JP2009178632A - Minute flow passage having microvalve - Google Patents

Minute flow passage having microvalve Download PDF

Info

Publication number
JP2009178632A
JP2009178632A JP2008018066A JP2008018066A JP2009178632A JP 2009178632 A JP2009178632 A JP 2009178632A JP 2008018066 A JP2008018066 A JP 2008018066A JP 2008018066 A JP2008018066 A JP 2008018066A JP 2009178632 A JP2009178632 A JP 2009178632A
Authority
JP
Japan
Prior art keywords
microvalve
flow path
reaction fluid
reaction
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008018066A
Other languages
Japanese (ja)
Inventor
Yoichi Ito
洋一 伊東
Akio Moto
昭夫 基
Kazutaka Kanda
一隆 神田
Shigeto Takano
茂人 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
Nachi Fujikoshi Corp
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical Nachi Fujikoshi Corp
Priority to JP2008018066A priority Critical patent/JP2009178632A/en
Publication of JP2009178632A publication Critical patent/JP2009178632A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a minute flow passage having a microvalve which has a simple constitution, is easily manufactured and functions in the same manner as the conventional microvalve works. <P>SOLUTION: Microvalves 10, 11 are arranged respectively in the predetermined positions of a flow passage 6 of the first reactive fluid A and a flow passage 7 of the second reactive fluid B, the flow passages being arranged in a microchannel 3 of the minute flow passage 1a. The microvalve 10 or 11 has a retention area 12 or 14 of particulate magnetic bodies and a magnet mechanism 13 or 15 installed according to the retention area in such a position that the influence of a magnetic field of the magnet mechanism is exerted on the retention area 12 or 14. As a result, when the influence of the magnetic field of the magnet mechanism 13 or 15 is exerted, the agglomerated particulate magnetic bodies stick fast to the retention area 12 or 14 to clog the flow passage. When the influence of the magnetic filed is not exerted, the agglomerated particulate magnetic bodies move into the retention area 12 or 14 or disperse in the reactive fluid A or B to open the flow passage 6 or 7. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、マイクロバルブを有する微細流路の技術に関し、特に磁性体を用いたマイクロバルブに適用して有効な技術である。   The present invention relates to a technique of a fine flow path having a microvalve, and is particularly effective when applied to a microvalve using a magnetic material.

近年、化学、生物化学等の分野において微細なキャピラリーやマイクロチャンネルを利用して微量合成、微量分析、微量培養、微量電気泳動などが行われており、これらの操作を効率的に行うための微細流路およびその周辺技術が多方面において提案されている。   In recent years, microsynthesis, microanalysis, microculture, microelectrophoresis, etc. have been performed in the fields of chemistry, biochemistry, etc. using micro capillaries and microchannels. A channel and its peripheral technology have been proposed in various fields.

微細流路においては、石英、シリカ、ガラス、金属酸化物、プラスチックス等からなる基板の表面に形成された微細な流路に微量の反応流体のサンプルを導入して合成、分離・分析等の操作が行われる。サンプルの流路は、一般的にはその幅が100μm〜3mm程度であり、流路に導入される反応流体としてのサンプル量も微量なので、混合、抽出などが速やかに生じてプロセスタイムが短縮される。また、反応サンプルの体積に対する流路の表面積(または界面積)の比が極めて大きく、反応の効率が増大すると共に制御性が向上して生成物の収率、純度を高めることができる。   In the fine flow path, a small amount of reaction fluid sample is introduced into the fine flow path formed on the surface of the substrate made of quartz, silica, glass, metal oxide, plastics, etc. for synthesis, separation, analysis, etc. The operation is performed. The sample channel generally has a width of about 100 μm to 3 mm, and the amount of sample as a reaction fluid introduced into the channel is very small, so that mixing, extraction, etc. occur quickly, reducing process time. The Further, the ratio of the surface area (or interfacial area) of the flow path to the volume of the reaction sample is extremely large, so that the efficiency of the reaction is increased and the controllability is improved, so that the yield and purity of the product can be increased.

このような微細流路を利用すると、例えば実験段階から実際の製造段階への規模の拡大の際に、スケールアップにともなう種々の変更を要せず、同一条件に設定された微細流路の並設個数を増加させるだけで生産量の規模を増大させることができる等の利点がある。   When such a fine flow path is used, for example, when the scale is expanded from the experimental stage to the actual manufacturing stage, various changes accompanying the scale-up are not required, and the parallel arrangement of the fine flow paths set under the same conditions is required. There is an advantage that the scale of production can be increased only by increasing the number of installed units.

微細流路には使用目的に応じて、例えばリザーバセル、混合セル、反応セル、分離セル、回収セルなどを組合わせてマイクロチャンネルが形成され、微細流路が単一または複数の流路として形成されている。また、これらの流路は、途中で分岐されたり互いに結合されることもある。   Depending on the purpose of use, a microchannel is formed in a microchannel by combining a reservoir cell, a mixing cell, a reaction cell, a separation cell, a recovery cell, etc., and the microchannel is formed as a single channel or a plurality of channels. ing. In addition, these flow paths may be branched in the middle or coupled to each other.

このようなマイクロチャンネルの端部、分岐部、合流点等には、目的とする反応の形態に応じて、それらの部分に反応流体サンプルの流路を開閉するための、いわゆるマイクロバルブが設けられる。マイクロバルブは、微細なマイクロチャンネルに設置されるため、それらの構造、素材等については、使用目的に特化した開発が行われている。   Such end portions, branching portions, junction points, and the like of such microchannels are provided with so-called microvalves for opening and closing the flow path of the reaction fluid sample at those portions according to the target reaction form. . Since microvalves are installed in fine microchannels, their structures, materials, etc. are being developed specifically for their intended use.

マイクロバルブとしては、駆動素子によって変形して流体開口部を開閉するいわゆる能動形ダイアフラムを用いるものと、主として流体の流れによって流体開口部を開閉するいわゆる受動形の梁構造(片持/両持ち)のものとがある。また、駆動素子の方式としては、電磁力、圧電作用、静電気力、熱駆動を利用した方式が知られている。   The microvalve uses a so-called active diaphragm that opens and closes the fluid opening by being deformed by a drive element, and a so-called passive beam structure that can open and close the fluid opening mainly by the flow of fluid (cantilever / both-end support). There are things. Further, as a drive element system, a system using electromagnetic force, piezoelectric action, electrostatic force, and thermal drive is known.

しかし、これら従来のマイクロバルブは、いずれもマイクロチャンネルに弁体を組み込んで弁座を開閉する構造に基く。このため、微細なマイクロチャンネルに組み込むためのバルブ構造体の製作や加工が複雑で、特別な機器や高度な技術を必要として製造コストが増大する。   However, these conventional microvalves are all based on a structure in which a valve body is incorporated in a microchannel to open and close the valve seat. For this reason, the manufacture and processing of a valve structure for incorporation into a fine microchannel is complicated, and the manufacturing cost increases because special equipment and advanced technology are required.

ここで、特許文献1には、マイクロチャンネル内での被輸送流体(血液等の反応流体サンプル)の移動の制御に磁性流体をそのピストンとして用いた液体の輸送方法およびマイクロリアクタが提案されている。(特許文献1)。この特許文献1の提案では、特に図1に示すように、送液路に磁性流体および被輸送液体を導入し、送液路に付設した電磁石あるいは永久磁石を用いて磁界を相対的に移動させて磁性流体を送液路中で移動させ、それによって被輸送液体を磁性流体の移動に追随させて送液路中で移動させる。   Here, Patent Document 1 proposes a liquid transport method and a microreactor using a magnetic fluid as a piston for controlling movement of a transported fluid (a reaction fluid sample such as blood) in a microchannel. (Patent Document 1). In the proposal of Patent Document 1, as shown in FIG. 1 in particular, a magnetic fluid and a liquid to be transported are introduced into a liquid feeding path, and a magnetic field is relatively moved using an electromagnet or a permanent magnet attached to the liquid feeding path. Thus, the magnetic fluid is moved in the liquid feeding path, whereby the liquid to be transported is moved in the liquid feeding path by following the movement of the magnetic fluid.

また、マイクロリアクタにおける反応流体の化学反応、混合、抽出、取扱等の操作に磁気作用を利用する技術として、特許文献2には、液体通路を帯状強磁性体による磁気障壁によって形成することが提案されている。
特開2003−14772号公報 特開2004−82118号公報
In addition, as a technique using a magnetic action for operations such as chemical reaction, mixing, extraction, and handling of a reaction fluid in a microreactor, Patent Document 2 proposes that a liquid passage is formed by a magnetic barrier made of a band-shaped ferromagnetic material. ing.
JP 2003-14772 A JP 2004-82118 A

しかしながら、特許文献1に記載の提案では、送液路(マイクロチャンネル)中の被輸送液体(反応流体サンプル)を外部磁界による磁性流体の移動によって制御しているが、この磁性流体は被輸送液体の一方向のみへの移動を制御するピストンとして用いている。つまり、磁性流体をバルブとして、マイクロチャンネルの所定の流路位置で開閉して反応流体の流れをON−OFFするための具体的な構造および動作は開示されていない。   However, in the proposal described in Patent Document 1, the liquid to be transported (reaction fluid sample) in the liquid feeding path (microchannel) is controlled by the movement of the magnetic fluid by an external magnetic field. It is used as a piston that controls movement in only one direction. That is, a specific structure and operation for opening and closing the flow of the reaction fluid by opening and closing the magnetic fluid as a valve at a predetermined flow path position of the microchannel is not disclosed.

また、特許文献2に記載の提案でも、微細流路における流路を開閉するためのマイクロバルブに関する技術は開示されていない。   Further, even the proposal described in Patent Document 2 does not disclose a technique related to a microvalve for opening and closing a flow path in a fine flow path.

本発明の目的は、構成が簡単で製造が容易であり、かつ従来のマイクロバルブと同程度に機能し得るマイクロバルブを有する微細流路を提供することにある。   An object of the present invention is to provide a microchannel having a microvalve that is simple in structure and easy to manufacture and that can function to the same extent as a conventional microvalve.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。   Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.

すなわち、反応流体の微細流路開閉用のマイクロバルブをマイクロチャンネルの所定位置に有する微細流路であって、前記微細流路開閉用のマイクロバルブは、前記マイクロチャンネルの所定位置に形成された微粒子状磁性体の滞留領域と、この滞留領域に対応して磁界の作用をおよぼし得る位置に設けられた磁石機構とを有する。   That is, a microchannel having a microvalve for opening / closing a microfluidic channel of a reaction fluid at a predetermined position of the microchannel, and the microvalve for opening / closing the microfluidic channel is a microparticle formed at a predetermined position of the microchannel And a magnet mechanism provided at a position capable of exerting an action of a magnetic field corresponding to the staying region.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。   Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.

すなわち、微細流路が有する微細流路開閉用のマイクロバルブは、マイクロチャンネルの所定位置に形成された微粒子状磁性体の滞留領域と、滞留領域に対応して磁界の作用をおよぼし得る位置に設けられた磁石機構とを有する。   In other words, the micro-valve for opening and closing the micro-channel, which the micro-channel has, is provided at the retention area of the fine particle magnetic material formed at a predetermined position of the micro-channel and at the position where the magnetic field action can be applied corresponding to the retention area Magnet mechanism.

これにより、微粒子状磁性体を磁界の制御下におき、磁界の作用時には、凝集した微粒子状磁性体が弁体として顕在化して、弁座として機能する滞留領域に密着して流路を閉塞する。また、磁界の非作用時には、凝集した微粒子状磁性体が、弁座としての滞留領域内で移動するか反応流体中に分散して流路を開放する。   As a result, the particulate magnetic material is placed under the control of the magnetic field, and when the magnetic field is applied, the aggregated particulate magnetic material is manifested as a valve body and is in close contact with the staying region functioning as a valve seat to close the flow path. . In addition, when the magnetic field is not applied, the agglomerated particulate magnetic material moves within the stay region as the valve seat or is dispersed in the reaction fluid to open the flow path.

つまり、磁界の作用により、微粒子状磁性体の位置または密度を制御することで、従来のマイクロバルブと同様に流路の開閉機構として機能する。また、マイクロバルブに用いられていた弁体などの弁構造の可動部が不要となり、マイクロバルブの構成が簡単で製造が容易になる。   In other words, by controlling the position or density of the particulate magnetic material by the action of a magnetic field, it functions as a channel opening / closing mechanism as in the conventional microvalve. Further, the movable part of the valve structure such as the valve body used in the microvalve is not required, and the configuration of the microvalve is simple and easy to manufacture.

以下、本発明の実施の形態を図面に基づきながら詳細に説明する。なお、本実施の形態を説明するための全図において同一機能を有するものは原則として同一の符号を付すようにし、その繰り返しの説明は可能な限り省略するようにしている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof is omitted as much as possible.

図1は本発明のマイクロバルブを有する微細流路の一例の流路開放状態を示す概略平面図、図2は図1の微細流路の磁石機構に永久磁石を用いた場合の流路閉塞状態を示す概略平面図、図3は図1の微細流路の磁石機構に電磁磁石を用いた場合の流路閉塞状態を示す概略平面図である。   FIG. 1 is a schematic plan view showing a flow path open state of an example of a micro flow path having a micro valve of the present invention, and FIG. 2 is a flow path closed state when a permanent magnet is used for the magnet mechanism of the micro flow path of FIG. FIG. 3 is a schematic plan view showing a closed state of the flow path when an electromagnetic magnet is used in the magnet mechanism of the fine flow path of FIG.

図1に示すように、微細流路1aは、基板2の上面に、微細ガラス粉ペーストを印刷によって所定のパターンに形成された後、焼成されたマイクロチャンネル3が作成されている。   As shown in FIG. 1, the microchannel 1 a is formed on the upper surface of the substrate 2 by forming a fine glass powder paste in a predetermined pattern by printing and then firing the microchannel 3.

マイクロチャンネル3は、第1の反応流体A(以下、単に「反応流体A」という。)の導入部4と、第2の反応流体B(以下、単に「反応流体B」という。)の導入部5と、反応流体Aの流路6と、反応流体Bの流路7と、反応流体Aおよび反応流体B双方の流路8と、反応流体Aと反応流体Bとによる反応生成物の排出部9とを備えている。   The microchannel 3 includes an introduction portion 4 for a first reaction fluid A (hereinafter simply referred to as “reaction fluid A”) and an introduction portion for a second reaction fluid B (hereinafter simply referred to as “reaction fluid B”). 5, a flow path 6 of the reaction fluid A, a flow path 7 of the reaction fluid B, a flow path 8 of both the reaction fluid A and the reaction fluid B, and a discharge part of the reaction product by the reaction fluid A and the reaction fluid B 9 and.

なお、反応流体Aと反応流体Bとは、実際には異なる色調としておく等により区別するが、図面の制約上、線の種類で区別している。また、反応流体Aおよび反応流体Bは、実際には滞留領域全体に拡がっている(以下同じく)。   Note that the reaction fluid A and the reaction fluid B are actually distinguished by having different color tones, etc., but are distinguished by the type of line due to restrictions in the drawing. In addition, the reaction fluid A and the reaction fluid B are actually spread over the entire stay region (the same applies hereinafter).

反応流体Aの流路6の所定位置、図示の例では導入部4から直線状に延びる部分の中央域には、微細流路開閉用のマイクロバルブ10を備えている。また、反応流体Bの流路7の所定位置には、同様のマイクロバルブ11を備えている。なお、流路6,7のマイクロバルブ10,11を備える位置は、上述の導入部4から延びる部分の中央域以外であっても、反応流体Aおよび反応流体Bのそれぞれの流れを制御可能な位置であれば、他の位置であってもよい。   A micro valve 10 for opening and closing a fine channel is provided at a predetermined position of the channel 6 of the reaction fluid A, that is, in the illustrated example, in a central region of a portion extending linearly from the introduction portion 4. A similar micro valve 11 is provided at a predetermined position of the flow path 7 of the reaction fluid B. It should be noted that the flow of the reaction fluid A and the reaction fluid B can be controlled even if the positions of the microvalves 10 and 11 in the flow paths 6 and 7 are other than the central region of the portion extending from the introduction portion 4 described above. If it is a position, it may be another position.

マイクロバルブ10は、微粒子状磁性体(図示せず)の滞留領域12と、磁石機構13とを備えている。滞留領域12は、上述の流路6の所定位置である、導入部4から延びる部分の中央域に形成されている。磁石機構13は、滞留領域12に対応して、滞留領域12の出口12a以外の磁界の作用をおよぼし得る任意の位置、図示の例では滞留領域12の縁部の中央に載置され、滞留領域12に添うようにして移動自在に設けられている(付設されている)。   The microvalve 10 includes a staying region 12 for a particulate magnetic material (not shown) and a magnet mechanism 13. The staying region 12 is formed in the central region of the portion extending from the introduction portion 4, which is a predetermined position of the flow path 6 described above. The magnet mechanism 13 is placed at an arbitrary position corresponding to the staying area 12 and capable of exerting a magnetic field action other than the outlet 12a of the staying area 12, in the illustrated example, at the center of the edge of the staying area 12. 12 is provided so as to be movable (attached).

マイクロバルブ11も、マイクロバルブ10と同様な構成の滞留領域14と磁石機構15とを備えている。   The microvalve 11 also includes a stay region 14 and a magnet mechanism 15 having the same configuration as the microvalve 10.

図1に示す微細流路1aを用いて二種類の反応流体A、Bを流入させて目的の反応生成物を得るには、マイクロチャンネル3において、反応流体Aの導入部4から反応流体Aを、反応流体Bの導入部5から反応流体Bを、それぞれ所定の流量で導入する。導入部4に導入した反応流体Aは流路6に、導入部5に導入した反応流体Bは流路7に、それぞれ流す。次いで、反応流体Aと反応流体Bとは、平行にあるいは交互に流路8を通過し、目的の反応生成物が排出部9から取り出される。   In order to obtain two target reaction products by flowing two kinds of reaction fluids A and B using the microchannel 1 a shown in FIG. 1, the reaction fluid A is supplied from the introduction portion 4 of the reaction fluid A in the microchannel 3. The reaction fluid B is introduced at a predetermined flow rate from the introduction portion 5 of the reaction fluid B. The reaction fluid A introduced into the introduction section 4 flows through the flow path 6, and the reaction fluid B introduced into the introduction section 5 flows through the flow path 7. Next, the reaction fluid A and the reaction fluid B pass through the flow path 8 in parallel or alternately, and the target reaction product is taken out from the discharge unit 9.

反応流体Aおよび反応流体Bの流路8への流れは、磁石機構13,15の微粒子状磁性体に対する作用により制御される。磁石機構13,15は、反応流体Aまたは反応流体Bの一方の流れのみを制御したいのであれば、滞留領域12,14のうち、流れを制御したい側のみに設けて、他方の滞留領域には設けなくてもよい。この場合には、微粒子状磁性体も制御したい側の反応流体にのみ含ませればよい。   The flow of the reaction fluid A and the reaction fluid B to the flow path 8 is controlled by the action of the magnet mechanisms 13 and 15 on the particulate magnetic material. If it is desired to control only one flow of the reaction fluid A or the reaction fluid B, the magnet mechanisms 13 and 15 are provided only on the side of the staying regions 12 and 14 where the flow is desired to be controlled. It does not have to be provided. In this case, the particulate magnetic material may be included only in the reaction fluid to be controlled.

磁石機構13,15としては、永久磁石を用いてもよいし、電磁磁石を用いてもよい。   As the magnet mechanisms 13 and 15, permanent magnets or electromagnetic magnets may be used.

磁石機構13,15として永久磁石を用いた場合には、予め微粒子状磁性体を、滞留領域12,14の磁石機構13,15がそれぞれ設けられている位置に凝集させておくと、図1に示すように、反応流体Aおよび反応流体Bは、滞留領域12,14をそれぞれ通過して流路8に流れる(流路開放状態)。   In the case where permanent magnets are used as the magnet mechanisms 13 and 15, if the fine particle magnetic material is aggregated in advance at the positions where the magnet mechanisms 13 and 15 of the staying regions 12 and 14 are respectively provided, FIG. As shown, the reaction fluid A and the reaction fluid B pass through the residence regions 12 and 14 and flow into the flow path 8 (flow path open state).

所定の流量の反応流体Aおよび反応流体Bが導入されて、目的とする所定量の反応生成物が得られた後に、例えば反応流体Aの流路8への流れを止めるには、図2に示すように、磁石機構13を滞留領域12の出口12aに移動させる。これに伴い、凝集させていた微粒子状磁性体も滞留領域12の出口12aに移動して流路6を閉塞する(流路閉塞状態)。その結果、反応流体Aは、流路6の滞留領域12の出口12aより下流の部分および流路8には流れなくなる。   For example, in order to stop the flow of the reaction fluid A to the flow path 8 after the reaction fluid A and the reaction fluid B having the predetermined flow rates are introduced and the desired predetermined amount of reaction product is obtained, FIG. As shown, the magnet mechanism 13 is moved to the outlet 12 a of the stay region 12. Along with this, the agglomerated particulate magnetic material also moves to the outlet 12a of the staying region 12 and closes the flow path 6 (flow path closed state). As a result, the reaction fluid A does not flow to the portion downstream of the outlet 12 a of the stay region 12 of the flow path 6 and the flow path 8.

同様にして、反応流体Bの流路8への流れを止めるには、磁石機構15を滞留領域14の出口14aに移動させることで流路7を閉塞する。   Similarly, in order to stop the flow of the reaction fluid B to the flow path 8, the flow path 7 is closed by moving the magnet mechanism 15 to the outlet 14 a of the stay region 14.

微粒子状磁性体は、滞留領域12または滞留領域14のみに予め凝集させてもよい。また、微粒子状磁性体として相対的に大きいものを用いた場合には、磁石機構13,15を除去して、反応流体Aまたは反応流体Bにより、微粒子状磁性体を滞留領域12,14の出口12a,14aにそれぞれ流して流路6,7を閉塞させることもできる。   The fine particle magnetic material may be aggregated in advance only in the stay region 12 or the stay region 14. When a relatively large particle-like magnetic material is used, the magnet mechanisms 13 and 15 are removed, and the reaction fluid A or the reaction fluid B removes the particle-like magnetic material from the outlets 12 and 14. The flow paths 6 and 7 can also be closed by flowing in 12a and 14a, respectively.

磁石機構13,15として電磁磁石を用いた場合には、図3に示すように、磁石機構13,15は予め、滞留領域12,14の出口12a,14aにそれぞれ載置して設けておく。反応流体Aおよび反応流体Bの流路8への流入中は、磁石機構13,15が非励磁(消磁)状態にあり、反応流体Aおよび反応流体Bは微粒子状磁性体を分散して含む状態で滞留領域12,14をそれぞれ通過して流路8に流れる(流路開放状態)。   When electromagnetic magnets are used as the magnet mechanisms 13 and 15, as shown in FIG. 3, the magnet mechanisms 13 and 15 are previously placed on the outlets 12a and 14a of the stay regions 12 and 14, respectively. While the reaction fluid A and the reaction fluid B flow into the flow path 8, the magnet mechanisms 13 and 15 are in a non-excited (demagnetized) state, and the reaction fluid A and the reaction fluid B include a state in which fine magnetic particles are dispersed. And flows through the retention regions 12 and 14 and flows into the flow path 8 (flow path open state).

所定の流量の反応流体Aおよび反応流体Bが導入されて目的とする所定量の反応生成物が得られた後に、例えば反応流体Aの流路8への流れを止めるには、反応生成物が得られたことに対応するタイミングで磁石機構13を励磁させ、滞留領域12に磁界を作用させて磁化(着磁)する。着磁によって流路6の滞留領域12には、反応流体A中に分散されていた微粒子状磁性体が吸着され、滞留領域12の出口12aに微粒子状磁性体が凝集し、流路6を閉塞する(流路閉塞状態)。その結果、反応流体Aは、流路6の滞留領域12の出口12aより下流部分および流路8には流れなくなる。   For example, in order to stop the flow of the reaction fluid A to the flow path 8 after the reaction fluid A and the reaction fluid B having a predetermined flow rate are introduced to obtain a desired amount of reaction product, the reaction product The magnet mechanism 13 is excited at a timing corresponding to that obtained and magnetized (magnetized) by applying a magnetic field to the staying region 12. Due to the magnetization, the particulate magnetic material dispersed in the reaction fluid A is adsorbed to the staying region 12 of the flow path 6, and the particulate magnetic material is aggregated at the outlet 12 a of the staying region 12, thereby closing the flow path 6. (Channel closed state). As a result, the reaction fluid A does not flow to the downstream portion and the flow path 8 from the outlet 12 a of the retention region 12 of the flow path 6.

同様にして、反応流体Bの流路8への流れを止めるには、反応生成物が得られたことに対応するタイミングで磁石機構15を励磁させ、滞留領域14の出口14aに微粒子状磁性体を凝集させることで流路7を閉塞する。   Similarly, in order to stop the flow of the reaction fluid B to the flow path 8, the magnet mechanism 15 is excited at a timing corresponding to the fact that the reaction product is obtained, and the particulate magnetic material is formed at the outlet 14 a of the residence region 14. The channels 7 are closed by agglomerating the particles.

すなわち、微細流路1aでは、予め滞留領域12,14の磁石機構13、15が設けられた位置に磁化によって凝集させるか、反応流体Aおよび反応流体B中に分散させていた微粒子状磁性体が、磁石機構13,15の磁界による制御で凝集されて、流路6,7を開閉する。   That is, in the fine channel 1a, the particulate magnetic material that has been aggregated by magnetization at the positions where the magnet mechanisms 13 and 15 of the staying regions 12 and 14 are provided in advance or dispersed in the reaction fluid A and the reaction fluid B is used. Aggregated by the control of the magnetic fields of the magnet mechanisms 13 and 15 to open and close the flow paths 6 and 7.

つまり、磁石機構13,15の磁界の作用時には、微粒子状磁性体の凝集体が弁体として顕在化して、弁座として機能する滞留領域12,14に密着して流路6,7を閉鎖する。また、磁石機構13,15の磁界の非作用時には、微粒子状磁性体の凝集体が弁座としての滞留領域12,14内で移動するか、反応流体Aおよび反応流体B中に分散し、弁の開放状態となり、流路6,7を開放する。   That is, when the magnetic field of the magnet mechanisms 13 and 15 is applied, the aggregates of the fine-particle magnetic material are manifested as valve bodies and are in close contact with the stay regions 12 and 14 functioning as valve seats to close the flow paths 6 and 7. . In addition, when the magnetic field of the magnet mechanisms 13 and 15 is not acting, the aggregates of the fine magnetic particles move within the stay regions 12 and 14 as valve seats or are dispersed in the reaction fluid A and the reaction fluid B, And the flow paths 6 and 7 are opened.

これにより、微細流路1aのマイクロバルブ10,11は単に、予め滞留領域12,14の磁石機構13、15が設けられた位置に磁化によって凝集させた微粒子状磁性体を移動させるだけで、従来のマイクロバルブに相当する機能が得られ、マイクロバルブの構造上の問題点であった弁体部の製作の困難やそれによるコストの増大などを解決することができる。   As a result, the microvalves 10 and 11 of the fine flow path 1a simply move the particulate magnetic material aggregated by magnetization to a position where the magnet mechanisms 13 and 15 of the staying regions 12 and 14 are provided in advance. The function corresponding to the microvalve can be obtained, and it is possible to solve the difficulty in manufacturing the valve body and the increase in cost due to the structural problems of the microvalve.

また、単に、反応流体Aおよび反応流体Bに分散させた微粒子状磁性体が磁石機構13,15の磁界作用により凝集させるだけで、同様に従来のマイクロバルブに相当する機能が得られ、かつ上述した構造上の問題点を解決できる。   In addition, simply by agglomerating the fine magnetic particles dispersed in the reaction fluid A and the reaction fluid B by the magnetic field action of the magnet mechanisms 13 and 15, a function corresponding to the conventional microvalve can be obtained in the same manner. Can solve the structural problems.

マイクロチャンネル3の溝幅は約100μm〜3mm、溝の深さは約100μm〜1mmであり、通常の微細流路の場合と同様に、マイクロマシンニング、レーザ加工、フォトエッチング、蒸着等によっても得られる。   The groove width of the microchannel 3 is about 100 μm to 3 mm, and the depth of the groove is about 100 μm to 1 mm, and can be obtained by micromachining, laser processing, photoetching, vapor deposition, etc. as in the case of a normal fine channel. .

微粒子磁性体としては、反応流体中に安定に分散され、磁化状態では滞留領域に吸着および凝集される任意の金属、合金およびそれらの化合物を用いることができるが、酸性およびアルカリ性のいずれの反応流体に対しても制約なく使用できることから、金属内包ナノカーボンを用いることが好ましい。   As the fine particle magnetic material, any metal, alloy and compound thereof which are stably dispersed in the reaction fluid and are adsorbed and aggregated in the residence region in the magnetized state can be used. Since it can be used without restriction, it is preferable to use metal-encapsulated nanocarbon.

金属内包ナノカーボンとしては、金属を内包したフラーレンと金属を内包したカーボンナノチューブとが挙げられる。   Examples of the metal-encapsulated nanocarbon include fullerene encapsulating metal and carbon nanotube encapsulating metal.

フラーレンは、炭素フラーレンとも呼ばれ、炭素が60〜82個からなり、炭素層が球形のかご形状を形成した物質である。カーボンナノチューブは、炭素層が円筒のかご形状を形成した物質である。   Fullerenes are also called carbon fullerenes, and are substances in which 60 to 82 carbon atoms are formed and the carbon layer forms a spherical cage shape. A carbon nanotube is a substance in which a carbon layer forms a cylindrical cage shape.

金属内包ナノカーボンは、これらのフラーレンまたはカーボンナノチューブが多層に形成された多層フラーレンまたは多層カーボンナノチューブの内部に金属原子を取り込んだ物質である。   Metal-encapsulated nanocarbon is a substance in which metal atoms are incorporated into a multi-layer fullerene or multi-wall carbon nanotube in which these fullerenes or carbon nanotubes are formed in multi-layers.

多層フラーレンや多層カーボンナノチューブには、鉄、マンガンなどの磁性金属を内包させると、磁石に対して反応するナノカーボンとなる。   When a multi-layer fullerene or multi-walled carbon nanotube contains a magnetic metal such as iron or manganese, it becomes nanocarbon that reacts with a magnet.

金属内包ナノカーボンのうち、フラーレンは直径50nm〜500nm程度の球形状であり、カーボンナノチューブは直径1nm〜10nm程度、長さ50nm〜1μm程度の円筒状である。このため、10μm程度の狭い送液路でも十分に通過することができる。なお、カーボンナノチューブは、長さが1μmを超えるものを用いてもよいが、送液路の10分の1以下であることが好ましい。   Of the metal-encapsulated nanocarbon, fullerene has a spherical shape with a diameter of about 50 nm to 500 nm, and the carbon nanotube has a cylindrical shape with a diameter of about 1 nm to 10 nm and a length of about 50 nm to 1 μm. For this reason, even a narrow liquid supply path of about 10 μm can pass sufficiently. Carbon nanotubes having a length exceeding 1 μm may be used, but it is preferably 1/10 or less of the liquid feeding path.

金属内包ナノカーボンは、金属の外周が安定な炭素原子で覆われているので、酸やアルカリに対して安定であり、微細流路で反応流体を反応させた後も磁性を持ったまま残る。このため、反応生成物中に予め混合した金属内包ナノカーボンを、磁気により除去することができる。   The metal-encapsulated nanocarbon is stable against acids and alkalis because the outer periphery of the metal is covered with stable carbon atoms, and remains magnetic even after reacting the reaction fluid in a fine channel. For this reason, the metal inclusion | inner_cover nanocarbon mixed beforehand in the reaction product can be removed by magnetism.

金属内包ナノカーボンは、例えば特開2006−335592号公報に記載された「金属内包カーボンナノカプセルの製造方法」によって得ることができる。   The metal-encapsulated nanocarbon can be obtained, for example, by “Production method of metal-encapsulated carbon nanocapsules” described in JP-A-2006-335592.

図4は本発明のマイクロバルブを有する微細流路の他の一例の流路開放状態を示す概略平面図、図5は図4の微細流路の流路閉塞状態を示す概略平面図である。図4に示すように、微細流路1bは、マイクロバルブ10,11に加えて、反応流体Aおよび反応流体Bの流路8の所定位置である中央域にも、マイクロバルブ16を備えている。なお、マイクロバルブ16は、マイクロバルブ10,11と同様な構成の滞留領域17と磁石機構18とを備えている。   4 is a schematic plan view showing a channel open state of another example of a microchannel having a microvalve of the present invention, and FIG. 5 is a schematic plan view showing a channel blockage state of the microchannel of FIG. As shown in FIG. 4, in addition to the microvalves 10 and 11, the microchannel 1b includes a microvalve 16 in a central region that is a predetermined position of the channels 8 of the reaction fluid A and the reaction fluid B. . The microvalve 16 includes a stay region 17 and a magnet mechanism 18 having the same configuration as the microvalves 10 and 11.

微細流路1bでは、磁石機構18として永久磁石を用いた場合には、予め滞留領域17の磁石機構18が設けられている位置に微粒子状磁性体を凝集させておき、図5に示すように、磁石機構18を滞留領域17の出口17aに移動させると、凝集させていた微粒子状磁性体も滞留領域17の出口17aに移動して流路8を閉塞する(流路閉塞状態)。なお、この際に微粒子状磁性体として相対的に大きいものを用いた場合には、微細流路1aと同様に磁石機構18を除去するだけで流路8を閉塞させることもできる。   In the fine flow path 1b, when a permanent magnet is used as the magnet mechanism 18, the particulate magnetic material is aggregated in advance at the position where the magnet mechanism 18 of the staying region 17 is provided, as shown in FIG. When the magnet mechanism 18 is moved to the outlet 17a of the staying region 17, the agglomerated particulate magnetic material also moves to the outlet 17a of the staying region 17 and closes the flow path 8 (flow path closed state). In this case, when a relatively large particle magnetic material is used, the flow path 8 can be closed only by removing the magnet mechanism 18 as in the case of the fine flow path 1a.

磁石機構18として電磁磁石を用いた場合には、例えば図5に示すように、磁石機構18は予め、滞留領域17の出口17aに載置して設けておく。磁石機構18を上述した磁石機構13,15と同様にして励磁させると、この部分に対応して形成された滞留領域12が磁化(着磁)される。着磁により、単独または並行して流路8を通過する反応流体Aおよび反応流体Bの中に分散されていた微粒子状磁性体が、滞留領域17に吸着され、吸着された部分の表面に微粒子状磁性体が凝集して流路8を閉塞する(流路閉塞状態)。   When an electromagnetic magnet is used as the magnet mechanism 18, for example, as shown in FIG. 5, the magnet mechanism 18 is previously placed on the outlet 17 a of the staying area 17. When the magnet mechanism 18 is excited in the same manner as the magnet mechanisms 13 and 15 described above, the stay region 12 formed corresponding to this portion is magnetized (magnetized). Due to the magnetization, the particulate magnetic material dispersed in the reaction fluid A and the reaction fluid B passing through the flow path 8 alone or in parallel is adsorbed to the staying region 17 and fine particles are formed on the surface of the adsorbed portion. The magnetic substances aggregate to close the flow path 8 (flow path closed state).

このように、微細流路1bでは、流路8を閉塞するため、反応流体Aおよび反応流体Bは、微粒子状磁性体に阻止されて排出部9には流入せず、排出部9に回収された目的の反応生成物中に反応流体Aおよび反応流体Bが混入して純度を低下させることがない。   Thus, in the fine flow path 1b, the flow path 8 is closed, so that the reaction fluid A and the reaction fluid B are blocked by the particulate magnetic material and do not flow into the discharge section 9, but are collected by the discharge section 9. Therefore, the reaction fluid A and the reaction fluid B are not mixed into the target reaction product and the purity is not lowered.

すなわち、微細流路1bでは、微粒子状磁性体として上述した金属内包ナノカーボンを使用して、反応流体Aおよび反応流体Bに混合すると、微粒子状磁性体は酸やアルカリに対して不活性であり、反応流体Aおよび反応流体Bを反応させた後も磁性を持ったまま残る。   That is, in the fine channel 1b, when the metal-encapsulated nanocarbon described above is used as the fine particle magnetic material and mixed with the reaction fluid A and the reaction fluid B, the fine particle magnetic material is inactive with respect to acid and alkali. After the reaction fluid A and the reaction fluid B are reacted, they remain magnetic.

このため、反応生成物中に予め混合した微粒子状磁性体を、磁気により除去することができる。また、未使用の反応流体からも同様に、微粒子状磁性体を磁気により除去することができる。なお、反応生成物の中に微粒子状磁性体が入っていてもよい場合には、微粒子状磁性体を分離せずに用いてよいことは言うまでもない。   For this reason, the particulate magnetic material previously mixed in the reaction product can be removed by magnetism. Similarly, the particulate magnetic material can be removed from the unused reaction fluid by magnetism. Needless to say, when the reaction product may contain a fine magnetic particle, the fine magnetic material may be used without separation.

図6は、本発明のマイクロバルブを有する微細流路の更に他の一例を示す概略平面図である。微細流路1cは、第3の反応流体Cの導入部19と、流路20とを更に備えており、この流路20にも流路6,7と同様にマイクロバルブ21を備えている。なお、マイクロバルブ21も、マイクロバルブ10等と同様な構成の滞留領域22と磁石機構23とを備えている。   FIG. 6 is a schematic plan view showing still another example of the fine channel having the microvalve of the present invention. The fine channel 1 c further includes an introduction part 19 for the third reaction fluid C and a channel 20, and the channel 20 also includes a microvalve 21 as in the channels 6 and 7. The microvalve 21 also includes a stay region 22 and a magnet mechanism 23 having the same configuration as the microvalve 10 and the like.

このように、微細流路1cでは、三種類の反応流体A〜Cを流せるようにしたので、例えば一種の反応流体Aの流れを止めて他の反応流体Bおよび反応流体Cは流す等することで、より複雑な反応を効率的に行うことができる。また、更に流路を増やしてより多数の反応流体の流れを制御できるようにしてもよいし、混合後の反応流体の流路を増やして同様に制御できるようにしてもよい。   Thus, since the three types of reaction fluids A to C can be flowed in the fine channel 1c, for example, the flow of one type of reaction fluid A is stopped and the other reaction fluids B and C are allowed to flow. Thus, a more complicated reaction can be performed efficiently. Further, the number of flow channels may be further increased to control the flow of a larger number of reaction fluids, or the flow of reaction fluids after mixing may be increased to enable similar control.

以下、実施例によって、本発明をさらに説明する。なお、本発明は、これらの実施例によって限定されるものではない。   Hereinafter, the present invention will be further described by way of examples. In addition, this invention is not limited by these Examples.

(実施例1)
上述の実施の形態で説明した本発明の微細流路におけるマイクロバルブの作用を実際に確認するために、図1〜図3に示した微細流路1aのように、マイクロバルブ10,11有するマイクロチャンネル3を基板2上に形成した。そして、図1に示すように、滞留領域12,14に対応して磁石機構13,15をそれぞれ付設し、二種の反応流体Aおよび反応流体Bを導入してその反応状態等を観察した。
Example 1
In order to actually confirm the action of the microvalve in the microchannel of the present invention described in the above embodiment, the microvalves 10 and 11 have the microvalves 10 and 11 as in the microchannel 1a shown in FIGS. A channel 3 was formed on the substrate 2. Then, as shown in FIG. 1, magnet mechanisms 13 and 15 were provided corresponding to the staying regions 12 and 14, respectively, and two types of reaction fluid A and reaction fluid B were introduced to observe the reaction state and the like.

基板2としては、透明のガラス板を用いた。これに、溝幅400μm、深さ100μmの流路6〜8を、流体微細ガラス粉ペーストを印刷して所定のパターンに形成し、焼成した。   As the substrate 2, a transparent glass plate was used. The channels 6 to 8 having a groove width of 400 μm and a depth of 100 μm were formed in a predetermined pattern by printing a fluid fine glass powder paste and fired.

磁石機構13,15としては永久磁石を用いた。微粒子状磁性体としては、金属内包ナノカーボンを用い、フラーレンとカーボンナノチューブとを併用した。   As the magnet mechanisms 13 and 15, permanent magnets were used. As the particulate magnetic material, metal-encapsulated nanocarbon was used, and fullerene and carbon nanotubes were used in combination.

反応流体Aとして青インクを、反応流体Bとして赤インクを用いた。目的とするバルブ機構の作動状態の確認を行うため、青インクを導入部4に、赤インクを導入部5に導入して流路6,7の閉鎖および開放をそれぞれ繰り返し、青インクおよび赤インクの流路8への流入状態を確認し、排出部9で回収した。   Blue ink was used as the reaction fluid A, and red ink was used as the reaction fluid B. In order to confirm the operation state of the target valve mechanism, the blue ink is introduced into the introduction portion 4 and the red ink is introduced into the introduction portion 5 to repeatedly close and open the flow paths 6 and 7, respectively. The inflow state to the flow path 8 was confirmed, and recovered at the discharge part 9.

滞留領域12,14の出口12a,14a以外に磁石機構13,15をそれぞれ載置して設け、この位置に金属内包ナノカーボンを凝集すると、滞留領域12,14の出口12a,14aは開放された状態にあり、青インクおよび赤インクは、いずれも流路8に流入した。このときの実際の状態を図7および図8の写真に示す。なお、図7および図8ならびに後述する図9〜図11では、磁石機構は、反応流体Aとしての青インクの流路に形成した滞留領域のみに設けてある。   In addition to the outlets 12a and 14a of the staying areas 12 and 14, the magnet mechanisms 13 and 15 are mounted and provided, and when the metal-encapsulated nanocarbon is aggregated at this position, the outlets 12a and 14a of the staying areas 12 and 14 are opened. In this state, both the blue ink and the red ink flowed into the flow path 8. The actual state at this time is shown in the photographs of FIGS. In FIGS. 7 and 8 and FIGS. 9 to 11 described later, the magnet mechanism is provided only in the staying region formed in the flow path of the blue ink as the reaction fluid A.

図2に示すように、磁石機構13を滞留領域12の出口12aに移動させると、凝集した金属内包ナノカーボンも滞留領域12の出口12aに移動し、流路6が閉塞された青インクは、滞留領域12の出口12aより下流の流路6および流路8には流れなくなった。一方、流路7は開放されたままで、赤インクのみ流路8へ流入した。このときの実際の状態を図9および図10の写真に示す。   As shown in FIG. 2, when the magnet mechanism 13 is moved to the outlet 12a of the staying region 12, the aggregated metal-encapsulated nanocarbon also moves to the outlet 12a of the staying region 12, and the blue ink in which the flow path 6 is blocked is The flow did not flow in the flow path 6 and the flow path 8 downstream from the outlet 12a of the staying region 12. On the other hand, only the red ink flowed into the flow path 8 while the flow path 7 was left open. The actual state at this time is shown in the photographs of FIGS.

逆に、滞留領域17の出口17aを磁石機構15により閉鎖し、滞留領域12の出口12aを開放すると、流路8へは青インクのみ流入した。   On the contrary, when the outlet 17a of the staying area 17 is closed by the magnet mechanism 15 and the outlet 12a of the staying area 12 is opened, only the blue ink flows into the flow path 8.

また、微粒子状磁性体として、金属内包ナノカーボンの代わりに鉄粉を用い、流路6,7を閉塞する際には磁石機構13,15を除去した場合にも、金属内包ナノカーボンを用いた場合と同様に、流路6,7の開閉制御を行うことができた。このときの流路閉塞状態の実際の状態を図11の写真に示す。   Further, as the fine-particle magnetic material, iron powder was used instead of the metal-encapsulated nanocarbon, and the metal-encapsulated nanocarbon was used even when the magnet mechanisms 13 and 15 were removed when the flow paths 6 and 7 were closed. As in the case, the opening / closing control of the flow paths 6 and 7 could be performed. The actual state of the flow path blockage at this time is shown in the photograph of FIG.

以上のことから、金属内包ナノカーボン等の微粒子磁性体を磁石機構13,15でそれぞれ凝集させて滞留領域12,17の出口12a,17aを交互に閉鎖することによって、流路8への任意の反応流体のみの流入を制御するバルブ機構(マイクロバルブ)として有効であることが確認された。   From the above, by arbitrarily agglomerating a fine particle magnetic material such as metal-encapsulated nanocarbon by the magnet mechanisms 13 and 15 and alternately closing the outlets 12a and 17a of the staying regions 12 and 17, an arbitrary flow to the flow path 8 can be obtained. It was confirmed that it is effective as a valve mechanism (microvalve) for controlling the inflow of only the reaction fluid.

また、図7および図8に示すように、反応流体Aおよび反応流体B、ならびに反応生成物の流れの状態は、反応流体Aと反応流体Bとを予め異なった色調としておくことにより、ガラス基板の表面側から明確に視認された。   Further, as shown in FIGS. 7 and 8, the reaction fluid A and the reaction fluid B, and the flow of the reaction product are obtained by setting the reaction fluid A and the reaction fluid B in different colors in advance. It was clearly visible from the surface side.

以上、本発明者によってなされた発明を、実施の形態及び実施例に基づき具体的に説明したが、本発明は前記実施の形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and does not depart from the gist of the invention. Needless to say, various changes can be made.

例えば、導入部4,5や排出部9には、必要に応じてマイクロポンプ、マイクロフィルタ等を設けてもよい。また、微細流路は水平方向にのみならず、傾斜を設けたり、垂直方向に形成してもよい。   For example, the introduction units 4 and 5 and the discharge unit 9 may be provided with a micropump, a microfilter, or the like as necessary. Further, the fine flow path may be provided not only in the horizontal direction but also in the vertical direction.

本発明は、マイクロバルブを有する微細流路の分野で有効に利用することができる。   The present invention can be effectively used in the field of microchannels having microvalves.

本発明のマイクロバルブを有する微細流路の一例の流路開放状態を示す概略平面図である。It is a schematic plan view which shows the flow-path open state of an example of the fine flow path which has the microvalve of this invention. 図1の微細流路の磁石機構に永久磁石を用いた場合の流路閉塞状態を示す概略平面図である。It is a schematic plan view which shows the flow-path obstruction | occlusion state at the time of using a permanent magnet for the magnet mechanism of the fine flow path of FIG. 図1の微細流路の磁石機構に電磁磁石を用いた場合の流路閉塞状態を示す概略平面図である。It is a schematic plan view which shows the flow-path obstruction | occlusion state at the time of using an electromagnetic magnet for the magnet mechanism of the fine flow path of FIG. 本発明のマイクロバルブを有する微細流路の他の一例の流路開放状態を示す概略平面図である。It is a schematic plan view which shows the channel open state of another example of the microchannel which has the microvalve of this invention. 図4の微細流路の流路閉塞状態を示す概略平面図である。It is a schematic plan view which shows the flow-path obstruction | occlusion state of the fine flow path of FIG. 本発明のマイクロバルブを有する微細流路の更に他の一例を示す概略平面図である。It is a schematic plan view which shows another example of the microchannel which has the microvalve of this invention. 本発明のマイクロバルブを有する微細流路の金属内包カーボンを用いた際の流路開放状態を示す写真である。It is a photograph which shows the channel open state at the time of using the metal inclusion carbon of the microchannel which has the microvalve of this invention. 図7の流路交差部付近の要部拡大写真である。It is a principal part enlarged photograph of the flow path intersection part vicinity of FIG. 本発明のマイクロバルブを有する微細流路の金属内包カーボンを用いた際の流路閉塞状態を示す写真である。It is a photograph which shows the channel | channel obstruction | occlusion state at the time of using the metal inclusion carbon of the microchannel which has the microvalve of this invention. 図9の流路交差部付近の要部拡大写真である。FIG. 10 is an enlarged photograph of a main part in the vicinity of a flow path intersection in FIG. 本発明のマイクロバルブを有する微細流路の鉄粉を用いた際の流路閉塞状態を示す写真である。It is a photograph which shows the flow-path obstruction | occlusion state at the time of using the iron powder of the fine flow path which has the microvalve of this invention.

符号の説明Explanation of symbols

1a 微細流路
1b 微細流路
1c 微細流路
2 基板
3 マイクロチャンネル
4 第1の反応流体の導入部
5 第2の反応流体の導入部
6 第1の反応流体の流路
7 第2の反応流体の流路
8 第1の反応流体および第2の反応流体双方の流路
9 反応生成物の排出部
10 マイクロバルブ
11 マイクロバルブ
12 微粒子状磁性体の滞留領域
12a 滞留領域の出口
13 磁石機構
14 微粒子状磁性体の滞留領域
14a 滞留領域の出口
15 磁石機構
16 マイクロバルブ
17 微粒子状磁性体の滞留領域
17a 滞留領域の出口
18 磁石機構
19 第3の反応流体の導入部
20 第3の反応流体の流路
21 マイクロバルブ
22 微粒子状磁性体の滞留領域
23 磁石機構
A 第1の反応流体
B 第2の反応流体
C 第3の反応流体
DESCRIPTION OF SYMBOLS 1a Fine flow path 1b Fine flow path 1c Fine flow path 2 Substrate 3 Micro channel 4 First reaction fluid introduction part 5 Second reaction fluid introduction part 6 First reaction fluid flow path 7 Second reaction fluid The flow path 8 of both the first reaction fluid and the second reaction fluid 9 The discharge part 10 of the reaction product 10 The microvalve 11 The microvalve 12 The residence area 12a of the particulate magnetic material The exit 13 of the residence area Magnet mechanism 14 The particulate Residual area 14a of magnet-like magnetic body 15 Magnet mechanism 16 Microvalve 17 Retentive area 17a of fine-particle-shaped magnetic substance 18 Outlet 18 of magnetized area Magnet mechanism 19 Third reaction fluid inlet 20 Third reaction fluid flow Path 21 Microvalve 22 Particulate region 23 of magnetic particulate material Magnet mechanism A First reaction fluid B Second reaction fluid C Third reaction fluid

Claims (5)

反応流体の微細流路開閉用のマイクロバルブをマイクロチャンネルの所定位置に有する微細流路であって、前記微細流路開閉用のマイクロバルブは、前記マイクロチャンネルの所定位置に形成された微粒子状磁性体の滞留領域と、この滞留領域に対応して磁界の作用をおよぼし得る位置に設けられた磁石機構とを有することを特徴とするマイクロバルブを有する微細流路。   A microchannel having a microvalve for opening and closing the microfluidic channel of the reaction fluid at a predetermined position of the microchannel, wherein the microvalve for opening and closing the microfluidic channel is formed of a particulate magnetic formed at a predetermined position of the microchannel A fine flow path having a microvalve, comprising: a body staying region; and a magnet mechanism provided at a position capable of exerting a magnetic field action corresponding to the staying region. 請求項1に記載のマイクロバルブを有する微細流路において、
前記磁石機構が、永久磁石により凝集した前記微粒子状磁性体の移動、または電磁磁石の着磁による前記微粒子状磁性体の凝集と前記電磁磁石の消磁による前記微粒子状磁性体の分散とで流路を開閉することを特徴とするマイクロバルブを有する微細流路。
In the fine flow path having the microvalve according to claim 1,
The magnet mechanism has a flow path by movement of the particulate magnetic body aggregated by a permanent magnet, or aggregation of the particulate magnetic body by magnetization of an electromagnetic magnet and dispersion of the particulate magnetic body by demagnetization of the electromagnetic magnet. A microchannel having a microvalve characterized by opening and closing.
請求項1または2に記載のマイクロバルブを有する微細流路において、
前記微粒子状磁性体が、金属を内包したフラーレンおよび金属を内包したカーボンナノチューブの少なくともいずれかであることを特徴とするマイクロバルブを有する微細流路。
In the fine flow path having the microvalve according to claim 1 or 2,
A fine channel having a microvalve, wherein the particulate magnetic material is at least one of fullerene encapsulating metal and carbon nanotube encapsulating metal.
請求項1〜3のいずれか1項に記載のマイクロバルブを有する微細流路において、
前記反応流体の少なくとも1種類に前記微粒子状磁性体を分散して含有させたことを特徴とするマイクロバルブを有する微細流路。
In the fine flow path which has the microvalve of any one of Claims 1-3,
A fine flow path having a microvalve, wherein the particulate magnetic material is dispersed and contained in at least one kind of the reaction fluid.
請求項1〜4のいずれか1項に記載のマイクロバルブを有する微細流路において、
前記反応流体に混合した前記微粒子状磁性体を、前記反応流体の反応後に得られた反応生成物から、磁気を用いて分離することを特徴とするマイクロバルブを有する微細流路。
In the fine flow path which has the microvalve of any one of Claims 1-4,
A fine flow path having a microvalve, wherein the particulate magnetic material mixed in the reaction fluid is separated from a reaction product obtained after the reaction of the reaction fluid using magnetism.
JP2008018066A 2008-01-29 2008-01-29 Minute flow passage having microvalve Pending JP2009178632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018066A JP2009178632A (en) 2008-01-29 2008-01-29 Minute flow passage having microvalve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018066A JP2009178632A (en) 2008-01-29 2008-01-29 Minute flow passage having microvalve

Publications (1)

Publication Number Publication Date
JP2009178632A true JP2009178632A (en) 2009-08-13

Family

ID=41033019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018066A Pending JP2009178632A (en) 2008-01-29 2008-01-29 Minute flow passage having microvalve

Country Status (1)

Country Link
JP (1) JP2009178632A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132861A (en) * 1999-11-05 2001-05-18 Ebara Corp Micro valve
JP2003014772A (en) * 2001-06-27 2003-01-15 Tosoh Corp Method for transporting liquid and microreactor
JP2004073995A (en) * 2002-08-15 2004-03-11 Kawamura Inst Of Chem Res Method for controlling flow rate, micro fluid device, and apparatus for controlling flow rate
JP2004082118A (en) * 2002-07-25 2004-03-18 Ryoichi Aogaki Microreactor having liquid passage formed of magnetic barrier
JP2005246538A (en) * 2004-03-03 2005-09-15 Toyo Univ Aggregation control method for material containing magnetic particle by alternating magnetic field
WO2006085443A1 (en) * 2005-02-10 2006-08-17 Matsushita Electric Industrial Co., Ltd. Fluid chip, control method for movement of fluid employing it, and chemical reactor
JP2007319735A (en) * 2006-05-30 2007-12-13 Fuji Xerox Co Ltd Microreactor and method for cleaning micro flow path

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132861A (en) * 1999-11-05 2001-05-18 Ebara Corp Micro valve
JP2003014772A (en) * 2001-06-27 2003-01-15 Tosoh Corp Method for transporting liquid and microreactor
JP2004082118A (en) * 2002-07-25 2004-03-18 Ryoichi Aogaki Microreactor having liquid passage formed of magnetic barrier
JP2004073995A (en) * 2002-08-15 2004-03-11 Kawamura Inst Of Chem Res Method for controlling flow rate, micro fluid device, and apparatus for controlling flow rate
JP2005246538A (en) * 2004-03-03 2005-09-15 Toyo Univ Aggregation control method for material containing magnetic particle by alternating magnetic field
WO2006085443A1 (en) * 2005-02-10 2006-08-17 Matsushita Electric Industrial Co., Ltd. Fluid chip, control method for movement of fluid employing it, and chemical reactor
JP2007319735A (en) * 2006-05-30 2007-12-13 Fuji Xerox Co Ltd Microreactor and method for cleaning micro flow path

Similar Documents

Publication Publication Date Title
US8403292B2 (en) Microvalve having magnetic wax plug and flux control method using magnetic wax
JP3921233B2 (en) Fluid chip, fluid movement control method using the same, and chemical reaction device
Song et al. Microfluidic synthesis of nanomaterials
EP2379212B1 (en) Hydrophobic valve
Shui et al. Multiphase flow in microfluidic systems–Control and applications of droplets and interfaces
Yang et al. Manipulation of droplets in microfluidic systems
Kim et al. One‐step emulsification of multiple concentric shells with capillary microfluidic devices
EP1510251B1 (en) Process and apparatus for producing microcapsules
Hung et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis
EP1741482B1 (en) Process and apparatus for producing microcapsules
Amreen et al. Miniaturized and microfluidic devices for automated nanoparticle synthesis
JP2010181031A (en) Method and system for fluid control in microfluidic device
CN106660044A (en) Dispersion and accumulation of magnetic particles in a microfluidic system
Oskooei et al. Bubble gate for in-plane flow control
KR102283697B1 (en) Apparatus for analyzing nanochannel by controlling temperature
JP4186637B2 (en) Particle manufacturing method and microchannel structure therefor
JP2009178632A (en) Minute flow passage having microvalve
Pan et al. Flow patterns of solid in water in oil (S/W/O) compound droplets formation in a microfluidic device with perpendicular shear
JP2007255433A (en) Flow regulator
Yamanishi et al. On-demand and Size-controlled Production of emulsion droplets by magnetically driven microtool
JP2004050401A (en) Device for fluid processors, its fluid circulation route setting device and fluid processor
JP4547967B2 (en) Microchannel structure and droplet generation method using the same
Yamanishi et al. On-demand and size-controlled production of emulsion droplet in microfludic devices
WO2022039716A1 (en) Microfluidic magnetic microbead interaction
Feng et al. On-demand generation of droplet in size over a wide range by microfluidic control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108