JP2001308640A - Integrated temperature-compensated circuit board and temperature-compensated crystal oscillator - Google Patents

Integrated temperature-compensated circuit board and temperature-compensated crystal oscillator

Info

Publication number
JP2001308640A
JP2001308640A JP2000118923A JP2000118923A JP2001308640A JP 2001308640 A JP2001308640 A JP 2001308640A JP 2000118923 A JP2000118923 A JP 2000118923A JP 2000118923 A JP2000118923 A JP 2000118923A JP 2001308640 A JP2001308640 A JP 2001308640A
Authority
JP
Japan
Prior art keywords
temperature
thermistor
compensated
circuit board
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000118923A
Other languages
Japanese (ja)
Inventor
Hiroaki Mizumura
浩明 水村
Hirokatsu Tanaka
啓勝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2000118923A priority Critical patent/JP2001308640A/en
Publication of JP2001308640A publication Critical patent/JP2001308640A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized temperature compensated oscillator which brings into play the the features of a discrete type oscillator and is superior in workability. SOLUTION: The integrated temperature-compensated circuit board which is in the shape of a flat plat compensates the frequency-temperature characteristics of a crystal oscillator, has an input electrode connected with a mounted electrode of a crystal vibrator, and is composed of a laminated circuit board which has a concave section formed on the other main surface, enabling an IC which constitutes the oscillation circuit to be stored in the concave. The laminated circuit board is formed to built-in a temperature compensated device that holds at least a thermistor, of which the value of resistance changes, in response to temperature variation. The thermistor is formed on the main surface of the laminated circuit board by printing. The thermistor is formed by printing on the laminating surface of the laminated circuit board by printing or is embedded inside the board as a chip device. Adjustment resistor, which adjust the value of the resistance of the thermistor at normal temperature, is provided on the main surface of the laminated circuit board. By joining these integrated temperature compensated circuit boards with the back plane of the crystal vibrator, the temperature-compensated oscillator is constituted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】本発明はディスクリート型の温度補償発振
器を産業上の技術分野とし、特に水晶振動子と素子基板
とを接合した温度補償発振器に関する。
The present invention relates to a discrete-type temperature-compensated oscillator in an industrial technical field, and more particularly to a temperature-compensated oscillator in which a crystal unit and an element substrate are joined.

【0002】温度補償発振器は、温度によって変化する
発振周波数を補償して安定にすることから、携帯電話等
の動的環境化で使用される電子機器に広く採用されてい
る。このようなものの一つに、温度によって抵抗値の変
化するサーミスタを用いたディスクリート型がある。
[0002] A temperature-compensated oscillator is widely used in electronic equipment used in a dynamic environment such as a mobile phone, because it compensates for an oscillation frequency that changes with temperature and stabilizes it. One of such devices is a discrete type using a thermistor whose resistance value changes with temperature.

【0003】第6図及び第7図は従来例を説明する図
で、第6図は温度補償発振器の回路図、第7図は同構造
図である。温度補償発振器は点線枠内の水晶発振器1と
温度補償回路2からなる。水晶発振器1は水晶振動子3
に発振回路4を接続してなる。水晶振動子3は裏面及び
側面に図示しない実装電極を有し、水晶片を密閉封入し
た表面実装型からなる。発振回路4は例えばコルピッツ
型を構成する増幅器、発振用コンデンサ及び抵抗等(未
図示)を集積化したICチップ5からなる。図中の符号
Vccは電源、OUTは出力である。
FIGS. 6 and 7 are diagrams for explaining a conventional example. FIG. 6 is a circuit diagram of a temperature-compensated oscillator, and FIG. 7 is a structural diagram thereof. The temperature-compensated oscillator comprises a crystal oscillator 1 and a temperature-compensating circuit 2 in a dotted frame. The crystal oscillator 1 is a crystal oscillator 3
The oscillation circuit 4 is connected to the The crystal unit 3 has a mounting electrode (not shown) on the back and side surfaces, and is of a surface mounting type in which a crystal piece is hermetically sealed. The oscillation circuit 4 is composed of an IC chip 5 in which, for example, a Colpitts-type amplifier, an oscillation capacitor and a resistor (not shown) are integrated. Symbol Vcc in the figure is a power source, and OUT is an output.

【0004】温度補償回路2は温度に応答して抵抗値の
変化する高温用と低温用のサーミスタ7(ab)とコン
デンサ8の並列回路からなる。通常では、各サーミスタ
7(ab)の常温での抵抗値を調整する調整抵抗9を、
高温用では直列に、低温用では並列に挿入する。そし
て、周波数調整回路としてのコンデンサ10を接続す
る。これらの各素子は、回路パターンの形成された基板
11に配設され、カバー(未図示)を被せた構成とす
る。
The temperature compensating circuit 2 comprises a high-temperature and low-temperature thermistor 7 (ab) whose resistance changes in response to temperature and a parallel circuit of a capacitor 8. Normally, an adjusting resistor 9 for adjusting the resistance value of each thermistor 7 (ab) at normal temperature is provided by:
Insert them in series for high temperatures and in parallel for low temperatures. Then, a capacitor 10 as a frequency adjustment circuit is connected. These elements are arranged on a substrate 11 on which a circuit pattern is formed, and have a configuration in which a cover (not shown) is placed.

【0005】このようなものでは、水晶発振器1の例え
ば常温25℃近傍に変曲点を有して右上がりとなる周波
数温度特性(第8図)を、温度補償回路2によって規格
内の温度範囲で平坦にする。すなわち、温度によって各
サーミスタ7(ab)の抵抗値が変化することによっ
て、温度補償回路2における端子間のリアクタンス(容
量)が変化する。具体的には高温用のサーミスタ7aは
常温抵抗値を大きく、低温用のサーミスタ7bは小さく
設定される。
In such a device, the frequency temperature characteristic (FIG. 8) of the crystal oscillator 1 which has an inflection point near normal temperature of 25 ° C. and rises to the right (FIG. 8) is converted by the temperature compensation circuit 2 into a temperature range within the standard. To make it flat. That is, the reactance (capacitance) between the terminals in the temperature compensating circuit 2 changes as the resistance value of each thermistor 7 (ab) changes depending on the temperature. Specifically, the high-temperature thermistor 7a is set to have a large normal-temperature resistance value, and the low-temperature thermistor 7b is set to be small.

【0006】これにより、常温以上の高温時には、低温
用のサーミスタ7bが短絡状態になるので、コンデンサ
8と短絡防止用のコンデンサ12と高温用のサーミスタ
7aによる等価直列容量が変化する。また、常温以下の
低温時には、高温用のサーミスタ7aが開放状態になる
ので、コンデンサ8と短絡防止用のコンデンサ12と低
温用のサーミスタ7bによる等価直列容量が変化する。
Thus, at a temperature higher than the normal temperature, the low-temperature thermistor 7b is short-circuited, so that the equivalent series capacitance of the capacitor 8, the short-circuit prevention capacitor 12, and the high-temperature thermistor 7a changes. In addition, when the temperature is lower than normal temperature, the high-temperature thermistor 7a is in an open state, so that the equivalent series capacitance of the capacitor 8, the short-circuit prevention capacitor 12, and the low-temperature thermistor 7b changes.

【0007】これらのことから、水晶振動子3の両端子
間から見た回路側の負荷容量が温度に対して変化する。
したがって、温度上昇とともに温度補償回路2の端子間
容量が大きくなるように設定すれば、発振周波数は低下
して周波数温度特性を平坦にできる。なお、この種の受
動素子からなる温度補償回路2は、直接型と呼ばれてい
る。
For these reasons, the load capacitance on the circuit side as viewed from between both terminals of the crystal unit 3 changes with temperature.
Therefore, if the capacitance between the terminals of the temperature compensation circuit 2 is set to increase as the temperature rises, the oscillation frequency decreases and the frequency-temperature characteristics can be flattened. The temperature compensating circuit 2 composed of this kind of passive element is called a direct type.

【0008】[0008]

【発明が解決しようとする課題】(従来技術の問題点)
しかしながら、上記構成の温度補償発振器では、高低温
用のサーミスタ7及び調整抵抗9、コンデンサ8,12
等のディスクリート部品を使用して個々に基板11に配
設するので、作業性を低下させて小型化を阻害する要因
となっていた。
[Problems to be Solved by the Invention]
However, in the temperature compensated oscillator having the above configuration, the thermistor 7 for high and low temperatures, the adjustment resistor 9, and the capacitors 8 and 12 are used.
However, since discrete components such as those described above are individually disposed on the substrate 11, workability is reduced, which is a factor that hinders miniaturization.

【0009】これに対し、例えばサーミスタ7(ab)
を使用することなく、温度補償回路2、発振回路4及び
周波数調整回路を1チップとしてLSI化した温度補償
発振器は、水晶振動子3と1個のLSIのみで構成され
る。したがって、ディスクリート型に比較して小型にで
きる。
On the other hand, for example, a thermistor 7 (ab)
The temperature compensated oscillator in which the temperature compensation circuit 2, the oscillation circuit 4, and the frequency adjustment circuit are integrated into one chip without using the crystal oscillator 3 includes only the crystal resonator 3 and one LSI. Therefore, the size can be reduced as compared with the discrete type.

【0010】しかし、この場合には、温度補償回路2
は、温度検出手段として例えばLSI内部に設けたPN
接合領域の順方向電圧の温度特性による微弱な検出信号
に依存する。したがって、ノイズ成分が検出信号に対し
て相対的に大きくなって、ノイズ特性が劣化する。ま
た、微弱な検出信号を増幅して制御するので消費電流が
増える等の問題があった。これらのことから、ディスク
リート型の特長を生かして小型化を計る必要があった。
However, in this case, the temperature compensation circuit 2
Is a PN provided inside the LSI as temperature detecting means, for example.
It depends on a weak detection signal due to the temperature characteristic of the forward voltage of the junction region. Therefore, the noise component becomes relatively large with respect to the detection signal, and the noise characteristics deteriorate. In addition, there is a problem that current consumption increases because a weak detection signal is amplified and controlled. For these reasons, it was necessary to reduce the size by taking advantage of the discrete type.

【0011】(発明の目的)本発明は、デイスクリート
型の特長を生かした、作業性に優れて小型な温度補償発
振器を提供することを目的とする。
(Object of the Invention) It is an object of the present invention to provide a small temperature-compensated oscillator which is excellent in workability and makes use of the features of the discrete type.

【0012】[0012]

【課題を解決するための手段】(着目技術)本発明は、
例えば特開平10-98151号公報等に開示されるように、発
振回路4及び温度補償機能を有するICチップ5を積層
基板の凹部に収容して、水晶振動子3の裏面に接合した
温度補償発振器に着目した。
Means for Solving the Problems (Technology of Attention) The present invention provides:
For example, as disclosed in Japanese Patent Application Laid-Open No. 10-98151, a temperature-compensated oscillator in which an oscillation circuit 4 and an IC chip 5 having a temperature compensation function are accommodated in a concave portion of a laminated substrate and bonded to the back surface of the crystal unit 3 We paid attention to.

【0013】(解決手段)本発明は、積層基板の凹部に
発振回路4を構成するICチップ5を収容し、温度に感
応して抵抗値の変化するサーミスタ7を含む温度補償素
子を積層基板に内蔵して温度補償一体化基板13とし、
これを水晶振動子に接合したことを基本的な解決手段と
する。
(Solution) According to the present invention, a temperature compensation element including a thermistor 7 whose resistance value changes in response to temperature is accommodated in a concave portion of a laminated substrate in which an IC chip 5 constituting an oscillation circuit 4 is accommodated. Built-in temperature compensation integrated board 13
The fact that this is bonded to a crystal oscillator is a basic solution.

【0014】[0014]

【作用】本発明では、サーミスタ7を含む温度補償素子
を積層基板に内蔵して温度補償一体化基板13とする。
したがって、温度補償一体化基板13を水晶振動子3の
裏面に接合すればよいので、作業性を向上して小型化
(コンパクト化)を促進できる。以下、本発明の一実施
例を説明する。
According to the present invention, a temperature compensating element including the thermistor 7 is incorporated in a laminated substrate to form a temperature compensated integrated substrate 13.
Therefore, since the temperature compensation integrated substrate 13 may be joined to the back surface of the crystal unit 3, workability can be improved and downsizing (compacting) can be promoted. Hereinafter, an embodiment of the present invention will be described.

【0015】[0015]

【実施例】第1図乃至第3図は本発明の一実施例を説明
する図で、第1図は温度補償一体化基板13の断面図、
第2図は同平面図、第3図は温度補償発振器の一部を破
断した側面図である。なお、前従来例図と同一部分には
同番号を付与してその説明は簡略又は省略する。温度補
償発振器は、前述のように、表面実装型とした水晶振動
子3、ICチップ5からなるコルピッツ型の発振回路
4、ディスクリート型とした直接補償型の温度補償回路
2、及び周波数調整回路としてのコンデンサ10からな
る(前第6図参照)。そして、この実施例では、水晶振
動子3の裏面に温度補償一体化基板13を接合してな
る。
1 to 3 are views for explaining one embodiment of the present invention. FIG. 1 is a sectional view of a temperature-compensated integrated substrate 13,
FIG. 2 is a plan view of the same, and FIG. 3 is a side view in which a part of the temperature compensated oscillator is cut away. The same parts as those in the prior art are denoted by the same reference numerals, and description thereof will be simplified or omitted. As described above, the temperature-compensated oscillator includes a crystal resonator 3 of a surface mount type, a Colpitts-type oscillation circuit 4 including an IC chip 5, a direct-compensation-type temperature compensation circuit 2 of a discrete type, and a frequency adjustment circuit. (See FIG. 6). In this embodiment, the temperature compensation integrated substrate 13 is bonded to the back surface of the crystal unit 3.

【0016】温度補償一体化基板13は、各基板に回路
パターンの形成されたセラミックの積層基板14からな
る。積層基板14は四層構造とし、一層目14aには中
央部に、三層目14cには複数の孔を有し、二層目14
bと四層目14dは平板状とする。そして、セラミック
等からなる誘電体15(ab)を三層目の孔に埋設す
る。誘電体の上下面となる基板にはコンデンサを形成す
る電極16が形成される。各誘電体15(ab)は、前
述の温度補償及び短絡防止用の各コンデンサ8,12に
相当する。
The temperature-compensated integrated substrate 13 is composed of a ceramic laminated substrate 14 having a circuit pattern formed on each substrate. The laminated substrate 14 has a four-layer structure. The first layer 14a has a central portion, the third layer 14c has a plurality of holes, and the second layer 14a has a plurality of holes.
b and the fourth layer 14d are flat. Then, a dielectric 15 (ab) made of ceramic or the like is buried in the hole of the third layer. Electrodes 16 for forming a capacitor are formed on a substrate serving as upper and lower surfaces of the dielectric. Each dielectric 15 (ab) corresponds to each of the capacitors 8 and 12 for temperature compensation and short circuit prevention described above.

【0017】積層基板の最上位層(四層目)14dの基
板表面には、高低温用のサーミスタ7(ab)の母材
(Mo等の金属酸化物)、調整抵抗9及び水晶振動子3
の裏面に設けた実装電極と接続する接合端子17が回路
パターンとともに印刷によって形成される。また、一層
目14a底面及び側面には表面実装用の実装電極18を
形成する。なお、各基板14(abcd)の回路パター
ンは図示しないスルーホール(電極貫通孔)によって接
続し、温度補償発振器の回路を形成する。そして、積層
後に一体的に焼成し、高低温用のサーミスタ7(a
b)、調整抵抗9及び接合端子17を一主面に、他主面
に凹部を有する温度補償一体化基板13を形成する。
On the substrate surface of the uppermost layer (fourth layer) 14d of the laminated substrate, a base material (metal oxide such as Mo) of the thermistor 7 (ab) for high / low temperature, an adjustment resistor 9, and a quartz oscillator 3
The connection terminal 17 connected to the mounting electrode provided on the back surface of the substrate is formed by printing together with the circuit pattern. On the bottom and side surfaces of the first layer 14a, mounting electrodes 18 for surface mounting are formed. The circuit patterns of the substrates 14 (abcd) are connected by through holes (electrode through holes) (not shown) to form a circuit of the temperature compensated oscillator. Then, after lamination, they are integrally fired, and thermistors 7 (a
b) A temperature-compensated integrated substrate 13 having the adjustment resistor 9 and the joint terminal 17 on one main surface and a concave portion on the other main surface is formed.

【0018】このようなものでは、温度補償一体化基板
13(積層基板14)の凹部に発振回路4を構成するI
Cチップ5及び周波数調整回路としてのコンデンサ10
を収容する。ICチップ5は、例えばフェースダウンボ
ンディングによって固着される。そして、例えばレーザ
によって、サーミスタ7(ab)及び調整抵抗9に図示
しない切り込みを設け、サーミスタ7の常温時(概ね2
5℃)における抵抗値を調整する。
In such a device, the oscillation circuit 4 constituting the oscillation circuit 4 is formed in a concave portion of the temperature compensation integrated substrate 13 (laminated substrate 14).
C chip 5 and capacitor 10 as frequency adjustment circuit
To accommodate. The IC chip 5 is fixed by, for example, face-down bonding. Then, a notch (not shown) is provided in the thermistor 7 (ab) and the adjustment resistor 9 by, for example, a laser, and the thermistor 7 is operated at room temperature (about
(5 ° C.).

【0019】これにより、温度補償回路2の周波数温度
特性を補償する温度に対する容量特性を得る。そして、
一主面の表面に例えば接合端子17を除いて樹脂等の絶
縁膜を設ける。最後に、水晶振動子3の実装電極(未図
示)と接合端子17を半田等によって接合し、水晶振動
子3の底面に温度補償一体化基板13を装着する。な
お、第3図中の符号19は水晶片、20は導電性接着剤
である。
As a result, a capacitance characteristic with respect to temperature for compensating the frequency temperature characteristic of the temperature compensation circuit 2 is obtained. And
An insulating film such as a resin is provided on the surface of one main surface except for the joining terminal 17, for example. Finally, a mounting electrode (not shown) of the crystal resonator 3 and a bonding terminal 17 are bonded by soldering or the like, and a temperature compensation integrated substrate 13 is mounted on the bottom surface of the crystal resonator 3. In FIG. 3, reference numeral 19 denotes a crystal blank, and reference numeral 20 denotes a conductive adhesive.

【0020】このような構成であれば、温度補償回路2
を構成する高低温用のサーミスタ7(ab)、調整抵抗
9及びコンデンサ8,12を積層基板14に一体化して
温度補償一体化基板13とする。そして、水晶振動子3
の裏面に接合するので、平面面積を小さくしてコンパク
トにする。また、予め、温度補償一体化基板13を作製
して在庫し、水晶振動子3に接合すればよいので、作業
性を高めて生産性を向上する。
With such a configuration, the temperature compensation circuit 2
The temperature compensating integrated substrate 13 is obtained by integrating the high / low temperature thermistor 7 (ab), the adjusting resistor 9 and the capacitors 8, 12 into the laminated substrate 14. And the crystal oscillator 3
Because it is bonded to the back surface of the, the plane area is reduced to make it compact. In addition, since the temperature compensation integrated substrate 13 may be prepared in advance, stocked, and joined to the crystal unit 3, workability is improved and productivity is improved.

【0021】また、温度補償一体化基板13を1チップ
素子として扱うことができ、部品点数を少なくして信頼
性を高める。そして、温度補償回路2は個々の素子から
形成されるので、ノイズ特性を良好に維持して消費電流
も少なく、ディスクリート型の特長を維持する。
Further, the temperature-compensated integrated substrate 13 can be handled as a one-chip element, and the number of components can be reduced to improve reliability. Since the temperature compensating circuit 2 is formed from individual elements, the noise characteristics are maintained well, the current consumption is reduced, and the features of the discrete type are maintained.

【0022】また、積層基板14の一主面には印刷によ
るサーミスタ7及び調整抵抗9を設けたので、レーザ等
によって抵抗値を調整することによって、温度補償回路
2の温度に対する容量特性を容易に調整できる。この例
では、サーミスタ7の母材を印刷によって形成するの
で、これ自体の抵抗値を調整できて調整作業を容易にす
る。
Since the thermistor 7 and the adjustment resistor 9 are provided on one main surface of the laminated substrate 14 by printing, the capacitance of the temperature compensating circuit 2 with respect to temperature can be easily adjusted by adjusting the resistance value with a laser or the like. Can be adjusted. In this example, since the base material of the thermistor 7 is formed by printing, the resistance value of the thermistor 7 itself can be adjusted and the adjustment work is facilitated.

【0023】[0023]

【他の事項】上記実施例では、積層基板14の一主面に
サーミスタ7(ab)と調整抵抗9を印刷によって形成
したが、前述のようにサーミスタ7自体で常温時の抵抗
値を調整できるので調整抵抗9はなくてもよい(請求項
2)。また、サーミスタ7は積層基板14の積層面に、
調整抵抗9は一主面にそれぞれ印刷によって形成しても
よい。
[Other Matters] In the above embodiment, the thermistor 7 (ab) and the adjusting resistor 9 are formed on one main surface of the laminated substrate 14 by printing, but the resistance at room temperature can be adjusted by the thermistor 7 itself as described above. Therefore, the adjusting resistor 9 may not be provided (claim 2). Further, the thermistor 7 is provided on the laminated surface of the laminated substrate 14.
The adjustment resistor 9 may be formed on one main surface by printing.

【0024】この場合、サーミスタ7及び調整抵抗9は
チップ素子とし、サーミスタ7は三層目の孔に、調整抵
抗9は四層目(最上位層)に孔を設けて埋設してもよい
(請求項3)。要するに、積層基板の一主面には、温度
補償回路2の容量特性を制御する、サーミスタ7の抵抗
値を調整できる構成とすればよい。なお、印刷によると
したサーミスタ7(ab)及び調整抵抗は9は、例えば
蒸着であってもよく要は膜であればよい。
In this case, the thermistor 7 and the adjustment resistor 9 may be chip elements, and the thermistor 7 may be embedded in the hole of the third layer and the adjustment resistor 9 may be embedded in the hole of the fourth layer (uppermost layer) ( Claim 3). In short, the main surface of the laminated substrate may be configured to control the capacitance characteristics of the temperature compensation circuit 2 and adjust the resistance value of the thermistor 7. The thermistor 7 (ab) and the adjustment resistor 9 that are formed by printing may be, for example, vapor deposition and may be any film.

【0025】また、積層基板14の凹部を設けた他主面
に実装電極18を、平坦面とした一主面に水晶振動子3
の接合端子17を設けて、平坦面側を水晶振動子3の裏
面に接合したが、一主面に実装電極18を他主面に接合
端子17を設けて、他主面側を水晶振動子3の裏面に接
合してもよい。また、これらの例では高低温用のサーミ
スタ7にコンデンサ8を共用して高低温の温度補償回路
2としたが、高低温用のサーミスタ7にそれぞれコンデ
ンサを並列接続し、これらを直列に接続したものにも適
用できる。
The mounting electrode 18 is provided on the other main surface of the laminated substrate 14 having the concave portion, and the quartz oscillator 3 is provided on one of the flat main surfaces.
And the flat surface side is bonded to the back surface of the crystal unit 3, but the mounting electrode 18 is provided on one main surface and the connection terminal 17 is provided on the other main surface, and the other main surface side is connected to the crystal unit. 3 may be bonded to the back surface. In these examples, the capacitor 8 is shared with the high / low temperature thermistor 7 to form the high / low temperature compensating circuit 2. However, a capacitor is connected in parallel to the high / low temperature thermistor 7 and these are connected in series. It can be applied to things.

【0026】また、直接型に限らず、電圧可変容量ダイ
オードに補償電圧を印加する所謂間接型にも適用できる
(第5図)。すなわち、第4図に示したように、例えば
常温に変曲点を、低温に極大値を、高温に極小値を有す
る周波数温度特性を対象とする。そして、周波数温度特
性を極大値以下の低温領域、極大値から極小値間の常温
領域、及び極小値以上の高温領域とし、それぞれの温度
領域に感応したサーミスタ7(abc)及び調整抵抗9
から補償電圧発生回路を形成する。
The present invention is not limited to the direct type and can be applied to a so-called indirect type in which a compensation voltage is applied to a voltage variable capacitance diode (FIG. 5). That is, as shown in FIG. 4, for example, a frequency temperature characteristic having an inflection point at normal temperature, a maximum value at low temperature, and a minimum value at high temperature is targeted. The frequency temperature characteristics are defined as a low temperature region below the maximum value, a normal temperature region between the maximum value and the minimum value, and a high temperature region above the minimum value, and the thermistor 7 (abc) and the adjustment resistor 9 sensitive to the respective temperature regions.
To form a compensation voltage generation circuit.

【0027】これにより、各温度領域に応答した補償電
圧が水晶振動子3に接続した電圧可変容量ダイオード1
9に印加される。そして、電圧可変容量ダイオード19
の容量変化によって温度補償がなされる。このような間
接型でも、前述したように積層基板にサーミスタ7及び
調整抵抗9を形成することによって、温度補償一体化基
板13を得ることができる。この場合、電圧可変容量ダ
イオード19は、積層基板14の凹部にICチップ5及
び周波数調整用のコンデンサ10とともに収容される。
As a result, the compensation voltage responsive to each temperature range is applied to the voltage variable capacitance diode 1 connected to the quartz oscillator 3.
9 is applied. And the voltage variable capacitance diode 19
The temperature is compensated by the change in the capacitance of. Even in such an indirect type, the temperature compensation integrated substrate 13 can be obtained by forming the thermistor 7 and the adjustment resistor 9 on the laminated substrate as described above. In this case, the voltage variable capacitance diode 19 is housed in the concave portion of the multilayer substrate 14 together with the IC chip 5 and the capacitor 10 for frequency adjustment.

【0028】また、積層基板14の三層目の孔には、温
度補償用及び短絡防止用のコンデンサ8、12に対応し
た誘電体15(ab)を埋設したが、予め電極の形成さ
れたコンデンサを埋設してもよい。この場合、例えば電
源とアース間のバイパスコンデンサや次段との結合コン
デンサ等を埋設してもよい。
The dielectric 15 (ab) corresponding to the capacitors 8 and 12 for temperature compensation and short circuit prevention is buried in the third layer hole of the laminated board 14, but the capacitor 15 is formed with electrodes in advance. May be buried. In this case, for example, a bypass capacitor between the power supply and the ground or a coupling capacitor with the next stage may be embedded.

【0029】[0029]

【発明の効果】本発明は、積層基板の凹部に発振回路を
構成するICチップを収容し、温度に感応して抵抗値の
変化するサーミスタを含む温度補償素子を積層基板に内
蔵して温度補償一体化基板とし、これを水晶振動子に接
合するので、ディスクリート型の特長を生かした、作業
性に優れて小型な温度補償発振器を提供できる。
According to the present invention, a temperature compensation device is provided in which a temperature compensating element including a thermistor whose resistance value changes in response to temperature is housed in a laminated substrate, in which an IC chip constituting an oscillation circuit is accommodated in a concave portion of the laminated substrate. Since an integrated substrate is formed and bonded to the crystal unit, a small temperature-compensated oscillator excellent in workability and taking advantage of the discrete type can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を説明する温度補償一体化基
板の断面図である。
FIG. 1 is a cross-sectional view of a temperature-compensated integrated substrate explaining one embodiment of the present invention.

【図2】本発明の一実施例を説明する温度補償一体化基
板の平面図である。
FIG. 2 is a plan view of a temperature-compensated integrated substrate explaining one embodiment of the present invention.

【図3】本発明の一実施例による温度補償発振器の一部
を破断した側面図である。
FIG. 3 is a partially cutaway side view of the temperature compensated oscillator according to one embodiment of the present invention.

【図4】本発明が適用される水晶発振器の他の周波数温
度特性図である。
FIG. 4 is another frequency temperature characteristic diagram of the crystal oscillator to which the present invention is applied.

【図5】本発明が適用される間接型の温度補償回路によ
る温度補償発振器の回路図である。
FIG. 5 is a circuit diagram of a temperature compensated oscillator using an indirect temperature compensation circuit to which the present invention is applied.

【図6】従来例を説明する温度補償発振器の回路図であ
る。
FIG. 6 is a circuit diagram of a temperature-compensated oscillator explaining a conventional example.

【図7】従来例を説明する温度補償発振器の構造図であ
る。
FIG. 7 is a structural diagram of a temperature-compensated oscillator explaining a conventional example.

【図8】従来例を説明する水晶発振器の周波数温度特性
図である。
FIG. 8 is a frequency temperature characteristic diagram of a crystal oscillator explaining a conventional example.

【符号の説明】[Explanation of symbols]

1 水晶発振器、、2 温度補償回路、3 水晶振動
子、4 発振回路、5ICチップ、8、10、12 コ
ンデンサ、7 サーミスタ、9 調整抵抗、11 基
板、13 温度補償一体化基板、14 積層基板、15
誘電体、16電極、17 接合端子、18 実装電
極、19 水晶片、20 導電性接着剤.
1 crystal oscillator, 2 temperature compensation circuit, 3 crystal oscillator, 4 oscillation circuit, 5 IC chip, 8, 10, 12 capacitor, 7 thermistor, 9 adjustment resistor, 11 substrate, 13 integrated temperature compensation substrate, 14 laminated substrate, Fifteen
Dielectric, 16 electrodes, 17 bonding terminals, 18 mounting electrodes, 19 quartz pieces, 20 conductive adhesive.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水晶発振器の周波数温度特性を補償し、水
晶振動子の実装電極と接続する入力電極を有して、発振
回路を構成するICチップが収容される凹部を他主面に
設けた積層基板からなる平板状の温度補償一体化基板で
あって、前記積層基板に温度に感応して抵抗値の変化す
る少なくともサーミスタを含む温度補償素子を内蔵した
ことを特徴とする温度補償一体化基板。
1. A concave portion for compensating a frequency temperature characteristic of a crystal oscillator, having an input electrode connected to a mounting electrode of a crystal oscillator, and accommodating an IC chip constituting an oscillation circuit is provided on another main surface. A flat temperature-compensated integrated substrate comprising a laminated substrate, wherein the laminated substrate incorporates a temperature-compensating element including at least a thermistor whose resistance value changes in response to temperature. .
【請求項2】前記サーミスタは前記積層基板の一主面に
形成された膜からなる請求項1の温度補償一体化基板。
2. The temperature-compensated integrated substrate according to claim 1, wherein said thermistor comprises a film formed on one main surface of said laminated substrate.
【請求項3】前記サーミスタは膜として前記積層基板の
積層面に形成され、又はチップ素子として前記積層基板
に埋設され、前記積層基板の一主面には前記サーミスタ
の常温時の抵抗値を調整する調整抵抗を設けた請求項1
の温度補償一体化基板。
3. The thermistor is formed as a film on a laminated surface of the laminated substrate, or is embedded as a chip element in the laminated substrate, and one main surface of the laminated substrate adjusts a resistance value of the thermistor at room temperature. 2. An adjustment resistor provided to the control circuit.
Temperature compensation integrated substrate.
【請求項4】請求項1、2又は3の温度補償一体化基板
を水晶振動子の裏面に接合してなる温度補償発振器。
4. A temperature-compensated oscillator comprising the temperature-compensated integrated substrate according to claim 1, 2 or 3 joined to the back surface of a crystal unit.
JP2000118923A 2000-04-20 2000-04-20 Integrated temperature-compensated circuit board and temperature-compensated crystal oscillator Pending JP2001308640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000118923A JP2001308640A (en) 2000-04-20 2000-04-20 Integrated temperature-compensated circuit board and temperature-compensated crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000118923A JP2001308640A (en) 2000-04-20 2000-04-20 Integrated temperature-compensated circuit board and temperature-compensated crystal oscillator

Publications (1)

Publication Number Publication Date
JP2001308640A true JP2001308640A (en) 2001-11-02

Family

ID=18629983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000118923A Pending JP2001308640A (en) 2000-04-20 2000-04-20 Integrated temperature-compensated circuit board and temperature-compensated crystal oscillator

Country Status (1)

Country Link
JP (1) JP2001308640A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085739A1 (en) * 2002-04-05 2003-10-16 Murata Manufacturing Co., Ltd. Circuit module and method for manufacturing the same
JP2005317847A (en) * 2004-04-30 2005-11-10 Taiyo Yuden Co Ltd High frequency circuit module and radio communication applications
JP2007158228A (en) * 2005-12-08 2007-06-21 Nichicon Corp Temperature compensation circuit substrate
JP2009177522A (en) * 2008-01-24 2009-08-06 Nippon Dempa Kogyo Co Ltd Method of adjusting frequency of crystal oscillator
JP2011205713A (en) * 2011-07-19 2011-10-13 Epson Toyocom Corp Colpitts oscillator circuit
US8049572B2 (en) 2008-02-21 2011-11-01 Nihon Dempa Kogyo Co., Ltd. Oven-controlled crystal oscillator
JP2012249265A (en) * 2011-05-31 2012-12-13 Kyocera Crystal Device Corp Piezoelectric device
JP2019068304A (en) * 2017-10-02 2019-04-25 株式会社大真空 Piezoelectric vibration device
CN111033776A (en) * 2017-07-20 2020-04-17 皇家飞利浦有限公司 Actuator structure and actuating method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085739A1 (en) * 2002-04-05 2003-10-16 Murata Manufacturing Co., Ltd. Circuit module and method for manufacturing the same
JP2005317847A (en) * 2004-04-30 2005-11-10 Taiyo Yuden Co Ltd High frequency circuit module and radio communication applications
US7409190B2 (en) 2004-04-30 2008-08-05 Taiyo Yuden Co., Ltd Radio-frequency circuit module and radio communication apparatus
JP4553627B2 (en) * 2004-04-30 2010-09-29 太陽誘電株式会社 High frequency circuit module and wireless communication device
JP2007158228A (en) * 2005-12-08 2007-06-21 Nichicon Corp Temperature compensation circuit substrate
JP2009177522A (en) * 2008-01-24 2009-08-06 Nippon Dempa Kogyo Co Ltd Method of adjusting frequency of crystal oscillator
US8049572B2 (en) 2008-02-21 2011-11-01 Nihon Dempa Kogyo Co., Ltd. Oven-controlled crystal oscillator
JP2012249265A (en) * 2011-05-31 2012-12-13 Kyocera Crystal Device Corp Piezoelectric device
JP2011205713A (en) * 2011-07-19 2011-10-13 Epson Toyocom Corp Colpitts oscillator circuit
CN111033776A (en) * 2017-07-20 2020-04-17 皇家飞利浦有限公司 Actuator structure and actuating method thereof
JP2019068304A (en) * 2017-10-02 2019-04-25 株式会社大真空 Piezoelectric vibration device

Similar Documents

Publication Publication Date Title
US7759844B2 (en) Surface-mount type crystal unit
JP3285847B2 (en) Surface mount type crystal oscillator
US7471162B2 (en) Surface mount type temperature-compensated crystal oscillator
US7872537B2 (en) Surface-mount crystal oscillator
WO2001058007A1 (en) Vessel for oscillation circuits using piezoelectric vibrator, method of producing the same, and oscillator
US6847265B2 (en) Temperature-compensated crystal oscillator
JP2009065437A (en) Crystal device
JP3980954B2 (en) Surface mount crystal oscillator
JP4712493B2 (en) Temperature compensated crystal oscillator
US20060170510A1 (en) Mounting structure and method of surface-mount crystal oscillator
JP2001308640A (en) Integrated temperature-compensated circuit board and temperature-compensated crystal oscillator
US6781484B2 (en) SAW filter module capable of being easily miniaturized
JP2004320417A (en) Temperature compensated piezoelectric oscillator
JP2000114877A (en) Piezoelectric oscillator
JP5072266B2 (en) Temperature-compensated crystal oscillator for surface mounting
JP2010220152A (en) Surface-mounted crystal device
JP5100211B2 (en) Crystal oscillator for surface mounting
US20070241827A1 (en) Surface mount crystal oscillator
JP2002076775A (en) Crystal oscillator for surface mounting
JP2001177346A (en) Piezoelectric oscillator
JP2022032562A (en) Vibration device
JP2000124738A (en) Piezoelectric oscillator and piezoelectric vibration device
US20230163702A1 (en) Piezoelectric device
KR20030055680A (en) Temperature compensated crystal oscillator and method for manufacturing the same
JP2001077627A (en) Temperature-compensating piezoelectric oscillator