JP2009177522A - Method of adjusting frequency of crystal oscillator - Google Patents

Method of adjusting frequency of crystal oscillator Download PDF

Info

Publication number
JP2009177522A
JP2009177522A JP2008014159A JP2008014159A JP2009177522A JP 2009177522 A JP2009177522 A JP 2009177522A JP 2008014159 A JP2008014159 A JP 2008014159A JP 2008014159 A JP2008014159 A JP 2008014159A JP 2009177522 A JP2009177522 A JP 2009177522A
Authority
JP
Japan
Prior art keywords
frequency
capacitor
circuit
crystal oscillator
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008014159A
Other languages
Japanese (ja)
Other versions
JP5235427B2 (en
Inventor
Atsushi Naito
淳 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2008014159A priority Critical patent/JP5235427B2/en
Publication of JP2009177522A publication Critical patent/JP2009177522A/en
Application granted granted Critical
Publication of JP5235427B2 publication Critical patent/JP5235427B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of adjusting frequency of a crystal oscillator which facilitates frequency adjustment. <P>SOLUTION: In the method of adjusting frequency of the crystal oscillator, the crystal oscillator having a frequency adjusting circuit comprising a parallel circuit of first and second capacitors is provided, a frequency obtained when the second capacitor is made variable together with a frequency obtained when a circuit pattern to be connected with the second capacitor is opened to make the capacitance value zero are measured with the first capacitor used as fixed value, a frequency change standard to the second capacitor is formed from the frequencies, and the frequency of each crystal oscillator is adjusted based on the frequency change standard. The frequency change standard has a frequency obtained when the circuit pattern to be connected with the second capacitor is short-circuited to make the capacitance infinite, the frequency change standard is compensated by these frequencies of the crystal oscillator, and the crystal oscillator is formed so that the value of the second capacitor is set based on the compensated frequency change standard. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は水晶発振器の周波数調整方法を技術分野とし、特に周波数調整を容易にして生産性を高めた調整方法に関する。   The present invention relates to a frequency adjustment method for a crystal oscillator, and more particularly to an adjustment method that facilitates frequency adjustment and increases productivity.

(発明の背景)
水晶発振器は水晶振動子に起因して周波数安定度が高いことから、各種の電子機器に特に通信機器に周波数源として適用される。このようなものでは、公称周波数(基準発振周波数)に対する発振周波数の周波数偏差規格が厳しく、設計値通りの発振周波数では規格を満足することが困難となる。このことから、一般には、水晶発振器(発振回路)に周波数調整回路を設けて発振周波数を規格内に満足させる。
(Background of the Invention)
Since the crystal oscillator has high frequency stability due to the crystal resonator, it is applied as a frequency source to various electronic devices, particularly to communication devices. In such a case, the frequency deviation standard of the oscillation frequency with respect to the nominal frequency (reference oscillation frequency) is strict, and it becomes difficult to satisfy the standard at the oscillation frequency as designed. Therefore, in general, a frequency adjustment circuit is provided in a crystal oscillator (oscillation circuit) to satisfy the oscillation frequency within the standard.

(従来技術の一例)
第3図は一従来例を説明する水晶発振器の図で、同図(a)は水晶発振器の基本的な発振回路、同図(b)は周波数調整回路を付加した発振回路の図である。
(Example of conventional technology)
FIG. 3 is a diagram of a crystal oscillator for explaining a conventional example. FIG. 3A is a basic oscillation circuit of the crystal oscillator, and FIG. 3B is a diagram of an oscillation circuit to which a frequency adjustment circuit is added.

水晶発振器は水晶振動子1、分割コンデンサC(ab)及び発振用増幅器2を有する例えばコルピッツ型とした発振回路からなる。水晶振動子1は分割コンデンサC(ab)と共振回路を形成する。発振用増幅器2は共振回路の共振周波数を増幅して一部を帰還し、共振回路による発振を継続する。図中の符号R1、R2はベースバイアス抵抗、R3は負荷抵抗、Vccは電源、Voutは発振出力である。   The crystal oscillator includes, for example, a Colpitts type oscillation circuit having a crystal resonator 1, a dividing capacitor C (ab), and an oscillation amplifier 2. The crystal unit 1 forms a resonance circuit with the dividing capacitor C (ab). The oscillation amplifier 2 amplifies the resonance frequency of the resonance circuit, feeds back a part thereof, and continues oscillation by the resonance circuit. In the figure, reference symbols R1 and R2 are base bias resistors, R3 is a load resistor, Vcc is a power source, and Vout is an oscillation output.

この場合、発振周波数は水晶振動子1が支配的となる分割コンデンサC(ab)とによる共振周波数に概ね依存し、厳格には水晶振動子1から見た発振用増幅器2を含む直列等価容量(負荷容量)に依存する。しかし、公称周波数からの変化分を制限する規格としての周波数偏差例Δ(f0−fx)/f0が±50ppm程度以下に厳しくなると、基本的な発振回路のみでは規格を満足しない。但し、f0は公称周波数、fxは実際の発振周波数である。   In this case, the oscillation frequency largely depends on the resonance frequency due to the dividing capacitor C (ab) in which the crystal resonator 1 is dominant, and strictly speaking, a series equivalent capacitance including the oscillation amplifier 2 viewed from the crystal resonator 1 ( Load capacity). However, when the frequency deviation example Δ (f0−fx) / f0 as a standard for limiting the change from the nominal frequency becomes strict to about ± 50 ppm or less, the standard oscillation circuit alone does not satisfy the standard. However, f0 is a nominal frequency and fx is an actual oscillation frequency.

このことから、通常では、発振閉ループ内の水晶振動子1に周波数調整回路3を直列に接続する。周波数調整回路3は例えば第1及び第2コンデンサC1、C2の並列回路からなり、第1コンデンサC1は容量値を固定値とした粗調整用とし、第2コンデンサC2は容量値を可変した微調整用とする。そして、第1及び第2コンデンサC2はいずれもチップコンデンサからなる。   Therefore, normally, the frequency adjustment circuit 3 is connected in series to the crystal resonator 1 in the oscillation closed loop. The frequency adjustment circuit 3 is composed of, for example, a parallel circuit of first and second capacitors C1 and C2. The first capacitor C1 is for coarse adjustment with a fixed capacitance value, and the second capacitor C2 is a fine adjustment with variable capacitance value. For use. The first and second capacitors C2 are both chip capacitors.

このようなものでは、基本的な発振回路の発振周波数は公称周波数f0よりも予め低く設定されて、多数の水晶発振器が形成される。そして、周波数調整回路3の第2コンデンサC2の容量値に対する水晶発振器の標準となる周波数変化特性即ち周波数変化標準を形成する。この場合、データ作成用の水晶発振器に、先ず、第1コンデンサC1(粗調整用)のみを接続し、第2コンデンサC2の端子pq間を開放として発振回路(発振閉ループ)を形成する「第4図(a)」。   In such a case, the oscillation frequency of the basic oscillation circuit is set in advance lower than the nominal frequency f0, and a large number of crystal oscillators are formed. Then, a frequency change characteristic, that is, a frequency change standard that becomes a standard of the crystal oscillator with respect to the capacitance value of the second capacitor C2 of the frequency adjusting circuit 3 is formed. In this case, first, only the first capacitor C1 (for coarse adjustment) is connected to the crystal oscillator for data creation, and the terminal pq of the second capacitor C2 is opened to form an oscillation circuit (oscillation closed loop). Figure (a) ".

但し、第1コンデンサC1の容量値は一定の固定値として、発振周波数fxは公称周波数(基準発振周波数)f0よりも高くする。なお、第2コンデンサC2の端子間が開放(オープン)して容量値を0としたときの発振周波数fxを開放時発振周波数fxoとする。次に、第2コンデンサC2の容量値を0から大きい方向(無限大方向)に変化させて順次に接続し、第2コンデンサC2の容量値に対する可変時発振周波数を測定する。   However, the capacitance value of the first capacitor C1 is a fixed value, and the oscillation frequency fx is higher than the nominal frequency (reference oscillation frequency) f0. The oscillation frequency fx when the terminal of the second capacitor C2 is opened (opened) and the capacitance value is 0 is defined as the open oscillation frequency fxo. Next, the capacitance value of the second capacitor C2 is changed from 0 to a larger direction (infinite direction) and connected in sequence, and the variable oscillation frequency with respect to the capacitance value of the second capacitor C2 is measured.

そして、第2コンデンサC2の0から最大値とした容量値Cxに対する水晶発振器の周波数変化標準を作成する「第4図(b)」。なお、グラフの縦軸は公称周波数f0の周波数偏差を0とし、例えば発振周波数fxは周波数偏差(f0−fx)/f0がx(ppm)であることを示す。これにより、データ作成用の水晶発振器では、周波数変化標準から、発振周波数fxを公称周波数f0にする第2コンデンサC2の最適容量値Ccが求められる。   Then, a frequency change standard of the crystal oscillator for the capacitance value Cx of 0 to the maximum value of the second capacitor C2 is created (FIG. 4 (b)). The vertical axis of the graph indicates that the frequency deviation of the nominal frequency f0 is 0. For example, the oscillation frequency fx indicates that the frequency deviation (f0−fx) / f0 is x (ppm). Thereby, in the crystal oscillator for data creation, the optimum capacitance value Cc of the second capacitor C2 for obtaining the oscillation frequency fx as the nominal frequency f0 is obtained from the frequency change standard.

最後に、調整対象となる多数の水晶発振器に、固定値とした容量の第1コンデンサC1を接続する。そして、第1コンデンサC1が接続されて第2コンデンサC2の端子間が開放して容量値を0とした個々の水晶発振器の開放時発振周波数fxo′(≠fxo)を測定する。次に、周波数変化標準による開放時発振周波数fxo(周波数偏差x)と最適容量値Ccとの関係に基づき、調整対象となる水晶発振器の開放時発振周波数fxo′(周波数偏差x′)から最適容量値Cc′(≠Cc)を求める。そして、最適容量値Cc′とした第2コンデンサC2を接続する。
特開平2−9207号公報
Finally, a first capacitor C1 having a fixed capacity is connected to a number of crystal oscillators to be adjusted. Then, the open oscillation frequency fxo ′ (≠ fxo) of each crystal oscillator in which the first capacitor C1 is connected and the terminals of the second capacitor C2 are opened and the capacitance value is 0 is measured. Next, based on the relationship between the open oscillation frequency fxo (frequency deviation x) according to the frequency change standard and the optimum capacitance value Cc, the optimum capacitance is determined from the open oscillation frequency fxo ′ (frequency deviation x ′) of the crystal oscillator to be adjusted. The value Cc ′ (≠ Cc) is obtained. Then, a second capacitor C2 having an optimum capacitance value Cc ′ is connected.
Japanese Patent Laid-Open No. 2-9207

(従来技術の問題点)
しかしながら、上記構成の水晶発振器では、発振周波数に影響を及ぼす各回路素子の定数特に水晶振動子1の等価回路の定数であるC1(直列容量)及びC0(同並列容量)のバラツキによって、第2コンデンサC2に対する周波数変化特性もバラツキを有する。したがって、調整対象となる各水晶発振器の周波数変化特性は、データ作成用とした水晶発振器の周波数変化標準とは異なる。
(Problems of conventional technology)
However, in the crystal oscillator configured as described above, the second constant is caused by variations in the constants of the circuit elements that affect the oscillation frequency, in particular, C1 (series capacitance) and C0 (same parallel capacitance) that are constants of the equivalent circuit of the crystal unit 1. The frequency change characteristic with respect to the capacitor C2 also varies. Therefore, the frequency change characteristic of each crystal oscillator to be adjusted is different from the frequency change standard of the crystal oscillator used for data creation.

このことから、周波数変化標準に基づいて、調整対象となる水晶発振器の開放時発振周波数fx∞′から求めた最適容量値Cc′では、公称周波数f0の偏差規格が厳しくなるほど満足しなくなる。そして、公称周波数f0より高いあるいは低い発振周波数fH(周波数偏差がHppm)やfL(同Lppm)となる問題があった。   Therefore, the optimum capacitance value Cc ′ obtained from the oscillation frequency fx∞ ′ of the crystal oscillator to be adjusted based on the frequency change standard is not satisfied as the deviation standard of the nominal frequency f0 becomes stricter. There is a problem that the oscillation frequency fH (frequency deviation is Hppm) or fL (Lppm) is higher or lower than the nominal frequency f0.

この場合、最適容量値Cc′の第2コンデンサC2を取り外して、公称周波数f0となる新たな容量値Cxとして第2コンデンサC2を取り付ければよいが、これでは手間も掛かるとともに、回路パターンにも悪影響を与えて生産性を低下させる問題を生ずる。   In this case, the second capacitor C2 having the optimum capacitance value Cc ′ may be removed and the second capacitor C2 may be attached as a new capacitance value Cx having the nominal frequency f0. However, this takes time and adversely affects the circuit pattern. This causes a problem of lowering productivity.

(発明の目的)
本発明は周波数調整を容易にして生産性を高めた水晶発振器の周波数調整方法を提供することを目的とする。
(Object of invention)
SUMMARY OF THE INVENTION An object of the present invention is to provide a frequency adjustment method for a crystal oscillator that facilitates frequency adjustment and increases productivity.

本発明は、特許請求の範囲(請求項1)に示したように、第1コンデンサと第2コンデンサとの並列回路からなる周波数調整回路を発振閉ループ中の水晶振動子に直列に接続した水晶発振器を備え、前記第1コンデンサの容量値を固定値とし、前記第2コンデンサの接続される回路パターンを開放して容量値Cxを0としたときの開放時発振周波数とともに、前記第2コンデンサの容量値を可変したときの可変時発振周波数を測定し、前記開放時発振周波数及び前記可変時発振周波数から、前記第2コンデンサの容量値に対する前記水晶発振器の周波数変化標準を形成し、発振周波数の調整対象となる水晶発振器は前記周波数変化標準に基づき、前記第2コンデンサの容量値が設定された水晶発振器の周波数調整方法であって、前記周波数変化標準は前記第2コンデンサの接続される回路パターンを短絡して容量値を無限大としたときの短絡時発振周波数を有するとともに、前記周波数変化標準は前記調整対象となる水晶発振器の前記開放時発振周波数及び前記短絡時発振周波数によって補正され、前記調整対象となる水晶発振器は前記補正された周波数変化標準に基づき、前記第2コンデンサの容量値を設定した構成とする。   The present invention provides a crystal oscillator in which a frequency adjustment circuit comprising a parallel circuit of a first capacitor and a second capacitor is connected in series to a crystal resonator in an oscillation closed loop, as indicated in the claims (claim 1). The capacitance value of the second capacitor together with the oscillation frequency at the time of opening when the capacitance value of the first capacitor is a fixed value, the circuit pattern connected to the second capacitor is opened and the capacitance value Cx is 0 The variable oscillation frequency when the value is varied is measured, and the frequency change standard of the crystal oscillator with respect to the capacitance value of the second capacitor is formed from the open oscillation frequency and the variable oscillation frequency, and the oscillation frequency is adjusted. The target crystal oscillator is a frequency adjustment method of a crystal oscillator in which a capacitance value of the second capacitor is set based on the frequency change standard, and the frequency change The standard has an oscillation frequency at the time of short circuit when the circuit pattern connected to the second capacitor is short-circuited to make the capacitance value infinite, and the frequency change standard is the oscillation at the time of opening of the crystal oscillator to be adjusted The crystal oscillator, which is corrected by the frequency and the oscillation frequency at the time of short circuit, is configured to set the capacitance value of the second capacitor based on the corrected frequency change standard.

このような構成であれば、周波数可変標準は第2コンデンサの接続する回路パターンの開放時(第2コンデンサの容量が0)及び短絡時(同容量が無限大)の発振周波数のいずれも備える。そして、第2コンデンサの容量値を可変したときの可変時発振周波数によって開放時と短絡時との間の変化特性をも把握する。   With such a configuration, the frequency variable standard has both an oscillation frequency when the circuit pattern to which the second capacitor is connected is opened (capacity of the second capacitor is 0) and short-circuited (the capacitance is infinite). And the change characteristic between the time of an open time and the time of a short circuit is grasped | ascertained by the oscillation frequency at the time of variable when the capacitance value of a 2nd capacitor | condenser is varied.

したがって、各素子の回路定数特に水晶振動子の等価定数(C1、C0)のバラツキによって、調整対象となる各水晶発振器の周波数変化特性が周波数変化標準とは異なっても、各水晶発振器の開放時及び短絡時の発振周波数から、周波数変化標準の変化特性を比較的容易に補正できる。   Therefore, even when the frequency change characteristics of each crystal oscillator to be adjusted differ from the frequency change standard due to variations in the circuit constants of each element, particularly the equivalent constants (C1, C0) of the crystal oscillator, And the change characteristic of the frequency change standard can be corrected relatively easily from the oscillation frequency at the time of short circuit.

そして、補正された周波数変化標準に基づき、調整対象とした水晶発振器の例えば開放時発振周波数又は及び短絡時発振周波数から、第2コンデンサの適正容量値を容易に求められる。したがって、水晶発振器の周波数調整を容易にして、生産性を高めることができる。   Based on the corrected frequency change standard, the appropriate capacitance value of the second capacitor can be easily obtained from, for example, the open oscillation frequency or short circuit oscillation frequency of the crystal oscillator to be adjusted. Therefore, the frequency adjustment of the crystal oscillator can be facilitated and the productivity can be increased.

(実施態様項)
本発明の請求項2では、請求項1において、前記各発振周波数は基準発振周波数からの周波数偏差で示される。これにより、周波数変化標準における第2コンデンサの容量値に対する周波数変化特性を明確にする。
(Embodiment section)
According to a second aspect of the present invention, in the first aspect, each of the oscillation frequencies is indicated by a frequency deviation from a reference oscillation frequency. Thereby, the frequency change characteristic with respect to the capacitance value of the second capacitor in the frequency change standard is clarified.

同請求項3では、請求項1において、前記調整対象となる水晶発振器は、前記第2コンデンサの接続される回路パターンは回路基板に予め短絡して形成され、前記短絡時発振周波数を測定された後、前記回路パターンを開放して前記開放時発振周波数が測定される。   In the third aspect of the present invention, in the crystal oscillator to be adjusted according to the first aspect, the circuit pattern to which the second capacitor is connected is formed by previously short-circuiting the circuit board, and the oscillation frequency at the time of the short-circuit is measured. Thereafter, the circuit pattern is opened and the oscillation frequency at the time of opening is measured.

これにより、第2コンデンサの接続される回路パターンを予め短絡するので、第2コンデンサの容量値を無限大とした短絡時発振周波数を容易に測定できる。そして、その後に回路パターンを開放するので、第2コンデンサの容量値を0とした開放時発振周波数、及び第2コンデンサC2を接続して容量値を変化させた可変時発振周波数をも容易に測定できる。   Thereby, since the circuit pattern to which the second capacitor is connected is short-circuited in advance, it is possible to easily measure the short-circuit oscillation frequency when the capacitance value of the second capacitor is infinite. Then, since the circuit pattern is opened after that, the open oscillation frequency when the capacitance value of the second capacitor is 0 and the variable oscillation frequency when the capacitance value is changed by connecting the second capacitor C2 are easily measured. it can.

これらの場合、周波数変化標準を形成したときと同じ容量値の第2コンデンサC2を調整対象の水晶発振器に接続して、周波数変化標準と比較することもできる。しかし、この場合は、第2コンデンサの取り外しを余儀なくされ、前述のように生産性を低下させる。   In these cases, the second capacitor C2 having the same capacitance value as that when the frequency change standard is formed can be connected to the crystal oscillator to be adjusted and compared with the frequency change standard. However, in this case, the second capacitor must be removed, and the productivity is lowered as described above.

同請求項4(独立項)では、第1コンデンサと第2コンデンサとの並列回路からなる周波数調整回路を発振閉ループ中の水晶振動子に直列に接続した発振回路の形成される発振器用回路基板において、前記第2コンデンサの接続される回路パターンは対向辺同士が直線路によって予め短絡して形成された構成とする。   According to claim 4 (independent claim), in an oscillator circuit board in which an oscillation circuit is formed in which a frequency adjustment circuit composed of a parallel circuit of a first capacitor and a second capacitor is connected in series to a crystal resonator in an oscillation closed loop. The circuit pattern to which the second capacitor is connected has a configuration in which opposing sides are previously short-circuited by a straight path.

これにより、回路パターン間の線路長を最も短くして浮遊容量等による発振周波数への影響も少なくし、水晶発振器の短絡時発振周波数を容易に測定できる。そして、前述した請求項3の周波数調整を実施できる。   As a result, the line length between the circuit patterns is made the shortest, the influence on the oscillation frequency due to the stray capacitance or the like is reduced, and the oscillation frequency when the crystal oscillator is short-circuited can be easily measured. And the frequency adjustment of Claim 3 mentioned above can be implemented.

第1図は本発明の一実施形態を説明する図で、同図(a)は水晶発振器の周波数調整を説明する発振回路、同図(b)は発振器用回路基板に設けた回路パターンの図である。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。   FIG. 1 is a diagram for explaining an embodiment of the present invention. FIG. 1 (a) is an oscillation circuit for explaining frequency adjustment of a crystal oscillator, and FIG. 1 (b) is a diagram of a circuit pattern provided on an oscillator circuit board. It is. In addition, the same number is attached | subjected to the same part as a prior art example, and the description is simplified or abbreviate | omitted.

水晶発振器は、前述したように、水晶振動子1、分割コンデンサC(ab)及び発振用増幅器3を有するコルピッツ型の発振回路からなり、周波数調整回路3を水晶振動子1に直列に接続する。周波数調整回路3はこの例でも第1コンデンサC1と第2コンデンサC2との並列回路からなる。   As described above, the crystal oscillator includes a Colpitts type oscillation circuit having the crystal resonator 1, the dividing capacitor C (ab), and the oscillation amplifier 3, and the frequency adjustment circuit 3 is connected to the crystal resonator 1 in series. The frequency adjustment circuit 3 is also composed of a parallel circuit of a first capacitor C1 and a second capacitor C2 in this example.

そして、この実施形態では、発振回路及び周波数調整回路3が形成される発振器用回路基板4の着色して示す回路パターンは次にする。すなわち、周波数調整回路3の第1コンデンサC1が接続する回路パターンは即ち各端子は開放して形成されるが、第2コンデンサC2の接続する回路パターンの各端子pqは対向辺同士が直線路によって予め短絡(ショート)して形成される。   In this embodiment, the circuit pattern shown by coloring the oscillator circuit board 4 on which the oscillation circuit and the frequency adjustment circuit 3 are formed is as follows. That is, the circuit pattern to which the first capacitor C1 of the frequency adjusting circuit 3 is connected, that is, each terminal is formed open, but each terminal pq of the circuit pattern to which the second capacitor C2 is connected is a straight path between opposite sides. It is formed by short-circuiting in advance.

このようなものでは、前述同様にデータ作成用の水晶発振器によって周波数変化標準を作成した後、調整対象となる多数の水晶発振器を個々に周波数調整する。周波数変化標準の作業工程は、先ず、周波数調整回路3の少なくとも微調整用の第2コンデンサC2を除き、発振回路を構成する図示しない各素子が回路基板4に搭載される。   In such a case, as described above, after the frequency change standard is created by the crystal oscillator for data creation, the frequency of each of the crystal oscillators to be adjusted is individually adjusted. In the frequency change standard working process, first, each element (not shown) constituting the oscillation circuit is mounted on the circuit board 4 except at least the second capacitor C2 for fine adjustment of the frequency adjustment circuit 3.

この場合、周波数調整回路3の第2コンデンサC2の接続する回路パターンは短絡なので、第2コンデンサC2の容量値Cxは無限大とする。したがって、水晶発振器は、第1コンデンサC1の有無に拘わらず、周波数調整回路3の容量値を無限大とした発振閉ループを形成する。この例では、第1コンデンサC1の容量値を固定値として回路パターンに予め接続する。   In this case, since the circuit pattern to which the second capacitor C2 of the frequency adjusting circuit 3 is connected is short-circuited, the capacitance value Cx of the second capacitor C2 is infinite. Therefore, the crystal oscillator forms an oscillation closed loop in which the capacitance value of the frequency adjustment circuit 3 is infinite regardless of the presence or absence of the first capacitor C1. In this example, the capacitance value of the first capacitor C1 is connected in advance to the circuit pattern as a fixed value.

次に、第2コンデンサC2の接続される回路パターンを短絡としたまま、第2コンデンサC2の容量値Cxを無限大とした状態での短絡時発振周波数fx∞を測定する。次に、第2コンデンサC2の接続される回路パターンを切断して、回路パターン間(端子pq間)を開放する。そして、前述同様に、回路パターン間を開放して容量値を0とした開放時発振周波数fxoを測定する。   Next, the short-circuit oscillation frequency fx∞ is measured with the capacitance value Cx of the second capacitor C2 being infinite while the circuit pattern connected to the second capacitor C2 is short-circuited. Next, the circuit pattern to which the second capacitor C2 is connected is cut to open the circuit pattern (between the terminals pq). Then, as described above, the open-circuit oscillation frequency fxo with the capacitance value set to 0 by opening the circuit patterns is measured.

次に、第2コンデンサC2の容量値Cxの異ならせて回路パターン間(端子pq間)に接続し、容量値Cxの変化に対応した可変時発振周波数を測定する。これらにより、ここでの周波数変化標準は、第2図の曲線(イ)で示すように、第2コンデンサC2の容量値Cxを開放時の0から短絡時の無限大(∞)までに変化させたときの周波数変化特性となる。この場合でも、発振周波数fxは公称周波数f0からの周波数偏差x「=(f0−fx)/f0」で示される。これにより、データ作成用の水晶発振器では発振周波数を公称周波数f0とする第2可変コンデンサC2の最適容量値Ccを得られる。   Next, the capacitance value Cx of the second capacitor C2 is varied and connected between circuit patterns (between the terminals pq), and the variable oscillation frequency corresponding to the change of the capacitance value Cx is measured. As a result, the frequency change standard here changes the capacitance value Cx of the second capacitor C2 from 0 at the time of opening to infinity (∞) at the time of short circuit, as shown by the curve (b) in FIG. It becomes the frequency change characteristic at the time. Even in this case, the oscillation frequency fx is represented by a frequency deviation x “= (f0−fx) / f0” from the nominal frequency f0. Thereby, in the crystal oscillator for data creation, the optimum capacitance value Cc of the second variable capacitor C2 having the oscillation frequency of the nominal frequency f0 can be obtained.

調整対象となる各水晶発振器の周波数調整は、データ作成用の水晶発振器と同様に、先ず、第2コンデンサC2の接続される回路パターンが短絡して、第2コンデンサC2の容量値Cxを無限大とした水晶発振器の短絡時発振周波数fx∞′(≠fx∞)を測定する。次に、回路パターンを切断し、回路パターンが開放されて第2コンデンサC2の容量値Cxを0とした開放時発振周波数fxo′(≠fxo)を測定する。   In the frequency adjustment of each crystal oscillator to be adjusted, the circuit pattern to which the second capacitor C2 is connected is first short-circuited and the capacitance value Cx of the second capacitor C2 is infinite, similarly to the crystal oscillator for data creation. The oscillation frequency fx∞ ′ (≠ fx∞) at the time of short circuit of the crystal oscillator is measured. Next, the circuit pattern is cut, and the open oscillation frequency fxo ′ (≠ fxo) is measured in which the circuit pattern is opened and the capacitance value Cx of the second capacitor C2 is zero.

次に、データ作成用の水晶発振器による周波数変化標準「曲線(イ)」と調整対象となる水晶発振器の開放時時発振周波数fxo′及び短絡時発振周波数fx∞′とに基づいて、周波数変化標準の周波数変化特性を補正する。この場合、調整対象の水晶発振器の開放時発振周波数fxo′は、周波数変化標準の開放時発振周波数fxoに換算して一致させる。   Next, based on the frequency change standard “curve (A)” by the crystal oscillator for data creation and the oscillation frequency fxo ′ at the time of opening and the oscillation frequency fx∞ ′ at the time of short circuit of the crystal oscillator to be adjusted. Correct the frequency change characteristics of. In this case, the open oscillation frequency fxo ′ of the crystal oscillator to be adjusted is converted to the open oscillation frequency fxo of the frequency change standard and matched.

これにより、開放時発振周波数fxo(fxo′)からの短絡時発振周波数fx∞′までの周波数変化特性が周波数変化標準「曲線(イ)」とは異なって、調整対象の水晶発振器に適合して補正された周波数変化標準「曲線(ロ)や(ハ)」を得る。   Thus, the frequency change characteristic from the open oscillation frequency fxo (fxo ′) to the short-circuit oscillation frequency fx∞ ′ is different from the frequency change standard “curve (A)” and is suitable for the crystal oscillator to be adjusted. A corrected frequency change standard “curve (b) or (c)” is obtained.

そして、調整用の水晶発振器に適合して補正された周波数標準「曲線(ロ)や(ハ)」に基づき、第2コンデンサC2の適正容量Cc′を求める。そして、適正容量値Cc′の可変コンデンサC2を回路パターン間に接続する。これらは、調整対象となる多数の水晶発振器に対し、順次に処理される。   Then, an appropriate capacitance Cc ′ of the second capacitor C2 is obtained based on the frequency standard “curve (b) or (c)” corrected in conformity with the crystal oscillator for adjustment. A variable capacitor C2 having an appropriate capacitance value Cc 'is connected between the circuit patterns. These are sequentially processed for a large number of crystal oscillators to be adjusted.

このような構成(周波数調整方法)であれば、データ作成用の水晶発振器による周波数変化標準及び調整対象の水晶発振器による周波数変化特性は、開放時発振周波数及び可変時周波数のみならず、短絡時発振周波数を取り込んだ周波数変化特性になる。   With such a configuration (frequency adjustment method), the frequency change standard by the crystal oscillator for data creation and the frequency change characteristic by the crystal oscillator to be adjusted are not only the oscillation frequency at open and variable frequency, but also the oscillation at short circuit It becomes the frequency change characteristic that takes in the frequency.

したがって、調整対象となる水晶発振器の周波数変化特性が水晶振動子1の定数(C1やC0)のバラツキによって周波数変化標準とは異なっても、短絡時及び開放時発振周波数に基づいて周波数変化標準を容易に補正できる。これにより、調整対象となる各水晶発振器の可変コンデンサを適正容量Cc′とし、発振周波数fxを公称周波数f0の規格内に満足できる。   Therefore, even if the frequency change characteristic of the crystal oscillator to be adjusted differs from the frequency change standard due to variations in the constants (C1 and C0) of the crystal resonator 1, the frequency change standard is set based on the oscillation frequency at the time of short circuit and open. Can be easily corrected. Thereby, the variable capacitor of each crystal oscillator to be adjusted is set to an appropriate capacitance Cc ′, and the oscillation frequency fx can be satisfied within the specification of the nominal frequency f0.

また、この例では、発振用回路基板4の第2コンデンサC2が接続する回路パターンを直線路によって予め短絡して形成する。したがって、回路パターン(端子pq)間の線路長を最も短くして浮遊容量等による発振周波数への影響も少なく、水晶発振器の短絡時発振周波数を容易に測定できる。但し、プローブ等を用いて短絡時発振周波数を測定することを排除するものではない。   In this example, the circuit pattern to which the second capacitor C2 of the oscillation circuit board 4 is connected is previously short-circuited by a straight path. Therefore, the line length between the circuit patterns (terminals pq) is shortened to minimize the influence on the oscillation frequency due to the stray capacitance, and the oscillation frequency when the crystal oscillator is short-circuited can be easily measured. However, this does not exclude measuring the oscillation frequency at the time of short circuit using a probe or the like.

本発明の一実施形態を説明する図で、同図(a)は水晶発振器の周波数調整を説明する発振回路、同図(b)は発振器用回路基板に設けた回路パターンの図である。1A and 1B are diagrams illustrating an embodiment of the present invention, in which FIG. 1A is an oscillation circuit illustrating frequency adjustment of a crystal oscillator, and FIG. 1B is a diagram of a circuit pattern provided on an oscillator circuit board. 本発明の一実施形態による作用を説明する第2コンデンサに対する周波数変化標準(周波数変化特性)のグラフ図である。It is a graph of the frequency change standard (frequency change characteristic) with respect to the 2nd capacitor | condenser explaining the effect | action by one Embodiment of this invention. 従来例を説明する水晶発振器の回路図で、同図(a)は水晶発振器の基本的な発振回路、同図(b)は周波数調整回路を付加した発振回路の図である。FIG. 4A is a circuit diagram of a crystal oscillator for explaining a conventional example, in which FIG. 1A is a basic oscillation circuit of the crystal oscillator, and FIG. 従来例の周波数調整を説明する図で、同図(a)は水晶発振器の回路図、同図(b)は第2コンデンサに対する周波数変化標準のグラフ図である。It is a figure explaining the frequency adjustment of a prior art example, the figure (a) is a circuit diagram of a crystal oscillator, and the figure (b) is a graph of the frequency change standard with respect to a 2nd capacitor | condenser.

符号の説明Explanation of symbols

1 水晶振動子、2 発振用増幅器、3 周波数調整回路。   1 crystal oscillator, 2 oscillation amplifier, 3 frequency adjustment circuit.

Claims (4)

第1コンデンサと第2コンデンサとの並列回路からなる周波数調整回路を発振閉ループ中の水晶振動子に直列に接続した水晶発振器を備え、
前記第1コンデンサの容量値を固定値とし、前記第2コンデンサの接続される回路パターンを開放して容量値を0としたときの開放時発振周波数とともに、前記第2コンデンサの容量値を可変したときの可変時発振周波数を測定し、
前記開放時発振周波数及び前記可変時発振周波数から、前記第2コンデンサの容量値に対する前記水晶発振器の周波数変化標準を形成し、
発振周波数の調整対象となる水晶発振器は前記周波数変化標準に基づき、前記第2コンデンサの容量値が設定された水晶発振器の周波数調整方法であって、
前記周波数変化標準は前記第2コンデンサの接続される回路パターンを短絡して容量値を無限大としたときの短絡時発振周波数を有するとともに、前記周波数変化標準は前記調整対象となる水晶発振器の前記開放時発振周波数及び前記短絡時発振周波数によって補正され、
前記調整対象となる水晶発振器は前記補正された周波数変化標準に基づき、前記第2コンデンサの容量値を設定したことを特徴とする水晶発振器の周波数調整方法。
A crystal oscillator in which a frequency adjustment circuit including a parallel circuit of a first capacitor and a second capacitor is connected in series to a crystal resonator in an oscillation closed loop;
The capacitance value of the first capacitor was varied along with the oscillation frequency at the time of opening when the capacitance value was set to 0 by opening the circuit pattern to which the second capacitor was connected by setting the capacitance value of the first capacitor to a fixed value. Measure the oscillation frequency when variable,
From the oscillation frequency at the time of opening and the oscillation frequency at the time of variable, forming a frequency change standard of the crystal oscillator with respect to the capacitance value of the second capacitor,
The crystal oscillator to be adjusted for oscillation frequency is a frequency adjustment method for a crystal oscillator in which a capacitance value of the second capacitor is set based on the frequency change standard,
The frequency change standard has a short-circuit oscillation frequency when the circuit pattern connected to the second capacitor is short-circuited to make the capacitance value infinite, and the frequency change standard is the crystal oscillator to be adjusted. It is corrected by the oscillation frequency at the time of opening and the oscillation frequency at the time of the short circuit,
The crystal oscillator frequency adjustment method, wherein the crystal oscillator to be adjusted has a capacitance value of the second capacitor set based on the corrected frequency change standard.
請求項1において、前記各発振周波数は基準発振周波数からの周波数偏差で示された水晶発振器の周波数調整方法。   2. The frequency adjustment method for a crystal oscillator according to claim 1, wherein each oscillation frequency is indicated by a frequency deviation from a reference oscillation frequency. 請求項1において、前記調整対象となる水晶発振器は、前記第2コンデンサの接続される回路パターンは回路基板に予め短絡して形成され、前記短絡時発振周波数を測定された後、前記回路パターンを開放して前記開放時発振周波数が測定された水晶発振器の周波数調整方法。   2. The crystal oscillator to be adjusted according to claim 1, wherein the circuit pattern to which the second capacitor is connected is formed by short-circuiting to a circuit board in advance, and the oscillation frequency at the time of short-circuit is measured, and then the circuit pattern is A method of adjusting a frequency of a crystal oscillator in which the oscillation frequency when open is measured. 第1コンデンサと第2コンデンサとの並列回路からなる周波数調整回路を発振閉ループ中の水晶振動子に直列に接続した発振回路の形成される発振器用回路基板において、前記第2コンデンサの接続される回路パターンは対向辺同士が直線路によって予め短絡して形成されたことを特徴とする発振器用回路基板。   A circuit to which the second capacitor is connected in an oscillator circuit board formed with an oscillation circuit in which a frequency adjusting circuit composed of a parallel circuit of a first capacitor and a second capacitor is connected in series to a crystal resonator in an oscillation closed loop The oscillator circuit board, wherein the pattern is formed by short-circuiting opposite sides in advance by a straight path.
JP2008014159A 2008-01-24 2008-01-24 Frequency adjustment method for crystal oscillator Expired - Fee Related JP5235427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008014159A JP5235427B2 (en) 2008-01-24 2008-01-24 Frequency adjustment method for crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008014159A JP5235427B2 (en) 2008-01-24 2008-01-24 Frequency adjustment method for crystal oscillator

Publications (2)

Publication Number Publication Date
JP2009177522A true JP2009177522A (en) 2009-08-06
JP5235427B2 JP5235427B2 (en) 2013-07-10

Family

ID=41032154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008014159A Expired - Fee Related JP5235427B2 (en) 2008-01-24 2008-01-24 Frequency adjustment method for crystal oscillator

Country Status (1)

Country Link
JP (1) JP5235427B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474467A (en) * 1977-11-07 1979-06-14 Masaichi Tanaka System for advancing or delaying electronic watch
JPH029207A (en) * 1988-06-27 1990-01-12 Nippon Dempa Kogyo Co Ltd Resistor arrangement method for electronic circuit
JPH0319506A (en) * 1989-06-16 1991-01-28 Matsushita Electric Ind Co Ltd Crystal oscillation circuit
JPH04211502A (en) * 1990-03-27 1992-08-03 Nec Corp Crystal oscillator
JPH08340215A (en) * 1995-06-12 1996-12-24 Seiko Epson Corp Piezoelectric oscillator and its production
JPH0951228A (en) * 1995-08-04 1997-02-18 Seiko Epson Corp Piezoelectric oscillator and its manufacture
JPH0955625A (en) * 1995-08-11 1997-02-25 Toyo Commun Equip Co Ltd Oscillator
JP2001308640A (en) * 2000-04-20 2001-11-02 Nippon Dempa Kogyo Co Ltd Integrated temperature-compensated circuit board and temperature-compensated crystal oscillator
JP2003243932A (en) * 2002-02-20 2003-08-29 Nippon Dempa Kogyo Co Ltd Temperature compensated crystal oscillator
JP2006245982A (en) * 2005-03-03 2006-09-14 Nippon Dempa Kogyo Co Ltd Voltage-controlled crystal oscillator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474467A (en) * 1977-11-07 1979-06-14 Masaichi Tanaka System for advancing or delaying electronic watch
JPH029207A (en) * 1988-06-27 1990-01-12 Nippon Dempa Kogyo Co Ltd Resistor arrangement method for electronic circuit
JPH0319506A (en) * 1989-06-16 1991-01-28 Matsushita Electric Ind Co Ltd Crystal oscillation circuit
JPH04211502A (en) * 1990-03-27 1992-08-03 Nec Corp Crystal oscillator
JPH08340215A (en) * 1995-06-12 1996-12-24 Seiko Epson Corp Piezoelectric oscillator and its production
JPH0951228A (en) * 1995-08-04 1997-02-18 Seiko Epson Corp Piezoelectric oscillator and its manufacture
JPH0955625A (en) * 1995-08-11 1997-02-25 Toyo Commun Equip Co Ltd Oscillator
JP2001308640A (en) * 2000-04-20 2001-11-02 Nippon Dempa Kogyo Co Ltd Integrated temperature-compensated circuit board and temperature-compensated crystal oscillator
JP2003243932A (en) * 2002-02-20 2003-08-29 Nippon Dempa Kogyo Co Ltd Temperature compensated crystal oscillator
JP2006245982A (en) * 2005-03-03 2006-09-14 Nippon Dempa Kogyo Co Ltd Voltage-controlled crystal oscillator

Also Published As

Publication number Publication date
JP5235427B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
US8669821B2 (en) Piezoelectric oscillator
US7911285B2 (en) Reference frequency control circuit
US8854148B1 (en) Programmable sinusoidal oscillator circuit
JP2002271142A (en) Surface-mounted quartz oscillator and its manufacturing method
JP2006197294A (en) Piezoelectric oscillator with a pair of symmetrical inverters
JP2006510254A (en) Oscillator circuit that generates high-frequency electromagnetic oscillation
US20120081187A1 (en) Oscillator
US7369005B2 (en) Colpitts oscillator
US8547183B2 (en) Voltage controlled oscillator
JP5235427B2 (en) Frequency adjustment method for crystal oscillator
US7411466B2 (en) Coil-less overtone crystal oscillator
Cerda Pierce-gate crystal oscillator, an introduction
EP1219018A1 (en) Oscillator mode suppression circuit
RU2707394C2 (en) Generator
JP5971838B2 (en) Piezoelectric oscillator
US7560999B2 (en) Oscillation circuit
RU2725311C1 (en) Generator
US9077281B2 (en) Oscillator circuit
KR100640518B1 (en) Low frequency voltage controlled oscillator
JP4804878B2 (en) Surface acoustic wave oscillator
JP2012029025A (en) Integrated circuit device
JP5801570B2 (en) Test method for constant current oscillator
Cerda Specifying a quartz crystal for a VCXO
JP5336953B2 (en) Piezoelectric oscillation circuit
JP5799597B2 (en) Oscillator circuit and oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees