982397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、プラスチック、摩擦材、塗料、潤滑材、耐熱材、断熱材、紙の添加剤等に使用されるチタン酸カリウムに関し、特に衛生面に関わる形状的特性を重視した非繊維状チタン酸カリウムに関する。   The present invention relates to potassium titanate used for plastics, friction materials, paints, lubricants, heat-resistant materials, heat-insulating materials, paper additives, etc., and particularly non-fibrous titanic acid with an emphasis on shape characteristics related to hygiene. Regarding potassium.

チタン酸カリウムは、繊維形状を有し、プラスチック、塗料、摩擦材等の分野で実用化され、広く普及している。しかし、繊維状粉末は、嵩高く、流動性が悪く、扱いにくいという性質がある。さらに繊維状粉末は粉塵が発生しやすく作業環境上の問題もある。   Potassium titanate has a fiber shape and has been put into practical use in the fields of plastics, paints, friction materials, and the like, and is widely used. However, fibrous powders are bulky, have poor fluidity, and are difficult to handle. Furthermore, the fibrous powder is liable to generate dust and has a problem in the working environment.

例えば、アスベストの発ガン性が問題になっているが、その原因は繊維状の形状に関係するとの見方もある。スタントン(Stantan)の仮説では、繊維の径が0.25μm以下で長さが8μm以上の繊維が催腫瘍性が高いとしている。また、世界労働機関(ILO)では直径が3μm以下、長さが5μm以上かつ長さと直径との比が3:1以上の繊維を吸入性繊維としている。   For example, the carcinogenicity of asbestos has become a problem, but there is a view that the cause is related to the fibrous shape. According to Stanton's hypothesis, fibers having a fiber diameter of 0.25 μm or less and a length of 8 μm or more are highly tumorigenic. In the World Labor Organization (ILO), fibers having a diameter of 3 μm or less, a length of 5 μm or more, and a ratio of length to diameter of 3: 1 or more are used as inhalable fibers.

チタン酸カリウム繊維が呼吸器系などの健康に影響を生ずる可能性については明らかではないが、いずれにしても吸入性繊維は少ないことが望ましい。   Although it is not clear about the possibility that potassium titanate fibers may affect the health of the respiratory system or the like, in any case it is desirable that there are few inhalable fibers.

微粒子チタン酸アルカリについては、球状粒子の集合体で、電子顕微鏡によって確認される大きさが0.01〜0.5μm、BET法による比表面積が約100m/g以上の粉末がある(例えば、特許文献1参照。)。 The fine particle alkali titanate is an aggregate of spherical particles, and has a powder size of 0.01 to 0.5 μm confirmed by an electron microscope and a specific surface area by a BET method of about 100 m 2 / g or more (for example, (See Patent Document 1).

特許文献1によれば、多くの文献や特許に開示されているチタン酸アルカリは、通常数μm〜数十μmの長径をもつ繊維状で、比表面積も20m/g以下と小さく、焼成法、溶解法、水熱法、フラックス法、融体法等が知られているが、特許文献1では、これらの従来技術では得られない表面活性な微粒子チタン酸アルカリを開示している。 According to Patent Document 1, the alkali titanate disclosed in many documents and patents is usually in the form of a fiber having a major axis of several μm to several tens of μm, and the specific surface area is as small as 20 m 2 / g or less. There are known a dissolution method, a hydrothermal method, a flux method, a melt method, and the like. However, Patent Document 1 discloses a surface-active fine-particle alkali titanate that cannot be obtained by these conventional techniques.

この粉末は、有機カルボン酸を溶解した水溶液に四塩化チタンの水溶液を加え、生成する水和酸化チタン〜有機酸の反応縮合物の水懸濁液に水酸化アルカリ金属を添加し、pH8以上、50℃以上100℃以下の温度で反応させて得られる。   This powder is obtained by adding an aqueous solution of titanium tetrachloride to an aqueous solution in which an organic carboxylic acid is dissolved, adding an alkali metal hydroxide to an aqueous suspension of a reaction condensate of hydrated titanium oxide-organic acid to be produced, and having a pH of 8 or more. It is obtained by reacting at a temperature of 50 ° C. or higher and 100 ° C. or lower.

この粉末は数十〜数百Åの球状粒子の集合体である。
特開平4−280815号公報
This powder is an aggregate of several tens to several hundreds of spherical particles.
JP-A-4-280815

チタン酸カリウムとしては、2チタン酸カリウム(KO・2TiO)、4チタン酸カリウム(KO・4TiO)、6チタン酸カリウム(KO・6TiO)、8チタン酸カリウム(KO・8TiO)が知られている。このうち、加熱合成で直接生成するものは、2、4又は6チタン酸カリウムの組成のものである。2チタン酸カリウムあるいは4チタン酸カリウムは加熱により容易に繊維形状を有するが、6チタン酸カリウムは元来繊維状の成長をしない。しかしながら、初期原料であるTi源とK源を加熱した時、先に融解するのは、K源より生成する酸化カリウムであるため、初期融解部分においてはカリウムリッチとなるので、2チタン酸カリウムや4チタン酸カリウムが生成する。さらに加熱を継続すると、周辺の酸化チタンを取り込んでいくが、形状としては、初期に成長した繊維形状を残す部分がある。 As potassium titanate, potassium titanate (K 2 O · 2TiO 2 ), potassium titanate (K 2 O · 4TiO 2 ), potassium titanate (K 2 O · 6TiO 2 ), potassium potassium titanate ( K 2 O · 8TiO 2 ) is known. Among these, what is directly produced | generated by heat synthesis is a thing of the composition of 2, 4, or 6 titanate. Potassium dititanate or potassium tetratitanate has a fiber shape easily by heating, but potassium hexatitanate originally does not grow in a fibrous form. However, when the Ti source and the K source, which are the initial raw materials, are heated, the first melting is potassium oxide generated from the K source, so that the initial melting portion is rich in potassium. 4 Potassium titanate is produced. When heating is further continued, the surrounding titanium oxide is taken in, but there is a part that leaves the fiber shape grown in the initial stage.

本発明は、吸入性繊維の形状を有する粒子を実質的に零にしたチタン酸カリウム結晶を提供することを目的とする。   An object of the present invention is to provide a potassium titanate crystal in which particles having an inhalable fiber shape are substantially zero.

本発明は上記目的を達成するために鋭意開発されたもので、非繊維状チタン酸カリウムの角柱結晶のわずかに焼結状態となっている焼成物を解砕した粉末であって、該粉末の粒子は直径が3μm以下、長さが5μm以上でかつ長さと直径との比が3:1以上の粒子が個数比率で3%以下の角柱結晶であることを特徴とする非繊維状チタン酸カリウムを提供する。 The present invention has been intensively developed to achieve the above object, and is a powder obtained by pulverizing a slightly sintered sintered product of prismatic crystals of non- fibrous potassium titanate , Non-fibrous potassium titanate characterized in that the particles have a diameter of 3 μm or less, a length of 5 μm or more, and particles having a length to diameter ratio of 3: 1 or more are prismatic crystals having a number ratio of 3% or less. I will provide a.

ここで、繊維性の判定基準として、結晶形状の直径、長さ、及び長さと直径との比を掲げたが、衛生的な観点に関する非繊維状チタン酸カリウムの形状の制限については、いまだ明確な規定がなく、上記ILOの吸入性繊維を参照して規定した。そして、この規定に該当する個数比率が3%以下という基準を定めこれにより判断することとした。この個数比率についても、衛生的な観点からの基準はいまだ確定的なものはなく、確率的な観点から安全性を十分に見込んで、発明者らが本発明において独自に定めたものである。   Here, as the criteria for determining the fiber property, the diameter of crystal shape, the length, and the ratio of length to diameter are listed, but the limitation on the shape of non-fibrous potassium titanate in terms of hygiene is still clear. There were no specific provisions, and the provision was made with reference to the inhalable fibers of ILO. Then, the standard that the number ratio corresponding to this rule is 3% or less was set and judged. As for this number ratio, the standard from the viewpoint of hygiene is not yet definite, and the inventors have uniquely determined in the present invention, sufficiently considering safety from a probabilistic viewpoint.

一方、市販のチタン酸カリウム繊維の吸入性繊維の割合を減らす手段として、チタン酸カリウムを微粉砕することが考えられる。しかし、チタン酸カリウムは嵩高く、流動性が悪いため、供給が困難で、供給路の壁に付着しこれを閉塞させるといった問題を生じると共に、大幅なコストアップになるため、工業的に製造することは困難である。   On the other hand, it is conceivable to finely pulverize potassium titanate as a means for reducing the ratio of inhalable fibers of commercially available potassium titanate fibers. However, potassium titanate is bulky and has poor fluidity, making it difficult to supply, causing problems such as adhering to the wall of the supply channel and blocking it, and a significant increase in cost. It is difficult.

実験室レベルでの微粉砕による吸入性繊維の割合は5%程度が限界であるのに対し、本発明は上記個数比率を3%以下とすることができる製造方法によって達成されたものである。   Whereas the limit of the respirable fiber ratio by pulverization at the laboratory level is about 5%, the present invention has been achieved by the production method capable of reducing the number ratio to 3% or less.

このような特性を有するチタン酸カリウムは次の手段によって製造することができる。すなわち、焼成によりTiOを生成するTi源の粉末とKOを生成するK源の粉末をTiO:KOのモル比で5.5:1〜6.5:1の割合で混合し、被加熱物の温度が800℃から目標最高温度1000〜1300℃まで到達する昇温速度を20℃/分以上として焼成し、その焼成物を冷却後解砕するチタン酸カリウムの製造方法によって製造することができる。 Potassium titanate having such characteristics can be produced by the following means. That is, the Ti source powder that produces TiO 2 by firing and the K source powder that produces K 2 O are mixed at a molar ratio of TiO 2 : K 2 O of 5.5: 1 to 6.5: 1. By the method for producing potassium titanate, the temperature of the article to be heated is fired at a heating rate of 20 ° C./min or higher from 800 ° C. to the target maximum temperature 1000-1300 ° C., and the fired product is crushed after cooling. Can be manufactured.

Ti源としては、酸化チタン、含水酸化チタン等を用いることができ、K源としては、炭酸塩、炭酸水素塩、硝酸塩、硫酸塩等を用いることができる。K源の代わりに加熱によりNaOを生成するNa源を用いても、6チタン酸カリウムと同様の特性をもつ6チタン酸ナトリウムが生成するので、Na源を適用することも可能である。 As the Ti source, titanium oxide, hydrous titanium oxide or the like can be used, and as the K source, carbonate, hydrogen carbonate, nitrate, sulfate or the like can be used. Even when a Na source that generates Na 2 O by heating is used instead of the K source, sodium hexatitanate having the same characteristics as potassium hexatitanate is produced, so that it is also possible to apply a Na source.

モル比を5.5:1〜6.5:1とするのは、最終生成物のモル比と合致させるためであり、好ましくは、6:1がよいが、必ずしも化学量論的でなく上記モル比の範囲内であればX線回折測定で確認する限りにおいて6チタン酸カリウムが生成される範囲である。   The molar ratio of 5.5: 1 to 6.5: 1 is to match the molar ratio of the final product, preferably 6: 1, but not necessarily stoichiometric and not the above. If it is within the range of the molar ratio, it is a range in which potassium hexatitanate is produced as long as it is confirmed by X-ray diffraction measurement.

焼成は800℃から目標最高到達温度1000〜1300℃まで20℃/分以上の昇温速度で行う。800℃から目標到達温度までの温度領域を急速加熱するのは、2又は4チタン酸カリウムの生成を抑制するためである。この温度領域の上限は6チタン酸カリウムの融点を考慮すれば、好ましくは1200℃までとするのがよい。   Firing is performed at a temperature increase rate of 20 ° C./min or more from 800 ° C. to a target maximum temperature 1000 to 1300 ° C. The reason why the temperature range from 800 ° C. to the target temperature is rapidly heated is to suppress the formation of 2 or 4 potassium titanate. The upper limit of this temperature range is preferably up to 1200 ° C. in consideration of the melting point of potassium hexatitanate.

なお、800℃未満の領域の昇温速度は緩急何れでもよいが、800℃以上の領域を急速に加熱するので、これに合わせて800℃未満の領域も急速加熱するのが実技的である。   The rate of temperature increase in the region below 800 ° C. may be either slow or rapid, but since the region above 800 ° C. is rapidly heated, it is practical to rapidly heat the region below 800 ° C. accordingly.

昇温速度を20℃/分以上としたのは、20℃/分未満では2又は4チタン酸カリウムの生成を抑制することが困難であるためである。昇温速度の上限は、設備的な観点から制約され、耐火物の保護、設備保全の制約、経済的な観点からの制限等によって定められる。   The reason for setting the temperature rising rate to 20 ° C./min or more is that it is difficult to suppress the formation of 2 or 4 potassium titanate at less than 20 ° C./min. The upper limit of the heating rate is restricted from the viewpoint of equipment, and is determined by protection of refractories, restrictions on equipment maintenance, restrictions from an economic viewpoint, and the like.

Ti源とK源の粉末をTiO/KOのモル比で5.5:1〜6.5:1の割合で混合し、これを加熱焼成する場合、前述のように、昇温速度が緩慢であると、先に融解したカリウムリッチ相において、2チタン酸カリウムや、4チタン酸カリウムの繊維成長を助長させてしまい、目的の非繊維状にならない。そこで、2チタン酸カリウムや4チタン酸カリウムの成長しやすい温度域をできるだけ速く通過させる急速加熱を行う。その結果、到達温度1200℃までの昇温速度を20℃/分以上の急昇温によって、2チタン酸カリウム、4チタン酸カリウムの成長を抑え、目的とする非繊維状の6チタン酸カリウムを得ることができる。このように焼成された6チタン酸カリウムの焼成物はわずかに焼結状態となっているため、冷却後粉砕機で適当な粒度に解砕して製品とする。 When the Ti source and K source powders are mixed at a molar ratio of TiO 2 / K 2 O in a ratio of 5.5: 1 to 6.5: 1, and this is heated and fired, the rate of temperature rise is as described above. Is slow, it promotes fiber growth of potassium dititanate and potassium tetratitanate in the previously melted potassium-rich phase, and does not become the desired non-fibrous form. Therefore, rapid heating is performed so that potassium dititanate and potassium tetratitanate easily pass through a temperature range where growth is easy. As a result, the growth rate of potassium dititanate and potassium titanate is suppressed by a rapid temperature increase of 20 ° C./min or higher to a temperature increase rate of 1200 ° C., and the desired non-fibrous potassium 6 titanate is obtained. Obtainable. Since the calcined product of potassium titanate thus calcined is slightly sintered, after cooling, it is crushed to an appropriate particle size by a pulverizer to obtain a product.

チタン酸カリウムは、高白色度、低モース硬度、低熱伝導率、高屈折率といった物性を持ち、耐熱性、耐薬品性、摺動特性に優れる物質としての特性を持っている。従って、補強繊維としての用途以外に、プラスチック、摩擦材、塗料、潤滑剤、耐熱材、断熱材、紙の添加剤等にも利用することができる。更に、繊維状粉末が、嵩高く流動性が悪く扱いにくいのに対し、本発明のチタン酸カリウムは、これらの欠点が改良されている点で、適用範囲は広い。   Potassium titanate has physical properties such as high whiteness, low Mohs hardness, low thermal conductivity, and high refractive index, and has properties as a substance excellent in heat resistance, chemical resistance, and sliding properties. Therefore, it can be used for plastics, friction materials, paints, lubricants, heat-resistant materials, heat-insulating materials, paper additives and the like in addition to the use as a reinforcing fiber. Furthermore, while the fibrous powder is bulky and poor in fluidity and difficult to handle, the potassium titanate of the present invention has a wide range of applications in that these drawbacks are improved.

その適用において、目的に沿うよう、カップリング処理等の表面処理を施すことも可能である。   In the application, it is possible to perform a surface treatment such as a coupling treatment in accordance with the purpose.

また、本発明の非繊維状チタン酸カリウム粉末は摩擦材料に用いると、従来のチタン酸カリウム粉末を用いるよりも、低温から高温まで安定した摩擦性能を発揮することが見い出されている。その理由は、明らかではないが、従来のチタン酸カリウム粉末に比べ、本発明のチタン酸カリウム粉末は、繊維性が低いので、角柱結晶であるチタン酸カリウムの側面側結晶面や、底面側結晶面が、摩擦剤摺動部に平均的に配置することによるものと思われる。   Further, it has been found that when the non-fibrous potassium titanate powder of the present invention is used as a friction material, it exhibits stable friction performance from a low temperature to a high temperature as compared with the conventional potassium titanate powder. The reason for this is not clear, but since the potassium titanate powder of the present invention has low fiber properties compared to the conventional potassium titanate powder, the side-side crystal plane and bottom-side crystal of potassium titanate that is a prismatic crystal. The surface is considered to be due to the average arrangement of the friction material sliding portions.

本発明の非繊維状チタン酸カリウムは、繊維と定義される領域の粒子が実質的に零と見なされるようなチタン酸カリウムである。この物質には従来の繊維状チタン酸カリウムの特性の内、補強性は余り期待することはできないが、衛生面において十分安全に使用することができる各種用途の原料物質として、広く世の中に受け入れられる材料であり、貢献するところが大きい。   The non-fibrous potassium titanate of the present invention is potassium titanate such that particles in the region defined as fibers are considered substantially zero. Although this material cannot be expected to have much reinforcing property among the properties of conventional fibrous potassium titanate, it is widely accepted as a raw material for various applications that can be used safely and hygienically. It is a material and has a great contribution.

チタン酸カリウムの各々生成物の融点は
2チタン酸カリウム 965℃
4チタン酸カリウム 1114℃
6チタン酸カリウム 1370℃
であり、結晶の成長はこれら融点よりやや低めのところで起る。従って2チタン酸カリウム、4チタン酸カリウムの結晶成長温度域を20℃/分以上のできるだけ速い昇温速度で通過させることによって2チタン酸カリウムや4チタン酸カリウムに由来する形状を抑制し、本発明の非繊維状の非繊維状チタン酸カリウムを得ることができる。
The melting point of each product of potassium titanate is potassium dititanate 965 ° C
4 Potassium titanate 1114 ° C
6 Potassium titanate 1370 ° C
The crystal growth occurs at a slightly lower temperature than these melting points. Therefore, the shape derived from potassium dititanate or potassium titanate is suppressed by passing the crystal growth temperature range of potassium dititanate and potassium titanate at a rate of temperature rise as high as possible of 20 ° C./min. The non-fibrous non-fibrous potassium titanate of the invention can be obtained.

酸化チタン粉末と炭酸カリウム粉末を、TiO:KOのモル比が6:1になるように配合し、この原料をブレンダーで10分間混合し、この混合粉を温度プログラムコントローラ付の電気炉で、800℃から1130℃をその昇温速度をそれぞれ7℃/分、20℃/分、30℃/分の条件で昇温し、20分間保持した後、衝撃式ミルで粉砕した。 Titanium oxide powder and potassium carbonate powder are blended so that the molar ratio of TiO 2 : K 2 O is 6: 1, this raw material is mixed for 10 minutes with a blender, and this mixed powder is an electric furnace with a temperature program controller. Then, the temperature was raised from 800 ° C. to 1130 ° C. under conditions of 7 ° C./min, 20 ° C./min, and 30 ° C./min, respectively, held for 20 minutes, and then pulverized with an impact mill.

得られたチタン酸カリウム粉末の電子顕微鏡画像を画像解析処理により、各粒子の直径、長さから、直径が3μm以下、長さが5μm以上でかつ長さと直径との比が3:1以上の粒子の個数比率を算出したところ、表1に示す結果を得た。   An electron microscopic image of the obtained potassium titanate powder was subjected to image analysis processing, and from the diameter and length of each particle, the diameter was 3 μm or less, the length was 5 μm or more, and the ratio of length to diameter was 3: 1 or more. When the number ratio of the particles was calculated, the results shown in Table 1 were obtained.

尚、比較のためにチタン酸カリウム繊維の代表的市販品2種類についても直径が3μm以下、長さが5μm以上でかつ長さと直径との比が3:1以上の粒子の個数比率を求め、表1に併記した。   For comparison, the number ratio of particles having a diameter of 3 μm or less, a length of 5 μm or more, and a ratio of length to diameter of 3: 1 or more was also obtained for two types of typical commercially available potassium titanate fibers. This is also shown in Table 1.

Figure 0004982397
Figure 0004982397

Claims (1)

繊維状チタン酸カリウムの角柱結晶のわずかに焼結状態となっている焼成物を解砕した粉末であって、該粉末の粒子は直径が3μm以下、長さが5μm以上でかつ長さと直径との比が3:1以上の粒子が個数比率で3%以下の角柱結晶であることを特徴とする非繊維状チタン酸カリウム。 A powder obtained by pulverizing a slightly sintered sintered product of prismatic crystals of non- fibrous potassium titanate, and the particles of the powder have a diameter of 3 μm or less, a length of 5 μm or more, and a length and a diameter Non-fibrous potassium titanate, wherein particles having a ratio of 3: 1 or more are prismatic crystals having a number ratio of 3% or less.
JP2008016231A 2008-01-28 2008-01-28 Non-fibrous potassium titanate Expired - Lifetime JP4982397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016231A JP4982397B2 (en) 2008-01-28 2008-01-28 Non-fibrous potassium titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016231A JP4982397B2 (en) 2008-01-28 2008-01-28 Non-fibrous potassium titanate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04610897A Division JP4090530B2 (en) 1997-02-28 1997-02-28 Method for producing non-fibrous potassium titanate

Publications (2)

Publication Number Publication Date
JP2008110918A JP2008110918A (en) 2008-05-15
JP4982397B2 true JP4982397B2 (en) 2012-07-25

Family

ID=39443655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016231A Expired - Lifetime JP4982397B2 (en) 2008-01-28 2008-01-28 Non-fibrous potassium titanate

Country Status (1)

Country Link
JP (1) JP4982397B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102158893B1 (en) * 2013-03-18 2020-09-22 도호 티타늄 가부시키가이샤 Method for producing potassium titanate
US10364160B2 (en) 2014-04-28 2019-07-30 Toho Titanium Co., Ltd. Process for producing potassium titanate
JP6371105B2 (en) * 2014-04-28 2018-08-08 東邦チタニウム株式会社 Method for producing potassium titanate
US10156277B2 (en) 2015-06-02 2018-12-18 Toho Titanium Co., Ltd. Alkali-metal titanate and friction material
IT201800020470A1 (en) * 2018-12-20 2020-06-20 Mario Gerardo Terruzzi PROCEDURE FOR THE PREPARATION OF FIBER-FREE ALKALINE TITANATES
CN114671459A (en) * 2022-03-16 2022-06-28 张家港大塚化学有限公司 Preparation method of non-fibrous potassium octatitanate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811692B2 (en) * 1986-10-13 1996-02-07 大塚化学株式会社 Method for producing polycrystalline body formed of fibrous alkali metal titanate
JP2528462B2 (en) * 1987-04-08 1996-08-28 チタン工業株式会社 Method for producing sodium hexatitanate fine particle powder
JP2721705B2 (en) * 1989-06-23 1998-03-04 チタン工業株式会社 Sodium hexatitanate fine particle powder and method for producing the same
JPH04144997A (en) * 1990-10-06 1992-05-19 Toyo Commun Equip Co Ltd Alkali titanate spherical coagulated whisker and production of the same
JPH04280815A (en) * 1991-03-06 1992-10-06 Sanyo Shikiso Kk Fine particulate alkali titanate and its production
JP3492397B2 (en) * 1993-08-10 2004-02-03 川鉄鉱業株式会社 Alkali titanate powder, method for producing the same, composite material containing the same, and method for producing alkali titanate sintered body

Also Published As

Publication number Publication date
JP2008110918A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP4982397B2 (en) Non-fibrous potassium titanate
Sanchez‐Monjaras et al. Molten salt synthesis and characterization of potassium polytitanate ceramic precursors with varied TiO2/K2O molar ratios
JP4090530B2 (en) Method for producing non-fibrous potassium titanate
Manivasakan et al. Effect of TiO2 nanoparticles on properties of silica refractory
KR102354608B1 (en) Process for producing potassium titanate
Zhang et al. Effect of lanthanum doping on the far-infrared emission property of vanadium–titanium slag ceramic
US6335096B1 (en) Potassium titanate fine particles
JP5222853B2 (en) Method for producing alkali titanate compound
Bao et al. Low‐temperature controllable calcination syntheses of potassium dititanate
Subuki et al. Study of the synthesis of zirconia powder from zircon sand obtained from zircon minerals malaysia by caustic fusion method
CN106278256A (en) Hardness and anti-wear performance preferable wear-resisting zirconia pottery
JP6371105B2 (en) Method for producing potassium titanate
US4652439A (en) Process for preparing fibrous alkali metal titanate
KR101893144B1 (en) Friction material comprising potassium titanate and method for preparing the same by melting method
Biryukova et al. Development of a fibrous potassium polytitanate
JPH10316428A (en) Fine whisker and its production
JP3102789B1 (en) Plate-like potassium octitanate and method for producing the same
JP2704351B2 (en) Monoclinic titanium dioxide fiber and method for producing the same
Kaz’Mina et al. Properties of foam glass material modified by nanosize zirconium dioxide
JP2018154527A (en) Method of producing spherical type large particle titanium dioxide
JPS60259625A (en) Production of titania fiber
KR20100081105A (en) Method of synthesizing zirconia nano powders
Fadzil Study of the Synthesis of Zirconia Powder from Zircon Sand obtained from Zircon Minerals Malaysia by Caustic Fusion Method Istikamah Subuki1, Mimi Fazzlinda Mohsin1, Muhammad Hussain Ismail2, and Fazira Suriani
Pratapa et al. Synthesis of High-Purity Ceramic Nano-Powders Using Dissolution Method
Sasidharan et al. Sol-Gel Lanthanum Phosphate: A Versatile Ceramic Material for Diverse Functional Applications

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term