JP2009182595A - Interference wave canceler - Google Patents

Interference wave canceler Download PDF

Info

Publication number
JP2009182595A
JP2009182595A JP2008019083A JP2008019083A JP2009182595A JP 2009182595 A JP2009182595 A JP 2009182595A JP 2008019083 A JP2008019083 A JP 2008019083A JP 2008019083 A JP2008019083 A JP 2008019083A JP 2009182595 A JP2009182595 A JP 2009182595A
Authority
JP
Japan
Prior art keywords
signal
coordinate system
fluctuation
interference wave
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008019083A
Other languages
Japanese (ja)
Other versions
JP5193618B2 (en
Inventor
Kei Ito
圭 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2008019083A priority Critical patent/JP5193618B2/en
Publication of JP2009182595A publication Critical patent/JP2009182595A/en
Application granted granted Critical
Publication of JP5193618B2 publication Critical patent/JP5193618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Radio Relay Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interference wave canceler which follows high-speed phase variation and also follows amplitude variation even when amplitude variation is large. <P>SOLUTION: The phase variation and level variation of the interference wave are detected from an adaptive filter coefficient and a cancellation error in a polar coordinate system, and an estimated variation amount is selected or synthesized from rectangular coordinate system calculation results or polar coordinate system calculation results to thereby follow the high-speed phase variation and also follow the amplitude variation even when the amplitude variation is large. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、中継装置に関わり、特に適応フィルタを用いて干渉波信号を除去する干渉波キャンセラに関する。   The present invention relates to a relay device, and more particularly to an interference wave canceller that removes an interference wave signal using an adaptive filter.

従来、マルチパスやSFN( Single Frequency Network )中継方式において、受信信号から、回り込み波のような干渉波信号を除去する方策として、適応フィルタを用いた干渉波信号キャンセラが一般的に利用されている。このような干渉波信号キャンセラは、適応フィルタによって干渉波と同一特性の信号を生成し、それを所望波信号と干渉波信号とが混在した受信信号から減ずることにより、干渉波信号の影響を除去している(特許文献1参照。)。   Conventionally, in a multipath or SFN (Single Frequency Network) relay system, an interference wave signal canceller using an adaptive filter is generally used as a measure for removing an interference wave signal such as a sneak wave from a received signal. . Such an interference wave signal canceller eliminates the influence of the interference wave signal by generating a signal having the same characteristics as the interference wave by an adaptive filter and subtracting it from the received signal in which the desired wave signal and the interference wave signal are mixed. (See Patent Document 1).

しかし、受信信号には、フェージングによる変動が発生する場合もあり、干渉波信号キャンセラ側では、このような変動にも追従する必要がある。   However, the received signal may fluctuate due to fading, and the interference wave signal canceller must follow such fluctuation.

特開2002−152065号公報Japanese Patent Laid-Open No. 2002-152065

上述の変動に追従するため、ある一定間隔毎にフィルタ係数の更新を行う。しかし、この更新間隔は、フィルタ係数算出までの演算時間によるものであるため、1シンボル毎に更新を行うことは困難である。
上記の対策として、直交座標系のフィルタ係数に対して過去の値から次のフィルタ係数更新時の値を推定することにより最適化を行っている。
しかし、特に高速な位相変動に対しては、直交座標系よりも極座標系において振幅と位相の変動量をそれぞれ検出し、検出した上記手法を行うことのほうが追従精度を高められる。ところが、振幅変動が激しいときには、振幅と位相の変動量の推定を誤る可能性が高く、このような場合には直交座標系で変動量推定を行うほうが追従精度を高められる場合がある。
本発明の目的は、上記のような問題を解決するために、高速な位相変動にも追従し、かつ、振幅変動が激しいときにも追従する干渉波キャンセラを提供することにある。
In order to follow the above-described fluctuation, the filter coefficient is updated at certain intervals. However, since this update interval depends on the calculation time until the filter coefficient is calculated, it is difficult to update every symbol.
As the above countermeasure, optimization is performed by estimating the value at the time of the next filter coefficient update from the past value with respect to the filter coefficient of the orthogonal coordinate system.
However, especially for high-speed phase fluctuations, the tracking accuracy can be improved by detecting the amplitude and phase fluctuation amounts in the polar coordinate system and performing the detected method, rather than the orthogonal coordinate system. However, when the amplitude fluctuation is severe, there is a high possibility that the estimation of the fluctuation amount of the amplitude and the phase is erroneous. In such a case, the tracking accuracy may be improved by estimating the fluctuation amount in the orthogonal coordinate system.
An object of the present invention is to provide an interference wave canceller that follows high-speed phase fluctuations and follows even when amplitude fluctuations are severe, in order to solve the above problems.

上記の目的を達成するために、本発明の干渉波キャンセラは、適応フィルタの係数及びキャンセル誤差から、極座標系で干渉波の位相変動やレベル変動を検出し、推定変動量を直交座標系算出結果若しくは極座標系算出結果から、選択若しくは合成したものである。   In order to achieve the above object, the interference wave canceller of the present invention detects the phase variation and level variation of the interference wave in the polar coordinate system from the coefficient and cancellation error of the adaptive filter, and calculates the estimated variation amount as a result of calculating the orthogonal coordinate system. Or it is what was selected or synthesize | combined from the polar coordinate system calculation result.

即ち、本発明の干渉波キャンセラは、受信信号から干渉波信号をキャンセルし、前記キャンセルした出力信号を再送信する干渉波キャンセラにおいて、前記受信信号から前記干渉波信号を除去する適応フィルタと、前記適応フィルタが前記干渉波信号と同一特性の信号を生成するためのフィルタ係数を算出する手段と、前記出力信号からキャンセル誤差を算出するキャンセル誤差手段と、前記フィルタ係数算出手段と前記キャンセル誤差算出手段から前記干渉波信号の変動を検出する変動検出手段とを備え、前記変動検出手段は、極座標系による検出手段と直交座標系による検出手段と、前記直交座標系による検出手段から得られる干渉波信号の推定変動量と前記極座標系による検出手段から得られる干渉波信号の推定変動量とから、前記受信信号の推定変動量として用いる値を前記極座標系変動検出手段による結果若しくは前記直交座標系変動検出手段による結果を切替え若しくは合成する手段を有するものである。   That is, an interference wave canceller of the present invention cancels an interference wave signal from a received signal, and retransmits the canceled output signal. In the interference wave canceller, the adaptive filter that removes the interference wave signal from the received signal; Means for calculating a filter coefficient for the adaptive filter to generate a signal having the same characteristics as the interference wave signal; cancellation error means for calculating a cancellation error from the output signal; the filter coefficient calculation means; and the cancellation error calculation means. Fluctuation detection means for detecting fluctuations of the interference wave signal from the detection means, the fluctuation detection means is a detection means based on a polar coordinate system, a detection means based on an orthogonal coordinate system, and an interference wave signal obtained from the detection means based on the orthogonal coordinate system From the estimated fluctuation amount of the interference wave signal obtained from the detection means based on the polar coordinate system. And it has a means for switching or synthesizing results of results or the orthogonal coordinate system fluctuation detecting means according to the polar coordinate system variation detecting means a value to be used as the estimated variation amount of the signal.

本発明に拠れば、高速な変動、特に位相変動に対する耐性向上により、高精度な変動追従を提供できる。また、極座標系では良好な変動量の推定ができない変動環境下では変動量の推定を直交座標系に切替えるか、若しくは、直交座標系で推定した推定変動量と極座標系で推定した推定変動量を合成することにより、安定した干渉波除去装置(干渉波キャンセラ)を提供することができる。   According to the present invention, high-accuracy tracking can be provided by improving resistance to high-speed fluctuation, particularly phase fluctuation. Also, in a fluctuation environment where a favorable fluctuation amount cannot be estimated in the polar coordinate system, the fluctuation amount estimation is switched to the orthogonal coordinate system, or the estimated fluctuation amount estimated in the orthogonal coordinate system and the estimated fluctuation amount estimated in the polar coordinate system are By synthesizing, a stable interference wave removing device (interference wave canceller) can be provided.

以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、各図において、共通な機能を有する構成要素には同一の参照番号を付し、できるだけ説明の重複を避けるため、説明を省略する。この発明の実施の形態について図を参照して説明する場合がある。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In each drawing, components having common functions are denoted by the same reference numerals, and description thereof is omitted to avoid duplication as much as possible. An embodiment of the present invention may be described with reference to the drawings.

図1によって、本発明の第一の実施例を説明する。図1は、本発明の一実施例のOFDM( Orthogonal Frequency Division Multiplexing :直交周波数分割多重)信号中継送信装置の干渉波除去部の構成を示すブロック図である。100は干渉波除去部、11は減算器、12は誤差算出部、13はフィルタ係数更新部、14は更新間隔遅延メモリ、15は極座標系変動検出器、16は直交座標系検出器、17は変動推定座標系選択部、18は適応フィルタである。
図1において、干渉波除去部100を構成する各要素では、予め定められた値で初期化された係数値及び数式が登録されている。
A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram illustrating a configuration of an interference wave removing unit of an OFDM (Orthogonal Frequency Division Multiplexing) signal relay transmission apparatus according to an embodiment of the present invention. 100 is an interference wave removing unit, 11 is a subtractor, 12 is an error calculating unit, 13 is a filter coefficient updating unit, 14 is an update interval delay memory, 15 is a polar coordinate system variation detector, 16 is an orthogonal coordinate system detector, and 17 is The fluctuation estimation coordinate system selection unit 18 is an adaptive filter.
In FIG. 1, in each element constituting the interference wave removal unit 100, coefficient values and mathematical expressions initialized with predetermined values are registered.

図1において、減算器11は、入力信号xから干渉波のレプリカ信号として適応フィルタ18から出力される信号uを減じ、信号yとして誤差算出部12及び適応フィルタ18に出力し、かつ、干渉波除去部100の出力信号として出力する。
誤差算出部12は、減算器11より得られる出力信号yから理想値ypを算出し、理想値ypと出力信号yとの誤差eを算出し、誤差eに対して重み付け係数μを乗じた信号(誤差信号){μ・e(n)}をフィルタ係数更新部13、極座標系変動検出器15、及び直交座標系変動検出器16に出力する。ここで、μは更新重み付け係数で、0<μ≦1の値をとるものである。またnは、入力信号のシンボル数番号である。
フィルタ係数更新部13は、誤差算出部12から入力された誤差信号{μ・e(n)}と変動推定座標系選択部17から入力された推定変動量{μ・L}を用いて係数w(n)を更新し、更新した係数w(n)を適応フィルタ18と更新間隔遅延メモリ14に出力する。係数w(n)の更新は、例えば、係数の更新間隔シンボル数をDとし、1回更新前の係数をw(n−D)とした場合に、式(1)から算出する。
In FIG. 1, a subtractor 11 subtracts the signal u output from the adaptive filter 18 as a replica signal of the interference wave from the input signal x, outputs the signal y to the error calculator 12 and the adaptive filter 18 as a signal y, and the interference wave Output as an output signal of the removal unit 100.
The error calculation unit 12 calculates an ideal value yp from the output signal y obtained from the subtractor 11, calculates an error e between the ideal value yp and the output signal y, and a signal obtained by multiplying the error e by a weighting coefficient μ. (Error signal) {μ · e (n)} is output to the filter coefficient updating unit 13, the polar coordinate system variation detector 15, and the orthogonal coordinate system variation detector 16. Here, μ is an update weighting coefficient and takes a value of 0 <μ ≦ 1. N is the symbol number of the input signal.
The filter coefficient updating unit 13 uses the error signal {μ · e (n)} input from the error calculation unit 12 and the estimated fluctuation amount {μ 1 · L} input from the fluctuation estimation coordinate system selection unit 17. w (n) is updated, and the updated coefficient w (n) is output to the adaptive filter 18 and the update interval delay memory 14. The update of the coefficient w (n) is calculated from the equation (1) when, for example, the coefficient update interval symbol number is D and the coefficient before the update once is w (n−D).

Figure 2009182595
なお、推定変動量{μ・L}については後述する。
Figure 2009182595
The estimated fluctuation amount {μ 1 · L} will be described later.

更新間隔遅延メモリ14は、人力された係数w(n)に対して干渉波除去部100の更新に要するシンボル数Dの遅延を行って、遅延した信号{w(n−D)}を極座標系変動検出器15と直交座標系変動検出器16に出力する。   The update interval delay memory 14 delays the number of symbols D required for updating the interference wave removing unit 100 with respect to the manually-manufactured coefficient w (n), and sends the delayed signal {w (n−D)} to the polar coordinate system. Output to the fluctuation detector 15 and the Cartesian coordinate system fluctuation detector 16.

極座標系変動検出器15は、2つの入力信号{w(n−D)}、{μ・e(n)}、及び、極座標系変動検出器15内部で入力信号{w(n−D)}と入力信号{μ・e(n)}をそれぞれ更新間隔(シンボル数D)分遅延させた信号とから、極座標系による変動の差分Lpと変動判定信号Swを算出し、算出した変動の差分Lpと変動判定信号Swを変動椎定座標系選択部17に出力する。
具体的には、現在予定している更新係数w(n)(式(2)参照)と1回前の更新時に予定されていた更新係数w(n−D)(式(3)参照)との差を求めることにより、変動量Lを得ることができる(式(4)参照)。
The polar coordinate system fluctuation detector 15 includes two input signals {w (n−D)} and {μ · e (n)}, and the input signal {w (n−D)} inside the polar coordinate system fluctuation detector 15. And a signal obtained by delaying the input signal {μ · e (n)} by the update interval (number of symbols D), respectively, a fluctuation difference Lp and a fluctuation determination signal Sw by the polar coordinate system are calculated, and the calculated fluctuation difference Lp And the variation determination signal Sw are output to the variational coordinate system selection unit 17.
Specifically, the update coefficient w (n) currently scheduled (see formula (2)), the update coefficient w (n−D) scheduled at the previous update (see formula (3)), and The variation amount L can be obtained by obtaining the difference between the two (see equation (4)).

Figure 2009182595
Figure 2009182595

Figure 2009182595
Figure 2009182595

Figure 2009182595
Figure 2009182595

式(4)より、変動量Lは、係数の差分値と誤差の差分値の和で求めることができる。
なお、図1の適応フィルタ18は、干渉波除去部100の出力信号yとフィルタ係数更新部13から得られる係数wを用いて干渉波のレプリカ信号uを算出し、減算器11に出力するものである。このような適応フィルタ18は、例えば、FIR(Finite Impulse Response )フィルタで構成される。
From equation (4), the fluctuation amount L can be obtained as the sum of the difference value of the coefficient and the difference value of the error.
The adaptive filter 18 in FIG. 1 calculates an interference wave replica signal u using the output signal y of the interference wave removing unit 100 and the coefficient w obtained from the filter coefficient updating unit 13, and outputs the signal to the subtractor 11. It is. Such an adaptive filter 18 is composed of, for example, a FIR (Finite Impulse Response) filter.

極座標系変動検出器15について、図2を用いて更に詳細に説明する。
図2は、図1の極座標系変動検出器15の一実施例の構成を示すブロック図である。21は極座標変換器、22と24は更新間隔遅延メモリ、23−r、23−θ、25−r、及び25−θは減算器、26−rと26−θは加算器、27は変動量検出器、28は直交座標変換器である。
The polar coordinate system fluctuation detector 15 will be described in more detail with reference to FIG.
FIG. 2 is a block diagram showing a configuration of one embodiment of the polar coordinate system fluctuation detector 15 of FIG. 21 is a polar coordinate converter, 22 and 24 are update interval delay memories, 23-r, 23-θ, 25-r, and 25-θ are subtractors, 26-r and 26-θ are adders, and 27 is a fluctuation amount. A detector 28 is an orthogonal coordinate converter.

図2において、極座標変換器21は、直交座標系の入力信号を極座標変換する(例えば、入力信号f(x、y)→出力信号f(r、θ))。
まず、極座標変換器21は、更新間隔遅延メモリ14から入力された係数{w(n−D)}を極座標に変換し、振幅の信号{w(n−D)}を更新間隔遅延メモリ22と減算器23−rに出力し、位相の信号{wθ(n−D)}を更新間隔遅延メモリ22と減算器23−θに出力する。
同様に、極座標変換器21は、誤差算出部12から入力された誤差信号{μ・e(n)}の極座標変換を行い、振幅の信号e(n)を更新間隔遅延メモリ24と減算器25−rに出力し、位相の信号eθ(n)を更新間隔遅延メモリ24と減算器25−θに出力する。
In FIG. 2, a polar coordinate converter 21 performs polar coordinate conversion on an input signal in an orthogonal coordinate system (for example, input signal f (x, y) → output signal f (r, θ)).
First, the polar coordinate converter 21 converts the coefficient {w (n−D)} input from the update interval delay memory 14 into polar coordinates, and converts the amplitude signal {w r (n−D)} into the update interval delay memory 22. Are output to the subtracter 23-r, and the phase signal { (n−D)} is output to the update interval delay memory 22 and the subtractor 23-θ.
Similarly, the polar coordinate converter 21 performs polar coordinate conversion of the error signal {μ · e (n)} input from the error calculation unit 12, and converts the amplitude signal e r (n) into the update interval delay memory 24 and the subtractor. The phase signal e θ (n) is output to the update interval delay memory 24 and the subtractor 25-θ.

更新間隔遅延メモリ22は、極座標変換器21から入力された振幅の信号{w(n−D)}を、干渉波除去部100の更新に要するシンボル数分(D)遅延し、遅延した振幅の信号{w(n−2D)}を減算器23−rに出力する。また同様に、入力された位相の信号{wθ(n−D)}を遅延し、遅延した位相の信号{wθ(n−2D)}を減算器23−θに出力する。この更新間隔遅延メモリ22は、更新時の係数の差分を算出するために用いる。
減算器23−rは、その被減算入力端子に入力された{w(n−D)}を減算入力端子から人力された振幅の信号{w(n−2D)}で減算した差分信号△wを加算器26−rに出力する。また、減算器23−θは、その被減算入力端子に入力された{wθ(n−D)}を減算入力端子から入力された位相の信号{wθ(n−2D)}で減算した差分信号△wθを加算器26−θに出力する。
The update interval delay memory 22 delays the amplitude signal {w r (n−D)} input from the polar coordinate converter 21 by the number of symbols required for the update of the interference wave removing unit 100 (D), and the delayed amplitude. The signal {w r (n−2D)} is output to the subtractor 23-r. Similarly, the input phase signal { (n−D)} is delayed, and the delayed phase signal { (n−2D)} is output to the subtractor 23-θ. The update interval delay memory 22 is used to calculate the difference between coefficients at the time of update.
The subtracter 23-r subtracts {w r (n−D)} input to the subtracted input terminal by the amplitude signal {w r (n−2D)} manually input from the subtraction input terminal. △ to output a w r to the adder 26-r. The subtractor 23-θ subtracts {w θ (n−D)} input to the subtracted input terminal by the phase signal {w θ (n−2D)} input from the subtraction input terminal. and it outputs a difference signal w θ to the adder 26-θ.

また、更新間隔遅延メモリ24は、極座標変換器21から人力された誤差信号の振幅の信号e(n)を、干渉波除去部100の更新に要するシンボル数分(D)遅延し、遅延した振幅の信号{e(n−D)}を減算器25−rに出力する。また同様に、人力された位相の信号{eθ(n)}を遅延し、遅延した位相の信号{eθ(n−D)}を減算器25−θに出力する。
この更新間隔遅延メモリ24は、更新時の干渉波除去誤差の差分を算出するために用いる。
減算器25−rは、その被減算入力端子に入力されたe(n)を減算入力端子から入力された振幅の信号{e(n−D)}で減算した差分信号△eを加算器26一rに出力する。また、減算器25−θは、その被減算人力端子に人力されたeθ(n)を減算入力端子から入力された位相の信号{eθ(n−D)}で減算した差分信号△eθを加算器26−θに出力する。
Further, the update interval delay memory 24 delays the signal er (n) of the error signal amplitude manually applied from the polar coordinate converter 21 by the number of symbols required for the update of the interference wave removing unit 100 (D). The amplitude signal { er (nD)} is output to the subtractor 25-r. Similarly, the manually phased signal {e θ (n)} is delayed and the delayed phase signal {e θ (n−D)} is output to the subtractor 25-θ.
The update interval delay memory 24 is used to calculate a difference in interference wave removal error at the time of update.
The subtractor 25-r subtracts the difference signal Δe r obtained by subtracting the er (n) input to the subtracted input terminal by the amplitude signal { er (n−D)} input from the subtraction input terminal. The data is output to the adder 26r. Further, the subtracter 25-θ subtracts e θ (n) manually input to the subtracted human power terminal by the phase signal {e θ (n−D)} input from the subtraction input terminal. θ is output to the adder 26-θ.

加算器26−rは、入力された差分信号△wと△eの和をとった信号L
変動検出器27と直交座標検出器28に出力する。この信号Lは、極座標系変動推定信号の振幅成分信号である。
また加算器26−θは、人力された差分信号△wθと△eθの和をとった信号Lθを変動検出器27と直交座標変換器28に出力する。この信号Lθは、極座標系変動推定信号の位相成分信号である。
変動検出器27は、極座標系変動推定信号LとLθから変動状態を検知し、極座標系での変動推定を採用するかどうかの判定信号Swを変動推定座標系選択部17に出力する。判定信号Swは、例えば、式(5)のような表わされる。
The adder 26-r outputs a signal L r taking the sum of the input difference signal △ w r and △ e r to change detector 27 and the orthogonal coordinate detector 28. This signal L r is an amplitude component signal of the polar coordinate system fluctuation estimation signal.
The adder 26-theta outputs a signal L theta took the sum of the difference signal △ w theta and △ e theta which is human power to change detector 27 and the orthogonal coordinate converter 28. This signal is a phase component signal of the polar coordinate system fluctuation estimation signal.
The fluctuation detector 27 detects a fluctuation state from the polar coordinate system fluctuation estimation signals L r and L θ and outputs a determination signal Sw to the fluctuation estimation coordinate system selection unit 17 as to whether or not to adopt fluctuation estimation in the polar coordinate system. The determination signal Sw is expressed as, for example, Expression (5).

Figure 2009182595
ここで、Thは予め定められたしきい値である。
Sw=1であれば、極座標系で算出した変動結果を選択する。
Figure 2009182595
Here, Th is a predetermined threshold value.
If Sw = 1, the variation result calculated in the polar coordinate system is selected.

直交座標変換器28は、入力された信号L及びLθを直交座標変換する(例えば、入力信号f(r、θ)→出力信号f(x、y))。
そして、直交座標系の信号に変換した信号Lpを変動推定座標系選択部17に出力する。
The orthogonal coordinate converter 28 performs orthogonal coordinate conversion on the input signals L r and L θ (for example, input signal f (r, θ) → output signal f (x, y)).
Then, the signal Lp converted into the orthogonal coordinate system signal is output to the fluctuation estimation coordinate system selection unit 17.

次に、図1の直交座標系変動検出器16について、図3を用いて更に詳細に説明する。図3は、図1の直交座標系変動検出器16の一実施例の構成を示すブロック図である。31と33は更新間隔遅延メモリ、32と34は減算器、35は加算器である。   Next, the orthogonal coordinate system fluctuation detector 16 of FIG. 1 will be described in more detail with reference to FIG. FIG. 3 is a block diagram showing a configuration of an embodiment of the orthogonal coordinate system fluctuation detector 16 of FIG. 31 and 33 are update interval delay memories, 32 and 34 are subtractors, and 35 is an adder.

図1若しくは図3において、直交座標系変動検出器16は、誤差算出部12から入力された誤差信号{μ・e(n)}と、更新間隔遅延メモリ14から入力された係数w(n−D)から、直交座標系で内部生成する各信号を更新間隔遅延させた信号との差分信号Lpを算出し、変動推定座標系選択部17へ出力する。
図3において、更新間隔遅延メモリ14から入力された係数w(n−D)は、更新間隔メモリ31と減算器32に入力される。また、誤差算出部12から人力された誤差信号{μ・e(n)}は、更新間隔メモリ33と減算器34に入力される。
In FIG. 1 or FIG. 3, the orthogonal coordinate system variation detector 16 includes an error signal {μ · e (n)} input from the error calculation unit 12 and a coefficient w (n−) input from the update interval delay memory 14. From (D), a difference signal Lp is calculated from a signal obtained by delaying the update interval for each signal generated internally in the orthogonal coordinate system, and is output to the fluctuation estimation coordinate system selection unit 17.
In FIG. 3, the coefficient w (n−D) input from the update interval delay memory 14 is input to the update interval memory 31 and the subtracter 32. Further, the error signal {μ · e (n)} manually input from the error calculation unit 12 is input to the update interval memory 33 and the subtractor 34.

更新間隔遅延メモリ31は、入力された係数w(n−D)に干渉波除去部100の更新に要するシンボル数分(D)の遅延を行い、遅延させた係数w(n−2D)を減算器32に出力する。
減算器32は、その被減算入力端子に入力された係数w(n−D)を減算入力端子から入力された遅延された係数w(n−2D)で減算し、差分信号△wを加算器35に出力する。
また同様に、更新間隔遅延メモリ33は、人力された誤差信号{μ・e(n)}に干渉波除去部100の更新に要するシンボル数分(D)の遅延を行い、遅延させた誤差信号{μ・e(n−D)}を減算器34に出力する。
減算器34は、その被減算入力端子に入力された誤差信号{μ・e(n)}を減算入力端子から入力された遅延された誤差信号{μ・e(n−D)}で減算し、差分信号△eを加算器35に出力する。
加算器35は、入力された2つの差分信号△wと△eの和を算出し、加算した信号Lを変動推定座標系選択部17に出力する。
The update interval delay memory 31 delays the input coefficient w (n−D) by the number of symbols (D) required for updating the interference wave removing unit 100 and subtracts the delayed coefficient w (n−2D). Output to the device 32.
The subtracter 32 subtracts the coefficient w (n−D) input to the subtracted input terminal by the delayed coefficient w (n−2D) input from the subtraction input terminal, and adds the difference signal Δw 0 . Output to the device 35.
Similarly, the update interval delay memory 33 delays the error signal {μ · e (n)}, which is manually input, by the number of symbols (D) required for the update of the interference wave removal unit 100, and delays the error signal. {Μ · e (n−D)} is output to the subtractor 34.
The subtracter 34 subtracts the error signal {μ · e (n)} input to the subtracted input terminal by the delayed error signal {μ · e (n−D)} input from the subtraction input terminal. The difference signal Δe 0 is output to the adder 35.
The adder 35 calculates the sum of two difference signals inputted △ w 0 and △ e 0, and outputs a signal L 0 obtained by adding the condition estimation coordinate system selecting section 17.

次に、図1の変動推定座標系選択部17について、図4を用いて更に詳細に説明する。図4は図1の変動推定座標系選択部17の一実施例の構成を示すブロック図である。41はセレクタ、42は乗算器である。
図1若しくは図4において、変動推定座標系選択部17は、極座標変動検出器15から判定信号Swと変動量Lpを入力され、直交座標系変動検出器16から直交座標系で算出された変動量Lを入力される。そして、変動推定座標系選択部17は、判定信号Swに基づき、極座標系で算出されたと変動量Lpと直交座標系で算出された変動量Lの選択を行い、選択された推定変動量Lに対して推定変動量重み付け定数μを乗じた信号{μ・L}を係数更新部13に出力する。
Next, the variation estimation coordinate system selection unit 17 in FIG. 1 will be described in more detail with reference to FIG. FIG. 4 is a block diagram showing a configuration of an embodiment of the fluctuation estimation coordinate system selection unit 17 of FIG. 41 is a selector, and 42 is a multiplier.
In FIG. 1 or 4, the fluctuation estimation coordinate system selection unit 17 receives the determination signal Sw and the fluctuation amount Lp from the polar coordinate fluctuation detector 15, and the fluctuation amount calculated in the orthogonal coordinate system from the orthogonal coordinate system fluctuation detector 16. L 0 is input. Then, based on the determination signal Sw, the fluctuation estimated coordinate system selection unit 17 selects the fluctuation amount Lp calculated in the polar coordinate system and the fluctuation amount L 0 calculated in the orthogonal coordinate system, and the selected estimated fluctuation amount L and it outputs a signal {μ l · L} multiplied by the estimated fluctuation amount weighted constant mu 1 to the coefficient updating unit 13 with respect to.

図4の変動推定座標系選択部17において、セレクタ25は、入力Swの値に応じて、入力信号Lp若しくはLのいずれかを選択し、選択した信号を信号Lとして乗算器42に出力する。
乗算器42は、入力された信号Lに推定変動量重み付け定数μを乗算し、乗算した信号{μ・L}を係数更新部13に出力する。ここでμは、0≦μ<1の値をとるものとする。従って、μ=0の場合は、係数更新時に変動推定量Lを加味しない。
In the fluctuation estimation coordinate system selection unit 17 in FIG. 4, the selector 25 selects either the input signal Lp or L 0 according to the value of the input Sw, and outputs the selected signal as the signal L to the multiplier 42. .
The multiplier 42 multiplies the input signal L by the estimated variation weighting constant μ 1 and outputs the multiplied signal {μ 1 · L} to the coefficient updating unit 13. Here, μ 1 assumes a value of 0 ≦ μ 1 <1. Therefore, when μ 1 = 0, the fluctuation estimation amount L is not taken into account when updating the coefficient.

以上、図1〜図4によって説明した上記第一の実施例に拠れば、極座標系での変動推定が可能となり、また、極座標系での変動推定量が大きくずれる可能性がある場合には、直交座標系での変動推定量を用いることができる。   As described above, according to the first embodiment described with reference to FIGS. 1 to 4, it is possible to estimate the fluctuation in the polar coordinate system, and when there is a possibility that the fluctuation estimation amount in the polar coordinate system may greatly deviate. A variation estimation amount in an orthogonal coordinate system can be used.

図5を用いて、本発明の第二の実施例を説明する。図5は、OFDM( Orthogonal Frequency Division Multiplexing )信号中継送信装置の干渉波除去部の構成を示すブロック図である。500は干渉波除去部、53はフィルタ係数更新部、55は極座標系変動検出器、56は直交座標系検出器、57は推定変動量合成部である。なお、減算器1l、誤差算出部12、更新間隔遅延メモリ14、及び、適応フィルタ18は、図1と同様である、
また図5において、干渉波除去部500を構成する各要素では、予め定められた値で初期化された係数値及び数式が登録されている。
A second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a block diagram showing a configuration of an interference wave removing unit of an OFDM (Orthogonal Frequency Division Multiplexing) signal relay transmission apparatus. 500 is an interference wave removing unit, 53 is a filter coefficient updating unit, 55 is a polar coordinate system variation detector, 56 is an orthogonal coordinate system detector, and 57 is an estimated variation amount synthesizing unit. The subtractor 11, the error calculation unit 12, the update interval delay memory 14, and the adaptive filter 18 are the same as those in FIG.
In FIG. 5, coefficient values and mathematical formulas initialized with predetermined values are registered in each element constituting the interference wave removing unit 500.

図5において、減算器11は、入力信号xから干渉波のレプリカ信号として適応フィルタ18から出力される信号uを減じ、信号yとして誤差算出部12及び適応フィルタ18に出力し、かつ、干渉波除去部500の出力信号として出力する。
誤差算出部12は、減算器11より得られる出力信号yから理想値ypを算出し、理想値ypと出力信号yとの誤差eを算出し、誤差eに対して重み付け係数μを乗じた信号(誤差信号){μ・e(n)}をフィルタ係数更新部53、極座標系変動検出器55、及び直交座標系変動検出器56に出力する。ここで、μは更新重み付け係数で、0<μ≦1の値をとるものである。またnは、入力信号のシンボル数番号である。
フィルタ係数更新部53は、誤差算出部12から入力された誤差信号{μ・e(n)}と推定変動量合成部57から入力された推定変動量w′(w′={μ・L′})を用いて係数w′(n)を更新し、更新した係数w′(n)を適応フィルタ18と更新間隔遅延メモリ14に出力する。係数w′(n)の更新は、例えば、係数の更新間隔シンボル数をDとし、1回更新前の係数をw′(n−D)とした場合に、式(1)と同様に算出する。
In FIG. 5, the subtractor 11 subtracts the signal u output from the adaptive filter 18 as an interference wave replica signal from the input signal x, outputs the signal u to the error calculator 12 and the adaptive filter 18 as a signal y, and Output as an output signal of the removal unit 500.
The error calculation unit 12 calculates an ideal value yp from the output signal y obtained from the subtractor 11, calculates an error e between the ideal value yp and the output signal y, and a signal obtained by multiplying the error e by a weighting coefficient μ. (Error signal) {μ · e (n)} is output to the filter coefficient updating unit 53, the polar coordinate system variation detector 55, and the orthogonal coordinate system variation detector 56. Here, μ is an update weighting coefficient and takes a value of 0 <μ ≦ 1. N is the symbol number of the input signal.
The filter coefficient updating unit 53 receives the error signal {μ · e (n)} input from the error calculation unit 12 and the estimated variation w ′ (w ′ = {μ 1 · L) input from the estimated variation combining unit 57. ′}) Is used to update the coefficient w ′ (n), and the updated coefficient w ′ (n) is output to the adaptive filter 18 and the update interval delay memory 14. The update of the coefficient w ′ (n) is calculated in the same manner as in the expression (1), for example, when the number of update interval symbols of the coefficient is D and the coefficient before one update is w ′ (n−D). .

更新間隔遅延メモリ14は、人力された係数w′(n)に対して干渉波除去部500の更新に要するシンボル数Dの遅延を行って、遅延した信号{w′(n−D)}を極座標系変動検出器55と直交座標系変動検出器56に出力する。
直交座標系変動検出器56は、誤差算出部12から入力された誤差信号{μ・e(n)}と、更新間隔遅延メモリ14から入力された係数w′(n−D)から、直交座標系で内部生成する各信号を更新間隔遅延させた信号との差分信号wを算出し、推定変動量合成部57に出力する。
The update interval delay memory 14 delays the delayed signal {w ′ (n−D)} by delaying the number of symbols D required for the update of the interference wave removing unit 500 with respect to the manually operated coefficient w ′ (n). Output to the polar coordinate system fluctuation detector 55 and the orthogonal coordinate system fluctuation detector 56.
The Cartesian coordinate system variation detector 56 uses the orthogonal coordinates based on the error signal {μ · e (n)} input from the error calculator 12 and the coefficient w ′ (n−D) input from the update interval delay memory 14. A difference signal w 0 from a signal obtained by delaying each signal generated internally in the system by the update interval is calculated and output to the estimated fluctuation amount combining unit 57.

極座標系変動検出器55は、2つの入力信号{w′(n−D)}、{μ・e(n)}、及び、極座標系変動検出器55内部で入力信号{w′(n−D)}と入力信号{μ・e(n)}をそれぞれ更新間隔(シンボル数D)分遅延させた信号{w′(n−2D)}及び{μ・e(n−D)}とから、極座標系による変動の差分wp′と変動判定信号αを算出し、算出した変動の差分wp′と変動判定信号αを推定変動量合成部57に出力する。
こうして式(1)〜式(4)と同様にして、変動量L′を、係数の差分値と誤差の差分値の和で求めることができる。
The polar coordinate system fluctuation detector 55 includes two input signals {w ′ (n−D)} and {μ · e (n)}, and the input signal {w ′ (n−D) inside the polar coordinate system fluctuation detector 55. )} And signals {w ′ (n−2D)} and {μ · e (n−D)} obtained by delaying the input signal {μ · e (n)} by the update interval (number of symbols D), respectively, The fluctuation difference wp ′ and fluctuation determination signal α by the polar coordinate system are calculated, and the calculated fluctuation difference wp ′ and fluctuation determination signal α are output to the estimated fluctuation amount combining unit 57.
In this way, the variation L ′ can be obtained by the sum of the difference value of the coefficient and the difference value of the error in the same manner as in the expressions (1) to (4).

図5の極座標系変動検出器55について、図6を用いて更に詳細に説明する。
図6は、図5の極座標系変動検出器55の一実施例の構成を示すブロック図である。61は極座標変換器、62と24は更新間隔遅延メモリ、63−r、63−θは減算器、66−rと66−θは加算器、67は変動量重み付け検出器、68は直交座標変換器である。他の構成要素は図2と同様である。
The polar coordinate system fluctuation detector 55 in FIG. 5 will be described in more detail with reference to FIG.
FIG. 6 is a block diagram showing a configuration of one embodiment of the polar coordinate system fluctuation detector 55 of FIG. 61 is a polar coordinate converter, 62 and 24 are update interval delay memories, 63-r and 63-θ are subtractors, 66-r and 66-θ are adders, 67 is a variation weighting detector, and 68 is a rectangular coordinate transform. It is a vessel. Other components are the same as those in FIG.

図6において、極座標変換器61は、直交座標系の入力信号を極座標変換する。
まず、極座標変換器61は、更新間隔遅延メモリ14から入力された係数{w′(n−D)}を極座標に変換し、振幅の信号{w′(n−D)}を更新間隔遅延メモリ62と減算器63−rに出力し、位相の信号{wθ′(n−D)}を更新間隔遅延メモリ62と減算器63−θに出力する。
同様に、極座標変換器61は、誤差算出部12から入力された誤差信号{μ・e(n)}の極座標変換を行い、振幅の信号e(n)を更新間隔遅延メモリ24と減算器25−rに出力し、位相の信号eθ(n)を更新間隔遅延メモリ24と減算器25−θに出力する。
In FIG. 6, a polar coordinate converter 61 performs polar coordinate conversion of an input signal in an orthogonal coordinate system.
First, the polar coordinate converter 61 converts the coefficient {w ′ (n−D)} input from the update interval delay memory 14 into polar coordinates, and converts the amplitude signal {w r ′ (n−D)} into an update interval delay. The signal is output to the memory 62 and the subtracter 63-r, and the phase signal { ′ (n−D)} is output to the update interval delay memory 62 and the subtractor 63-θ.
Similarly, the polar coordinate converter 61 performs polar coordinate conversion of the error signal {μ · e (n)} input from the error calculation unit 12, and converts the amplitude signal e r (n) into the update interval delay memory 24 and the subtractor. The phase signal e θ (n) is output to the update interval delay memory 24 and the subtractor 25-θ.

更新間隔遅延メモリ62は、極座標変換器61から入力された振幅の信号{w′(n−D)}を、干渉波除去部500の更新に要するシンボル数分(D)遅延し、遅延した振幅の信号{w′(n−2D)}を減算器63−rに出力する。また同様に、入力された位相の信号{wθ′(n−D)}を遅延し、遅延した位相の信号{wθ′(n−2D)}を減算器63−θに出力する。この更新間隔遅延メモリ62は、更新時の係数の差分を算出するために用いる。
減算器63−rは、その被減算入力端子に入力された{w′(n−D)}を減算入力端子から入力された振幅の信号{w′(n−2D)}で減算した差分信号△w′を加算器66−rに出力する。また、減算器63−θは、その被減算入力端子に入力された{wθ′(n−D)}を減算入力端子から入力された振幅の信号{wθ′(n−2D)}で減算した差分信号△wを加算器66−θに出力する。
The update interval delay memory 62 delays the amplitude signal {w r ′ (n−D)} input from the polar coordinate converter 61 by the number of symbols required for the update of the interference wave removal unit 500 (D). The amplitude signal { wr ′ (n−2D)} is output to the subtractor 63-r. Similarly, the input phase signal { ′ (n−D)} is delayed, and the delayed phase signal { ′ (n−2D)} is output to the subtractor 63-θ. The update interval delay memory 62 is used to calculate a difference in coefficients at the time of update.
The subtracter 63-r subtracts {w r ′ (n−D)} input to the subtracted input terminal by the amplitude signal {w r ′ (n−2D)} input from the subtraction input terminal. The difference signal Δw r ′ is output to the adder 66-r. Further, the subtractor 63-θ converts { ′ (n−D)} input to the subtracted input terminal into an amplitude signal { ′ (n−2D)} input from the subtraction input terminal. The subtracted difference signal Δw is output to the adder 66-θ.

また、更新間隔遅延メモリ24、減算器25−r、減算器25−θについては、図2と同様なので説明を省略する。そして、減算器25−rの振幅の信号{e(n−D)}で減算した差分信号△eを加算器66−rに出力する。また、減算器25−θは、その被減算人力端子に入力されたeθ(n)を減算入力端子から入力された振幅の信号{eθ(n−D)}で減算した差分信号△eθを加算器66−θに出力する。 The update interval delay memory 24, the subtractor 25-r, and the subtractor 25-θ are the same as those in FIG. Then, it outputs a difference signal △ e r by subtracting the amplitude of the signal of the subtractor 25-r {e r (n -D)} to the adder 66-r. Further, the subtractor 25-θ subtracts e θ (n) input to the subtracted human power terminal by the amplitude signal {e θ (n−D)} input from the subtraction input terminal. θ is output to the adder 66-θ.

加算器66−rは、人力された差分信号△w′と△eの和をとった信号L′を変動量重み付け検出器67と直交座標検出器68に出力する。この信号L′は、極座標系変動推定信号の振幅成分信号である。
また加算器66−θは、人力された差分信号△wθ′と△eθの和をとった信号Lθ′を変動量重み付け検出器67と直交座標変換器68に出力する。この信号Lθ′は、極座標系変動推定信号の位相成分信号である。
The adder 66-r outputs a 'signal L r taking the sum of △ e r' manpower have been difference signal △ w r and variation weighting detector 67 in the orthogonal coordinate detector 68. This signal L r ′ is an amplitude component signal of the polar coordinate system fluctuation estimation signal.
The adder 66-theta outputs 'signal L theta took the sum of △ e theta' manpower have been difference signal △ w theta and variation weighting detector 67 to the orthogonal coordinate converter 68. This signal L θ ′ is a phase component signal of the polar coordinate system fluctuation estimation signal.

変動量重み付け検出器67は、人力信号L及びLθに応じた合成重み付け係数α(0≦α≦1)を推定変動量合成部57へ出力する。ここでαは、例えば、α=0とする変動量をLrαとし、α=1とする変動量をLrbとするとき、とり得るαの値をn個与え、しきい値hmn(Lra<hr1<‥‥‥<hrm<Lrb:m=1,2,‥‥‥,n−1)を設定した場合、次式(式(6))のように算出される。 The fluctuation amount weighting detector 67 outputs a combined weighting coefficient α (0 ≦ α ≦ 1) corresponding to the human power signals L r and L θ to the estimated fluctuation amount combining unit 57. Here, for example, when α r is a variation amount of α = 0 and α = 1 is a variation amount of L rb , n is given as a possible value of α, and a threshold value h mn (L When ra <h r1 <... <h rm <L rb : m = 1, 2,..., n−1) is set, it is calculated as the following equation (Equation (6)).

Figure 2009182595
即ち、変動量重み付け検出器67は、入力された極座標系変動推定信号L′とLθ′から変動状態を検知し、検知した変動状態に応じた合成重み付け係数αを推定変動量合成部57に出力する。
また、直交座標変換器68は、人力された信号L′及びLθ′を直交座標変換する。そして、直交座標系の信号に変換した信号Wp′を推定変動量合成部57に出力する。
Figure 2009182595
That is, the fluctuation amount weighting detector 67 detects a fluctuation state from the input polar coordinate system fluctuation estimation signals L r ′ and L θ ′, and calculates a synthetic weighting coefficient α corresponding to the detected fluctuation state as an estimated fluctuation amount synthesis unit 57. Output to.
Further, the Cartesian coordinate converter 68 performs Cartesian coordinate transformation of the manually signaled signals L r ′ and L θ ′. Then, the signal Wp ′ converted into the orthogonal coordinate system signal is output to the estimated fluctuation amount combining unit 57.

上述のように極座標系変動検出器55は、図1の極座標系変動検出器15と同様の手法で算出されたL′及びLθ′に応じた、合成重み付け係数αと、L′及びLθ′に直交変換を施した変動量の信号Wp′(L′及びLp′)を、推定変動量合成部57に出力する。 As described above, the polar coordinate system fluctuation detector 55 includes the combined weighting coefficient α, L r ′, and L r ′ and L θ ′ calculated by the same method as the polar coordinate system fluctuation detector 15 of FIG. A fluctuation amount signal Wp ′ (L 0 ′ and Lp ′) obtained by orthogonally transforming L θ ′ is output to the estimated fluctuation amount combining unit 57.

次に、図5の推定変動量合成部57について、図7を用いて更に詳細に説明する。図7は、図5の推定変動量合成部57の一実施例の構成を示すブロック図である。71は加算器、72と73は乗算器、74は加算器、75は乗算器はである。
推定変動量合成部57は、極座標系変動検出器55から入力された信号L′及びLp′に対して、更新間隔遅延メモリ14から入力された信号αを用いた合成処理演算で合成変動量L′を算出し、更に重み付けを行い、合成変動量μ・L′をフィルタ係数更新部53に出力する。具体的には、Lp′の合成重み付け係数をα、L′の合成重み付け係数をβとするとき、L′は次式(式(7))のように表される。
Next, the estimated variation combining unit 57 in FIG. 5 will be described in more detail with reference to FIG. FIG. 7 is a block diagram showing a configuration of one embodiment of the estimated variation combining unit 57 of FIG. 71 is an adder, 72 and 73 are multipliers, 74 is an adder, and 75 is a multiplier.
The estimated fluctuation amount combining unit 57 performs a synthetic fluctuation amount on the signals L 0 ′ and Lp ′ input from the polar coordinate system fluctuation detector 55 by combining processing using the signal α input from the update interval delay memory 14. L ′ is calculated, further weighted, and the combined fluctuation amount μ · L ′ is output to the filter coefficient updating unit 53. Specifically, when the composite weighting coefficient of Lp ′ is α and the composite weighting coefficient of L 0 ′ is β, L ′ is expressed as the following expression (Expression (7)).

Figure 2009182595
ここで、重み付け係数の和を一定(=1)とすると、
Figure 2009182595
Here, if the sum of the weighting coefficients is constant (= 1),

Figure 2009182595
となり、式(8)から
Figure 2009182595
From equation (8)

Figure 2009182595
が得られる。
これを式(7)に代入すると
Figure 2009182595
Is obtained.
Substituting this into equation (7)

Figure 2009182595
となる。
このようにして、合成変動量L′を算出する。
Figure 2009182595
It becomes.
In this way, the combined fluctuation amount L ′ is calculated.

図7の推定変動量合成部57は、上述した式(7)〜式(10)を、減算器71、乗算器72、乗算器73、加算器74、及び、乗算器76で構成することによって具体化したものである。
即ち、減算器71には、整数値1と入力信号αが入力し、その差分した信号(1−a)が乗算器72に出力される。
乗算器72は、入力された信号L′と(1−α)を乗じた信号{(1−α)・L′}を加算器74に出力する。
乗算器73は、入力信号Lp′とαを乗算し、乗算した信号{α・Lp′}を加算器74に出力する。
加算器74は、入力された信号{(1−α)・L′}と{α・Lp′}の和を演算し、加算した信号L′を乗算器75に出力する。
乗算器75は、入力された信号L′に推定変動量重み付け係数μを乗算し、乗算した信号{μ・L′}を図5のフィルタ係数更新部53に出力する。
7 includes the subtractor 71, the multiplier 72, the multiplier 73, the adder 74, and the multiplier 76 by configuring the above-described equations (7) to (10). It is a materialization.
That is, the integer value 1 and the input signal α are input to the subtracter 71, and a signal (1−a) obtained by the difference is output to the multiplier 72.
The multiplier 72 outputs a signal {(1-α) · L 0 ′} obtained by multiplying the input signal L 0 ′ and (1-α) to the adder 74.
Multiplier 73 multiplies input signal Lp ′ by α, and outputs the multiplied signal {α · Lp ′} to adder 74.
The adder 74 calculates the sum of the input signals {(1-α) · L 0 ′} and {α · Lp ′}, and outputs the added signal L ′ to the multiplier 75.
The multiplier 75 multiplies the input signal L ′ by the estimated variation weighting coefficient μ 1 and outputs the multiplied signal {μ 1 · L ′} to the filter coefficient update unit 53 of FIG.

上述した第二の実施例によれば、変動量に応じて極座標系と直交座標系の変動量に重み付けを行い、変動量の推定誤差を抑え、安定した動作が可能となる。   According to the second embodiment described above, the fluctuation amounts of the polar coordinate system and the orthogonal coordinate system are weighted according to the fluctuation amount, and the estimation error of the fluctuation amount is suppressed, and a stable operation is possible.

次に、図8と図9によって、本発明の第三の実施例を説明する。図8は、本発明の一実施例の干渉波除去部の構成を示すブロック図である。図8は、OFDM信号中継送信装置の干渉波除去部の構成を示す図である。800は干渉波除去部、85は極座標系変動検出・アラーム出力部である。
また、図9は、図8の極座標系変動検出器85の構成を示すブロック図である。
Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a block diagram showing the configuration of the interference wave removing unit of one embodiment of the present invention. FIG. 8 is a diagram illustrating a configuration of an interference wave removal unit of the OFDM signal relay transmission apparatus. 800 is an interference wave removing unit, and 85 is a polar coordinate system variation detection / alarm output unit.
FIG. 9 is a block diagram showing a configuration of the polar coordinate system fluctuation detector 85 of FIG.

図8において、干渉波除去部800は、減算器11、誤差算出部12、フィルタ係数更新部53、更新間隔遅延メモリ14、極座標系変動検出・アラーム出力器85、直交座標系変動検出器56、推定変動量合成部57、及び、適応フィルタ18を備える。
減算器11、誤差算出部12、フィルタ係数更新部53、更新間隔遅延メモリ14と、直交座標系変動推定部56、推定変動量合成部57、及び適応フィルタ18は、第二の実施例と同一であるため、説明は省略する。
In FIG. 8, the interference wave removing unit 800 includes a subtractor 11, an error calculating unit 12, a filter coefficient updating unit 53, an update interval delay memory 14, a polar coordinate system variation detection / alarm output unit 85, an orthogonal coordinate system variation detector 56, An estimated fluctuation amount synthesis unit 57 and an adaptive filter 18 are provided.
The subtractor 11, the error calculation unit 12, the filter coefficient update unit 53, the update interval delay memory 14, the orthogonal coordinate system variation estimation unit 56, the estimated variation amount synthesis unit 57, and the adaptive filter 18 are the same as those in the second embodiment. Therefore, the description is omitted.

図8の極座標系変動検出・アラーム出力器85の更に詳細な説明を、図9によって説明する。
図9の構成は、図6の構成に加えて、変動アラーム検出器91を設けたものである。
変動アラーム検出器91は、入力される信号L′とLθ′から変動状態を検出し、変動状態に応じた振幅のアラーム信号Aと位相のアラーム信号Aθを装置内部または外部へ出力する。アラーム信号AとAθは、例えば、あらかじめ設定した各しきい値に応じた値を出力する。
上述の第三の実施例によれば、干渉波の変動に応じたアラーム出力を可能とする。
A more detailed description of the polar coordinate system variation detection / alarm output unit 85 of FIG. 8 will be described with reference to FIG.
The configuration of FIG. 9 is provided with a fluctuation alarm detector 91 in addition to the configuration of FIG.
The fluctuation alarm detector 91 detects a fluctuation state from the input signals L r ′ and L θ ′, and outputs an alarm signal Ar having an amplitude corresponding to the fluctuation state and an alarm signal A θ having a phase to the inside or outside of the apparatus. To do. As the alarm signals Ar and , for example, values corresponding to preset threshold values are output.
According to the third embodiment described above, it is possible to output an alarm according to the fluctuation of the interference wave.

上記の第一の実施例〜第三の実施例によれば、高速な変動、特に位相変動に対する耐性向上により高精度な変動追従機能を提供でき、極座標系で良好な推定ができない変動環境下では変動推定を直交座標系に切り替えまたは合成することにより安定した干渉波除去装置を提供することができる。また、第三の実施例により、伝送路において干渉波の振幅と位相の変動状態情報を得ることができる。   According to the first to third embodiments described above, it is possible to provide a high-precision fluctuation tracking function by improving resistance to high-speed fluctuations, particularly phase fluctuations, and in a fluctuation environment where good estimation cannot be performed with a polar coordinate system. A stable interference wave removal apparatus can be provided by switching or synthesizing the fluctuation estimation to an orthogonal coordinate system. Further, according to the third embodiment, it is possible to obtain the fluctuation state information of the amplitude and phase of the interference wave in the transmission line.

上述のように、本発明の干渉波キャンセラは、例えば、送信信号を受信して干渉波信号をキャンセルし、再送信する干渉波キャンセラにおいて、前記送信信号の受信信号から前記干渉波信号を除去する適応フィルタと、前記受信信号から前記干渉波信号と同一特性の信号を生成して前記適応フィルタにおけるフィルタ係数を算出する手段と、前記受信信号と前記適応フィルタの出力信号とからキャンセル誤差を算出する手段と、フィルタ係数差分値算出手段と、キャンセル誤差差分値算出手段と、前記フィルタ係数差分値算出手段と前記キャンセル誤差差分値算出手段から前記干渉波信号の変動検出手段を備え、
前記変動検出手段は、極座標系による検出手段と直交座標系による検出手段とを備え、
前記極座標系検出手段は、前記フィルタ係数と前記キャンセル誤差の振幅成分の時間的差分値算出手段と位相成分の時間的差分値算出手段を備え、前記両座標系による変動検出手段から得られる干渉波の推定変動量から、前記変動検出手段が干渉波推定変動量として用いる値を、前記極座標系による検出手段の結果と前記直交座標系による検出手段の結果の切替え手段あるいは合成手段を備える。
また好ましくは、上記発明の干渉波キャンセラは、前記振幅変動検出手段と前記位相変動検出手段得られる結果に応じたアラーム信号を出力する手段により、前記アラーム信号を装置内部または外部に通報する手段を備える。
As described above, the interference wave canceller of the present invention cancels an interference wave signal by receiving a transmission signal, for example, and removes the interference wave signal from the reception signal of the transmission signal in an interference wave canceller that retransmits. A cancellation error is calculated from the adaptive filter, a means for generating a signal having the same characteristics as the interference wave signal from the received signal and calculating a filter coefficient in the adaptive filter, and an output signal of the adaptive filter Means, filter coefficient difference value calculating means, cancellation error difference value calculating means, filter coefficient difference value calculating means, and cancellation error difference value calculating means from the interference wave signal fluctuation detecting means,
The variation detection means includes a detection means based on a polar coordinate system and a detection means based on an orthogonal coordinate system,
The polar coordinate system detecting means includes a temporal difference value calculating means for the amplitude component of the filter coefficient and the cancellation error, and a temporal difference value calculating means for the phase component, and an interference wave obtained from the fluctuation detecting means by the two coordinate systems. From the estimated fluctuation amount, a value used by the fluctuation detecting means as the interference wave estimated fluctuation amount is provided with a switching means or a synthesizing means for switching the result of the detecting means by the polar coordinate system and the result of the detecting means by the orthogonal coordinate system.
Preferably, the interference wave canceller according to the present invention further comprises means for reporting the alarm signal to the inside or outside of the apparatus by means for outputting an alarm signal according to the result obtained by the amplitude fluctuation detecting means and the phase fluctuation detecting means. Prepare.

本発明の一実施例の干渉波除去部の構成を示すブロック図。The block diagram which shows the structure of the interference wave removal part of one Example of this invention. 本発明の極座標系変動検出器の一実施例の構成を示すブロック図。The block diagram which shows the structure of one Example of the polar coordinate system fluctuation | variation detector of this invention. 本発明の直交座標系変動検出器の一実施例の構成を示すブロック図。The block diagram which shows the structure of one Example of the orthogonal coordinate system fluctuation | variation detector of this invention. 本発明の変動推定座標系選択部の一実施例の構成を示すブロック図。The block diagram which shows the structure of one Example of the fluctuation | variation estimation coordinate system selection part of this invention. 本発明の一実施例の干渉波除去部の構成を示すブロック図。The block diagram which shows the structure of the interference wave removal part of one Example of this invention. 本発明の極座標系変動検出器の一実施例の構成を示すブロック図。The block diagram which shows the structure of one Example of the polar coordinate system fluctuation | variation detector of this invention. 本発明の推定変動量合成部の一実施例の構成を示すブロック図。The block diagram which shows the structure of one Example of the estimated fluctuation amount synthetic | combination part of this invention. 本発明の一実施例の干渉波除去部の構成を示すブロック図。The block diagram which shows the structure of the interference wave removal part of one Example of this invention. 本発明の極座標系変動検出器の一実施例の構成を示すブロック図。The block diagram which shows the structure of one Example of the polar coordinate system fluctuation | variation detector of this invention.

符号の説明Explanation of symbols

11:減算器、 12:誤差算出部、 13:フィルタ係数更新部、 14:更新間隔遅延メモリ、 15:極座標系変動検出器、 16:直交座標系検出器、 17:変動推定座標系選択部、 18:適応フィルタ、 21:極座標変換器、 22:更新間隔遅延メモリ、 23−r、23−θ:減算器、 24:更新間隔遅延メモリ、 25−r、25−θ:減算器、 26−r、26−θ:加算器、 27:変動量検出器、 28:直交座標変換器、 31、33:更新間隔遅延メモリ、 32、34:減算器、 35:加算器、 41:セレクタ、 42:乗算器、 53:フィルタ係数更新部、 55:極座標系変動検出器、 56:直交座標系検出器、 57:推定変動量合成部、 61:極座標変換器、 62:更新間隔遅延メモリ、 63−r、63−θ:減算器、 66−r、66−θ:加算器、 67:変動量重み付け検出器、 68:直交座標変換器、 85:極座標系変動検出・アラーム出力器、 91:変動アラーム検出器、 100、500、800:干渉波除去部。   11: Subtractor, 12: Error calculation unit, 13: Filter coefficient update unit, 14: Update interval delay memory, 15: Polar coordinate system variation detector, 16: Cartesian coordinate system detector, 17: Variation estimation coordinate system selection unit, 18: adaptive filter, 21: polar converter, 22: update interval delay memory, 23-r, 23-θ: subtractor, 24: update interval delay memory, 25-r, 25-θ: subtractor, 26-r , 26-θ: adder, 27: variation detector, 28: Cartesian coordinate converter, 31, 33: update interval delay memory, 32, 34: subtractor, 35: adder, 41: selector, 42: multiplication 53: Filter coefficient updating unit, 55: Polar coordinate system variation detector, 56: Cartesian coordinate system detector, 57: Estimated variation synthesis unit, 61: Polar coordinate converter, 62: Update interval delay memory, 63-r, 3-θ: Subtractor, 66-r, 66-θ: Adder, 67: Variation weighting detector, 68: Cartesian coordinate converter, 85: Polar coordinate system variation detection / alarm output device, 91: Variation alarm detector 100, 500, 800: interference wave removing unit.

Claims (1)

受信信号から干渉波信号をキャンセルし、前記キャンセルした出力信号を再送信する干渉波キャンセラにおいて、
前記受信信号から前記干渉波信号を除去する適応フィルタと、前記適応フィルタが前記干渉波信号と同一特性の信号を生成するためのフィルタ係数を算出する手段と、前記出力信号からキャンセル誤差を算出するキャンセル誤差手段と、前記フィルタ係数算出手段と前記キャンセル誤差算出手段から前記干渉波信号の変動を検出する変動検出手段とを備え、
前記変動検出手段は、極座標系による検出手段と直交座標系による検出手段と、前記直交座標系による検出手段から得られる干渉波信号の推定変動量と前記極座標系による検出手段から得られる干渉波信号の推定変動量とから、前記受信信号の推定変動量として用いる値を前記極座標系変動検出手段による結果若しくは前記直交座標系変動検出手段による結果を切替え若しくは合成する手段を有することを特徴とする干渉波キャンセラ。
In an interference wave canceller that cancels an interference wave signal from a received signal and retransmits the canceled output signal,
An adaptive filter for removing the interference wave signal from the received signal; means for calculating a filter coefficient for the adaptive filter to generate a signal having the same characteristics as the interference wave signal; and calculating a cancellation error from the output signal A cancellation error means; a fluctuation detection means for detecting a fluctuation of the interference wave signal from the filter coefficient calculation means and the cancellation error calculation means;
The fluctuation detection means includes a detection means based on a polar coordinate system, a detection means based on an orthogonal coordinate system, an estimated fluctuation amount of an interference wave signal obtained from the detection means based on the orthogonal coordinate system, and an interference wave signal obtained from the detection means based on the polar coordinate system. And a means for switching or combining a value used as an estimated fluctuation amount of the received signal from a result of the polar coordinate system fluctuation detection means or a result of the orthogonal coordinate system fluctuation detection means from Wave canceller.
JP2008019083A 2008-01-30 2008-01-30 Interference wave canceller Active JP5193618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008019083A JP5193618B2 (en) 2008-01-30 2008-01-30 Interference wave canceller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008019083A JP5193618B2 (en) 2008-01-30 2008-01-30 Interference wave canceller

Publications (2)

Publication Number Publication Date
JP2009182595A true JP2009182595A (en) 2009-08-13
JP5193618B2 JP5193618B2 (en) 2013-05-08

Family

ID=41036227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008019083A Active JP5193618B2 (en) 2008-01-30 2008-01-30 Interference wave canceller

Country Status (1)

Country Link
JP (1) JP5193618B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169928A (en) * 2011-02-15 2012-09-06 Toshiba Corp Radio relay apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774684A (en) * 1993-09-02 1995-03-17 Hitachi Ltd Radio communication system and equipment
JP2000349734A (en) * 1999-06-03 2000-12-15 Nippon Hoso Kyokai <Nhk> Detour canceler
JP2004147118A (en) * 2002-10-24 2004-05-20 Matsushita Electric Ind Co Ltd Sneak canceller
JP2004165853A (en) * 2002-11-11 2004-06-10 Matsushita Electric Ind Co Ltd Apparatus and method for radio communication
JP2007300155A (en) * 2006-04-27 2007-11-15 Hitachi Kokusai Electric Inc Apparatus and method of correcting phase rotation of ofdm signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774684A (en) * 1993-09-02 1995-03-17 Hitachi Ltd Radio communication system and equipment
JP2000349734A (en) * 1999-06-03 2000-12-15 Nippon Hoso Kyokai <Nhk> Detour canceler
JP2004147118A (en) * 2002-10-24 2004-05-20 Matsushita Electric Ind Co Ltd Sneak canceller
JP2004165853A (en) * 2002-11-11 2004-06-10 Matsushita Electric Ind Co Ltd Apparatus and method for radio communication
JP2007300155A (en) * 2006-04-27 2007-11-15 Hitachi Kokusai Electric Inc Apparatus and method of correcting phase rotation of ofdm signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169928A (en) * 2011-02-15 2012-09-06 Toshiba Corp Radio relay apparatus

Also Published As

Publication number Publication date
JP5193618B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP2792252B2 (en) Method and apparatus for removing multi-channel echo
JP6363324B2 (en) Signal processing apparatus, signal processing method, and signal processing program
JP4702372B2 (en) Echo suppression method and apparatus
US6498820B1 (en) Low complexity frequency estimator and interference cancellation method and device
US5903615A (en) Low complexity frequency estimator and interference cancellation method and device
JPH08265224A (en) Echo canceller
JP2007151097A (en) Delay profile analysis circuit and device using the same
JP2842345B2 (en) Echo canceller
JP2012039441A (en) Multi-channel echo erasure method, multi-channel echo erasure device, and program of the same
JP5193618B2 (en) Interference wave canceller
JP4538460B2 (en) Echo canceller and sparse echo canceller
JP3073919B2 (en) Synchronizer
JP2023040159A (en) Phase shift detector and phase shift detection method
JP4348924B2 (en) Echo canceller apparatus and echo canceller method used therefor
JP4545683B2 (en) Interference wave removing apparatus and interference wave removing method
JP2004228621A (en) Echo suppression apparatus
JP5188194B2 (en) Transmission / reception system
JP2003298548A5 (en)
CN114866099B (en) Filtering method and device and electronic equipment
JP4324676B2 (en) Adaptive filter
JP3942943B2 (en) Delay wave canceller
WO2005104400A1 (en) Diversity receiver and diversity reception method
JP4579518B2 (en) Delay wave canceller
KR100281504B1 (en) Adaptive equalization method and adaptive equalizer
JP2949989B2 (en) Echo cancellation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

R150 Certificate of patent or registration of utility model

Ref document number: 5193618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250