JP2009176917A - Nonaqueous electrolyte storage battery device - Google Patents

Nonaqueous electrolyte storage battery device Download PDF

Info

Publication number
JP2009176917A
JP2009176917A JP2008013465A JP2008013465A JP2009176917A JP 2009176917 A JP2009176917 A JP 2009176917A JP 2008013465 A JP2008013465 A JP 2008013465A JP 2008013465 A JP2008013465 A JP 2008013465A JP 2009176917 A JP2009176917 A JP 2009176917A
Authority
JP
Japan
Prior art keywords
external lead
lead terminal
storage device
electricity storage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008013465A
Other languages
Japanese (ja)
Inventor
Toshiyuki Miwa
俊之 美和
Shinichi Ueki
伸一 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2008013465A priority Critical patent/JP2009176917A/en
Publication of JP2009176917A publication Critical patent/JP2009176917A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte storage battery device having an external lead terminal structure that cannot generate heat easily even due to a large current charging/discharging. <P>SOLUTION: A nonaqueous electrolyte storage battery device 1b seals an electrode assembly 1a in which a positive electrode 10p made of a carbon material and a negative electrode 10n made of a material capable of lithium storage or discharge are disposed opposite to each other via a separator 30 together with the electrolyte using lithium salt as a supporting electrolyte. External lead terminals 40a made of metal plates are connected with respective positive and negative electrode ends 12p and 12n on the electrode assembly, and a heat radiation part 60a is formed on the external lead terminals. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、非水電解質蓄電デバイスに関し、具体的には、炭素材料からなる正極と、リチウムの吸蔵・放出が可能な材料からなる負極とがセパレータを介して対向配置されてなる電極体をリチウム塩を支持電解質とした電解液とともに密封してなる非水電解質蓄電デバイスに関する。具体的には、非水電解質蓄電デバイスにおける発熱防止技術に関し、とくに、上記電極体を多数積層した構造の非水電解質蓄電デバイスに利用して有効である。   The present invention relates to a non-aqueous electrolyte electricity storage device, and specifically, an electrode body in which a positive electrode made of a carbon material and a negative electrode made of a material capable of occluding and releasing lithium are arranged to face each other with a separator interposed therebetween. The present invention relates to a non-aqueous electrolyte electricity storage device that is hermetically sealed together with an electrolyte containing a salt as a supporting electrolyte. Specifically, the present invention relates to a heat generation prevention technique in a non-aqueous electrolyte power storage device, and is particularly effective when used for a non-aqueous electrolyte power storage device having a structure in which a large number of the electrode bodies are stacked.

図5に一般的な非水電解質蓄電デバイスの基本構造を示した。(A)は非水電解質蓄電デバイス1dの透視平面図であり、(B)はその側断面図である。非水電解質蓄電デバイス1dにおける正負それぞれの極(10p,10n)は、集電体となるシート状導電体(11p,11n)の表面にそれぞれの極の活物質を塗布してなり、非水電解質蓄電デバイス1dは、この正負両極(10p,10n)をセパレータ30を介して対向配置させた積層構造をなす電極体(積層体)を基本構造とし、その積層体をラミネートフィルムをヒートシールしてなる袋状の外装体100内に電解液とともに収納した後、袋の口を真空封止してなっている。   FIG. 5 shows a basic structure of a general nonaqueous electrolyte electricity storage device. (A) is a perspective plan view of the nonaqueous electrolyte electricity storage device 1d, and (B) is a side sectional view thereof. Each of the positive and negative electrodes (10p, 10n) in the nonaqueous electrolyte electricity storage device 1d is formed by applying an active material of each electrode on the surface of a sheet-like conductor (11p, 11n) serving as a current collector. The electricity storage device 1d has a basic structure of an electrode body (laminated body) having a laminated structure in which the positive and negative electrodes (10p, 10n) are arranged to face each other with a separator 30 therebetween, and the laminated body is heat-sealed with a laminated film. After being accommodated in the bag-shaped outer package 100 together with the electrolytic solution, the bag mouth is vacuum-sealed.

非水電解質蓄電デバイス1dにおけるシート状導電体(11p,11n)には電力の取り出し口となる電極部(12p,12n)が形成され、この電極部(12p,12n)に、タブと呼ばれる金属プレートからなる外部リード端子40dが超音波溶接などによって接続されている。なお、ラミネートフィルムは、外部リード端子40dの延長方向の途中の所定位置101でヒートシールされて、外部リード端子40dの先端は外装体100の外に露出している。   The sheet-like conductors (11p, 11n) in the nonaqueous electrolyte electricity storage device 1d are formed with electrode portions (12p, 12n) serving as power outlets, and a metal plate called a tab is formed on the electrode portions (12p, 12n). The external lead terminal 40d made of is connected by ultrasonic welding or the like. The laminate film is heat-sealed at a predetermined position 101 in the extension direction of the external lead terminal 40d, and the tip of the external lead terminal 40d is exposed outside the exterior body 100.

非水電解質蓄電デバイスは、急速充放電が可能である本来の特性とともに、高いエネルギー容量特性を得るために、図5に示したような単体の積層体によって構成するより、例えば、30〜50層にも積層した多層構造とする場合が多い。そして、この多層構造により、非水電解質蓄電デバイスは、大電流による充放電が可能となり、風力発電の負荷平準化装置、瞬低対策装置、自動車における回生電力の蓄電用途などに利用されることが期待されている。   In order to obtain high energy capacity characteristics as well as the original characteristics capable of rapid charge / discharge, the non-aqueous electrolyte electricity storage device has, for example, 30 to 50 layers rather than a single laminate as shown in FIG. In many cases, a multi-layered structure is used. This multi-layer structure enables the non-aqueous electrolyte electricity storage device to be charged / discharged with a large current, and can be used for wind power generation load leveling devices, instantaneous voltage reduction devices, regenerative power storage applications in automobiles, etc. Expected.

しかしながら、多層構造の非水電解質蓄電デバイスでは、各層を構成する各積層体のそれぞれの電極部と外部リード端子とを一括して接続することになり、大電流による充放電を行えば、外部リード端子にその大電流が集中して外部リード端子が発熱する。そして、その熱が非水電解質蓄電デバイスの本体に伝わり素子寿命を短くしてしまう、という問題があった。   However, in a non-aqueous electrolyte electricity storage device with a multilayer structure, each electrode part of each laminate constituting each layer and an external lead terminal are connected together, and if charging / discharging with a large current is performed, external leads The large current concentrates on the terminal and the external lead terminal generates heat. And there was a problem that the heat | fever was transmitted to the main body of a nonaqueous electrolyte electrical storage device, and element lifetime was shortened.

本発明は上記課題に鑑みなされたもので、大電流による充放電によっても発熱しにくい外部リード端子構造を備えた非水電解質蓄電デバイスを提供することを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a non-aqueous electrolyte electricity storage device having an external lead terminal structure that does not easily generate heat even when charged and discharged by a large current.

上記目的を達成するための本発明は、炭素材料からなる正極と、リチウムの吸蔵・放出が可能な材料からなる負極とがセパレータを介して対向配置されてなる電極体をリチウム塩を支持電解質とした電解液とともに密封してなる非水電解質蓄電デバイスであって、
前記電極体における正負それぞれの電極端部に、金属プレートからなる外部リード端子が接続され、当該外部リード端子には、放熱部が形成されていることを特徴としている。
In order to achieve the above object, the present invention provides an electrode body in which a positive electrode made of a carbon material and a negative electrode made of a material capable of occluding and releasing lithium are arranged to face each other with a separator interposed between a lithium salt and a supporting electrolyte. A non-aqueous electrolyte electricity storage device that is sealed together with the electrolyte solution,
An external lead terminal made of a metal plate is connected to positive and negative electrode ends of the electrode body, and a heat radiating portion is formed in the external lead terminal.

前記放熱部を前記金属プレートの表面に突設された多数の突起とした非水電解質蓄電デバイス、あるいは、前記放熱部を外部リード端子を横断するように形成されたブロックとするともに、当該ブロックの表面に多数の孔を穿設した非水電解質蓄電デバイスとすることができる。上記いずれかの非水電解質蓄電デバイスにおいて、前記放熱部には、前記外部リード端子の表面に沿う液体流路が含まれていてもよい。   The heat dissipating part is a non-aqueous electrolyte electricity storage device having a large number of protrusions protruding on the surface of the metal plate, or the heat dissipating part is a block formed so as to cross an external lead terminal, and the block A nonaqueous electrolyte electricity storage device having a large number of holes on the surface can be obtained. In any one of the above non-aqueous electrolyte electricity storage devices, the heat radiating portion may include a liquid channel along the surface of the external lead terminal.

非水電解質蓄電デバイスの電極端部に接続される外部リード端子に放熱部を備えさえることで、外部リード端子に大電流が流れても発熱を抑止し、非水電解質蓄電デバイスの寿命が熱によって短命化することを防止でき、非水電解質蓄電デバイスの信頼性を高めることができる。   Even if the external lead terminal connected to the electrode end of the non-aqueous electrolyte electricity storage device is equipped with a heat dissipation part, heat generation is suppressed even if a large current flows through the external lead terminal, and the life of the non-aqueous electrolyte electricity storage device is Shortening of life can be prevented, and the reliability of the nonaqueous electrolyte electricity storage device can be improved.

===非水電解質蓄電デバイスの構造===
本発明が対象とする非水電解質蓄電デバイス(以下、蓄電素子)の一例として、図5に示した蓄電素子1dを多層積層した構造の蓄電素子を挙げる。図1に当該多層構造の蓄電素子の概略を示した。(A)に示すように、金属箔などのシート状集電体11p上に活性炭をシート状に成形した正極10pと、リチウムの吸蔵・放出が可能な炭素材料を主成分とする負極合剤をシート状集電体11n上に塗布してなる負極10nをセパレータ30を介して積層した構造を一層分の積層体1aとし、その一層分の積層体1aを多層積層した積層構造体50を基本構造としている。なお、この例では、負極10n側のシート状集電体11n上で負極10nが形成されていない余白にリチウム金属20が貼着されて、このリチウム金属20から同じシート状集電体11n上に形成された負極10nにリチウムイオンを拡散する構成となっている。正極10pと負極10nが形成されるそれぞれのシート状集電体(11p,11n)には、電極部(12p,12n)となる突起が形成され、正極10pと負極10nは、それぞれの電極部(12p,12n)が互いに反対方向に突設されるように積層されている。そして、(B)に示すように、この積層状態にある電極部(12p,12n)に、外部リート端子40が超音波溶接などによって接続される。そして、図5に示したように、外部リード端子40の先端側を外部に露出させた状態で、積層構造体50がラミネートフィルムの外装体内に密封されて多層構造の蓄電素子となる。本発明では、蓄電素子における外部リード端子40の形状や構造を工夫することで、外部リード端子40の発熱を防止し、蓄電素子の信頼性を向上させることができる。
=== Structure of non-aqueous electrolyte electricity storage device ===
As an example of a nonaqueous electrolyte electricity storage device (hereinafter, electricity storage element) targeted by the present invention, an electricity storage element having a structure in which the electricity storage elements 1d shown in FIG. FIG. 1 shows an outline of the power storage element having the multilayer structure. As shown in (A), a positive electrode 10p in which activated carbon is formed into a sheet shape on a sheet-shaped current collector 11p such as a metal foil, and a negative electrode mixture mainly composed of a carbon material capable of occluding and releasing lithium. A structure in which a negative electrode 10n applied on a sheet-like current collector 11n is laminated with a separator 30 interposed therebetween is used as a laminated body 1a, and a laminated structure 50 in which the laminated body 1a is laminated in multiple layers is a basic structure. It is said. In this example, lithium metal 20 is attached to the blank where the negative electrode 10n is not formed on the sheet-shaped current collector 11n on the negative electrode 10n side, and the lithium metal 20 is applied to the same sheet-shaped current collector 11n. Lithium ions are diffused into the formed negative electrode 10n. The respective sheet-like current collectors (11p, 11n) on which the positive electrode 10p and the negative electrode 10n are formed are formed with protrusions to be electrode portions (12p, 12n), and the positive electrode 10p and the negative electrode 10n are connected to the respective electrode portions ( 12p, 12n) are stacked so as to protrude in opposite directions. And as shown to (B), the external REIT terminal 40 is connected to the electrode part (12p, 12n) in this laminated state by ultrasonic welding or the like. Then, as shown in FIG. 5, the laminated structure 50 is sealed in the outer package of the laminate film in a state where the leading end side of the external lead terminal 40 is exposed to the outside, so that a multilayer storage element is obtained. In the present invention, by devising the shape and structure of the external lead terminal 40 in the power storage element, heat generation of the external lead terminal 40 can be prevented and the reliability of the power storage element can be improved.

===第1の実施例===
本発明の第1の実施例は、発生した熱を大気中に効率よく放出するヒートシンク方式を採用した蓄電素子である。当該方式において、効果的に熱を放出するためには、発熱箇所に金属などの熱伝導率が高い材質を使い、かつ、その箇所の形状を大気にさらされる面積が大きくなるような形状に形成することが必要となる。図2に第1の実施例に係る蓄電素子1bの概略図を示した。(A)は、正極と負極の一方の電極側における外部リード端子40aの外観形状を示している。なお、この図では、外装体を省略している。図に示すように、外部リード端子60aには、その本体となる金属平板41の表面に、放熱部60aが形成されている。
=== First Embodiment ===
The first embodiment of the present invention is a power storage element that employs a heat sink method that efficiently releases generated heat into the atmosphere. In this method, in order to effectively release heat, a material with high thermal conductivity such as metal is used for the heat generating portion, and the shape of the portion is formed so as to increase the area exposed to the atmosphere. It is necessary to do. FIG. 2 shows a schematic diagram of the electricity storage device 1b according to the first example. (A) has shown the external shape of the external lead terminal 40a in the one electrode side of a positive electrode and a negative electrode. In addition, the exterior body is abbreviate | omitted in this figure. As shown in the figure, the external lead terminal 60a has a heat radiating portion 60a formed on the surface of a metal flat plate 41 serving as a main body thereof.

(B)に当該放熱部60aの拡大図を示した。平板状の外部リード端子本体41の表面に、放熱部60aとして、多数の柱状の突起61が形成されている。この構成では、多数の突起61のそれぞれの表面から熱を放出するようになっている。図示した例では、放熱部60aと外部リード端子本体41とは個別に構成され、放熱部60aは、金属ブロックを切削加工するなどして平坦部62状に突起61が一体的に形成された形状をなしている。そして、平坦部62の下面を外部リード端子本体となる金属平板41に溶接している。もちろん、外部リード端子40aに突起61を一体的に備えさせてもよい。なお、(C)は、第1の実施例の変更形態における蓄電素子の概略であり、当該変更形態における外部リード端子40bの構造を示している。この例では、突起61に変えて、多数の孔63が穿設された金属ブロックを放熱部60bとしている。この構成では、この孔63の内壁面によって放熱面積を拡大させている。   The enlarged view of the said thermal radiation part 60a was shown to (B). A large number of columnar protrusions 61 are formed on the surface of the flat external lead terminal body 41 as the heat radiating portion 60a. In this configuration, heat is released from the respective surfaces of the multiple protrusions 61. In the illustrated example, the heat radiating portion 60a and the external lead terminal main body 41 are configured separately, and the heat radiating portion 60a has a shape in which protrusions 61 are integrally formed in a flat portion 62 shape by cutting a metal block or the like. I am doing. And the lower surface of the flat part 62 is welded to the metal flat plate 41 used as an external lead terminal main body. Of course, the protrusion 61 may be integrally provided on the external lead terminal 40a. In addition, (C) is the outline of the electrical storage element in the modification of the first example, and shows the structure of the external lead terminal 40b in the modification. In this example, instead of the protrusion 61, a metal block having a large number of holes 63 is used as the heat radiating portion 60b. In this configuration, the heat radiation area is enlarged by the inner wall surface of the hole 63.

===第2の実施例===
本発明の第2の実施例に係る蓄電素子は、第1の実施例におけるヒートシンク方式に対し、水冷(液冷)方式を採用している。図3に第2の実施例における蓄電素子の概略を示した。図2(A)と同様に、図3(A)では、外装体を省略し、正極と負極の一方の電極側の外部リード端子の外観形状を示している。この第2の実施例における蓄電素子1cでは、外部リード端子40cに液体流路64を備えた放熱部60cが形成されている。(B)に当該放熱部60cの拡大図を示した。この例において、放熱部60cは、平板状の外部リード端子本体41を横断する角柱形状をなす金属ブロックであり、その角柱状金属ブロックを縦貫するように穿設された孔を液体流路64としている。そして、例えば、(C)に示すように、この放熱部60cをポンプ65が接続されている液体循環路66に挿入し、その液体循環路66の端部67を液体流路64の2つの開口に接続することで、放熱部60cの一方の開口から導入された液体が熱を奪い、他方の開口から導出され、循環路66中で液体が冷却され、その冷却された液体が再度放熱部60cに導入されるのである。もちろん、循環路66の途上に熱交換手段が挿入されていても良い。
=== Second Embodiment ===
The electricity storage device according to the second embodiment of the present invention adopts a water cooling (liquid cooling) method as compared with the heat sink method in the first embodiment. FIG. 3 shows an outline of the storage element in the second embodiment. As in FIG. 2A, in FIG. 3A, the exterior body is omitted, and the external shape of the external lead terminal on one electrode side of the positive electrode and the negative electrode is shown. In the electricity storage device 1c according to the second embodiment, the heat radiating portion 60c including the liquid flow path 64 is formed in the external lead terminal 40c. The enlarged view of the said thermal radiation part 60c was shown to (B). In this example, the heat radiating portion 60 c is a metal block having a rectangular column shape that crosses the flat plate-like external lead terminal body 41, and a hole drilled so as to pass through the rectangular columnar metal block is used as the liquid channel 64. Yes. Then, for example, as shown in (C), the heat radiating portion 60 c is inserted into the liquid circulation path 66 to which the pump 65 is connected, and the end 67 of the liquid circulation path 66 is connected to two openings of the liquid flow path 64. , The liquid introduced from one opening of the heat radiating part 60c takes heat, is led out from the other opening, the liquid is cooled in the circulation path 66, and the cooled liquid is again supplied to the heat radiating part 60c. It will be introduced to. Of course, heat exchange means may be inserted in the middle of the circulation path 66.

なお、この第2の実施例においても、放熱部60cが一体的に形成された外部リード端子40cとしてもよいし、放熱部60cと外部リード端子本体41とが別体であってもよい。図4に、放熱部60cと外部リード端子本体41とを別体とした場合の外部リード端子40cの構造を液体流路64の断面によって示した。(A)(B)は、外部リード端子本体となる金属平板41の上下から、両端に開口を有する中空角柱を縦に切断した形状の2つの金属ブロック(68,69)で挟持することで放熱部60cを構成した例である。この場合、金属平板41を、2つの金属ブロック(68,69)でそのまま挟持して金属平板41が中空筒内を貫通するようにしてもよいし(A)、金属平板を中空円筒の内壁面に沿って湾曲させてもよい(B)。   In the second embodiment as well, the external lead terminal 40c integrally formed with the heat radiating portion 60c may be used, or the heat radiating portion 60c and the external lead terminal main body 41 may be separate. In FIG. 4, the structure of the external lead terminal 40 c in the case where the heat radiating portion 60 c and the external lead terminal main body 41 are separated is shown by a cross section of the liquid channel 64. (A) and (B) radiate heat by sandwiching two hollow metal blocks (68, 69) in the shape of a vertically cut hollow prism having openings at both ends from the top and bottom of the metal flat plate 41 serving as the external lead terminal body. It is the example which comprised the part 60c. In this case, the metal flat plate 41 may be directly sandwiched between the two metal blocks (68, 69) so that the metal flat plate 41 penetrates through the hollow cylinder (A), or the metal flat plate may be used as the inner wall surface of the hollow cylinder. (B).

なお、第2の実施例では、導電性の冷却液を使うと漏電してしまう。そこで、導電性がある冷却液を用いる場合には、外部リード端子本体41が冷却液にさらされない構成が必要となる。冷却液が接触する部分に絶縁膜を形成してもよいが、例えば、同図(C)に示す放熱部60dのように、上下の金属ブロック(68,69)にそれぞれ個別に液体流路となる孔(64a,64b)を穿設して2系統の液体流路(64a,64b)を設け、冷却液が直接外部リード端子本体41に触れない構成としてもよい。そして、2系統の液体流路(64a,64b)を1本の液体循環路に合流させればよい。   In the second embodiment, if a conductive coolant is used, electric leakage occurs. Therefore, when a conductive coolant is used, a configuration in which the external lead terminal body 41 is not exposed to the coolant is required. An insulating film may be formed at the portion where the cooling liquid comes into contact. For example, as in the heat dissipating part 60d shown in FIG. The holes (64a, 64b) may be formed to provide two liquid flow paths (64a, 64b) so that the coolant does not directly touch the external lead terminal body 41. And what is necessary is just to join two liquid flow paths (64a, 64b) to one liquid circulation path.

もちろん、第2の実施例においては、(A)(B)に示した放熱部60cに2系統以上の液体流路を設けたり、(C)に示した放熱部60dに3系統以上の液体流路を形成したりしてもよい。当然のことながら、放熱部(60c,60d)における液体流路の断面形状は円でなくてもよい。当然、外観形状も角柱に限るものではない。実施例1に示したように、表面積を増やすための突起や孔が表面に形成された外観形状とすることも可能である。液体流路自体も直線ではなく、例えば、葛折れ形状などでもよい。外部リード端子の表面に沿って液体が流れる形状であれば適宜な流路形状が考えられる。   Of course, in the second embodiment, two or more liquid flow paths are provided in the heat dissipating part 60c shown in (A) and (B), or three or more liquid flow paths are provided in the heat dissipating part 60d shown in (C). A road may be formed. As a matter of course, the cross-sectional shape of the liquid flow path in the heat radiating section (60c, 60d) may not be a circle. Of course, the external shape is not limited to a prism. As shown in Example 1, it is also possible to have an external shape in which protrusions and holes for increasing the surface area are formed on the surface. The liquid flow path itself is not a straight line, and may be, for example, a twisted shape. An appropriate flow path shape can be considered as long as the liquid flows along the surface of the external lead terminal.

===比較実験===
本発明の放熱部を備えた蓄電素子の放熱性能を確認するために、図2(A)および(B)に示した突起による放熱部60aが形成された外部リード端子40aを取り付けた第1の実施例に係る蓄電素子(サンプル1)と、上記図2(A)および(B)に示した放熱部60cが形成された外部リード端子を取り付けた第2の実施例に係る蓄電素子(サンプル2)と、図5に示した従来の蓄電素子、すなわち、放熱部が形成されていない平板状の外部リード端子40dを取り付けた蓄電素子(サンプル3)を作成し、各サンプルに対して高電流での充放電を行った。なお、各サンプルは、外部リード端子以外の構造は全て同じとしている。また、サンプル2については、液体流路に冷却水を通過させながら充放電を行った。そして、各サンプルの発熱状態を観察したところ、本発明に係る蓄電素子(サンプル1,2)は、従来の蓄電素子であるサンプル3と比較して低い温度を維持することができた。すなわち、本発明の有効性が確認できた。
=== Comparison experiment ===
In order to confirm the heat dissipation performance of the electricity storage device including the heat dissipation portion of the present invention, the first lead terminal 40a having the external lead terminal 40a formed with the heat dissipation portion 60a formed by the protrusions shown in FIGS. The electricity storage device (sample 1) according to the second embodiment to which the electricity storage device (sample 1) according to the example and the external lead terminal formed with the heat radiation portion 60c shown in FIGS. 2 (A) and 2 (B) are attached. ) And the conventional power storage element shown in FIG. 5, that is, a power storage element (sample 3) to which a flat external lead terminal 40d without a heat radiating portion is attached is prepared. Was charged and discharged. Each sample has the same structure except for the external lead terminals. Sample 2 was charged and discharged while passing cooling water through the liquid channel. And when the heat-generation state of each sample was observed, the electrical storage element (samples 1 and 2) which concerns on this invention was able to maintain low temperature compared with the sample 3 which is a conventional electrical storage element. That is, the effectiveness of the present invention was confirmed.

===本発明の適用範囲===
上記実施例における蓄電素子は、正負の電極間にセパレータを介在させた電極体が、シート状の正極と負極をセパレータを介して積層させた構造で、さらに、一組の正負極からなる積層体を多数積層した構造であった。本発明に係る蓄電素子は、このような多層構造に限らず、一層の積層体からなる蓄電素子であってもよい。また、シート状の正極と負極とをセパレータを介して対向配置した積層体を巻回した構造の電極体を備えた蓄電素子であってもよい。すなわち、電極体に外部リード端子を取り付けた状態で使用される蓄電素子であれば、本発明の対象となり得る。
=== Applicability of the present invention ===
The electricity storage device in the above embodiment has a structure in which an electrode body in which a separator is interposed between positive and negative electrodes is formed by laminating a sheet-like positive electrode and a negative electrode with a separator interposed therebetween, and a laminated body including a pair of positive and negative electrodes It was the structure which laminated | stacked many. The electricity storage device according to the present invention is not limited to such a multilayer structure, and may be an electricity storage device comprising a single layered product. Moreover, the electrical storage element provided with the electrode body of the structure which wound the laminated body which arrange | positioned the sheet-like positive electrode and the negative electrode through the separator. That is, any power storage element that is used with the external lead terminal attached to the electrode body can be the subject of the present invention.

本発明が対象とする非水電解質蓄電デバイスの一例を示す図である。It is a figure which shows an example of the nonaqueous electrolyte electrical storage device which this invention makes object. 本発明の第1の実施例に係る非水電解質蓄電デバイスの放熱機構を示す図である。It is a figure which shows the thermal radiation mechanism of the nonaqueous electrolyte electrical storage device which concerns on 1st Example of this invention. 本発明の第2の実施例に係る非水電解質蓄電デバイスの放熱機構を示す図である。It is a figure which shows the thermal radiation mechanism of the nonaqueous electrolyte electrical storage device which concerns on the 2nd Example of this invention. 上記第2の実施例の変形形態を示す図である。It is a figure which shows the modification of the said 2nd Example. 従来の非水電解質蓄電デバイスの基本構造図である。It is a basic structure figure of the conventional nonaqueous electrolyte electrical storage device.

符号の説明Explanation of symbols

1a、積層体
1b、1c、1d 非水電解質蓄電デバイス
10p 正極
10n 負極
12p、12n 外部電極部
30 セパレータ
40、40a〜40d 外部リード端子
50 積層構造体
60a〜60d 放熱部
61 柱状突起
63 放熱孔
64 液体流路
1a, laminated body 1b, 1c, 1d non-aqueous electrolyte electricity storage device 10p positive electrode 10n negative electrode 12p, 12n external electrode part 30 separator 40, 40a-40d external lead terminal 50 laminated structure 60a-60d heat radiating part 61 columnar protrusion 63 heat radiating hole 64 Liquid flow path

Claims (4)

炭素材料からなる正極と、リチウムの吸蔵・放出が可能な材料からなる負極とがセパレータを介して対向配置されてなる電極体をリチウム塩を支持電解質とした電解液とともに密封してなる非水電解質蓄電デバイスであって、
前記電極体における正負それぞれの電極端部に、金属プレートからなる外部リード端子が接続され、当該外部リード端子には、放熱部が形成されている
ことを特徴とする非水電解質蓄電デバイス。
A non-aqueous electrolyte in which an electrode body in which a positive electrode made of a carbon material and a negative electrode made of a material capable of occluding and releasing lithium are opposed to each other via a separator is sealed together with an electrolytic solution using a lithium salt as a supporting electrolyte An electricity storage device,
An external lead terminal made of a metal plate is connected to positive and negative electrode ends of the electrode body, and a heat radiating part is formed on the external lead terminal.
請求項1において、前記放熱部は、前記金属プレートの表面に突設された多数の突起であることを特徴とする非水電解質蓄電デバイス。   The nonaqueous electrolyte electricity storage device according to claim 1, wherein the heat radiating portion is a plurality of protrusions protruding from a surface of the metal plate. 請求項1において、前記放熱部は、外部リード端子を横断して形成されたブロックであるとともに、当該ブロックは、表面に多数の孔が穿設されていることを特徴とする非水電解質蓄電デバイス。   2. The nonaqueous electrolyte electricity storage device according to claim 1, wherein the heat radiating portion is a block formed across the external lead terminal, and the block has a large number of holes formed on a surface thereof. . 請求項1〜3のいずれかにおいて、前記放熱部は、前記外部リード端子の表面に沿う液体流路を備えていることを特徴とする非水電解質蓄電デバイス。   4. The non-aqueous electrolyte electricity storage device according to claim 1, wherein the heat radiating portion includes a liquid flow path along a surface of the external lead terminal.
JP2008013465A 2008-01-24 2008-01-24 Nonaqueous electrolyte storage battery device Pending JP2009176917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008013465A JP2009176917A (en) 2008-01-24 2008-01-24 Nonaqueous electrolyte storage battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008013465A JP2009176917A (en) 2008-01-24 2008-01-24 Nonaqueous electrolyte storage battery device

Publications (1)

Publication Number Publication Date
JP2009176917A true JP2009176917A (en) 2009-08-06

Family

ID=41031712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008013465A Pending JP2009176917A (en) 2008-01-24 2008-01-24 Nonaqueous electrolyte storage battery device

Country Status (1)

Country Link
JP (1) JP2009176917A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059361A (en) * 2010-09-03 2012-03-22 Mitsubishi Heavy Ind Ltd Battery
JP2012216541A (en) * 2011-03-31 2012-11-08 Lg Chem Ltd Battery pack having liquid leak detection system
JP2013510385A (en) * 2009-11-06 2013-03-21 ベール ゲーエムベーハー ウント コー カーゲー Energy storage device
KR20140015840A (en) * 2012-07-25 2014-02-07 에스케이이노베이션 주식회사 Battery cell for secondary battery
EP2602859A4 (en) * 2010-12-20 2016-09-07 Lg Chemical Ltd Method and system for cooling lithium secondary batteries
WO2018087526A1 (en) * 2016-11-08 2018-05-17 Oxis Energy Limited Battery
CN114628856A (en) * 2021-07-23 2022-06-14 万向一二三股份公司 Soft package lithium ion power battery pack tab structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510385A (en) * 2009-11-06 2013-03-21 ベール ゲーエムベーハー ウント コー カーゲー Energy storage device
JP2012059361A (en) * 2010-09-03 2012-03-22 Mitsubishi Heavy Ind Ltd Battery
EP2602859A4 (en) * 2010-12-20 2016-09-07 Lg Chemical Ltd Method and system for cooling lithium secondary batteries
US9673490B2 (en) 2010-12-20 2017-06-06 Lg Chem, Ltd. Method and system for cooling secondary battery
JP2012216541A (en) * 2011-03-31 2012-11-08 Lg Chem Ltd Battery pack having liquid leak detection system
KR101898009B1 (en) * 2012-07-25 2018-09-12 에스케이이노베이션 주식회사 Battery Cell for Secondary Battery
KR20140015840A (en) * 2012-07-25 2014-02-07 에스케이이노베이션 주식회사 Battery cell for secondary battery
WO2018087526A1 (en) * 2016-11-08 2018-05-17 Oxis Energy Limited Battery
CN109923690A (en) * 2016-11-08 2019-06-21 奥克斯能源有限公司 Battery
KR20190077512A (en) * 2016-11-08 2019-07-03 옥시스 에너지 리미티드 battery
JP2020503657A (en) * 2016-11-08 2020-01-30 オキシス エナジー リミテッド battery
JP7094974B2 (en) 2016-11-08 2022-07-04 オキシス エナジー リミテッド battery
US11450904B2 (en) 2016-11-08 2022-09-20 Johnson Matthey Plc Battery
KR102652798B1 (en) * 2016-11-08 2024-04-01 겔리온 테크놀로지스 피티와이 리미티드 battery
CN114628856A (en) * 2021-07-23 2022-06-14 万向一二三股份公司 Soft package lithium ion power battery pack tab structure

Similar Documents

Publication Publication Date Title
KR101914567B1 (en) Secondary battery
US10665836B2 (en) Pouch-type secondary battery including electrode lead having current limiting function
KR102058194B1 (en) battery module
JP2009176917A (en) Nonaqueous electrolyte storage battery device
US10079413B2 (en) Li-ion pouch cell and a cell module
JP2012138315A (en) Lithium ion battery module
TWI389368B (en) Laminated secondary battery
JP6122338B2 (en) Secondary battery
TW201222916A (en) Secondary battery
JP4182858B2 (en) Secondary battery and assembled battery
KR20150033176A (en) Battery module and busbar applied for the same
JP2007005101A (en) Nonaqueous electrolyte battery and lead wire for nonaqueous electrolyte battery
KR20170104826A (en) Electrode assembly and secondary battery comprising the same
CN109155442B (en) Secondary battery
JPH11144771A (en) Heat radiator of battery
JP2018517268A (en) Battery module with improved cooling structure
JP5633621B1 (en) Power storage module
JP2012190587A (en) Secondary battery
EP3413393A1 (en) Electrode assembly for a battery module
JP2012049538A (en) Supercapacitor
JP2019061895A (en) Laminated battery cell and laminated battery module
KR20190074796A (en) Battery module with improved cooling efficiency
JP7343419B2 (en) Solid state battery cells and solid state battery modules
JP6499043B2 (en) Electrochemical devices
JP2014127355A (en) Electric device