JP2009176646A - Foil-shaped conductor, wiring member, and manufacturing method of wiring member conductor - Google Patents

Foil-shaped conductor, wiring member, and manufacturing method of wiring member conductor Download PDF

Info

Publication number
JP2009176646A
JP2009176646A JP2008015855A JP2008015855A JP2009176646A JP 2009176646 A JP2009176646 A JP 2009176646A JP 2008015855 A JP2008015855 A JP 2008015855A JP 2008015855 A JP2008015855 A JP 2008015855A JP 2009176646 A JP2009176646 A JP 2009176646A
Authority
JP
Japan
Prior art keywords
foil
conductor
intermediate layer
plating
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008015855A
Other languages
Japanese (ja)
Other versions
JP5489049B2 (en
Inventor
Akihisa Hosoe
晃久 細江
Mokichi Nakayama
茂吉 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008015855A priority Critical patent/JP5489049B2/en
Publication of JP2009176646A publication Critical patent/JP2009176646A/en
Application granted granted Critical
Publication of JP5489049B2 publication Critical patent/JP5489049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foil-shaped conductor superior in corrosion resistance such as a gold plating even if the surface layer formed thereof is thin, to provide a wiring member equipped with this foil-shaped conductor, and to provide a manufacturing method of the wiring member. <P>SOLUTION: The foil-shaped conductor is used for a wiring member such as an FFC and an FPC, and has a surface layer (for example, gold) constituted of different kind of metal at least at a part of the surface of a foil-shaped substrate 10 and an intermediate layer (for example, nickel) 11 arranged below the surface layer, and the average crystal grain size of the metal constituting the surface side region in the intermediate layer 11 is 0.001 μm or more and 0.3 μm or less. By making the portion immediately below the surface layer have a fine organization, even if the surface layer is thin less than 0.1 μm, pinholes can be reduced and the foil-shaped conductor is superior in corrosion resistance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、FFC(Flexible Flat Cable,フラットケーブル)やFPC(Flexible
Printed Circuits,フレキシブルプリント配線板)といった箔状導体を具える配線部材、及びこの配線部材の製造方法、並びにこの配線部材に利用される箔状導体に関するものである。
The present invention includes FFC (Flexible Flat Cable) and FPC (Flexible Flat Cable).
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring member having a foil-like conductor (Printed Circuits, flexible printed wiring board), a method for manufacturing the wiring member, and a foil-like conductor used for the wiring member.

従来より、電子機器の接続用、接点用の配線部材としてFFCやFPCが利用されている。FFCやFPCは、一般に、複数の箔状導体が並べられた状態で絶縁フィルムに挟まれて一体化された構成であり、導体の一部を露出させて、この露出箇所に半田を塗布したり、この露出箇所がコネクタの弾性接触片と接触できるようにしている。上記導体の構成材料には、導電率が高い銅や銅合金が汎用されている。   Conventionally, FFC and FPC are used as wiring members for connecting and contacting electronic devices. FFC and FPC are generally configured by sandwiching a plurality of foil-like conductors and being integrated with an insulating film. Part of the conductor is exposed and solder is applied to the exposed part. The exposed portion can be brought into contact with the elastic contact piece of the connector. Copper and copper alloys with high conductivity are widely used as the constituent material of the conductor.

上記露出箇所の耐食性の向上などを目的として、銅表面にニッケルめっきを介して金めっきを施したり(特許文献1,2)、銅表面にニッケルめっきを施し、更にその上に防錆剤を塗布すること(特許文献2実施例3)が行われている。銅に直接金めっきを施すと、経時的に銅と金とが合金化して、接点材料として好ましい金の特性(耐食性や柔軟性など)を損なう恐れがあるため、金めっきを行う場合、通常、ニッケルめっきを介在させる。金めっきは、その厚さの下限値を0.1μmとして(特許文献2実施例3)、平均厚さが0.2μm程度となるように形成している。   For the purpose of improving the corrosion resistance of the exposed areas, etc., gold plating is applied to the copper surface via nickel plating (Patent Documents 1 and 2), nickel plating is applied to the copper surface, and a rust inhibitor is further applied thereon. (Patent Document 2 Example 3) has been carried out. When direct gold plating is applied to copper, copper and gold are alloyed over time, and there is a risk that the properties (such as corrosion resistance and flexibility) of gold preferable as a contact material may be impaired. Nickel plating is interposed. The gold plating is formed so that the lower limit of the thickness is 0.1 μm (Patent Document 2 Example 3) and the average thickness is about 0.2 μm.

特開2006-49185号公報Japanese Unexamined Patent Publication No. 2006-49185 特開2006-92819号公報JP 2006-92819 A

コストの低減などを目的として、金めっきを薄くすることが望まれている。しかし、金めっきを薄くする、特に0.1μm未満とすると、ピンホールが多くなり易く、ピンホールの増加に伴って導体の耐食性が低下し、所望の耐食性を満たさなくなる。例えば、48時間の塩水噴霧試験(例えば、JIS
C 0023(1998))において、腐食生成物が形成されてしまう。特に、表面層が下地金属(ニッケル)よりも貴な金属(金)からなる場合、この表面層にピンホールが存在すると、腐食環境では、下地金属と表面層の構成金属とが局部的な電池を形成し、下地金属が加速的に溶解される異種金属接触反応が起こり得る。従って、金めっきといった表面層が薄くてもピンホールが少なく、耐食性に優れる箔状導体の開発が望まれる。
For the purpose of cost reduction and the like, it is desired to make the gold plating thin. However, if the gold plating is made thin, particularly less than 0.1 μm, the number of pinholes tends to increase, and the corrosion resistance of the conductor decreases as the number of pinholes increases, and the desired corrosion resistance is not satisfied. For example, a 48 hour salt spray test (e.g. JIS
C 0023 (1998)), corrosion products are formed. In particular, when the surface layer is made of a metal (gold) that is nobler than the base metal (nickel), if there are pinholes in this surface layer, the base metal and the constituent metals of the surface layer are localized in a corrosive environment. A dissimilar metal contact reaction in which the base metal is dissolved at an accelerated rate can occur. Therefore, it is desired to develop a foil-like conductor having few pinholes and excellent corrosion resistance even when the surface layer such as gold plating is thin.

本発明は、上記事情を鑑みて成されたものであり、その目的は、表面層が薄くても耐食性に優れる箔状導体、及びこの箔状導体を具える配線部材、並びに配線部材の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to provide a foil-like conductor excellent in corrosion resistance even if the surface layer is thin, a wiring member comprising the foil-like conductor, and a method of manufacturing the wiring member. Is to provide.

FFCやFPCなどに具える箔状導体において、その表面に設けられた金めっきなどの表面層のピンホール量がある程度少なければ、その上に防錆剤などの封孔処理剤を塗布してピンホールを塞ぐことで(封孔処理を行うことで)、所望の耐食性を満たすことができる。しかし、従来、金めっきといった表面層のピンホール量は、塩水噴霧試験などによる定性的な評価(腐食生成物の目視確認)を行っているものの、定量的な評価を行っていない。そのため、封孔処理により所望の耐食性を維持可能なピンホール量が明らかにされていなかった。そこで、本発明者らは、まず、ピンホール量を定量的に評価し、所望の防食性を満たすピンホールの限界量を求め、表面層が薄い場合でもこの限界量を満たす構造を検討した結果、表面層直下の下地金属(中間層の表面側領域)が特定の微細組織であることが好ましい、との知見を得た。本発明は、この知見に基づくものである。   If the amount of pinholes in the surface layer such as gold plating provided on the surface of a foil conductor provided on FFC or FPC is small to some extent, apply a sealing agent such as a rust inhibitor onto the pin. The desired corrosion resistance can be satisfied by closing the hole (performing sealing). However, conventionally, the amount of pinholes in the surface layer such as gold plating has been qualitatively evaluated by a salt spray test or the like (visual confirmation of corrosion products), but not quantitatively evaluated. Therefore, the pinhole amount that can maintain the desired corrosion resistance by the sealing treatment has not been clarified. Therefore, the present inventors first evaluated the amount of pinholes quantitatively, found the limit amount of pinholes satisfying the desired anticorrosion, and examined the structure that satisfies this limit amount even when the surface layer is thin In addition, the inventors have found that the base metal (surface region on the intermediate layer) immediately below the surface layer preferably has a specific microstructure. The present invention is based on this finding.

本発明箔状導体は、箔状の基材表面の少なくとも一部に、異種の金属で構成される表面層と、この表面層の下に配される中間層とを具える。表面層は、金、金合金、白金族金属、及び白金族金属合金から選択される少なくとも1種の金属からなる。中間層は、ニッケル、ニッケル合金、錫、及び錫合金から選択される少なくとも1種の金属からなる。また、中間層は、その表面側領域を構成する金属の平均結晶粒径が0.001μm以上0.3μm以下である。上記構成を具える本発明箔状導体は、表面層が薄くても耐食性に優れ、表面層を薄くすることでコストも低減できる。以下、本発明をより詳細に説明する。   The foil-like conductor of the present invention comprises a surface layer made of a different metal and an intermediate layer disposed under the surface layer on at least a part of the surface of the foil-like substrate. The surface layer is made of at least one metal selected from gold, a gold alloy, a platinum group metal, and a platinum group metal alloy. The intermediate layer is made of at least one metal selected from nickel, nickel alloy, tin, and tin alloy. The intermediate layer has an average crystal grain size of the metal constituting the surface side region of not less than 0.001 μm and not more than 0.3 μm. The foil conductor of the present invention having the above configuration is excellent in corrosion resistance even if the surface layer is thin, and the cost can be reduced by making the surface layer thin. Hereinafter, the present invention will be described in more detail.

基材は、本発明導体の主要部を構成する箔状体であり、導電率が高く、延性に富み、適度な強度を有し、他の金属による被覆が容易な銅(Cu)やCu合金からなるものが好適である。Cu合金は、Cu-Ni合金、Cu-Sn合金、Cu-Zn合金、Cu-Ag合金などが挙げられる。基材は、本発明導体の用途に応じて選択するとよく、例えば、本発明導体をFFCに利用する場合、平角線といった薄肉の線材、FPCに利用する場合は、金属箔が利用できる。これらの線材や金属箔の表面にニッケルや錫、及びこれらの合金が被覆された被覆線材や被覆箔、例えば、めっき線材なども基材に利用できる。被覆線材や被覆箔は、銅や銅合金からなる線材や箔にめっきなどの被覆を行った後、圧延したものが挙げられる。基材の厚さは、0.01〜0.05mmが挙げられ、より具体的には、FFCは、0.025〜0.050mm、FPCは、0.018mm程度が挙げられる。本発明導体は、このような基材の長手方向の少なくとも一部に表面層及び中間層を有する。   The base material is a foil that constitutes the main part of the conductor of the present invention, and has high conductivity, high ductility, moderate strength, and easy coating with other metals (Cu) and Cu alloys The one consisting of is preferred. Examples of the Cu alloy include a Cu—Ni alloy, a Cu—Sn alloy, a Cu—Zn alloy, and a Cu—Ag alloy. The base material may be selected according to the use of the conductor of the present invention. For example, when the conductor of the present invention is used for FFC, a thin wire such as a flat wire, and when used for FPC, a metal foil can be used. A coated wire or coated foil in which nickel, tin, or an alloy thereof is coated on the surface of these wire or metal foil, for example, a plated wire can also be used as a substrate. Examples of the coated wire and the coated foil include those obtained by coating a wire or foil made of copper or a copper alloy after plating or the like and then rolling. As for the thickness of a base material, 0.01-0.05 mm is mentioned, More specifically, FFC is 0.025-0.050 mm, FPC is about 0.018 mm. The conductor of the present invention has a surface layer and an intermediate layer on at least a part of the longitudinal direction of such a substrate.

表面層の具体的な構成金属は、金(Au)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、及びこれら金属の合金が挙げられる。Au合金は、Au-Co合金やAu-Ni合金といったいわゆる硬質金などが挙げられる。白金族金属合金は、例えば、Pd-Ni合金が挙げられる。表面層は、単層でもよいし、上記金属から選択された異なる金属からなる複数層でもよく、例えば、Au層の上にAu合金層を具えた積層構造でもよい。   Specific constituent metals of the surface layer include gold (Au), platinum (Pt), palladium (Pd), rhodium (Rh), and alloys of these metals. Examples of the Au alloy include so-called hard gold such as Au-Co alloy and Au-Ni alloy. Examples of the platinum group metal alloy include a Pd—Ni alloy. The surface layer may be a single layer, or may be a plurality of layers made of different metals selected from the above metals, for example, a laminated structure including an Au alloy layer on an Au layer.

表面層は、比較的高価な金属により構成されることから、コストの低減を考慮すると、薄い方が好ましく、その厚さ(複数層の場合、合計厚さ)は、0.1μm未満、特に0.05μm以下が好ましく、コネクタなどとの接触抵抗の確保を考慮すると0.01μm以上が好ましい。表面層及び後述の中間層の厚さは、形成条件(例えば、めっき法で形成する場合、めっき時間や電流密度など)によって調節できる。本発明導体は、後述のように表面層の下の中間層を特定の組織とすることで、表面層の厚さを0.1μm未満と薄くしてもピンホール量が少ないので(具体的にはピンホール率が3%以下)、封孔処理を行うことで、塩水噴霧試験(48時間)に対して十分な耐食性を有することができる。また、本発明導体は、表面層の厚さや中間層の組織状態などを制御することによって、金めっきの厚さが0.1μm以上である従来の導体のピンホール率(約1%)と同等、或いはそれ以下(1%以下)とすることができる。   Since the surface layer is composed of a relatively expensive metal, it is preferable to reduce the thickness in consideration of cost reduction, and the thickness (total thickness in the case of multiple layers) is less than 0.1 μm, particularly 0.05 μm. The following is preferable, and 0.01 μm or more is preferable in consideration of securing contact resistance with a connector or the like. The thicknesses of the surface layer and the intermediate layer described later can be adjusted by forming conditions (for example, when forming by plating, plating time, current density, etc.). Since the conductor of the present invention has a specific structure in the intermediate layer below the surface layer as described later, the pinhole amount is small even if the thickness of the surface layer is reduced to less than 0.1 μm (specifically, By performing sealing treatment with a pinhole ratio of 3% or less, sufficient corrosion resistance can be obtained with respect to the salt spray test (48 hours). Further, the conductor of the present invention is equivalent to the pinhole ratio (about 1%) of a conventional conductor in which the thickness of the gold plating is 0.1 μm or more by controlling the thickness of the surface layer and the structure state of the intermediate layer, Or it can be less (1% or less).

ピンホール率は、箔状導体と、特定の電解液とを用いた電気化学測定セルを作製し、電解液中での金属の溶解反応に伴う電流値をピンホール量と評価し、このピンホール量が表面層に占める割合とする。具体的には、箔状導体を電解液に浸漬し、この導体に電位を変化させながら印加したとき、ピンホールから露出した金属が電解液中で酸化されることで生じる電流の変化を計測し、この計測結果に基づいてピンホール量(面積)を算出し、ピンホール量(面積)/表面層の面積をピンホール率とする。電解液は、表面層の構成金属と実質的に反応せず、ピンホールから露出される金属(主として中間層の構成金属)と反応し易い特定濃度の酸溶液、具体的には、2〜7Mの硫酸や塩酸を用いる。このような電解液に対して、金、金合金、白金族金属、及び白金族金属合金は実質的に反応せず、ニッケル、ニッケル合金、錫、及び錫合金は反応する(溶解する)ことを確認している。また、表面層のピンホールが中間層に連通して基材まで達しており、基材が露出されることもあるが、銅や銅合金も上記電解液と反応すると共に、ニッケルなどの中間層の構成金属と同様の電流変化をとるため、上記電気化学測定セルを利用することで、このようなピンホールも合わせて定量することができる。   The pinhole ratio was determined by preparing an electrochemical measurement cell using a foil conductor and a specific electrolyte, and evaluating the current value associated with the dissolution reaction of the metal in the electrolyte as the pinhole amount. Let the amount be the proportion of the surface layer. Specifically, when a foil-like conductor is immersed in an electrolyte and applied to this conductor while changing its potential, the change in current caused by oxidation of the metal exposed from the pinhole in the electrolyte is measured. Based on this measurement result, the pinhole amount (area) is calculated, and the pinhole amount (area) / surface layer area is defined as the pinhole ratio. The electrolyte solution does not substantially react with the constituent metal of the surface layer, and is an acid solution with a specific concentration that easily reacts with the metal exposed from the pinhole (mainly the constituent metal of the intermediate layer), specifically, 2 to 7M. Use sulfuric acid or hydrochloric acid. Gold, gold alloy, platinum group metal, and platinum group metal alloy do not substantially react with such an electrolyte, and nickel, nickel alloy, tin, and tin alloy react (dissolve). I have confirmed. Moreover, the pinhole of the surface layer communicates with the intermediate layer and reaches the base material, and the base material may be exposed, but copper and copper alloy react with the above electrolyte and intermediate layers such as nickel In order to obtain the same current change as that of the constituent metals, it is possible to quantify such pinholes by using the electrochemical measurement cell.

中間層の具体的な構成金属は、ニッケル(Ni)、Ni合金、錫(Sn)、及びSn合金が挙げられる。Ni合金は、Ni-P合金,Ni-Bi合金,Ni-Sn合金,Ni-Co合金などが挙げられる。Sn合金は、Sn-Ag合金やSn-Bi合金といった鉛フリー半田などが挙げられる。Sn-Ag合金やSn-Bi合金は、Snウイスカが生じ難い。中間層も単層でも上記金属から選択された異なる金属からなる複数層でもよく、例えば、Sn層の上にNi層を具えた積層構造でもよい。   Specific constituent metals of the intermediate layer include nickel (Ni), Ni alloy, tin (Sn), and Sn alloy. Examples of the Ni alloy include a Ni—P alloy, a Ni—Bi alloy, a Ni—Sn alloy, and a Ni—Co alloy. Examples of the Sn alloy include lead-free solder such as Sn—Ag alloy and Sn—Bi alloy. Sn-Ag alloys and Sn-Bi alloys are unlikely to produce Sn whiskers. An intermediate layer, a single layer, or a plurality of layers made of different metals selected from the above metals may be used. For example, a multilayer structure including a Ni layer on a Sn layer may be used.

中間層の厚さ(複数層の場合、合計厚さ)は、0.5μm以上5μm以下が好ましく、1.0μm以上2.0μm以下がより好ましい。中間層の厚さが0.5μm以上であると、中間層自体のピンホールが低減され、中間層の下に存在する基材が露出され難い。そのため、露出した基材の上に直接表面層が形成されて両者が合金化することで、表面層の特性が劣化することを抑制できる。一方、中間層の厚さが5μm以下であると、本発明導体を具える配線部材とコネクタとの嵌合時の応力などで中間層が剥離することを防止できる。   The thickness of the intermediate layer (in the case of a plurality of layers, the total thickness) is preferably 0.5 μm or more and 5 μm or less, and more preferably 1.0 μm or more and 2.0 μm or less. When the thickness of the intermediate layer is 0.5 μm or more, pinholes in the intermediate layer itself are reduced, and the base material existing under the intermediate layer is difficult to be exposed. Therefore, it can suppress that the characteristic of a surface layer deteriorates because a surface layer is directly formed on the exposed base material and both form an alloy. On the other hand, when the thickness of the intermediate layer is 5 μm or less, it is possible to prevent the intermediate layer from being peeled off due to stress at the time of fitting between the wiring member having the conductor of the present invention and the connector.

本発明導体の最も特徴とするところは、中間層における少なくとも表面側領域の構成金属の平均結晶粒径が0.001μm以上0.3μm以下であることにある。より好ましい範囲は、0.01μm以上0.20μm以下である。表面側領域は、中間層が単層の場合、表面層と中間層との境界から、中間層の厚さ方向に中間層の厚さの半分までの領域とし、複数層の場合、表面層の直下の層とする。中間層の全体に亘って、平均結晶粒径が上記範囲を満たすことが好ましい。平均結晶粒径が0.001μm未満では、中間層の表面の硬度が大きくなり、本発明導体を具える配線部材をコネクタに挿入する際やコネクタから引き抜く際に、中間層が十分に変形できず、接点不良となる恐れがある。一方、平均結晶粒径が0.3μm超では、表面層が薄くなるにつれてピンホールが形成され易くなる。本発明導体は、表面層と接する中間層の表面側領域の平均結晶粒径を上記範囲に制御することで、表面層の直下が緻密で平滑な状態となり、この上に表面層を形成することで、表面層にピンホールが形成され難くなると考えられる。平均結晶粒径の測定方法の詳細は後述する。   The most characteristic feature of the conductor of the present invention is that the average crystal grain size of the constituent metal in at least the surface side region in the intermediate layer is 0.001 μm or more and 0.3 μm or less. A more preferable range is 0.01 μm or more and 0.20 μm or less. When the intermediate layer is a single layer, the surface side region is the region from the boundary between the surface layer and the intermediate layer to half the thickness of the intermediate layer in the thickness direction of the intermediate layer. The layer immediately below. It is preferable that the average crystal grain size satisfies the above range over the entire intermediate layer. When the average crystal grain size is less than 0.001 μm, the hardness of the surface of the intermediate layer increases, and when the wiring member having the conductor of the present invention is inserted into the connector or pulled out from the connector, the intermediate layer cannot be sufficiently deformed, There is a risk of contact failure. On the other hand, when the average crystal grain size exceeds 0.3 μm, pinholes are easily formed as the surface layer becomes thinner. In the conductor of the present invention, by controlling the average crystal grain size of the surface side region of the intermediate layer in contact with the surface layer within the above range, the state immediately below the surface layer becomes dense and smooth, and the surface layer is formed thereon Thus, it is considered that pinholes are hardly formed in the surface layer. Details of the method for measuring the average crystal grain size will be described later.

表面層及び中間層の形成方法は、電解めっきや無電解めっきといっためっき法の他、CVD法やPVD法といった蒸着法(ドライプロセス)などが挙げられる。形成方法は、金属の種類により適宜選択できる。例えば、金やニッケルは電解めっきにより、Ni-P合金は無電解めっきにより形成可能である。めっきは、通常、C,S,Oなどの不純物が含まれる。従って、上記各層がめっき法により形成されたものである場合、上記不純物の含有を許容する(但し、合計で0.1質量%以下とする)。   Examples of the method for forming the surface layer and the intermediate layer include plating methods such as electrolytic plating and electroless plating, and vapor deposition methods (dry process) such as a CVD method and a PVD method. The formation method can be appropriately selected depending on the type of metal. For example, gold and nickel can be formed by electrolytic plating, and Ni-P alloy can be formed by electroless plating. The plating usually contains impurities such as C, S, and O. Therefore, when each of the above layers is formed by a plating method, the above impurities are allowed to be contained (however, the total is 0.1% by mass or less).

中間層を上述のような微細組織にするには、例えば、めっき法により形成する場合、光沢剤を含有しためっき浴を用いることが挙げられる。ここで、本発明導体は、中間層の上に更に表面層を施すことから、中間層の形成に当たり、装飾性の向上を主たる目的とする光沢剤は必要ない。しかし、本発明導体は、表面層のピンホールの低減を目的として、中間層を微細組織とするために敢えて光沢剤を利用する。例えば、ニッケルやニッケル合金といったニッケル系めっきを行う場合、ニッケル系めっきで一次光沢剤、二次光沢剤として利用されている種々のものが利用できる。一次光沢剤のみでも、結晶粒を微細化することができ半光沢の外観が得られるが、一次光沢剤及び二次光沢剤の双方を用いると、結晶粒をより微細化し易く、平滑な表面が得られ、高い光沢を有する。二次光沢剤のみであると、電流密度の適用範囲が小さい。具体的な一次光沢剤は、サッカリン、ビニルスルホン酸、1,3,6ナフタレントリスルホン酸ナトリウムなど、具体的な二次光沢剤は、2ブチン1,4ジオール、プロパギルアルコール、クマリンなどが挙げられる。また、例えば、錫めっきや錫めっき合金といった錫系めっきを行う場合、具体的な光沢剤は、芳香族有機アミンと脂肪族アルデヒドとケトンとを酸又はアルカリ触媒下で合成した物、芳香族アルデヒド、ケトン類が挙げられる。或いは、光沢剤を用いないで中間層を微細化する一手法として、パルスめっき法(高電流密度の通電と休止とをミリ秒単位で繰り返す方法)を利用することが挙げられる。一方、中間層を蒸着法により形成する場合、成膜条件を調整して、急冷凝固に近い条件にすることが挙げられる。例えば、スパッタリング法の場合、基板を冷却したり、スパッタリング時の電圧を高くするなどが挙げられる。これら特定のめっき浴を用いたり、めっき条件や蒸着条件などを制御することで、中間層全体を均一的な微細粒子からなる微細組織とすることができる。   In order to make the intermediate layer have a fine structure as described above, for example, when the intermediate layer is formed by a plating method, a plating bath containing a brightener may be used. Here, since the conductor of the present invention is further provided with a surface layer on the intermediate layer, a brightener mainly for the purpose of improving the decorative property is not necessary in forming the intermediate layer. However, the conductor of the present invention dare to use a brightening agent to make the intermediate layer a fine structure for the purpose of reducing pinholes in the surface layer. For example, when nickel-based plating such as nickel or nickel alloy is performed, various types of nickel-based plating that are used as a primary brightener and a secondary brightener can be used. Even with the primary brightener alone, the crystal grains can be refined and a semi-glossy appearance can be obtained. However, when both the primary brightener and the secondary brightener are used, the crystal grains are more easily refined and a smooth surface is obtained. Obtained and has high gloss. When only the secondary brightener is used, the application range of the current density is small. Specific primary brighteners include saccharin, vinyl sulfonic acid, sodium 1,3,6 naphthalene trisulfonate, and specific secondary brighteners include 2-butyne 1,4 diol, propargyl alcohol, and coumarin. It is done. For example, when tin-based plating such as tin plating or tin-plated alloy is performed, specific brighteners are synthesized from aromatic organic amines, aliphatic aldehydes and ketones in the presence of an acid or alkali catalyst, aromatic aldehydes. And ketones. Alternatively, one method for miniaturizing the intermediate layer without using a brightener is to use a pulse plating method (a method in which energization and pause of high current density are repeated in milliseconds). On the other hand, when the intermediate layer is formed by a vapor deposition method, it is possible to adjust the film forming conditions so that the conditions are close to rapid solidification. For example, in the case of the sputtering method, the substrate is cooled, or the voltage during sputtering is increased. By using these specific plating baths or by controlling the plating conditions and vapor deposition conditions, the entire intermediate layer can be made into a fine structure composed of uniform fine particles.

本発明箔状導体は、FFCやFPCといった配線部材、即ち、箔状導体と、この箔状導体を挟むように覆う絶縁被覆層とを具え、箔状導体の一部が上記絶縁被覆層から露出されて電気的接続が可能な接続領域を有する配線部材の導体に好適である。本発明配線部材は、導体が本発明箔状導体で構成され、この箔状導体における接続領域は、腐食環境で腐食され易いため、上記中間層及び表面層を具えて耐食性を高める。   The foil-shaped conductor of the present invention comprises a wiring member such as FFC or FPC, that is, a foil-shaped conductor and an insulating coating layer that covers the foil-shaped conductor so that a part of the foil-shaped conductor is exposed from the insulating coating layer. It is suitable for a conductor of a wiring member having a connection region that can be electrically connected. In the wiring member of the present invention, the conductor is composed of the foil-shaped conductor of the present invention, and the connection region in the foil-shaped conductor is easily corroded in a corrosive environment, so that the intermediate layer and the surface layer are provided to enhance the corrosion resistance.

表面層の上に、更に封孔処理剤を塗布して封孔処理膜を有する導体とすることで、耐食性を更に高められる。特に、上記接続領域の表面層は、上述のように微細組織からなる中間層の上に設けられているため、厚さが0.1μm未満と薄くてもピンホールが少なく、例えば、塩水噴霧試験(48時間)に対して十分な耐食性を有することができる。封孔処理剤は、種々の有機材料が利用できる。水溶性のものでも、油性のものでもよいし、箔状導体を封孔処理剤に浸漬するだけで被覆可能なものや封孔処理剤に浸漬すると共に通電処理を行うことで被覆可能なものなどから適宜選択するとよい。本発明配線部材を電子機器の接続や接点に用いる場合、部材表面の電気抵抗が大きいと好ましくないため、膜厚が薄くても防食効果の高い封孔処理剤が好ましい。このような封孔処理剤として、水溶性のチオール系有機物が挙げられる。   By further applying a sealing agent on the surface layer to obtain a conductor having a sealing film, the corrosion resistance can be further improved. In particular, since the surface layer of the connection region is provided on the intermediate layer made of a fine structure as described above, even if the thickness is less than 0.1 μm, there are few pinholes, for example, a salt spray test ( 48 hours). Various organic materials can be used as the sealing agent. Water-soluble or oil-based ones can be coated by simply immersing the foil-like conductor in the sealing agent, or those that can be coated by immersing the sealing agent in the sealing agent and conducting an electric current treatment, etc. It is good to select suitably from. When the wiring member of the present invention is used for connection or contact of electronic equipment, it is not preferable that the electrical resistance on the surface of the member is large. Therefore, a sealing agent having a high anticorrosion effect even if the film thickness is thin is preferable. Examples of such a sealing agent include water-soluble thiol-based organic substances.

上記本発明配線部材は、以下の工程を具える本発明製造方法により製造することができる。
(1)箔状の基材と、この基材を挟むように覆う絶縁被覆層とを具え、この基材の表面の一部が絶縁被覆層から露出されたプレ素材を準備する工程。
(2)上記プレ素材の基材において絶縁被覆層から露出された領域に、中間層を形成する工程。
(3)上記中間層の上に表面層を形成する工程。この工程において、上述のように特定のめっき浴を用いたり、めっき条件や蒸着条件を制御することで、中間層における表面側領域を構成する金属の平均結晶粒径を0.001μm以上0.3μm以下にする。
The said wiring member of this invention can be manufactured with this invention manufacturing method which comprises the following processes.
(1) A step of preparing a pre-material comprising a foil-like base material and an insulating coating layer covering the base material so that a part of the surface of the base material is exposed from the insulating coating layer.
(2) A step of forming an intermediate layer in a region exposed from the insulating coating layer in the base material of the pre-material.
(3) A step of forming a surface layer on the intermediate layer. In this step, by using a specific plating bath as described above, or by controlling the plating conditions and vapor deposition conditions, the average crystal grain size of the metal constituting the surface side region in the intermediate layer is 0.001 μm or more and 0.3 μm or less. To do.

なお、従来のFFCの導体として、銅線材にニッケルめっきを施した後、伸線及び圧延した圧延線材の一部が絶縁フィルムから露出されるように絶縁フィルムで挟まれ、露出部分に金めっきが施されたものがある。この導体では、ニッケルめっきが圧延されるため、圧延後においてニッケルめっきの平均結晶粒径を0.001〜0.3μmの範囲に制御することが難しい。これに対し、本発明配線部材は、上述のように中間層の形成後に圧延などの塑性加工を施さないため、中間層の形成条件を制御することで、平均結晶粒径を0.001〜0.3μmの範囲にすることができる。   As a conventional FFC conductor, after applying nickel plating to the copper wire, it is sandwiched by the insulating film so that a part of the drawn and rolled rolled wire is exposed from the insulating film, and the exposed portion is plated with gold. There is something that has been given. In this conductor, since nickel plating is rolled, it is difficult to control the average crystal grain size of nickel plating within the range of 0.001 to 0.3 μm after rolling. In contrast, the wiring member of the present invention is not subjected to plastic working such as rolling after the formation of the intermediate layer as described above. Therefore, by controlling the formation conditions of the intermediate layer, the average crystal grain size is 0.001 to 0.3 μm. Can range.

本発明箔状導体は、表面層が薄くてもピンホールが少ないため、本発明導体を具える本発明配線部材は、耐食性に優れる。本発明配線部材の製造方法は、耐食性に優れる本発明配線部材を製造することができる。   Since the foil conductor of the present invention has few pinholes even if the surface layer is thin, the wiring member of the present invention including the conductor of the present invention is excellent in corrosion resistance. The manufacturing method of the wiring member of the present invention can manufacture the wiring member of the present invention having excellent corrosion resistance.

基材上にニッケルめっき(中間層)及び金めっき(表面層)が順に形成された箔状導体を具えるFFCを作製し、表面層のピンホール率の測定、及び塩水噴霧試験の評価を行った。   An FFC having a foil-like conductor in which nickel plating (intermediate layer) and gold plating (surface layer) are formed in sequence on a substrate is prepared, and the pinhole ratio of the surface layer is measured and the salt spray test is evaluated. It was.

ここでは、めっき条件を変えて中間層の組織が異なる試料を以下のようにして作製した。まず、複数の基材が並列された状態で絶縁フィルム(絶縁被覆層)に挟まれたプレ試料を作製した。基材は、厚さ:0.035mm、幅:0.3mmの銅平角線(JIS H 3100 タフピッチ銅)とし、100芯の基材を互いに接触しないように離間して並列させた状態で、これら基材の両面を絶縁フィルムで挟み、フィルムの接合面に塗布された接着剤を圧接又は溶融してフィルム同士を接合し、基材間を電気的に絶縁すると共に100芯を一体にしたプレ素材を作製した。絶縁フィルムは、ポリエステル系樹脂からなるもの、接着剤は、熱可塑性樹脂や熱硬化性樹脂からなるものが挙げられ、市販品が利用できる。ここでは、一方の絶縁フィルムとして、複数の窓(幅:100芯が露出する大きさ、長さ:5mm)がフィルムの長手方向に等間隔に設けられたもの、他方の絶縁フィルムを窓の無いものをそれぞれ利用し、100芯の基材の一面が上記各窓から露出されるようにした。   Here, samples with different intermediate layer structures were produced by changing the plating conditions as follows. First, a pre-sample that was sandwiched between insulating films (insulating coating layers) in a state where a plurality of base materials were juxtaposed was prepared. The base material is a copper flat wire (JIS H 3100 tough pitch copper) with a thickness of 0.035 mm and a width of 0.3 mm, and these base materials are arranged in parallel with a distance of 100 cores so as not to contact each other. The two sides of the film are sandwiched between insulating films, and the adhesive applied to the bonding surface of the film is pressed or melted to bond the films together to electrically insulate the base materials and produce a pre-material that integrates 100 cores. did. Examples of the insulating film include a polyester resin, and examples of the adhesive include a thermoplastic resin and a thermosetting resin, and commercially available products can be used. Here, as one insulating film, a plurality of windows (width: size that exposes 100 cores, length: 5 mm) are provided at equal intervals in the longitudinal direction of the film, and the other insulating film has no window. Each one was used so that one side of the 100-core substrate was exposed from each window.

作製した上記プレ素材に、以下の各処理を施した後、適宜切断して試料を作製した。各試料は、窓を一つ有し、窓から100芯の基材の一部が露出している。ここでは、プレ素材は、フープ材(長尺材)のままめっきなどの各処理が可能な設備を使用し、封孔処理後に所望の長さに適宜切断して試料としたが、上記長尺なプレ素材を切断してからめっきなどの各処理を施してもよい。   The prepared pre-material was subjected to the following treatments, and then appropriately cut to prepare a sample. Each sample has one window, and a part of the 100-core substrate is exposed from the window. Here, the pre-material is a sample that is appropriately cut into a desired length after sealing treatment using equipment that can perform various treatments such as plating with the hoop material (long material). Each treatment such as plating may be performed after cutting a pre-material.

浸漬脱脂→電解脱脂→ソフトエッチング→酸活性→Niめっき→Auストライクめっき→Au-Coめっき→封孔処理
上記各工程間には、水洗を行う(後述する試料No.200についても同様)。
Immersion degreasing → Electrolytic degreasing → Soft etching → Acid activity → Ni plating → Au strike plating → Au—Co plating → sealing treatment Washing is performed between the above steps (the same applies to sample No. 200 described later).

Niめっき工程を除く、各工程の条件を以下に示す。
浸漬脱脂は、NG-30(キザイ株式会社製)を用い、40g/L、50℃、1分で行った。
電解脱脂は、EBR(中央化学株式会社製):35g/L+硫酸:200g/Lを用い、45℃、電流密度5A/dm2で行った。
ソフトエッチングは、アクタン97(メルテックス株式会社製);アクタン97A:90g/L,アクタン97B:150g/Lを用い、室温、30秒で行った。
酸活性は、硫酸を用い、100g/L、40℃、10秒で行った。
Auストライクめっきは、金めっき液としてアシドストライク(日本高純度化学株式会社製)を用い、Au濃度:1.0g/L、40℃、電流密度0.7A/dm2×7秒で行った。
Au-Coめっきは、金めっき液としてオーロブライト-HS2(日本高純度化学株式会社製)、Au濃度:8g/L、Co濃度:0.2g/L、50℃、電流密度1A/dm2×14秒で行った。
Auストライクめっき及びAu-Coめっきの合計目標めっき厚さは、0.05μm(50nm)とした。
封孔処理は、CT-3(日鉱金属株式会社製)を用い、40℃、30秒浸漬して行った(封孔処理膜の厚さ:約20Å、オージェ電子分光装置を用いた公知の手法により測定)。
The conditions of each process excluding the Ni plating process are shown below.
Immersion degreasing was performed using NG-30 (manufactured by Kizai Co., Ltd.) at 40 g / L, 50 ° C. for 1 minute.
Electrolytic degreasing was performed using EBR (manufactured by Chuo Chemical Co., Ltd.): 35 g / L + sulfuric acid: 200 g / L at 45 ° C. and a current density of 5 A / dm 2 .
Soft etching was performed using Actan 97 (manufactured by Meltex); Actan 97A: 90 g / L, Actan 97B: 150 g / L at room temperature for 30 seconds.
The acid activity was performed using sulfuric acid at 100 g / L, 40 ° C., for 10 seconds.
Au strike plating was performed using acid strike (manufactured by Nippon Kogyo Kagaku Co., Ltd.) as a gold plating solution at an Au concentration of 1.0 g / L, 40 ° C., and a current density of 0.7 A / dm 2 × 7 seconds.
Au-Co plating is Aurobrite-HS2 (manufactured by Japan High Purity Chemical Co., Ltd.) as a gold plating solution, Au concentration: 8 g / L, Co concentration: 0.2 g / L, 50 ° C, current density 1A / dm 2 × 14 Went in seconds.
The total target plating thickness of Au strike plating and Au—Co plating was 0.05 μm (50 nm).
Sealing treatment was performed by using CT-3 (manufactured by Nikko Metal Co., Ltd.) and dipping for 30 seconds at 40 ° C. (the thickness of the sealing treatment film: about 20 mm, a known method using an Auger electron spectrometer) Measured by).

Niめっきは、以下の条件で行った。
(試料No.1)
めっき液の組成 スルファミン酸Ni:450g/L、ホウ酸:35g/L、塩化Ni:10g/L、NSF-X(日本化学産業株式会社製):5mL/L
通電条件 電流密度5A/dm2×1分(目標めっき厚さ:1μm)
Ni plating was performed under the following conditions.
(Sample No.1)
Composition of plating solution Nitric acid sulfamate: 450 g / L, Boric acid: 35 g / L, Ni chloride: 10 g / L, NSF-X (Nippon Chemical Industry Co., Ltd.): 5 mL / L
Energizing condition Current density 5A / dm 2 x 1 min (target plating thickness: 1μm)

(試料No.2)
試料No.1で用いためっき液と同じめっき液を用い、通電条件を電流密度5A/dm2×2分(目標めっき厚さ:2μm)とした。
(Sample No.2)
The same plating solution as that used for sample No. 1 was used, and the current supply conditions were a current density of 5 A / dm 2 × 2 minutes (target plating thickness: 2 μm).

(試料No.3)
試料No.1で用いためっき液と同じめっき液を用い、通電条件を電流密度10A/dm2×30秒(目標めっき厚さ:1μm)とした。
(Sample No. 3)
The same plating solution as that used for sample No. 1 was used, and the current supply conditions were a current density of 10 A / dm 2 × 30 seconds (target plating thickness: 1 μm).

(試料No.101)
試料No.1で用いためっき液において、光沢剤(NSF-X)を含有していないめっき液を用い、通電条件を電流密度10A/dm2×30秒(目標めっき厚さ:1μm)とした。
(Sample No. 101)
In the plating solution used for sample No. 1, a plating solution that does not contain brightener (NSF-X) was used, and the energization condition was a current density of 10 A / dm 2 × 30 seconds (target plating thickness: 1 μm). .

(試料No.102)
試料No.1で用いためっき液において、光沢剤(NSF-X)を含有していないめっき液を用い、通電条件を電流密度20A/dm2×30秒(目標めっき厚さ:2μm)とした。
(Sample No.102)
In the plating solution used for sample No. 1, a plating solution that does not contain brightener (NSF-X) was used, and the energization condition was set to a current density of 20 A / dm 2 × 30 seconds (target plating thickness: 2 μm). .

(試料No.200)
この試料は、直径φ0.58mmの銅線(JIS H 3100 タフピッチ銅)にニッケルめっき(厚さ5μm)を施した後、直径φ0.117mmまで伸線し、圧延ロールで厚さ0.035mm×幅3mmに平角化した圧延線材を基材とし、この基材と上述した窓付きの絶縁フィルムとを用いて100芯の長尺材を作製し、この長尺材に、浸漬脱脂→電解脱脂→ソフトエッチング→酸活性→Auストライクめっき→Au-Coめっき→封孔処理という処理を順に施した後、適宜切断して試料を作製した。この試料No.200は、試料No.1などと同様に窓を一つ有し、窓から100芯の基材の一部が露出している。試料No.200のニッケルめっきは、めっき液にスルファミン酸Niを用いて行った(光沢剤使用せず)。Auストライクめっき及びAu-Coめっきは、試料No.1と同様のメッキ液を用い、めっき時間を長くして、合計目標めっき厚さを0.1μmとした。
(Sample No. 200)
This sample was obtained by applying nickel plating (thickness 5 μm) to a copper wire (JIS H 3100 tough pitch copper) with a diameter of φ0.58 mm, drawing the wire to a diameter of φ0.117 mm, and using a rolling roll 0.035 mm in thickness × 3 mm in width Using a rolled wire rod flattened as a base material, a 100-core long material is produced using this base material and the insulating film with a window described above, and immersion degreasing → electrolytic degreasing → soft etching A sample was prepared by sequentially performing treatments of → acid activity → Au strike plating → Au—Co plating → sealing treatment, and then cutting appropriately. This sample No. 200 has one window like the sample No. 1 and the like, and a part of the 100-core base material is exposed from the window. The nickel plating of sample No. 200 was performed using Ni sulfamate as a plating solution (without using a brightener). In Au strike plating and Au-Co plating, the same plating solution as that of sample No. 1 was used, the plating time was lengthened, and the total target plating thickness was set to 0.1 μm.

得られた各試料No.1〜3,101,102,200について、ニッケルめっきの厚さ、金めっきの厚さ、ニッケルめっきの平均結晶粒径、金めっきのピンホール率、及び塩水噴霧試験の評価を行った。その結果を表1に示す。   For each of the obtained samples No. 1 to 3, 101, 102, 200, the thickness of nickel plating, the thickness of gold plating, the average crystal grain size of nickel plating, the pinhole ratio of gold plating, and the salt spray test were evaluated. The results are shown in Table 1.

金めっきの厚さは、市販の蛍光X線膜厚計を用いて、ニッケルめっきの厚さ、及びニッケルめっきの平均結晶粒径は、各試料のFIB-SIM像を用いて測定した。FIB-SIM像は、各試料の表面層の上に保護材(材質:Pt)を配置した状態でFIB(Focused
Ion Beam)加工して得られた断面をSIM(Scanning Ion Microscopy)で観察した像である。図1は、各試料(No.200を除く)のFIB-SIM像を示す(1万倍)。図1に示す各試料において下方側から順に、領域10は基材(銅平角線)、領域11は中間層(ニッケルめっき)、領域12は保護材を示す。表面層(金めっき)は、領域11と領域12との間に存在する。
The thickness of the gold plating was measured using a commercially available fluorescent X-ray film thickness meter, and the thickness of the nickel plating and the average crystal grain size of the nickel plating were measured using the FIB-SIM image of each sample. The FIB-SIM image is a FIB (Focused) with a protective material (material: Pt) placed on the surface layer of each sample.
It is an image obtained by observing a cross section obtained by Ion Beam processing with SIM (Scanning Ion Microscopy). FIG. 1 shows a FIB-SIM image (10,000 times) of each sample (excluding No. 200). In each sample shown in FIG. 1, in order from the lower side, region 10 represents a base material (copper flat wire), region 11 represents an intermediate layer (nickel plating), and region 12 represents a protective material. The surface layer (gold plating) exists between the region 11 and the region 12.

ニッケルめっきの厚さは、図1に示すFIB-SIM像の全域に亘って厚さを測定し、その平均値とした。試料No.200は、ニッケルめっき後に圧延を行うため、ニッケルめっきに厚さ分布(中央部分及び端縁近傍が厚く、中央部と端縁との間が薄い)が生じているため、最も厚い箇所と最も薄い箇所の範囲を表1に示す。   The thickness of the nickel plating was measured over the entire area of the FIB-SIM image shown in FIG. Sample No. 200 is rolled after nickel plating, so the thickness distribution is thick in the nickel plating (the central part and the vicinity of the edge are thick, and the gap between the central part and the edge is thin). Table 1 shows the range of the thinnest part.

ニッケルめっきの平均結晶粒径は、以下のように測定する。図1に示す各FIB-SIM像において、基材(銅平角線)の表面に平行に、長さ5μmの直線を引き、この直線上に存在する粒界の数を測定し、以下の式で求めたものをこの像における結晶粒径とする。そして、各試料における任意の3個の断面のFIB-SIM像について結晶粒径を求め、これら結晶粒径の平均を平均結晶粒径とする。
結晶粒径=5μm÷(測定した粒界数+1)
The average crystal grain size of nickel plating is measured as follows. In each FIB-SIM image shown in FIG. 1, a straight line with a length of 5 μm is drawn parallel to the surface of the substrate (copper flat wire), and the number of grain boundaries existing on this straight line is measured. The obtained value is defined as the crystal grain size in this image. Then, the crystal grain size is determined for any three cross-sectional FIB-SIM images in each sample, and the average of these crystal grain sizes is taken as the average crystal grain size.
Crystal grain size = 5μm ÷ (number of grain boundaries measured + 1)

ピンホール率は、試料と電解液とを用い、三電極方式の電気化学測定セルを構成して、以下のように測定した。セルは、電解液が注入される容器と、電解液に浸漬される基準電極及び対極並びに測定対象(試料)とを具え、両極及び測定対象の一端(各導体の一端)がそれぞれ、ポテンショスタット/ガルバノスタット装置(市販品)に接続される。ここでは、電解液に5Mの硫酸、基準電極にAg/AgCl、対極にPtを用い、装置をポテンショスタットモードとし、酸化方向に掃引速度:1mV/sで電位を掃引する。装置には、入力手段、記憶手段、演算手段、比較手段、判断手段、表示手段などを具える制御装置(図示せず)を接続させており、電位の掃引、測定結果(電位-電流曲線)の取得などを自動的に行える。   The pinhole ratio was measured as follows by using a sample and an electrolyte solution and constituting a three-electrode electrochemical measurement cell. The cell includes a container into which an electrolytic solution is injected, a reference electrode and a counter electrode immersed in the electrolytic solution, and a measurement target (sample), and one end of each electrode and the measurement target (one end of each conductor) is a potentiostat / Connected to a galvanostat device (commercially available). Here, 5M sulfuric acid is used as the electrolyte, Ag / AgCl is used as the reference electrode, and Pt is used as the counter electrode. The apparatus is set in the potentiostat mode, and the potential is swept in the oxidation direction at a sweep rate of 1 mV / s. The device is connected to a control device (not shown) having input means, storage means, calculation means, comparison means, judgment means, display means, etc., and potential sweep, measurement result (potential-current curve) Can be obtained automatically.

表面層にピンホールが存在する場合、測定対象に印加する電位の増大に伴って、ピンホールから露出した金属(ここでは主としてニッケル)が電解液中で酸化されて電流が流れ、ある電位以上になると、この金属の表面が不働化して電流が小さくなる。その結果、ピークを有する電位-電流曲線(アノード分極曲線)が得られる。このピーク電流は、ピンホールから露出する金属の量、即ち、ピンホールの量(面積)に依存するため、ピーク電流を測定することで、ピンホールを定量できる。そこで、各試料のピーク電流を測定する。   When there is a pinhole in the surface layer, as the potential applied to the object to be measured increases, the metal exposed from the pinhole (mainly nickel here) is oxidized in the electrolyte, causing current to flow. Then, the surface of this metal becomes passivated and the current becomes small. As a result, a potential-current curve (anodic polarization curve) having a peak is obtained. Since this peak current depends on the amount of metal exposed from the pinhole, that is, the amount (area) of the pinhole, the pinhole can be quantified by measuring the peak current. Therefore, the peak current of each sample is measured.

一方、ピンホールから露出される金属(主として中間層の構成金属)からなる複数の金属板(ここでは、中間層を構成するニッケルと同様の組成のもの)を用意し、各板の一部を露出させてエポキシ樹脂でマスキングし、露出面積(電解液との接触面積)が異なる複数の試料(以下、対照試料と呼ぶ)を作製する。これら対照試料を用いて電気化学測定セルを作製し、測定対象と同じ条件(同じ電解液、同じ濃度、同じ掃引速度)で電流の変化を計測し、ピーク電流と露出面積との相関データを取得する。そして、取得した相関データに各試料のピーク電流を照合し、相関データにおける電流値に対応した露出面積をピンホールの面積として評価する。そして、ピンホールの面積/表面層の面積(ここでは、箔状導体における窓から露出した箇所の合計面積)をピンホール率とする。   On the other hand, a plurality of metal plates (here, having the same composition as nickel constituting the intermediate layer) made of metal exposed from the pinhole (mainly the constituent metal of the intermediate layer) are prepared, and a part of each plate is prepared. A plurality of samples (hereinafter referred to as control samples) having different exposed areas (contact areas with the electrolytic solution) are prepared by exposing and masking with an epoxy resin. Use these control samples to create an electrochemical measurement cell, measure changes in current under the same conditions (same electrolyte, same concentration, same sweep speed) as the measurement target, and obtain correlation data between peak current and exposed area To do. Then, the peak current of each sample is collated with the acquired correlation data, and the exposed area corresponding to the current value in the correlation data is evaluated as the pinhole area. Then, the area of the pinhole / the area of the surface layer (here, the total area of the portions exposed from the window in the foil conductor) is defined as the pinhole ratio.

塩水噴霧試験は、JIS C 0023(1998)に準じ、試験時間:48時間とし、箔状導体の表面を目視により確認して評価した。その結果を表1に示す。   In the salt spray test, the test time was 48 hours in accordance with JIS C 0023 (1998), and the surface of the foil conductor was visually confirmed and evaluated. The results are shown in Table 1.

図1に示すように、光沢剤を含有するめっき液を用いた試料No.1〜3は、中間層(ニッケルめっき)が表面側領域だけでなく、その全体に亘って均一的な微細粒子から構成されていることが分かる。これに対し、例えば、試料No.101,102は、中間層11に基材10の結晶に倣ったような大型の粒子が存在することが分かる。   As shown in FIG. 1, sample Nos. 1 to 3 using a plating solution containing a brightener consist of uniform fine particles not only on the surface side area but also on the entire surface of the intermediate layer (nickel plating). It can be seen that it is composed. On the other hand, for example, Samples Nos. 101 and 102 show that the intermediate layer 11 has large particles that follow the crystal of the substrate 10.

そして、表1に示すように、中間層の構成金属の平均結晶粒径が0.001〜0.3μmである試料No.1〜3は、表面層(金めっき)の厚さが0.1μm未満と薄くても、ピンホールが3%以下と少なく、塩水噴霧試験(48時間)においても十分な耐食性を示すことが分かる。逆に、平均結晶粒径が0.3μm超である場合(試料No.200)は、表面層(金めっき)の厚さが0.1μm以上でないと、ピンホール率が低くならないことが分かる。また、ピンホール率が3%以下であれば、封孔処理を行うことで、十分な耐食性を有する箔状導体が得られることが分かる。更に、試料No.1〜3において中間層の構成金属の平均結晶粒径が小さいほど、ピンホール率が小さい傾向にあることが分かる。なお、得られた試料No.1〜3について、コネクタへの挿入及びコネクタからの引き抜きを行ったところ、中間層が十分に変形できた。   And as shown in Table 1, sample Nos. 1 to 3 in which the average crystal grain size of the constituent metal of the intermediate layer is 0.001 to 0.3 μm, the thickness of the surface layer (gold plating) is as thin as less than 0.1 μm. However, pinholes are as small as 3% or less, and it can be seen that sufficient corrosion resistance is exhibited even in the salt spray test (48 hours). On the contrary, when the average crystal grain size is more than 0.3 μm (Sample No. 200), it can be seen that the pinhole ratio is not lowered unless the thickness of the surface layer (gold plating) is 0.1 μm or more. It can also be seen that if the pinhole ratio is 3% or less, a foil-like conductor having sufficient corrosion resistance can be obtained by performing the sealing treatment. Furthermore, it can be seen that in sample Nos. 1 to 3, the pinhole ratio tends to be smaller as the average crystal grain size of the constituent metal of the intermediate layer is smaller. When the obtained sample Nos. 1 to 3 were inserted into the connector and pulled out from the connector, the intermediate layer could be sufficiently deformed.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、表面層や中間層の組成や厚さ、平均結晶粒径を変更したり、基材の組成を変更することができる。また、中間層の形成にあたり、光沢剤を用いず、パルスめっき法を利用したり、蒸着法により形成する場合、蒸着条件を制御して微細組織としてもよい。更に、中間層を錫めっきとニッケルめっきとの多層構造としてもよい。その他、基材を挟む一対の絶縁フィルムとして双方共に窓を有するものを利用し、窓部分から基材の全面が露出された長尺材を作製し、この長尺材において窓部分から露出する基材を切断し、切断片の端部に露出された基材が配されるようにし、この切断片の端部に、基材の一面と接するように絶縁性補強材を配置させたものを配線部材としてもよい。或いは、本発明導体は、FPCの導体に利用することもできる。   In addition, this invention is not limited to the above-mentioned embodiment, It can change suitably in the range which does not deviate from the summary of this invention. For example, the composition and thickness of the surface layer and the intermediate layer, the average crystal grain size can be changed, and the composition of the substrate can be changed. Further, in forming the intermediate layer, when a pulse plating method is used or a vapor deposition method is used without using a brightener, the vapor deposition conditions may be controlled to form a fine structure. Furthermore, the intermediate layer may have a multilayer structure of tin plating and nickel plating. In addition, a pair of insulating films sandwiching the base material is used to produce a long material in which the entire surface of the base material is exposed from the window portion, and the base material exposed from the window portion in the long material. Cut the material so that the exposed base material is placed at the end of the cut piece, and wire the insulation reinforcing material placed at the end of the cut piece so as to contact one surface of the base material It is good also as a member. Alternatively, the conductor of the present invention can also be used as an FPC conductor.

本発明箔状導体は、FPCやFFCの導体に好適に利用することができる。本発明配線部材は、電子機器の接続用配線、接点用配線に好適に利用することができる。本発明配線部材の製造方法は、本発明配線部材の製造に利用することができる。   The foil conductor of the present invention can be suitably used for an FPC or FFC conductor. The wiring member of the present invention can be suitably used for connection wiring and contact wiring for electronic devices. The manufacturing method of the wiring member of the present invention can be used for manufacturing the wiring member of the present invention.

試料No.1〜3,101,102のFIB-SIM像(顕微鏡写真)である。It is a FIB-SIM image (micrograph) of sample No.1-3,101,102.

符号の説明Explanation of symbols

10 基材 11 中間層 12 保護材   10 Base material 11 Intermediate layer 12 Protective material

Claims (6)

箔状の基材表面の少なくとも一部に、異種の金属で構成される表面層とこの表面層の下に配される中間層とを具える箔状導体であって、
前記表面層は、金、金合金、白金族金属、及び白金族金属合金から選択される少なくとも1種の金属からなり、
前記中間層は、ニッケル、ニッケル合金、錫、及び錫合金から選択される少なくとも1種の金属からなり、中間層における表面側領域を構成する金属の平均結晶粒径が0.001μm以上0.3μm以下であることを特徴とする箔状導体。
A foil-shaped conductor comprising a surface layer composed of a different metal and an intermediate layer disposed under the surface layer on at least a part of the surface of the foil-shaped substrate,
The surface layer is made of at least one metal selected from gold, a gold alloy, a platinum group metal, and a platinum group metal alloy,
The intermediate layer is made of at least one metal selected from nickel, nickel alloy, tin, and tin alloy, and the average crystal grain size of the metal constituting the surface side region in the intermediate layer is 0.001 μm or more and 0.3 μm or less. A foil-like conductor characterized by being.
前記表面層は、厚さが0.1μm未満であり、かつピンホール率が3%以下であることを特徴とする請求項1に記載の箔状導体。   2. The foil conductor according to claim 1, wherein the surface layer has a thickness of less than 0.1 μm and a pinhole ratio of 3% or less. 箔状導体と、この箔状導体を挟むように覆う絶縁被覆層とを具え、前記箔状導体の一部が前記絶縁被覆層から露出されて電気的接続が可能な接続領域を有する配線部材であって、
前記箔状導体は、請求項1又は2に記載の箔状導体で構成されており、
前記箔状導体における接続領域は、中間層及び表面層を具えることを特徴とする配線部材。
A wiring member comprising a foil-shaped conductor and an insulating coating layer covering the foil-shaped conductor so that a part of the foil-shaped conductor is exposed from the insulating coating layer and can be electrically connected. There,
The foil conductor is composed of the foil conductor according to claim 1 or 2,
The wiring region, wherein the connection region in the foil-shaped conductor includes an intermediate layer and a surface layer.
更に、前記表面層の上に封孔処理膜を有することを特徴とする請求項3に記載の配線部材。   4. The wiring member according to claim 3, further comprising a sealing treatment film on the surface layer. 箔状の基材と、この基材を挟むように覆う絶縁被覆層とを具え、前記基材の表面の一部が絶縁被覆層から露出されたプレ素材を準備する工程と、
前記プレ素材の基材において前記絶縁被覆層から露出された領域に、ニッケル、ニッケル合金、錫、及び錫合金から選択される少なくとも1種の金属からなる中間層を形成する工程と、
前記中間層の上に、金、金合金、白金族金属、及び白金族金属合金から選択される少なくとも1種の金属からなる表面層を形成する工程とを具え、
前記中間層における表面側領域を構成する金属の平均結晶粒径が0.001μm以上0.3μm以下であることを特徴とする配線部材の製造方法。
Providing a foil-like base material and an insulating coating layer covering the base material so as to sandwich the base material, and preparing a pre-material in which a part of the surface of the base material is exposed from the insulating coating layer;
Forming an intermediate layer made of at least one metal selected from nickel, a nickel alloy, tin, and a tin alloy in a region exposed from the insulating coating layer in the base material of the pre-material,
Forming a surface layer made of at least one metal selected from gold, a gold alloy, a platinum group metal, and a platinum group metal alloy on the intermediate layer,
A method for producing a wiring member, wherein an average crystal grain size of a metal constituting a surface side region in the intermediate layer is 0.001 μm or more and 0.3 μm or less.
前記中間層における表面側領域は、光沢剤を含むめっき浴を用いためっき法により形成することを特徴とする請求項5に記載の配線部材の製造方法。   6. The method for manufacturing a wiring member according to claim 5, wherein the surface side region in the intermediate layer is formed by a plating method using a plating bath containing a brightener.
JP2008015855A 2008-01-28 2008-01-28 Foil-shaped conductor, wiring member, and manufacturing method of wiring member Active JP5489049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015855A JP5489049B2 (en) 2008-01-28 2008-01-28 Foil-shaped conductor, wiring member, and manufacturing method of wiring member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015855A JP5489049B2 (en) 2008-01-28 2008-01-28 Foil-shaped conductor, wiring member, and manufacturing method of wiring member

Publications (2)

Publication Number Publication Date
JP2009176646A true JP2009176646A (en) 2009-08-06
JP5489049B2 JP5489049B2 (en) 2014-05-14

Family

ID=41031518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015855A Active JP5489049B2 (en) 2008-01-28 2008-01-28 Foil-shaped conductor, wiring member, and manufacturing method of wiring member

Country Status (1)

Country Link
JP (1) JP5489049B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186211A (en) * 2011-03-03 2012-09-27 Jx Nippon Mining & Metals Corp Copper foil for printed wiring board and laminate sheet using the same
KR101230643B1 (en) * 2010-12-27 2013-02-06 주식회사 제이미크론 Method for manufacturing Cu wire plated Pd
WO2022085464A1 (en) * 2020-10-20 2022-04-28 セーレン株式会社 Conductive film having gold layer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132072A (en) * 1987-11-18 1989-05-24 Yazaki Corp Gold plated parts of terminal, contact, and the like
JP2001177222A (en) * 1999-12-15 2001-06-29 Kyocera Corp Manufacturing method of wiring board
JP2002353586A (en) * 2001-05-25 2002-12-06 Kyocera Corp Wiring board and electronic device using the same
JP2006049185A (en) * 2004-08-06 2006-02-16 Sumitomo Electric Ind Ltd Flat cable and its manufacturing method
JP2006086201A (en) * 2004-09-14 2006-03-30 Shinei Hitec:Kk Flexible wiring board and surface treating method therefor
JP2006092819A (en) * 2004-09-22 2006-04-06 Totoku Electric Co Ltd Flat cable and its manufacturing method
JP2008085010A (en) * 2006-09-27 2008-04-10 Sumitomo Bakelite Co Ltd Circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132072A (en) * 1987-11-18 1989-05-24 Yazaki Corp Gold plated parts of terminal, contact, and the like
JP2001177222A (en) * 1999-12-15 2001-06-29 Kyocera Corp Manufacturing method of wiring board
JP2002353586A (en) * 2001-05-25 2002-12-06 Kyocera Corp Wiring board and electronic device using the same
JP2006049185A (en) * 2004-08-06 2006-02-16 Sumitomo Electric Ind Ltd Flat cable and its manufacturing method
JP2006086201A (en) * 2004-09-14 2006-03-30 Shinei Hitec:Kk Flexible wiring board and surface treating method therefor
JP2006092819A (en) * 2004-09-22 2006-04-06 Totoku Electric Co Ltd Flat cable and its manufacturing method
JP2008085010A (en) * 2006-09-27 2008-04-10 Sumitomo Bakelite Co Ltd Circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230643B1 (en) * 2010-12-27 2013-02-06 주식회사 제이미크론 Method for manufacturing Cu wire plated Pd
JP2012186211A (en) * 2011-03-03 2012-09-27 Jx Nippon Mining & Metals Corp Copper foil for printed wiring board and laminate sheet using the same
WO2022085464A1 (en) * 2020-10-20 2022-04-28 セーレン株式会社 Conductive film having gold layer
KR20230091902A (en) 2020-10-20 2023-06-23 세이렌가부시끼가이샤 Conductive film with gold layer

Also Published As

Publication number Publication date
JP5489049B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP6495172B2 (en) Metal plating coated stainless steel and method for producing metal plating coated stainless steel
KR0184889B1 (en) Acidic pallandium strike bath
EP3467152A1 (en) Surface treatment material, production method thereof, and component formed using surface treatment material
JP4748550B2 (en) Composite material for electric and electronic parts and electric and electronic parts using the same
JP6734185B2 (en) Sn plated material and manufacturing method thereof
EP3564412A1 (en) Surface treatment material and article fabricated using same
TW201812108A (en) Tinned copper terminal material, terminal, and electrical wire end part structure
CN110114516A (en) Finish materials and its manufacturing method and the part made using the finish materials
EP2905357A1 (en) Metal material for use in electronic component, and method for producing same
EP2905356B1 (en) Metal material for use in electronic component
EP2782177A1 (en) Collector plate for fuel cells and method for producing same
JP2016166397A (en) Tin plated copper alloy terminal material, manufacturing method therefor and wire terminal part structure
JP5489049B2 (en) Foil-shaped conductor, wiring member, and manufacturing method of wiring member
JP7187162B2 (en) Sn-plated material and its manufacturing method
EP3660190A1 (en) Tin plated copper terminal material, terminal, and wire end structure
EP3564414A1 (en) Surface treatment material and article fabricated using same
JP5234487B2 (en) Flexible flat cable and manufacturing method thereof
EP2302105A1 (en) Composite material for electrical/electronic component and electrical/electronic component using the same
KR20200139662A (en) Plating spearhead
TW201907622A (en) Tinned copper terminal material, terminal and wire end structure
JP6839952B2 (en) Sn plating material and its manufacturing method
JP7079436B1 (en) Plating method
JP5013104B2 (en) Pinhole evaluation method
JP5013103B2 (en) Pinhole evaluation method
JP2018009203A (en) Surface treatment material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5489049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140216

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250