JP2009175952A - Air conditioning control support picture creation device, air conditioning control support picture creation method, and air conditioning monitoring system - Google Patents

Air conditioning control support picture creation device, air conditioning control support picture creation method, and air conditioning monitoring system Download PDF

Info

Publication number
JP2009175952A
JP2009175952A JP2008012732A JP2008012732A JP2009175952A JP 2009175952 A JP2009175952 A JP 2009175952A JP 2008012732 A JP2008012732 A JP 2008012732A JP 2008012732 A JP2008012732 A JP 2008012732A JP 2009175952 A JP2009175952 A JP 2009175952A
Authority
JP
Japan
Prior art keywords
value
air
setting value
flow rate
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008012732A
Other languages
Japanese (ja)
Other versions
JP4836967B2 (en
Inventor
Yasuo Takagi
康夫 高木
Kenzo Yonezawa
憲造 米沢
Hiroyuki Morimoto
博之 森本
Nobutaka Nishimura
信孝 西村
Naoki Makino
直樹 牧野
Yuichi Hanada
雄一 花田
Hideki Ono
秀樹 大野
Susumu Sugawara
進 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008012732A priority Critical patent/JP4836967B2/en
Publication of JP2009175952A publication Critical patent/JP2009175952A/en
Application granted granted Critical
Publication of JP4836967B2 publication Critical patent/JP4836967B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning control support picture creation device for supporting an operation to efficiently achieve energy saving with a requested power under the consideration of the comfortability of a person who stays in a room. <P>SOLUTION: This air conditioning control support picture creation device is provided with a comfortability exponential value calculation part 610 for calculating a comfortability exponential value in a room from the measurement value of the inside/outside of a room as the object of the control of air conditioning and the set value of an air conditioner; an air fan power calculation part 608 for calculating the power consumption value of an air fan in the air conditioner; a water supply pump power calculation part 609 for calculating the power consumption value of a water supply pump which supplies cold water to a cold water coil in the air conditioner; and an air conditioning monitor picture creation part 611 for defining the total value of the power consumption values of the air fan and the water supply pump as a total power consumption value, and for creating an air conditioning monitor picture configured of a first graph three-dimensionally showing a relation between two parameters selected from an air supply temperature set value, an air supply humidity set value, an in-room temperature set value, an air supply flow rate, and a cool water flow rate and the total power consumption value and a second graph three-dimensionally showing a relation between the two selected parameters and the comfortability exponential value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、オフィスや住居等の空調を監視する空調制御支援画面生成装置、空調制御支援画面生成方法、および空調監視システムに関する。   The present invention relates to an air-conditioning control support screen generation device, an air-conditioning control support screen generation method, and an air-conditioning monitoring system that monitor air conditioning in an office, a residence, or the like.

オフィスや住居などの建築施設全体で消費されるエネルギーは、空調関連のエネルギーが約半分を占めている。そのため、空調制御に関する省エネルギーの推進が、建築施設全体の省エネルギー化に大きく貢献する。   About half of the energy consumed in the entire building facilities such as offices and residences is energy related to air conditioning. Therefore, the promotion of energy saving related to air conditioning control greatly contributes to energy saving of the entire building facility.

一方で、空調制御の対象となる室内では在室者の温熱感覚を満足させるため、いわゆる快適性を確保することが要求されている。   On the other hand, in a room that is subject to air conditioning control, it is required to ensure so-called comfort in order to satisfy the thermal sensation of the occupants.

この「省エネルギーの推進」と「在室者の快適性の確保」とはトレードオフの関係にあり、省エネルギーを推進すると在室者の快適性が低下する場合が多いが、この快適性の範囲を超えた過剰なエネルギー消費を抑えることにより、在室者の快適性を確保しつつ無駄なエネルギー消費を抑えることは可能である。   There is a trade-off between this “promotion of energy conservation” and “ensuring the comfort of occupants”, and the promotion of energy conservation often reduces the comfort of occupants. By suppressing the excessive energy consumption exceeding, it is possible to suppress wasteful energy consumption while ensuring the comfort of the occupants.

このように、在室者の快適性を確保しつつ省エネルギーを推進する技術として、特許文献1に記載のエージェント技術を応用した環境エネルギー管理システムがある。   As described above, there is an environmental energy management system to which the agent technology described in Patent Document 1 is applied as a technology for promoting energy saving while ensuring the comfort of occupants.

この特許文献1に記載の環境エネルギー管理システムは、各空調制御対象の個別エリアにそれぞれ設置された複数のエージェント装置とこの複数のエージェント装置にネットワークを介して接続された管理マネージャ装置とから構成され、このエージェント装置が各エリア内のセンサから測定値を取得し、管理マネージャ装置が各エージェント装置からデータを取得してPMV等の快適性指数を利用した温熱環境計算およびエネルギー最適化計算を行うことにより空気調和設備の制御を行うことで、室内の温熱環境の最適化とエネルギー消費の最小化との両立を実現している。   The environmental energy management system described in Patent Document 1 is composed of a plurality of agent devices installed in individual areas for air conditioning control, and a management manager device connected to the plurality of agent devices via a network. The agent device acquires measurement values from sensors in each area, and the management manager device acquires data from each agent device to perform thermal environment calculation and energy optimization calculation using a comfort index such as PMV. By controlling the air-conditioning equipment, it is possible to achieve both optimization of the indoor thermal environment and minimization of energy consumption.

ところで、オフィスビルや病院などの大規模な施設では、上記のようなシステムによる空調制御に加え、中央管理装置において各室内の環境状態を取得して表示することにより、オペレータがこの環境状態を監視するとともに空調機の設定値を操作することが行われている。   By the way, in large-scale facilities such as office buildings and hospitals, in addition to air conditioning control by the system as described above, the central management device acquires and displays the environmental state of each room so that the operator can monitor this environmental state. In addition, the set value of the air conditioner is operated.

この室内の環境状態を表示する技術として、特許文献2に記載の運転支援システムがある。   As a technique for displaying the indoor environmental state, there is a driving support system described in Patent Document 2.

この運転支援システムは、運転目的設備に関するコスト、運転目的設備のエネルギー供給コスト、運転機器のコスト、二酸化炭素排出量、窒素酸化物排出量、地球温暖化物質排出量、一次エネルギー使用量、原油換算エネルギー消費量、エネルギー需給過不足量または電力品質などを、運転機器に対して行われた運転情報の評価結果として表示するものである。   This operation support system includes costs related to operation target facilities, energy supply costs for operation target facilities, operating equipment costs, carbon dioxide emissions, nitrogen oxide emissions, global warming material emissions, primary energy consumption, crude oil equivalent Energy consumption, energy supply / demand deficiency, power quality, or the like is displayed as an evaluation result of operation information performed on the driving equipment.

この運転支援システムにより、オペレータの運転ノウハウとマシンによる省エネアドバイス、省エネ最適計算などのメリットを生かすことができ、さらにオペレータの省エネ意欲を高めることができる。
特開2006−331372 特開2006−304595
With this driving support system, the operator's driving know-how, energy-saving advice by machines, energy-saving optimal calculation, etc. can be utilized, and the operator's willingness to save energy can be further increased.
JP 2006-331372 A JP 2006-304595 A

しかし、上記特許文献1に記載の技術に関しては、個別の空調エリアごとに各エージェント装置で消費エネルギーを計算して空気調和設備の制御を行っているが、ビル等の大規模な施設では中央熱源装置内のポンプ等の中央設備の動力が全体の空調消費エネルギーの多くを占めており、個別の空調エリアごとに節約できるエネルギーはごく一部であるという問題があった。   However, with respect to the technique described in Patent Document 1, the air conditioning equipment is controlled by calculating energy consumption in each agent device for each individual air-conditioning area. However, in a large-scale facility such as a building, a central heat source is used. The power of the central equipment such as a pump in the apparatus occupies much of the entire air conditioning energy consumption, and there is a problem that only a small amount of energy can be saved for each individual air conditioning area.

また、特許文献2に記載の技術に関しては、表示される消費エネルギーの評価結果からはオペレータは在室者の快適性を考慮して空調制御操作を行うことができず、室内の温熱環境の最適化とエネルギー消費の最小化との両立を図ることができないという問題があった。   In addition, regarding the technique described in Patent Document 2, the operator cannot perform the air conditioning control operation in consideration of the comfort of the occupant from the evaluation result of the displayed energy consumption, and the optimal indoor thermal environment There is a problem that it is not possible to achieve both reduction of energy consumption and minimization of energy consumption.

そこで本発明は上記事情に鑑みてなされたものであり、在室者の快適性を考慮しつつ、効率よく所要動力の省エネルギー化を図った操作を支援する空調制御支援画面生成装置、空調制御支援画面生成方法、および空調監視システムを提供することを目的とする。   Accordingly, the present invention has been made in view of the above circumstances, and an air conditioning control support screen generation device and an air conditioning control support that support an operation that efficiently saves required power while considering the comfort of the occupant. An object is to provide a screen generation method and an air conditioning monitoring system.

上記目的を達成するための本発明の空調制御支援画面生成装置は、空調制御対象の施設の外気の温度計測値である外気温度計測値と、空調制御対象の室内の温度計測値である室内温度計測値とを取得するとともに、前記施設内に設置された空調機に設定されている、前記室内に供給される給気の温度設定値である給気温度設定値と、前記室内の温度設定値である室内温度設定値とを前記空調機または制御システムから取得し、これらの外気温計測値、室内温度計測値、給気温度設定値、および室内温度設定値に基づいて前記室内の顕熱バランスが満たされるように算出する、前記空調機から前記室内に供給される給気流量である第1の給気流量と、前記外気の湿度計測値である外気湿度計測値と、前記室内の湿度計測値である室内湿度計測値とを取得するとともに、前記空調機に設定されている、前記給気の湿度設定値である給気湿度設定値と、前記室内の湿度設定値である室内湿度設定値とを前記空調機または制御システムから取得し、これらの外気湿度計測値、室内湿度計測値、給気湿度設定値、および室内湿度設定値に基づいて前記室内の潜熱バランスが満たされるように算出する、前記空調機から前記室内に供給される給気流量である第2の給気流量とのうち、いずれか一の給気流量、あるいは両給気流量の総量を総給気流量として算出する給気流量算出部と、前記外気温度計測値と、前記外気湿度計測値と、前記空調機内に設けられ冷水を利用して前記給気を冷却および除湿する冷水コイルの伝熱量とから、前記冷水コイルに供給される冷水の流量を算出する冷水流量算出部と、前記室内温度計測値および前記室内湿度計測値に基づいて、前記室内の快適性指数値を算出する快適性指数値算出部と、前記給気流量算出部で算出された前記総給気流量から、前記空調機内に設けられ前記室内に前記給気を送風する送風ファンの消費動力値を算出する送風ファン動力算出部と、前記冷水流量算出部で算出された流量の冷水を前記空調機内の前記冷水コイルに送水する送水ポンプの消費動力値を算出する送水ポンプ動力算出部と、前記送風ファン動力算出部で算出された前記送風ファンの消費動力値と、前記送水ポンプ動力算出部で算出された前記送水ポンプの消費動力値との合計値を総消費動力値とし、取得された前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記総消費動力値との関係を3次元で示した第1のグラフと、取得した前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記快適性指数値算出部で算出された前記快適性指数値との関係を3次元で示した第2のグラフとからなる空調監視画面の表示データを生成して接続された監視装置に出力する空調監視画面生成部とを備えることを特徴とする。   In order to achieve the above object, an air conditioning control support screen generating apparatus according to the present invention includes an outside air temperature measurement value that is a temperature measurement value of the outside air of a facility that is subject to air conditioning control, and an indoor temperature that is a temperature measurement value of the room subject to air conditioning control A measurement value and an air supply temperature setting value, which is a temperature setting value of the supply air supplied to the room, set in an air conditioner installed in the facility, and the indoor temperature setting value The indoor temperature set value is acquired from the air conditioner or the control system, and the sensible heat balance in the room is measured based on the outside air temperature measured value, the indoor temperature measured value, the supply air temperature set value, and the indoor temperature set value. The first supply air flow rate that is the supply air flow rate supplied to the room from the air conditioner, the outside air humidity measurement value that is the outside air humidity measurement value, and the indoor humidity measurement Indoor humidity measured value And an air supply humidity setting value that is a humidity setting value of the supply air and an indoor humidity setting value that is the indoor humidity setting value that are set in the air conditioner. Obtained from the outside air humidity measurement value, the indoor humidity measurement value, the supply air humidity setting value, and the indoor humidity setting value, and calculated so that the latent heat balance in the room is satisfied. An air supply flow rate calculation unit for calculating, as the total air supply flow rate, any one of the second air supply flow rates, or the total amount of both the air supply flow rates, and the outside air; From the temperature measurement value, the outside air humidity measurement value, and the heat transfer amount of the cold water coil provided in the air conditioner for cooling and dehumidifying the supply air using cold water, the flow rate of the cold water supplied to the cold water coil is determined. Calculate the cold water flow rate A comfort index value calculating unit that calculates a comfort index value of the room based on the measured indoor temperature value and the measured indoor humidity value, and the total air supply calculated by the supply air flow rate calculating unit A blower fan power calculation unit that calculates a power consumption value of a blower fan that is provided in the air conditioner and blows the supply air into the room from a flow rate, and cool water at a flow rate calculated by the cold water flow rate calculation unit is supplied to the air conditioner. A water pump power calculation unit that calculates a power consumption value of a water pump that supplies water to the cold water coil, a power consumption value of the blower fan that is calculated by the blower fan power calculation unit, and a calculation by the water pump power calculation unit A total value of the consumption power value of the water pump that has been performed as a total consumption power value, and the acquired supply air temperature setting value, the supply air humidity setting value, the indoor temperature setting value, the indoor humidity setting value, and Calculated A first graph showing in three dimensions the relationship between the two parameters selected from the supplied air flow rate and the cold water flow rate and the total consumption power value, the acquired supply air temperature setting value, and the air supply Two parameters selected from the humidity setting value, the indoor temperature setting value, the indoor humidity setting value, the calculated air supply flow rate, and the cold water flow rate, and the comfort index value calculated by the comfort index value calculation unit An air-conditioning monitoring screen generating unit that generates display data of an air-conditioning monitoring screen including a second graph showing the relationship with the index value in three dimensions and outputs the generated data to a connected monitoring device.

また、本発明の空調制御支援画面生成方法は、空調制御対象の施設の外気の温度計測値である外気温度計測値と、空調制御対象の室内の温度計測値である室内温度計測値とを取得するとともに、前記施設内に設置された空調機に設定されている、前記室内に供給される給気の温度設定値である給気温度設定値と、前記室内の温度設定値である室内温度設定値とを前記空調機または制御システムから取得し、これらの外気温計測値、室内温度計測値、給気温度設定値、および室内温度設定値に基づいて前記室内の顕熱バランスが満たされるように算出する、前記空調機から前記室内に供給される給気流量である第1の給気流量と、前記外気の湿度計測値である外気湿度計測値と、前記室内の湿度計測値である室内湿度計測値とを取得するとともに、前記空調機に設定されている、前記給気の湿度設定値である給気湿度設定値と、前記室内の湿度設定値である室内湿度設定値とを前記空調機または制御システムから取得し、これらの外気湿度計測値、室内湿度計測値、給気湿度設定値、および室内湿度設定値に基づいて前記室内の潜熱バランスが満たされるように算出する、前記空調機から前記室内に供給される給気流量である第2の給気流量とのうち、いずれか一の給気流量、あるいは両給気流量の総量を総給気流量として算出する給気流量算出ステップと、前記外気温度計測値と、前記外気湿度計測値と、前記空調機内に設けられ冷水を利用して前記給気を冷却および除湿する冷水コイルの伝熱量とから、前記冷水コイルに供給される冷水の流量を算出する冷水流量算出ステップと、前記室内温度計測値および前記室内湿度計測値に基づいて、前記室内の快適性指数値を算出する快適性指数値算出ステップと、前記給気流量算出ステップで算出された前記総給気流量から、前記空調機内に設けられ前記室内に前記給気を送風する送風ファンの消費動力値を算出する送風ファン動力算出ステップと、前記冷水流量算出ステップで算出された流量の冷水を前記空調機内の前記冷水コイルに送水する送水ポンプの消費動力値を算出する送水ポンプ動力算出ステップと、前記送風ファン動力算出ステップで算出された前記送風ファンの消費動力値と、前記送水ポンプ動力算出ステップで算出された前記送水ポンプの消費動力値との合計値を総消費動力値とし、取得された前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記総消費動力値との関係を3次元で示した第1のグラフと、取得した前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記快適性指数値算出ステップで算出された前記快適性指数値との関係を3次元で示した第2のグラフとからなる空調監視画面の表示データを生成して接続された監視装置に出力する空調監視画面生成ステップとを備えることを特徴とする。   In addition, the air conditioning control support screen generation method of the present invention acquires an outside air temperature measurement value that is a temperature measurement value of the outside air of a facility that is an air conditioning control target, and an indoor temperature measurement value that is a temperature measurement value of a room subject to air conditioning control. In addition, a supply air temperature setting value that is a temperature setting value of the supply air supplied to the room and an indoor temperature setting that is the indoor temperature setting value that are set in the air conditioner installed in the facility Value is acquired from the air conditioner or control system, and the sensible heat balance in the room is satisfied based on the measured outside air temperature value, the measured indoor temperature value, the supply air temperature setting value, and the indoor temperature setting value. A first supply air flow rate that is a supply air flow rate supplied from the air conditioner to the room, an outside air humidity measurement value that is a humidity measurement value of the outside air, and a room humidity that is the indoor humidity measurement value are calculated. Get the measured value and The air supply humidity setting value that is the humidity setting value of the supply air that is set in the air conditioner and the indoor humidity setting value that is the indoor humidity setting value are acquired from the air conditioner or the control system, Based on these outside air humidity measurement value, indoor humidity measurement value, supply air humidity setting value, and indoor humidity setting value, the supply air supplied to the room from the air conditioner is calculated so as to satisfy the latent heat balance in the room. An air supply flow rate calculating step for calculating one of the air supply flow rates or the total amount of both air supply flow rates as the total air supply flow rate, and the outside air temperature measurement value; A cold water flow rate for calculating a flow rate of the cold water supplied to the cold water coil from the measured value of the outside air humidity and a heat transfer amount of the cold water coil provided in the air conditioner for cooling and dehumidifying the supply air using the cold water Calculation step and Based on the indoor temperature measurement value and the indoor humidity measurement value, the comfort index value calculating step for calculating the indoor comfort index value, and the total supply air flow rate calculated in the supply air flow rate calculation step, A blower fan power calculation step for calculating a power consumption value of a blower fan that is provided in the air conditioner and blows the supply air into the room, and a cold water flow rate calculated in the cold water flow rate calculation step is used as the cold water in the air conditioner. A water pump power calculation step for calculating a power consumption value of a water pump for supplying water to the coil, a power consumption value for the blower fan calculated in the blower fan power calculation step, and the water pump power calculation step calculated in the water pump power calculation step The total value of the power consumption value of the water pump is set as the total power consumption value, and the acquired supply air temperature setting value, the supply air humidity setting value, and the indoor temperature setting are acquired. A first graph showing the relationship between the two parameters selected from the value, the indoor humidity set value, the calculated air supply flow rate, the cold water flow rate, and the total power consumption value in three dimensions, and Two parameters selected from the supply air temperature setting value, the supply air humidity setting value, the indoor temperature setting value, the indoor humidity setting value, the calculated supply air flow rate, and the cold water flow rate, and the comfort index Air-conditioning monitoring screen generation that generates display data of an air-conditioning monitoring screen including a second graph that three-dimensionally shows the relationship with the comfort index value calculated in the value calculation step and outputs the generated data to a connected monitoring device And a step.

また、本発明の空調制御支援システムは、空調対象の施設内に設置された空調機と、この空調機に冷水を送水する送水ポンプと、監視装置と、前記空調機と監視装置とに信号接続された空調制御支援画面生成装置とから構成されるものであり、前記空調機は、前記送水ポンプにより送水される冷水を利用して前記室内に供給する給気を冷却および除湿する冷水コイルと、前記冷水コイルで冷却および除湿された前記給気を前記空調制御対象の室内に送風する送風ファンとを有し、前記空調制御支援画面生成装置は、空調制御対象の施設の外気の温度計測値である外気温度計測値と、空調制御対象の室内の温度計測値である室内温度計測値とを取得するとともに、前記空調機に設定されている、前記室内に供給される給気の温度設定値である給気温度設定値と、前記室内の温度設定値である室内温度設定値とを前記空調機または制御システムから取得し、これらの外気温計測値、室内温度計測値、給気温度設定値、および室内温度設定値に基づいて前記室内の顕熱バランスが満たされるように算出する、前記空調機内の送風ファンにより前記室内に供給される給気流量である第1の給気流量と、前記外気の湿度計測値である外気湿度計測値と、前記室内の湿度計測値である室内湿度計測値とを取得するとともに、前記空調機に設定されている、前記給気の湿度設定値である給気湿度設定値と、前記室内の湿度設定値である室内湿度設定値とを前記空調機または制御システムから取得し、これらの外気湿度計測値、室内湿度計測値、給気湿度設定値、および室内湿度設定値に基づいて前記室内の潜熱バランスが満たされるように算出する、前記空調機内の送風ファンにより前記室内に供給される給気流量である第2の給気流量とのうち、いずれか一の給気流量、あるいは両給気流量の総量を総給気流量として算出する給気流量算出部と、前記外気温度計測値と、前記外気湿度計測値と、前記空調機内の冷水コイルの伝熱量とから、前記冷水コイルに供給される冷水の流量を算出する冷水流量算出部と、前記室内温度計測値および前記室内湿度計測値に基づいて、前記室内の快適性指数値を算出する快適性指数値算出部と、前記給気流量算出部で算出された前記総給気流量から、前記空調機内の送風ファンの消費動力値を算出する送風ファン動力算出部と、前記冷水流量算出部で算出された流量の冷水を前記空調機内の前記冷水コイルに送水する送水ポンプの消費動力値を算出する送水ポンプ動力算出部と、前記送風ファン動力算出部で算出された前記送風ファンの消費動力値と、前記送水ポンプ動力算出部で算出された前記送水ポンプの消費動力値との合計値を総消費動力値とし、取得された前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記総消費動力値との関係を3次元で示した第1のグラフと、取得した前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記快適性指数値算出部で算出された前記快適性指数値との関係を3次元で示した第2のグラフとからなる空調監視画面の表示データを生成して前記監視装置に出力する空調監視画面生成部とを有し、前記監視装置は、前記空調制御支援画面生成装置の空調監視画面生成部で生成された空調監視画面を表示する表示部を有することを特徴とする。   In addition, the air conditioning control support system of the present invention is connected to the air conditioner installed in the air conditioning target facility, the water pump for feeding cold water to the air conditioner, the monitoring device, and the air conditioner and the monitoring device. A cooling water coil that cools and dehumidifies the air supplied to the room using the cold water fed by the water pump; A blower fan that blows the supply air cooled and dehumidified by the cold water coil into the air-conditioning control target room, and the air-conditioning control support screen generation device is a temperature measurement value of outside air of the air-conditioning control target facility. A certain outside air temperature measurement value and an indoor temperature measurement value that is an indoor temperature measurement value for air conditioning control are acquired, and the temperature setting value of the supply air supplied to the room is set in the air conditioner. A salary A temperature setting value and an indoor temperature setting value that is the indoor temperature setting value are acquired from the air conditioner or the control system, and the outside air temperature measurement value, the indoor temperature measurement value, the supply air temperature setting value, and the indoor temperature A first supply air flow rate, which is a supply air flow rate supplied to the room by a blower fan in the air conditioner, calculated so as to satisfy the sensible heat balance in the room based on a set value, and humidity measurement of the outside air An outside humidity measurement value that is a value and an indoor humidity measurement value that is the indoor humidity measurement value, and a supply air humidity setting value that is a humidity setting value of the supply air that is set in the air conditioner And the indoor humidity setting value, which is the indoor humidity setting value, are obtained from the air conditioner or the control system, and the outside air humidity measurement value, the indoor humidity measurement value, the supply air humidity setting value, and the indoor humidity setting value are obtained. Based on before Calculated so that the latent heat balance in the room is satisfied, one of the second supply air flow rate that is the supply air flow rate supplied to the room by the blower fan in the air conditioner, or both From the supply air flow rate calculation unit that calculates the total supply air flow rate as the total supply air flow rate, the outside air temperature measurement value, the outside air humidity measurement value, and the heat transfer amount of the cold water coil in the air conditioner, the cold water coil A cold water flow rate calculation unit for calculating a flow rate of supplied cold water, a comfort index value calculation unit for calculating a comfort index value for the room based on the measured indoor temperature value and the measured indoor humidity value, and the supply A blower fan power calculation unit that calculates a power consumption value of the blower fan in the air conditioner from the total supply air flow rate calculated by the air flow rate calculation unit, and a cold water flow rate calculated by the cold water flow rate calculation unit is the air conditioning The cold water A water pump power calculation unit that calculates a power consumption value of a water pump that supplies water to the tank, a power consumption value of the blower fan that is calculated by the blower fan power calculation unit, and the water pump power calculation unit that is calculated by the water pump power calculation unit The total value of the power consumption value of the water pump is defined as the total power consumption value, and the acquired supply air temperature setting value, the supply air humidity setting value, the indoor temperature setting value, the indoor humidity setting value, and the calculated A first graph showing the relationship between the two parameters selected from the supply air flow rate and the cold water flow rate and the total consumption power value in three dimensions, the acquired supply air temperature setting value, and the supply air humidity setting Value, indoor temperature setting value, indoor humidity setting value, calculated air supply flow rate, two parameters selected from the cold water flow rate and the comfort index value calculated by the comfort index value calculation unit And relation An air-conditioning monitoring screen generating unit that generates display data of an air-conditioning monitoring screen composed of a second graph in three dimensions and outputs the generated data to the monitoring device, and the monitoring device generates the air-conditioning control support screen It has the display part which displays the air-conditioning monitoring screen produced | generated by the air-conditioning monitoring screen production | generation part of the apparatus.

本発明の空調制御支援画面生成装置、空調制御支援画面生成方法、および空調監視システムによれば、在室者の快適性を考慮しつつ、効率よく所要動力の省エネルギー化を図った操作を支援することができる。   According to the air-conditioning control support screen generation device, the air-conditioning control support screen generation method, and the air-conditioning monitoring system of the present invention, the operation for efficiently saving the required power is supported while considering the comfort of the occupants. be able to.

本発明の空調監視システムの実施形態について、図面を参照して説明する。なお、最近の多くのオフィスビル等は断熱性が良くPCやOA機器が多いため、年間を通して冷房モードであるので、以下の各実施形態においては冷房モードで空調制御を行う場合について説明する。また、本実施形態において空調制御対象のビルの室内は複数のゾーンに分割され、このゾーンごとに空調機が設置されて空調制御が行われるものとする。   An embodiment of an air conditioning monitoring system of the present invention will be described with reference to the drawings. Since many recent office buildings have good heat insulation and many PCs and OA devices, they are in the cooling mode throughout the year. Therefore, in the following embodiments, the case where air conditioning control is performed in the cooling mode will be described. In the present embodiment, the room of a building subject to air conditioning control is divided into a plurality of zones, and an air conditioner is installed in each zone for air conditioning control.

《第1実施形態》
〈第1実施形態による空調制御支援システムの構成〉
本発明の第1実施形態による空調制御支援システム1の構成を、図1に示す。
本実施形態による空調制御支援システム1は、室外センサ群10と、室内センサ群20と、空調機30と、中央熱源装置40と、監視制御システム50と、空調制御支援画面生成装置60と、監視装置70とにより構成されている。
<< First Embodiment >>
<Configuration of air conditioning control support system according to the first embodiment>
The configuration of an air conditioning control support system 1 according to the first embodiment of the present invention is shown in FIG.
The air conditioning control support system 1 according to the present embodiment includes an outdoor sensor group 10, an indoor sensor group 20, an air conditioner 30, a central heat source device 40, a monitoring control system 50, an air conditioning control support screen generation device 60, and a monitor. The apparatus 70 is comprised.

室外センサ群10は、空調制御対象の設備の外気の温度を計測する外気温センサ101、および設備の外気の湿度を計測する外気湿度センサ102を有する。   The outdoor sensor group 10 includes an outside air temperature sensor 101 that measures the temperature of the outside air of the facility that is subject to air conditioning control, and an outside air humidity sensor 102 that measures the humidity of the outside air of the facility.

室内センサ群20は、空調制御対象のゾーン内に設置された、このゾーン内の温度を計測する室内温度センサ201、および室内の湿度を計測する室内湿度センサ202を有する。   The indoor sensor group 20 includes an indoor temperature sensor 201 that measures the temperature in the zone, and an indoor humidity sensor 202 that measures indoor humidity, which are installed in a zone subject to air conditioning control.

空調機30は、空調制御対象のゾーン内に設置され、監視制御システム50から取得した設定値に基づいて温度および湿度を調整する冷水コイル301と、この冷水コイル301により調整された空気を給気として該ゾーン内に供給する送風ファン302とを有する。   The air conditioner 30 is installed in a zone subject to air conditioning control, and supplies a chilled water coil 301 that adjusts temperature and humidity based on setting values acquired from the monitoring control system 50 and air adjusted by the chilled water coil 301. And a blower fan 302 to be supplied into the zone.

中央熱源装置40は、冷却水を生成する冷却塔401と、冷却塔401で生成された冷却水を所定温度に調整する冷凍機402と、冷凍機402と各空調機30または冷却塔401との間で冷水を搬送する送水ポンプ403とを有する。   The central heat source device 40 includes a cooling tower 401 that generates cooling water, a refrigerator 402 that adjusts the cooling water generated in the cooling tower 401 to a predetermined temperature, the refrigerator 402 and each air conditioner 30 or the cooling tower 401. And a water supply pump 403 that conveys cold water between them.

監視制御システム50は、室外センサ群10および室内センサ群20内のセンサから各計測値を取得して空調制御支援画面生成装置60に送信するとともに、取得した計測値から空調機30に設定される室内の温度設定値および湿度設定値を算出して空調機30および空調制御支援画面生成装置60に送信し、また、この温度設定値および湿度設定値から空調機30に設定される給気温度設定値および給気湿度設定値を算出して空調機30および空調制御支援画面生成装置60に送信する。   The monitoring control system 50 acquires each measured value from the sensors in the outdoor sensor group 10 and the indoor sensor group 20 and transmits them to the air conditioning control support screen generating device 60, and is set in the air conditioner 30 from the acquired measured values. The indoor temperature setting value and humidity setting value are calculated and transmitted to the air conditioner 30 and the air conditioning control support screen generating device 60, and the supply air temperature setting set in the air conditioner 30 from this temperature setting value and humidity setting value The value and the supply air humidity setting value are calculated and transmitted to the air conditioner 30 and the air conditioning control support screen generator 60.

空調制御支援画面生成装置60は、外気状態測定値入力部601と、室内状態測定値入力部602と、室内設定値入力部603と、給気設定値入力部604と、顕熱負荷・潜熱負荷算出部605と、給気流量算出部606と、冷水流量算出部607と、送風ファン動力算出部608と、送水ポンプ動力算出部609と、快適性指数値算出部としてのPMV値算出部610と、空調監視画面生成部611とを有する。   The air conditioning control support screen generation device 60 includes an outside air state measurement value input unit 601, an indoor state measurement value input unit 602, an indoor set value input unit 603, an air supply set value input unit 604, a sensible heat load and a latent heat load. Calculation unit 605, supply air flow rate calculation unit 606, cold water flow rate calculation unit 607, blower fan power calculation unit 608, water pump power calculation unit 609, and PMV value calculation unit 610 as a comfort index value calculation unit And an air conditioning monitoring screen generation unit 611.

外気状態測定値入力部601は、監視制御システム50から室外センサ群10の各センサの測定値を入力する。室内状態測定値入力部602は、監視制御システム50から室内センサ群20の各センサの測定値を入力する。室内設定値入力部603は、監視制御システム50から空調機30の室温設定値および室内湿度設定値を入力する。給気設定値入力部604は、監視制御システム50から空調機30の給気温度設定値および給気湿度設定値を入力する。   The outside air state measured value input unit 601 inputs the measured value of each sensor of the outdoor sensor group 10 from the monitoring control system 50. The indoor state measurement value input unit 602 inputs measurement values of each sensor of the indoor sensor group 20 from the monitoring control system 50. The indoor set value input unit 603 inputs the room temperature set value and the indoor humidity set value of the air conditioner 30 from the monitoring control system 50. The air supply set value input unit 604 inputs the air supply temperature set value and the air supply humidity set value of the air conditioner 30 from the monitoring control system 50.

顕熱負荷・潜熱負荷算出部605は、空調制御対象のゾーン内の照明、OA機器の設置状態や外気温から推定される、空調機30で消費される顕熱負荷量、および空調制御対象のゾーン内の在室者から吐き出される水蒸気や外気の湿度等から推定される潜熱負荷量を算出する。   The sensible heat load / latent heat load calculation unit 605 is configured to calculate the sensible heat load consumed by the air conditioner 30 estimated from the lighting in the zone subject to air conditioning control, the installation state of the OA equipment and the outside air temperature, and the air conditioning control target The latent heat load estimated from the water vapor discharged from the occupants in the zone and the humidity of the outside air is calculated.

給気流量算出部606は、入力された各値および顕熱負荷・潜熱負荷算出部605で算出された顕熱負荷量および潜熱負荷量から、顕熱バランスおよび潜熱バランスに基づいて空調機30から空調制御対象のゾーン内に供給される空気の流量である給気流量を算出する。   The air supply flow rate calculation unit 606 calculates the sensible heat load and the latent heat load amount calculated by the input values and the sensible heat load / latent heat load calculation unit 605 from the air conditioner 30 based on the sensible heat balance and the latent heat balance. A supply air flow rate, which is a flow rate of air supplied into the air-conditioning control target zone, is calculated.

冷水流量算出部607は、入力された各値および顕熱負荷・潜熱負荷算出部605で算出された顕熱負荷量および潜熱負荷量から、空調機30内の冷水コイルの伝熱量に基づいて、空調機30内で必要とされる冷水の流量である冷水流量を算出する。   The chilled water flow rate calculation unit 607 is based on the input values and the sensible heat load amount and latent heat load amount calculated by the sensible heat load / latent heat load calculation unit 605 based on the heat transfer amount of the chilled water coil in the air conditioner 30. A cold water flow rate that is a flow rate of cold water required in the air conditioner 30 is calculated.

送風ファン動力算出部608は、給気流量算出部606で算出された給気流量から、空調機30内の給気に利用する送風ファンの消費動力値である送風ファンの消費動力値を算出する。   The blower fan power calculation unit 608 calculates a power consumption value of the blower fan that is a power consumption value of the blower fan used for air supply in the air conditioner 30 from the supply air flow rate calculated by the supply air flow rate calculation unit 606. .

送水ポンプ動力算出部609は、冷水流量算出部607で算出された冷水流量から、空調機30に冷水を供給する送水ポンプの消費動力値である送水ポンプの消費動力値を算出する。   The water pump power calculation unit 609 calculates the power consumption value of the water pump that is the power consumption value of the water pump that supplies the cold air to the air conditioner 30 from the cold water flow rate calculated by the cold water flow rate calculation unit 607.

PMV値算出部610は、入力された室内温度測定値および室内湿度測定値から、空調制御対象のゾーン内の快適性指数であるPMV値を算出する。   The PMV value calculation unit 610 calculates a PMV value, which is a comfort index in the zone subject to air conditioning control, from the input indoor temperature measurement value and indoor humidity measurement value.

空調監視画面生成部611は、入力された各値と、送風ファン動力算出部608で算出された送風ファンの消費動力値と、送水ポンプ動力算出部609で算出された送水ポンプの消費動力値と、PMV値算出部610で算出されたPMV値とから、監視装置70に表示させるための空調監視画面の表示データを生成する。   The air-conditioning monitoring screen generation unit 611 includes the input values, the power consumption value of the blower fan calculated by the blower fan power calculation unit 608, and the power consumption value of the water pump calculated by the water pump power calculation unit 609. From the PMV value calculated by the PMV value calculation unit 610, display data of the air conditioning monitoring screen to be displayed on the monitoring device 70 is generated.

監視装置70は、空調制御支援画面生成装置60で生成された空調監視画面を表示して、オペレータの空調制御操作を支援する。   The monitoring device 70 displays the air conditioning monitoring screen generated by the air conditioning control support screen generating device 60 to support the operator's air conditioning control operation.

本実施形態において、空調制御支援画面生成装置60で算出され空調監視画面の生成に利用されるPMV値について説明する。   In the present embodiment, the PMV value calculated by the air conditioning control support screen generating device 60 and used for generating the air conditioning monitoring screen will be described.

PMVとは、暑さ、寒さに対する人間の温熱感覚に影響を与える変数として(a)空気温度、(b)相対湿度、(c)平均輻射温度、(d)気流速度、(e)活動量(人体の内部発熱量)、(f)着衣量の6つを用いて求められる快適性指数である。   PMV is a variable that affects human thermal sensation against heat and cold. (A) Air temperature, (b) Relative humidity, (c) Average radiation temperature, (d) Air velocity, (e) Activity ( It is a comfort index determined using six of the internal heat generation amount of the human body) and (f) the amount of clothes.

人の発熱量は対流による放射量、輻射による放熱量、人からの蒸発熱量、呼吸による放熱量および蓄熱量の合計で、これらの熱平衡式が成立している場合は、人体が熱的に中立であり、暑くも寒くもない快適状態である。逆に熱平衡式がくずれた場合に人体は暑さ寒さを感じる。   The amount of heat generated by a person is the sum of the amount of radiation generated by convection, the amount of heat released by radiation, the amount of heat evaporated from the person, the amount of heat released by breathing, and the amount of stored heat.If these thermal balance equations hold, the human body is thermally neutral. It is a comfortable state that is neither hot nor cold. Conversely, when the thermal balance equation breaks down, the human body feels hot and cold.

デンマーク工科大学のFanger教授は1967年に快適方程式の導出を発表し、これを出発点として人体の熱負荷と人間の温冷感を、欧米人の多数の被験者のアンケートから統計分析して結び付け、PMVを提案した。これは近年ISO規格にも取り上げられ最近よく用いられるようになった。   In 1967, Professor Fanger of the Danish Institute of Technology announced the derivation of the comfort equation, and using this as a starting point, the thermal load of the human body and the thermal sensation of the human were statistically analyzed from a questionnaire of a large number of European and American subjects, PMV was proposed. In recent years, this has been taken up by the ISO standard and has recently been used frequently.

温冷感の指標となるPMVは、次の7段階評価尺度による数値として表す。
+3:暑い
+2:暖かい
+1:やや暖かい
0:どちらでもない、快適
−1:やや涼しい
−2:涼しい
−3:寒い
なお、人間の快適なPMV値の範囲は−0.5〜+0.5である。
PMV, which is an index of thermal sensation, is expressed as a numerical value based on the following seven-level evaluation scale.
+3: Hot +2: Warm +1: Slightly warm 0: Neither comfort, -1: Slightly cool -2: Cool -3: Cold is there.

上記の6つの変数のうち、作業強度を表す活動量は通常、代謝量metの単位を用い、着衣量はcloの単位を用いる。
単位met(メット)は、代謝量を表し、熱的に快適な状態における安静時代謝を基準とし、1metは下記式(1)で表される。
Of the above six variables, the amount of activity representing work intensity usually uses the unit of metabolic rate met, and the amount of clothing uses the unit of clo.
The unit met (met) represents the amount of metabolism, and 1 met is represented by the following formula (1) with reference to resting metabolism in a thermally comfortable state.

Figure 2009175952
Figure 2009175952

また、単位clo(クロ)は、衣服の熱絶縁性を表し、1clo とは気温 21℃,相対湿度 50%,気流 5cm/s以下の室内で、体表面からの放熱量が1metの代謝と平衡するような着衣状態での値であり、通常の熱抵抗値に換算すると下記式(2)で表される。   In addition, the unit clo (cloth) represents the thermal insulation of clothes, and 1 clo is a room temperature of 21 ° C, relative humidity 50%, air flow 5cm / s or less, and the amount of heat released from the body surface is balanced with metabolism of 1met. It is a value in such a clothing state, and is expressed by the following formula (2) when converted into a normal thermal resistance value.

Figure 2009175952
Figure 2009175952

これらの数値から、下記式(3)を用いて快適な範囲内(−0.5<PMV<+0.5)で冷房時はより暑い方向の側に、暖房時はより寒い方向の側にPMV目標値を設定することで空調負荷の軽減を図ることができ、省エネルギーを達成できる。   From these numerical values, using the following formula (3), within a comfortable range (−0.5 <PMV <+0.5), the PMV is on the hotter side during cooling and on the colder side during heating. By setting the target value, the air conditioning load can be reduced, and energy saving can be achieved.

Figure 2009175952
ここで、M:活動量[kcal/h]
A:人体表面積[m
L:人体熱負荷[kcal/mh](Fangerの快適方程式より算定)
である。
Figure 2009175952
Where M: activity [kcal / h]
A: Human body surface area [m 2 ]
L: Human body heat load [kcal / m 2 h] (calculated from Fanger's comfort equation)
It is.

〈第1実施形態による空調制御支援システムの動作〉
次に、本実施形態による空調制御支援システム1の空調制御支援画面生成装置60の動作について、図2のフローチャートを参照して説明する。
<Operation of the air conditioning control support system according to the first embodiment>
Next, operation | movement of the air-conditioning control assistance screen generation apparatus 60 of the air-conditioning control assistance system 1 by this embodiment is demonstrated with reference to the flowchart of FIG.

まず、室外センサ群10に含まれる外気温センサ101において空調制御対象の設備の外気の温度が計測され、また外気湿度センサ102において外気の湿度が計測され、これらの外気温度計測値および外気湿度計測値が監視制御システム50を介して空調制御支援画面生成装置60の外気状態測定値入力部601に入力される(S1)。   First, the outside air temperature of the equipment subject to air conditioning control is measured by the outside air temperature sensor 101 included in the outdoor sensor group 10, and the outside air humidity is measured by the outside air humidity sensor 102, and these outside air temperature measurement values and outside air humidity measurements are measured. The value is input to the outside air state measurement value input unit 601 of the air conditioning control support screen generation device 60 via the monitoring control system 50 (S1).

また、室内センサ群20に含まれる室内温度センサ201において空調制御対象のゾーン内の温度が計測され、また室内湿度センサ202において該ゾーン内の湿度が計測され、これらの室内温度計測値および室内湿度計測値が監視制御システム50を介して空調制御支援画面生成装置60の室内状態測定値入力部602に入力される(S2)。   In addition, the temperature in the zone subject to air conditioning control is measured by the indoor temperature sensor 201 included in the indoor sensor group 20, and the humidity in the zone is measured by the indoor humidity sensor 202. The measurement value is input to the indoor state measurement value input unit 602 of the air conditioning control support screen generation device 60 via the monitoring control system 50 (S2).

監視制御システム50では、取得した外気温度計測値、外気湿度計測値、室内温度計測値、室内湿度計測値に基づいて空調制御対象のゾーン内の室内温度設定値および室内湿度設定値が算出され、空調機30および空調制御支援画面生成装置60に送信される。また、この温度設定値および湿度設定値から空調機30に設定される給気温度設定値および給気湿度設定値が算出され、空調機30および空調制御支援画面生成装置60に送信される。   In the monitoring control system 50, the indoor temperature setting value and the indoor humidity setting value in the air conditioning control target zone are calculated based on the acquired outside air temperature measurement value, outside air humidity measurement value, room temperature measurement value, and room humidity measurement value, It is transmitted to the air conditioner 30 and the air conditioning control support screen generator 60. Further, the supply air temperature setting value and the supply air humidity setting value set in the air conditioner 30 are calculated from the temperature set value and the humidity set value, and transmitted to the air conditioner 30 and the air conditioning control support screen generation device 60.

次に、監視制御システム50において算出された空調制御対象のゾーン内の室内温度設定値および室内湿度設定値が空調制御支援画面生成装置60の室内設定値入力部603に入力されるとともに(S3)、給気温度設定値および給気湿度設定値が給気設定値入力部604に入力される(S4)。   Next, the indoor temperature setting value and the indoor humidity setting value in the zone targeted for air conditioning control calculated in the monitoring control system 50 are input to the indoor setting value input unit 603 of the air conditioning control support screen generation device 60 (S3). Then, the supply air temperature set value and the supply air humidity set value are input to the supply air set value input unit 604 (S4).

次に、外気状態測定値入力部601から入力された外気温度計測値と、空調制御対象のゾーン内の照明、OA機器などから排出されると推定される熱量とから、推定される空調機30における顕熱負荷量が算出されるとともに、外気湿度計測値と、空調制御対象のゾーン内の在室者から吐き出されると推定される水蒸気量とから、推定される空調機30における潜熱負荷量が顕熱負荷・潜熱負荷算出部605において算出される(S5)。   Next, the air conditioner 30 estimated from the outside air temperature measurement value input from the outside air state measurement value input unit 601 and the amount of heat estimated to be exhausted from lighting, OA equipment, etc. in the zone subject to air conditioning control. Sensible heat load amount is calculated, and the estimated latent heat load amount in the air conditioner 30 is calculated from the outside air humidity measurement value and the water vapor amount estimated to be discharged from the occupant in the zone subject to air conditioning control. It is calculated by the sensible heat load / latent heat load calculation unit 605 (S5).

顕熱負荷・潜熱負荷算出部605において空調機30における顕熱負荷量および潜熱負荷量の推定値が算出されると、空調制御対象のゾーン内における顕熱バランスおよび潜熱バランスに基づいて給気流量が算出される(S6)。   When the sensible heat load / latent heat load calculation unit 605 calculates the estimated value of the sensible heat load and the latent heat load in the air conditioner 30, the supply air flow rate is based on the sensible heat balance and the latent heat balance in the zone subject to air conditioning control. Is calculated (S6).

空調制御対象のゾーン内における顕熱バランスおよび潜熱バランスについて説明する。
空調制御対象のゾーン内において、顕熱は下記式(4)が満たされるように調整されることにより、熱量のバランスがとられる。
The sensible heat balance and the latent heat balance in the air-conditioning control target zone will be described.
Within the zone subject to air conditioning control, the sensible heat is adjusted so that the following formula (4) is satisfied, thereby balancing the amount of heat.

Figure 2009175952
ここで、Qs:ゾーンの顕熱負荷量
Ca:空気の比熱
Fsa:給気流量
Tr:室内温度設定値
Tsa:給気温度設定値
である。
Figure 2009175952
Where Qs: Zone sensible heat load
Ca: Specific heat of air
Fsa: Supply air flow rate
Tr: Indoor temperature setting value
Tsa: Supply air temperature setting value.

また、空調制御対象のゾーン内において、潜熱は下記式(5)が満たされるように調整されることにより、湿度のバランスがとられる。   Further, in the zone targeted for air conditioning control, the latent heat is adjusted so that the following equation (5) is satisfied, thereby balancing the humidity.

Figure 2009175952
ここで、lw:潜熱負荷量
ρ:空気の密度
Hr:室内湿度計測値
Hsa:給気湿度設定値
である。
Figure 2009175952
Where lw: latent heat load
ρ: Air density
Hr: Indoor humidity measurement
Hsa: Supply air humidity setting value.

この式(4)が満たされるように、入力された給気流量、室内温度設定値、給気温度設定値、および算出された顕熱負荷量に基づいて顕熱バランスに対する給気流量である第1の給気流量が算出されるとともに、式(5)が満たされるように、入力された室内湿度計測値、給気湿度設定値、および算出された潜熱負荷量に基づいて潜熱バランスに対する給気流量である第2の給気流量が算出され、この第1の給気流量と第2の給気流量との総量が、必要な総給気流量として算出される。   In order to satisfy this equation (4), the supply air flow rate with respect to the sensible heat balance is calculated based on the input supply air flow rate, the indoor temperature setting value, the supply air temperature setting value, and the calculated sensible heat load amount. The air supply flow rate for the latent heat balance is calculated based on the input indoor humidity measurement value, the supply air humidity setting value, and the calculated latent heat load so that the air supply flow rate of 1 is calculated and the expression (5) is satisfied. A second supply air flow rate that is a flow rate is calculated, and a total amount of the first supply air flow rate and the second supply air flow rate is calculated as a necessary total supply air flow rate.

また、空調機30内の冷水コイル301の伝熱量に基づいて、冷水流量が算出される(S7)。   Further, the cold water flow rate is calculated based on the heat transfer amount of the cold water coil 301 in the air conditioner 30 (S7).

空調機30内の冷水コイル301の伝熱量について説明する。
冷水コイル301の伝熱量は、下記式(6)により、算出された顕熱負荷量と潜熱負荷量とから算出される。
The heat transfer amount of the cold water coil 301 in the air conditioner 30 will be described.
The heat transfer amount of the cold water coil 301 is calculated from the calculated sensible heat load and latent heat load by the following equation (6).

Figure 2009175952
ここで、Cstm:水蒸気の蒸発熱
である。
Figure 2009175952
Here, Cstm is the heat of vaporization of water vapor.

この算出された冷水コイル301の伝熱量は、下記式(7)を満たす。   The calculated heat transfer amount of the cold water coil 301 satisfies the following formula (7).

Figure 2009175952
Figure 2009175952

上記式(7)において、コイル熱貫流率(k)は、熱貫流率係数(k0)、濡れ面係数(Cws)、コイル断面積(S)、コイル段数(N)から算出されるコイルモデルの定数であり、また空調機30に供給される冷水の温度である冷水コイル入口温度は中央熱源において予め設定されているため、上記式(6)、(7)から冷水流量が算出される。 In the above equation (7), the coil thermal conductivity (k) is a coil model calculated from the thermal conductivity coefficient (k 0 ), the wetting surface coefficient (Cws), the coil cross-sectional area (S), and the number of coil stages (N). Since the cold water coil inlet temperature, which is the temperature of the cold water supplied to the air conditioner 30, is preset in the central heat source, the cold water flow rate is calculated from the above formulas (6) and (7).

次に、ステップS6で算出された給気流量(Fsa)から、空調機30内の送風ファン302の消費動力値が送風ファン動力算出部608で算出される(S8)。このとき、差圧一定の場合は下記式(8)の送風ファン動力モデルにより算出され、差圧可変の場合は下記式(9)の送風ファン動力モデルにより算出される。   Next, the power consumption value of the blower fan 302 in the air conditioner 30 is calculated by the blower fan power calculation unit 608 from the supply air flow rate (Fsa) calculated in step S6 (S8). At this time, when the differential pressure is constant, it is calculated by the blower fan power model of the following formula (8), and when the differential pressure is variable, it is calculated by the blower fan power model of the following formula (9).

Figure 2009175952
ここで、 Qfan:送風ファンの消費動力値
Qfan0:給気流量Fsa0のときの送風ファンの消費電力値
Fsa0:定格給気流量
である。
Figure 2009175952
Where Qfan: Power consumption value of the blower fan
Qfan0: Power consumption value of the blower fan when the supply air flow rate is Fsa0
Fsa0: Rated supply air flow rate.

Figure 2009175952
Figure 2009175952

また、ステップS7で算出された冷水流量(Fch)から、空調機30内の送水ポンプ403の消費動力値が送水ポンプ動力算出部609で算出される(S9)。このとき、高層ビルの開放系の場合は下記式(10)の送水ポンプ動力モデルにより算出され、中層以下のビルの閉鎖系の場合は下記式(11)の送水ポンプ動力モデルにより算出される。   Further, the power consumption value of the water pump 403 in the air conditioner 30 is calculated by the water pump power calculator 609 from the cold water flow rate (Fch) calculated in step S7 (S9). At this time, in the case of an open system of a high-rise building, the water pump power model of the following formula (10) is calculated.

Figure 2009175952
ここで、 Qpum:送水ポンプの消費動力値
Qpum0:冷水流量Fch0のときの送水ポンプの消費動力値
Fch0:定格冷水流量
である。
Figure 2009175952
Where Qpum: Power consumption value of the water pump
Qpum0: Power consumption value of water pump at cold water flow rate Fch0
Fch0: Rated cold water flow rate.

Figure 2009175952
Figure 2009175952

一方、ステップS2で室内状態測定値入力部602から室内温度計測値および室内湿度計測値が入力されると、これらの値に基づいて空調制御対象の室内のPMV値がPMV値算出部610で算出される(S10)。   On the other hand, when the indoor temperature measurement value and the indoor humidity measurement value are input from the indoor state measurement value input unit 602 in step S2, the PMV value calculation unit 610 calculates the PMV value in the room subject to air conditioning control based on these values. (S10).

上記のようにしてステップS8およびステップS9において送風ファン302の消費動力値および送水ポンプ403の消費動力値が算出されるとともに、ステップS10において空調制御対象の室内のPMV値が算出されると、これらの値を基に監視装置70に表示させるための空調監視画面の表示データが生成される(S11)。空調監視画面生成部611で生成された空調監視画面の表示データは監視装置70に送信されて表示されることにより、オペレータに提供される。   When the consumption power value of the blower fan 302 and the consumption power value of the water pump 403 are calculated in step S8 and step S9 as described above, and the PMV value in the air conditioning control target room is calculated in step S10, these values are calculated. Display data of the air-conditioning monitoring screen to be displayed on the monitoring device 70 based on the value of is generated (S11). The display data of the air conditioning monitoring screen generated by the air conditioning monitoring screen generation unit 611 is transmitted to the monitoring device 70 and displayed, thereby being provided to the operator.

本実施形態においてこの空調監視画面は、入力された給気温度設定値、給気湿度設定値、室内温度設定値、算出された給気流量、冷水流量等から選択される2つのパラメータと、空調システム内の総消費動力値、またはPMV値との関係が3次元のグラフで表されることにより生成される。本実施形態において総消費動力値には、送風ファンの消費動力値と送水ポンプの消費動力値との合計値が用いられる。   In this embodiment, the air conditioning monitoring screen includes two parameters selected from the input supply air temperature setting value, the supply air humidity setting value, the indoor temperature setting value, the calculated supply air flow rate, the cold water flow rate, and the like. The total power consumption value in the system or the relationship with the PMV value is generated by being represented by a three-dimensional graph. In this embodiment, the total value of the power consumption value of the blower fan and the power consumption value of the water pump is used as the total power consumption value.

監視装置70に表示された空調監視画面を構成するグラフの一例を、図3に示す。
このグラフの曲線は、予め測定され空調監視画面生成部611に記憶されている、給気温度設定値および冷水流量の種々の値に対する空調制御対象の室内のPMV値のモデルデータであり、また矢印で示した点は、入力された給気温度設定値および算出された冷水流量に対する空調制御対象の室内の現在のPMV値の位置を示している。
An example of a graph constituting the air conditioning monitoring screen displayed on the monitoring device 70 is shown in FIG.
The curve of this graph is model data of the PMV value in the air-conditioning control target room for various values of the supply air temperature setting value and the cold water flow rate, which are measured in advance and stored in the air-conditioning monitoring screen generation unit 611. The point indicated by indicates the position of the current PMV value in the air-conditioning control target room with respect to the input supply air temperature setting value and the calculated cold water flow rate.

このような空調監視画面が監視装置70に表示されることにより、オペレータは現在の状態における消費動力値やPMV値の位置を視覚的に把握することができ、また各パラメータの値を変化させることにより消費動力値やPMV値がどのように変化するかを予測することができるため、これらの変化を考慮しつつオペレータの経験に基づく判断により空調制御対象のビルに適した快適性と省エネルギー効果とのバランスを選択し、パラメータの値を調整して空調制御操作を行うことができる。   By displaying such an air conditioning monitoring screen on the monitoring device 70, the operator can visually grasp the power consumption value and the position of the PMV value in the current state, and change the values of the parameters. Therefore, it is possible to predict how the power consumption value and PMV value will change. Therefore, it is possible to predict the comfort and energy saving effect suitable for the building subject to air conditioning control based on the judgment of the operator's experience while taking these changes into account. The air conditioning control operation can be performed by selecting the balance and adjusting the parameter value.

《第2実施形態》
〈第2実施形態による空調制御支援システムの構成〉
本発明の第2実施形態による空調制御支援システム2の構成を、図4に示す。本実施形態による空調制御支援システム2の構成は、熱源設定値入力部612および中央熱源動力算出部613を有する他は、図1に示した第1実施形態による空調制御支援システム1の構成と同様であるため、図1と同様部分の詳細な説明は省略する。
<< Second Embodiment >>
<Configuration of air conditioning control support system according to the second embodiment>
The configuration of the air conditioning control support system 2 according to the second embodiment of the present invention is shown in FIG. The configuration of the air-conditioning control support system 2 according to the present embodiment is the same as the configuration of the air-conditioning control support system 1 according to the first embodiment shown in FIG. 1 except that it includes a heat source set value input unit 612 and a central heat source power calculation unit 613. Therefore, the detailed description of the same part as in FIG. 1 is omitted.

本実施形態において監視制御システム50は、第1実施形態と同様の機能に加え、取得した計測値および設定値から、冷却塔401で生成する冷却水の温度である冷却水温度設定値、および冷凍機で調整する冷水の温度である冷水温度設定値を算出して中央熱源装置40および空調制御支援画面生成装置60に送信する。   In this embodiment, in addition to the same functions as those in the first embodiment, the monitoring control system 50 uses a cooling water temperature setting value that is the temperature of the cooling water generated in the cooling tower 401 from the acquired measurement value and setting value, and a freezing The chilled water temperature set value that is the temperature of the chilled water adjusted by the machine is calculated and transmitted to the central heat source device 40 and the air conditioning control support screen generating device 60.

熱源設定値入力部612は、監視制御システム50において算出された冷却水温度設定値および冷水温度設定値を入力する。   The heat source set value input unit 612 inputs the coolant temperature set value and the coolant temperature set value calculated by the monitoring control system 50.

中央熱源動力算出部613は、熱源設定値入力部612から入力された冷却水温度設定値および冷水温度設定値に基づいて、中央熱源装置40の消費動力値を算出する。   The central heat source power calculation unit 613 calculates the power consumption value of the central heat source device 40 based on the cooling water temperature setting value and the cold water temperature setting value input from the heat source setting value input unit 612.

また、本実施形態においては、中央熱源装置40が空調制御対象の設備内に設けられており、冷却塔401で生成する冷却水の温度、および冷凍機402で調整する冷水の温度を設定により変更が可能であるものとする。   In the present embodiment, the central heat source device 40 is provided in the air conditioning control target facility, and the temperature of the cooling water generated by the cooling tower 401 and the temperature of the cooling water adjusted by the refrigerator 402 are changed by setting. Is possible.

〈第2実施形態による空調制御支援システムの動作〉
次に、本実施形態による空調制御支援システム2の空調制御支援画面生成装置60の動作について、図5のフローチャートを参照して説明する。
<Operation of the air conditioning control support system according to the second embodiment>
Next, operation | movement of the air-conditioning control assistance screen generation apparatus 60 of the air-conditioning control assistance system 2 by this embodiment is demonstrated with reference to the flowchart of FIG.

図5のフローチャートにおいて、ステップS11〜S14の処理は、第1実施形態における図2のステップS1〜S4の処理と同様であるため、詳細な説明は省略する。   In the flowchart of FIG. 5, the processes of steps S11 to S14 are the same as the processes of steps S1 to S4 of FIG. 2 in the first embodiment, and thus detailed description thereof is omitted.

本実施形態においては、ステップS11〜S14における各値の入力に加え、監視制御システム50において設定された、冷却塔401で生成する冷却水の温度である冷却水温度設定値、および冷凍機で調整する冷水の温度である冷水温度設定値が熱源設定値入力部612から入力される(S15)。   In this embodiment, in addition to the input of each value in steps S11 to S14, the cooling water temperature set value, which is the temperature of the cooling water generated in the cooling tower 401, set in the monitoring control system 50, and adjusted by the refrigerator A cold water temperature set value that is the temperature of the cold water to be input is input from the heat source set value input unit 612 (S15).

また、図4のステップS16〜S20の処理は、図2のステップS5〜S9の処理と同様であるため、詳細な説明は省略する。   Moreover, since the process of step S16-S20 of FIG. 4 is the same as the process of step S5-S9 of FIG. 2, detailed description is abbreviate | omitted.

さらに、本実施形態においては、ステップS19における送風ファン302の消費動力値の算出およびS20における送水ポンプ403の消費動力値の算出に加え、中央熱源装置40の消費動力値が、熱源設定値入力部612から入力された冷却水温度設定値および冷水温度設定値に基づいて中央熱源動力算出部613において算出される(S20)。   Further, in this embodiment, in addition to the calculation of the power consumption value of the blower fan 302 in step S19 and the calculation of the power consumption value of the water pump 403 in S20, the power consumption value of the central heat source device 40 is the heat source set value input unit. Based on the cooling water temperature setting value and the cooling water temperature setting value input from 612, the central heat source power calculation unit 613 calculates (S20).

この中央熱源装置40の消費動力値は、装置の製造業者により提供されている冷却水温度または冷水温度ごとの消費動力テーブルや、図6に示すような冷凍機402の冷凍容量および冷却水温度ごとのエネルギー消費効率(COP)に基づいて、ステップS15で入力された冷却水温度設定値および冷水温度設定値から算出される。COPは、図6に示すように冷却水温度設定値が低い程、消費効率が高くなり、省エネルギー化を図ることができる。   The power consumption value of the central heat source device 40 is a cooling power temperature or a power consumption table for each cooling water temperature provided by the manufacturer of the device, or a freezing capacity and a cooling water temperature of the refrigerator 402 as shown in FIG. Is calculated from the cooling water temperature setting value and the cooling water temperature setting value input in step S15, based on the energy consumption efficiency (COP). As shown in FIG. 6, the COP has a lower consumption water temperature setting value, resulting in higher consumption efficiency and energy saving.

また、第1実施形態と同様に、ステップS12で室内状態測定値入力部602から室内温度計測値および室内湿度計測値が入力されると、これらの値に基づいて空調制御対象の室内のPMV値がPMV値算出部610で算出される(S22)。   Similarly to the first embodiment, when the indoor temperature measurement value and the indoor humidity measurement value are input from the indoor state measurement value input unit 602 in step S12, the PMV value in the room subject to air conditioning control based on these values. Is calculated by the PMV value calculation unit 610 (S22).

上記のようにしてステップS19〜S21において送風ファン302の消費動力値、送水ポンプ403の消費動力値、および中央熱源装置40の消費動力値が算出されるとともに、ステップS22において空調制御対象の室内のPMV値が算出されると、これらの値を基に監視装置70に表示させるための空調監視画面の表示データが生成される(S23)。空調監視画面生成部611で生成された空調監視画面の表示データは監視装置70に送信されて表示されることにより、オペレータに提供される。   In steps S19 to S21, the power consumption value of the blower fan 302, the power consumption value of the water pump 403, and the power consumption value of the central heat source device 40 are calculated in steps S19 to S21. When the PMV values are calculated, display data of an air conditioning monitoring screen for display on the monitoring device 70 based on these values is generated (S23). The display data of the air conditioning monitoring screen generated by the air conditioning monitoring screen generation unit 611 is transmitted to the monitoring device 70 and displayed, thereby being provided to the operator.

本実施形態においてこの空調監視画面は、入力または算出された給気温度設定値、室内温度計測値、冷水温度、冷却水温度、算出された給気流量、冷水流量等から選択される2つのパラメータと、空調システム内の総消費動力値、またはPMV値との関係が3次元のグラフで表されることにより生成される。本実施形態において総消費動力値には、送風ファン302の消費動力値と送水ポンプ403の消費動力値と中央熱源装置40の消費動力値の合計値が用いられる。   In the present embodiment, this air conditioning monitoring screen has two parameters selected from the input or calculated supply air temperature set value, indoor temperature measurement value, cold water temperature, cooling water temperature, calculated supply air flow rate, cold water flow rate, and the like. And the relationship between the total power consumption value in the air conditioning system or the PMV value is represented by a three-dimensional graph. In the present embodiment, a total value of the power consumption value of the blower fan 302, the power consumption value of the water pump 403, and the power consumption value of the central heat source device 40 is used as the total power consumption value.

監視装置70に表示された空調監視画面を構成するグラフの一例を、図7および図8に示す。   An example of the graph which comprises the air-conditioning monitoring screen displayed on the monitoring apparatus 70 is shown in FIG. 7 and FIG.

図7のグラフの等高線は、予め測定され空調監視画面生成部611に記憶されている、冷水温度および給気温度設定値の種々の値に対する総消費動力値のモデルデータであり、また矢印で示した点は、設定された冷水温度および給気温度設定値に対する現在の総消費動力値の位置を示している。   The contour lines in the graph of FIG. 7 are model data of total power consumption values for various values of the chilled water temperature and the supply air temperature set value, which are measured in advance and stored in the air conditioning monitoring screen generation unit 611, and are indicated by arrows. The point shows the position of the current total consumption power value with respect to the set cold water temperature and supply air temperature set value.

また、図8のグラフの等高線は、予め測定され空調監視画面生成部611に記憶されている、冷水温度および給気温度設定値の種々の値に対するPMV値のモデルデータであり、また矢印で示した点は、設定された冷水温度および給気温度設定値に対する現在のPMV値の位置を示している。   The contour lines in the graph of FIG. 8 are model data of PMV values for various values of the chilled water temperature and the supply air temperature set value that are measured in advance and stored in the air conditioning monitoring screen generation unit 611, and are indicated by arrows. The points indicate the positions of the current PMV values with respect to the set cold water temperature and supply air temperature set value.

このような空調監視画面が監視装置70に表示されることにより、オペレータは現在の状態における消費動力値やPMV値の位置を視覚的に把握することができ、また各パラメータの値を変化させることにより消費動力値やPMV値がどのように変化するかを予測することができるため、これらの変化を考慮しつつオペレータの経験に基づく判断により空調制御対象のビルに適した快適性と省エネルギー効果とのバランスを選択し、パラメータの値を調整して空調制御操作を行うことができる。   By displaying such an air conditioning monitoring screen on the monitoring device 70, the operator can visually grasp the power consumption value and the position of the PMV value in the current state, and change the values of the parameters. Therefore, it is possible to predict how the power consumption value and PMV value will change. Therefore, it is possible to predict the comfort and energy saving effect suitable for the building subject to air conditioning control based on the judgment of the operator's experience while taking these changes into account. The air conditioning control operation can be performed by selecting the balance and adjusting the parameter value.

なお、第1実施形態または第2実施形態において生成される空調監視画面の3次元グラフを構成するパラメータは、空調制御対象の設備環境や季節などに応じてオペレータにより任意に変更可能である。   In addition, the parameter which comprises the three-dimensional graph of the air-conditioning monitoring screen produced | generated in 1st Embodiment or 2nd Embodiment can be arbitrarily changed by the operator according to the installation environment, season, etc. of air-conditioning control object.

また、この3次元グラフの生成に用いられるモデルデータは、本システムの運用により入手される最新の各パラメータの値により調整され更新されることも可能であり、これによりさらに実態に合った消費動力値やPMV値を提供することができる。   In addition, the model data used to generate this three-dimensional graph can be adjusted and updated according to the latest parameter values obtained through the operation of this system. Values and PMV values can be provided.

例えば、測定により冷水流量Fchおよび送水ポンプの消費動力値の最新の値を取得し、これらを上記の式(10)に代入することによりQpum0を最新の実態に合った値に更新することができる。また、冷凍機402の消費動力値を更新する場合には、図6に示したエネルギー消費効率や予め設定された消費動力テーブルを修正することが必要となる。   For example, by acquiring the latest values of the cold water flow rate Fch and the power consumption value of the water pump by measurement and substituting them into the above equation (10), Qpum0 can be updated to a value that matches the latest actual condition. . In addition, when the power consumption value of the refrigerator 402 is updated, it is necessary to correct the energy consumption efficiency shown in FIG. 6 or a preset power consumption table.

また、上記の第1実施形態、第2実施形態においては、人間の温熱感覚の快適性指標としてPMVを用いたが、これには限定されず、標準有効温度や新有効温度を用いて空調制御を行うようにしてもよい。   Moreover, in said 1st Embodiment and 2nd Embodiment, although PMV was used as a comfort parameter | index of a human thermal sense, it is not limited to this, Air-conditioning control using standard effective temperature and new effective temperature May be performed.

なお、上記の第1実施形態、第2実施形態における三次元グラフの表示方法としては、ワイヤーフレーム表示、陰線処理表示、クライテリア表示、等高線表示などを用いることが可能である。   Note that wire frame display, hidden line processing display, criteria display, contour line display, and the like can be used as the display method of the three-dimensional graph in the first and second embodiments.

本発明の第1実施形態および第2実施形態による空調制御支援システムの構成を示すブロック図である。It is a block diagram which shows the structure of the air-conditioning control assistance system by 1st Embodiment and 2nd Embodiment of this invention. 本発明の第1実施形態による空調制御支援システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air-conditioning control assistance system by 1st Embodiment of this invention. 本発明の第1実施形態による空調制御支援システムで生成された空調監視画面を構成するグラフの一例である。It is an example of the graph which comprises the air-conditioning monitoring screen produced | generated with the air-conditioning control assistance system by 1st Embodiment of this invention. 本発明の第2実施形態および第2実施形態による空調制御支援システムの構成を示すブロック図である。It is a block diagram which shows the structure of the air-conditioning control assistance system by 2nd Embodiment and 2nd Embodiment of this invention. 本発明の第2実施形態による空調制御支援システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air-conditioning control assistance system by 2nd Embodiment of this invention. 本発明の第2実施形態による空調制御支援システムの冷凍機の冷凍容量および冷却水温度ごとのエネルギー消費効率を示すグラフである。It is a graph which shows the energy consumption efficiency for every refrigeration capacity | capacitance and cooling water temperature of the refrigerator of the air-conditioning control assistance system by 2nd Embodiment of this invention. 本発明の第2実施形態による空調制御支援システムで生成された空調監視画面を構成するグラフの一例である。It is an example of the graph which comprises the air-conditioning monitoring screen produced | generated with the air-conditioning control assistance system by 2nd Embodiment of this invention. 本発明の第2実施形態による空調制御支援システムで生成された空調監視画面を構成するグラフの一例である。It is an example of the graph which comprises the air-conditioning monitoring screen produced | generated with the air-conditioning control assistance system by 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1、2…空調制御支援システム
10…室外センサ群
20…室内センサ群
30…空調機
40…中央熱源装置
50…監視制御システム
60…空調制御支援画面生成装置
70…監視装置
101…外気温センサ
102…外気湿度センサ
201…室内温度センサ
202…室内湿度センサ
301…冷水コイル
302…送風ファン
401…冷却塔
402…冷凍機
403…送水ポンプ
601…外気状態測定値入力部
602…室内状態測定値入力部
603…室内設定値入力部
604…給気設定値入力部
605…顕熱負荷・潜熱負荷算出部
606…給気流量算出部
607…冷水流量算出部
608…送風ファン動力算出部
609…送水ポンプ動力算出部
610…PMV値算出部
611…空調監視画面生成部
612…熱源設定値入力部
613…中央熱源動力算出部
DESCRIPTION OF SYMBOLS 1, 2 ... Air conditioning control support system 10 ... Outdoor sensor group 20 ... Indoor sensor group 30 ... Air conditioner 40 ... Central heat source device 50 ... Monitoring control system 60 ... Air conditioning control support screen generation device 70 ... Monitoring device 101 ... Outside temperature sensor 102 ... Outside air humidity sensor 201 ... Indoor temperature sensor 202 ... Indoor humidity sensor 301 ... Cooled water coil 302 ... Blower fan 401 ... Cooling tower 402 ... Refrigerator 403 ... Water pump 601 ... Outside air state measured value input unit 602 ... Indoor state measured value input unit 603 ... Indoor set value input unit 604 ... Supply air set value input unit 605 ... Sensible heat load / latent heat load calculation unit 606 ... Supply air flow rate calculation unit 607 ... Cold water flow rate calculation unit 608 ... Blower fan power calculation unit 609 ... Water pump power Calculation unit 610 ... PMV value calculation unit 611 ... Air conditioning monitoring screen generation unit 612 ... Heat source set value input unit 613 ... Medium Heat source power calculation unit

Claims (6)

空調制御対象の施設の外気の温度計測値である外気温度計測値と、空調制御対象の室内の温度計測値である室内温度計測値とを取得するとともに、前記施設内に設置された空調機に設定されている、前記室内に供給される給気の温度設定値である給気温度設定値と、前記室内の温度設定値である室内温度設定値とを取得し、これらの外気温計測値、室内温度計測値、給気温度設定値、および室内温度設定値に基づいて前記室内の顕熱バランスが満たされるように算出する、前記空調機から前記室内に供給される給気流量である第1の給気流量と、
前記外気の湿度計測値である外気湿度計測値と、前記室内の湿度計測値である室内湿度計測値とを取得するとともに、前記空調機に設定されている、前記給気の湿度設定値である給気湿度設定値と、前記室内の湿度設定値である室内湿度設定値とを取得し、これらの外気湿度計測値、室内湿度計測値、給気湿度設定値、および室内湿度設定値に基づいて前記室内の潜熱バランスが満たされるように算出する、前記空調機から前記室内に供給される給気流量である第2の給気流量とのうち、
いずれか一の給気流量、あるいは両給気流量の総量を総給気流量として算出する給気流量算出部と、
前記外気温度計測値と、前記外気湿度計測値と、前記空調機内に設けられ冷水を利用して前記給気を冷却および除湿する冷水コイルの伝熱量とから、前記冷水コイルに供給される冷水の流量を算出する冷水流量算出部と、
前記室内温度計測値および前記室内湿度計測値に基づいて、前記室内の快適性指数値を算出する快適性指数値算出部と、
前記給気流量算出部で算出された前記総給気流量から、前記空調機内に設けられ前記室内に前記給気を送風する送風ファンの消費動力値を算出する送風ファン動力算出部と、
前記冷水流量算出部で算出された流量の冷水を前記空調機内の前記冷水コイルに送水する送水ポンプの消費動力値を算出する送水ポンプ動力算出部と、
前記送風ファン動力算出部で算出された前記送風ファンの消費動力値と、前記送水ポンプ動力算出部で算出された前記送水ポンプの消費動力値との合計値を総消費動力値とし、取得された前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記総消費動力値との関係を3次元で示した第1のグラフと、
取得した前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記快適性指数値算出部で算出された前記快適性指数値との関係を3次元で示した第2のグラフとからなる空調監視画面の表示データを生成して接続された監視装置に出力する空調監視画面生成部と、
を備えることを特徴とする空調制御支援画面生成装置。
Acquires an outside air temperature measurement value that is a temperature measurement value of the outside air of the facility subject to air conditioning control and an indoor temperature measurement value that is the indoor temperature measurement value subject to the air conditioning control, and also adds to the air conditioner installed in the facility. A set supply air temperature setting value that is a temperature setting value of the supply air supplied to the room and an indoor temperature setting value that is the indoor temperature setting value are acquired, and these outside air temperature measurement values, A first supply air flow rate supplied from the air conditioner to the room, which is calculated based on the measured indoor temperature value, the supply air temperature setting value, and the indoor temperature setting value so as to satisfy the sensible heat balance in the room. Supply flow rate of
The outside air humidity measurement value, which is the humidity measurement value of the outside air, and the indoor humidity measurement value, which is the indoor humidity measurement value, and the humidity setting value of the supply air set in the air conditioner The air supply humidity setting value and the indoor humidity setting value, which is the indoor humidity setting value, are acquired, and based on the outside air humidity measurement value, the indoor humidity measurement value, the supply air humidity setting value, and the indoor humidity setting value. Of the second air supply flow rate, which is a supply air flow rate supplied from the air conditioner to the room, is calculated so that the latent heat balance in the room is satisfied,
An air supply flow rate calculation unit for calculating the total air supply flow rate as a total air supply flow rate,
Cold water supplied to the cold water coil from the outside air temperature measurement value, the outside air humidity measurement value, and a heat transfer amount of a cold water coil provided in the air conditioner to cool and dehumidify the supply air using cold water A cold water flow rate calculation unit for calculating the flow rate;
A comfort index value calculating unit that calculates a comfort index value of the room based on the indoor temperature measurement value and the indoor humidity measurement value;
A blower fan power calculation unit that calculates a power consumption value of a blower fan that is provided in the air conditioner and blows the supply air into the room from the total supply flow rate calculated by the supply air flow rate calculation unit,
A water pump power calculation unit that calculates a power consumption value of a water pump that supplies cold water at a flow rate calculated by the cold water flow rate calculation unit to the cold water coil in the air conditioner;
The sum of the power consumption value of the blower fan calculated by the blower fan power calculation unit and the power consumption value of the water pump calculated by the water pump power calculation unit is obtained as a total power consumption value. Two parameters selected from the supply air temperature setting value, the supply air humidity setting value, the indoor temperature setting value, the indoor humidity setting value, the calculated supply air flow rate, and the cold water flow rate, and the total consumption power A first graph showing the relationship between values in three dimensions;
The two parameters selected from the acquired supply air temperature setting value, the supply air humidity setting value, the indoor temperature setting value, the indoor humidity setting value, the calculated supply air flow rate, and the cold water flow rate and the comfort Air-conditioning monitoring for generating display data of an air-conditioning monitoring screen composed of a second graph showing the relationship with the comfort index value calculated by the sex index value calculation unit in three dimensions and outputting it to the connected monitoring device A screen generator,
An air-conditioning control support screen generation device comprising:
前記空調機内の冷水コイルに冷水を供給する中央熱源装置から、この供給される冷水の温度の設定値である冷水温度設定値と、この冷水を生成するための冷却水の温度の設定値である冷却水温度設定値とを取得し、この冷水温度設定値と冷却水温度設定値とに基づいて、前記中央熱源装置の消費動力値を算出する中央熱源動力算出部をさらに有し、
前記空調監視画面生成部は、前記送風ファン動力算出部で算出された送風ファンの消費動力値と、前記送水ポンプ動力算出部で算出された送水ポンプの消費動力値と、前記中央熱源動力算出部で算出された中央熱源装置の消費動力値との合計値を総消費動力値として、取得された前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、冷水温度設定値、冷却水温度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記総消費動力値との関係を3次元で示前記第1のグラフを生成する、
ことを特徴とする請求項1に記載の空調制御支援画面生成装置。
From the central heat source device that supplies the cold water to the cold water coil in the air conditioner, the cold water temperature set value that is the set value of the temperature of the supplied cold water, and the set value of the temperature of the cooling water for generating the cold water A cooling water temperature setting value is obtained, and based on the cooling water temperature setting value and the cooling water temperature setting value, further comprising a central heat source power calculation unit that calculates a power consumption value of the central heat source device,
The air-conditioning monitoring screen generation unit includes a power consumption value of the blower fan calculated by the blower fan power calculation unit, a power consumption value of the water pump calculated by the water pump power calculation unit, and the central heat source power calculation unit The total value of the power consumption value of the central heat source device calculated in step S is used as the total power consumption value, and the acquired supply air temperature setting value, the supply air humidity setting value, the indoor temperature setting value, and the indoor humidity setting value are acquired. The first graph showing the relationship between the total consumption power value and the two parameters selected from the cold water temperature setting value, the cooling water temperature setting value, the calculated supply air flow rate, and the cold water flow rate Generate
The air conditioning control support screen generation device according to claim 1.
空調制御対象の施設の外気の温度計測値である外気温度計測値と、空調制御対象の室内の温度計測値である室内温度計測値とを取得するとともに、前記施設内に設置された空調機に設定されている、前記室内に供給される給気の温度設定値である給気温度設定値と、前記室内の温度設定値である室内温度設定値とを取得し、これらの外気温計測値、室内温度計測値、給気温度設定値、および室内温度設定値に基づいて前記室内の顕熱バランスが満たされるように算出する、前記空調機から前記室内に供給される給気流量である第1の給気流量と、
前記外気の湿度計測値である外気湿度計測値と、前記室内の湿度計測値である室内湿度計測値とを取得するとともに、前記空調機に設定されている、前記給気の湿度設定値である給気湿度設定値と、前記室内の湿度設定値である室内湿度設定値とを取得し、これらの外気湿度計測値、室内湿度計測値、給気湿度設定値、および室内湿度設定値に基づいて前記室内の潜熱バランスが満たされるように算出する、前記空調機から前記室内に供給される給気流量である第2の給気流量とのうち、
いずれか一の給気流量、あるいは両給気流量の総量を総給気流量として算出する給気流量算出ステップと、
前記外気温度計測値と、前記外気湿度計測値と、前記空調機内に設けられ冷水を利用して前記給気を冷却および除湿する冷水コイルの伝熱量とから、前記冷水コイルに供給される冷水の流量を算出する冷水流量算出ステップと、
前記室内温度計測値および前記室内湿度計測値に基づいて、前記室内の快適性指数値を算出する快適性指数値算出ステップと、
前記給気流量算出ステップで算出された前記総給気流量から、前記空調機内に設けられ前記室内に前記給気を送風する送風ファンの消費動力値を算出する送風ファン動力算出ステップと、
前記冷水流量算出ステップで算出された流量の冷水を前記空調機内の前記冷水コイルに送水する送水ポンプの消費動力値を算出する送水ポンプ動力算出ステップと、
前記送風ファン動力算出ステップで算出された前記送風ファンの消費動力値と、前記送水ポンプ動力算出ステップで算出された前記送水ポンプの消費動力値との合計値を総消費動力値とし、取得された前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記総消費動力値との関係を3次元で示した第1のグラフと、
取得した前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記快適性指数値算出ステップで算出された前記快適性指数値との関係を3次元で示した第2のグラフとからなる空調監視画面の表示データを生成して接続された監視装置に出力する空調監視画面生成ステップと、
を備えることを特徴とする空調制御支援画面生成方法。
Acquires an outside air temperature measurement value that is a temperature measurement value of the outside air of the facility subject to air conditioning control and an indoor temperature measurement value that is the indoor temperature measurement value subject to the air conditioning control, and also adds to the air conditioner installed in the facility. A set supply air temperature setting value that is a temperature setting value of the supply air supplied to the room and an indoor temperature setting value that is the indoor temperature setting value are acquired, and these outside air temperature measurement values, A first supply air flow rate supplied from the air conditioner to the room, which is calculated based on the measured indoor temperature value, the supply air temperature setting value, and the indoor temperature setting value so as to satisfy the sensible heat balance in the room. Supply flow rate of
The outside air humidity measurement value, which is the humidity measurement value of the outside air, and the indoor humidity measurement value, which is the indoor humidity measurement value, and the humidity setting value of the supply air set in the air conditioner The air supply humidity setting value and the indoor humidity setting value, which is the indoor humidity setting value, are acquired, and based on the outside air humidity measurement value, the indoor humidity measurement value, the supply air humidity setting value, and the indoor humidity setting value. Of the second air supply flow rate, which is a supply air flow rate supplied from the air conditioner to the room, is calculated so that the latent heat balance in the room is satisfied,
An air supply flow rate calculating step for calculating any one of the air supply flow rates or the total amount of both air supply flow rates as a total air supply flow rate;
Cold water supplied to the cold water coil from the outside air temperature measurement value, the outside air humidity measurement value, and a heat transfer amount of a cold water coil provided in the air conditioner to cool and dehumidify the supply air using cold water A cold water flow rate calculating step for calculating a flow rate;
A comfort index value calculating step for calculating a comfort index value in the room based on the indoor temperature measurement value and the indoor humidity measurement value;
A blower fan power calculation step for calculating a power consumption value of a blower fan that is provided in the air conditioner and blows the supply air into the room from the total supply flow rate calculated in the supply air flow rate calculation step;
A water pump power calculating step for calculating a power consumption value of a water pump for supplying cold water at a flow rate calculated in the cold water flow rate calculating step to the cold water coil in the air conditioner;
The sum of the power consumption value of the blower fan calculated in the blower fan power calculation step and the power consumption value of the water pump calculated in the water pump power calculation step is obtained as a total power consumption value. Two parameters selected from the supply air temperature setting value, the supply air humidity setting value, the indoor temperature setting value, the indoor humidity setting value, the calculated supply air flow rate, and the cold water flow rate, and the total consumption power A first graph showing the relationship between values in three dimensions;
The two parameters selected from the acquired supply air temperature setting value, the supply air humidity setting value, the indoor temperature setting value, the indoor humidity setting value, the calculated supply air flow rate, and the cold water flow rate and the comfort Air conditioning monitoring for generating display data of an air conditioning monitoring screen composed of a second graph showing the relationship with the comfort index value calculated in the sex index value calculating step in a three-dimensional manner and outputting it to a connected monitoring device A screen generation step;
An air conditioning control support screen generation method comprising:
前記空調機内の冷水コイルに冷水を供給する中央熱源装置から、この供給される冷水の温度の設定値である冷水温度設定値と、この冷水を生成するための冷却水の温度の設定値である冷却水温度設定値とを取得し、この冷水温度設定値と冷却水温度設定値とに基づいて、前記中央熱源装置の消費動力値を算出する中央熱源動力算出ステップをさらに有し、
前記空調監視画面生成ステップでは、前記送風ファン動力算出ステップで算出された送風ファンの消費動力値と、前記送水ポンプ動力算出ステップで算出された送水ポンプの消費動力値と、前記中央熱源動力算出ステップで算出された中央熱源装置の消費動力値との合計値を総消費動力値として、取得された前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、冷水温度設定値、冷却水温度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記総消費動力値との関係を3次元で示前記第1のグラフを生成する、
ことを特徴とする請求項3に記載の空調制御支援画面生成方法。
From the central heat source device that supplies the cold water to the cold water coil in the air conditioner, the cold water temperature set value that is the set value of the temperature of the supplied cold water, and the set value of the temperature of the cooling water for generating the cold water A central heat source power calculation step of obtaining a cooling water temperature set value and calculating a power consumption value of the central heat source device based on the cold water temperature set value and the cooling water temperature set value;
In the air conditioning monitoring screen generation step, the power consumption value of the blower fan calculated in the blower fan power calculation step, the power consumption value of the water pump calculated in the water pump power calculation step, and the central heat source power calculation step The total value of the power consumption value of the central heat source device calculated in step S is used as the total power consumption value, and the acquired supply air temperature setting value, the supply air humidity setting value, the indoor temperature setting value, and the indoor humidity setting value are acquired. The first graph showing the relationship between the total consumption power value and the two parameters selected from the cold water temperature setting value, the cooling water temperature setting value, the calculated supply air flow rate, and the cold water flow rate Generate
The method for generating an air conditioning control support screen according to claim 3.
空調対象の施設内に設置された空調機と、この空調機に冷水を送水する送水ポンプと、監視装置と、前記空調機と前記監視装置とに信号接続された空調制御支援画面生成装置とから構成される空調制御支援システムにおいて、
前記空調機は、
前記送水ポンプにより送水される冷水を利用して前記室内に供給する給気を冷却および除湿する冷水コイルと、
前記冷水コイルで冷却および除湿された前記給気を前記空調制御対象の室内に送風する送風ファンと、
を有し、
前記空調制御支援画面生成装置は、
空調制御対象の施設の外気の温度計測値である外気温度計測値と、空調制御対象の室内の温度計測値である室内温度計測値とを取得するとともに、前記空調機に設定されている、前記室内に供給される給気の温度設定値である給気温度設定値と、前記室内の温度設定値である室内温度設定値とを取得し、これらの外気温計測値、室内温度計測値、給気温度設定値、および室内温度設定値に基づいて前記室内の顕熱バランスが満たされるように算出する、前記空調機内の送風ファンにより前記室内に供給される給気流量である第1の給気流量と、
前記外気の湿度計測値である外気湿度計測値と、前記室内の湿度計測値である室内湿度計測値とを取得するとともに、前記空調機に設定されている、前記給気の湿度設定値である給気湿度設定値と、前記室内の湿度設定値である室内湿度設定値とを取得し、これらの外気湿度計測値、室内湿度計測値、給気湿度設定値、および室内湿度設定値に基づいて前記室内の潜熱バランスが満たされるように算出する、前記空調機内の送風ファンにより前記室内に供給される給気流量である第2の給気流量とのうち、
いずれか一の給気流量、あるいは両給気流量の総量を総給気流量として算出する給気流量算出部と、
前記外気温度計測値と、前記外気湿度計測値と、前記空調機内の冷水コイルの伝熱量とから、前記冷水コイルに供給される冷水の流量を算出する冷水流量算出部と、
前記室内温度計測値および前記室内湿度計測値に基づいて、前記室内の快適性指数値を算出する快適性指数値算出部と、
前記給気流量算出部で算出された前記総給気流量から、前記空調機内の送風ファンの消費動力値を算出する送風ファン動力算出部と、
前記冷水流量算出部で算出された流量の冷水を前記空調機内の前記冷水コイルに送水する送水ポンプの消費動力値を算出する送水ポンプ動力算出部と、
前記送風ファン動力算出部で算出された前記送風ファンの消費動力値と、前記送水ポンプ動力算出部で算出された前記送水ポンプの消費動力値との合計値を総消費動力値とし、取得された前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記総消費動力値との関係を3次元で示した第1のグラフと、
取得した前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記快適性指数値算出部で算出された前記快適性指数値との関係を3次元で示した第2のグラフとからなる空調監視画面の表示データを生成して前記監視装置に出力する空調監視画面生成部と、
を有し、
前記監視装置は、
前記空調制御支援画面生成装置の空調監視画面生成部で生成された空調監視画面を表示する表示部を有する
ことを特徴とする空調制御支援システム。
From an air conditioner installed in a facility to be air-conditioned, a water supply pump that supplies cold water to the air conditioner, a monitoring device, and an air conditioning control support screen generation device that is signal-connected to the air conditioner and the monitoring device In the air conditioning control support system configured,
The air conditioner
A cold water coil that cools and dehumidifies the air supplied to the room using cold water fed by the water pump;
A blower fan that blows the supply air cooled and dehumidified by the cold water coil into the air conditioning control target room;
Have
The air conditioning control support screen generator is
The outside air temperature measurement value that is the temperature measurement value of the outside air of the air conditioning control target facility and the indoor temperature measurement value that is the indoor temperature measurement value of the air conditioning control target are acquired and set in the air conditioner, A supply air temperature setting value, which is a temperature setting value of the supply air supplied into the room, and an indoor temperature setting value, which is the indoor temperature setting value, are acquired, and these outside air temperature measurement values, indoor temperature measurement values, First supply air that is an air supply flow rate supplied to the room by a blower fan in the air conditioner that is calculated so as to satisfy the sensible heat balance in the room based on the air temperature set value and the room temperature set value Flow rate,
The outside air humidity measurement value that is the humidity measurement value of the outside air and the indoor humidity measurement value that is the indoor humidity measurement value, and the humidity setting value of the supply air that is set in the air conditioner Obtaining the supply air humidity setting value and the indoor humidity setting value, which is the indoor humidity setting value, based on these outside air humidity measurement values, indoor humidity measurement values, supply air humidity setting values, and indoor humidity setting values Of the second supply air flow rate, which is a supply air flow rate supplied to the room by a blower fan in the air conditioner, calculated so that the latent heat balance in the room is satisfied,
An air supply flow rate calculation unit for calculating the total air supply flow rate as a total air supply flow rate,
A cold water flow rate calculation unit for calculating a flow rate of cold water supplied to the cold water coil from the outside air temperature measurement value, the outside air humidity measurement value, and a heat transfer amount of the cold water coil in the air conditioner;
A comfort index value calculating unit that calculates a comfort index value of the room based on the indoor temperature measurement value and the indoor humidity measurement value;
A blower fan power calculation unit that calculates a power consumption value of the blower fan in the air conditioner from the total supply air flow calculated by the supply air flow rate calculation unit;
A water pump power calculation unit that calculates a power consumption value of a water pump that supplies cold water at a flow rate calculated by the cold water flow rate calculation unit to the cold water coil in the air conditioner;
The sum of the power consumption value of the blower fan calculated by the blower fan power calculation unit and the power consumption value of the water pump calculated by the water pump power calculation unit is obtained as a total power consumption value. Two parameters selected from the supply air temperature setting value, the supply air humidity setting value, the indoor temperature setting value, the indoor humidity setting value, the calculated supply air flow rate, and the cold water flow rate, and the total consumption power A first graph showing the relationship between values in three dimensions;
The two parameters selected from the acquired supply air temperature setting value, the supply air humidity setting value, the indoor temperature setting value, the indoor humidity setting value, the calculated supply air flow rate, and the cold water flow rate and the comfort Air-conditioning monitoring screen generation that generates display data of an air-conditioning monitoring screen composed of a second graph that three-dimensionally shows the relationship with the comfort index value calculated by the sex index value calculation unit and outputs it to the monitoring device And
Have
The monitoring device
An air conditioning control support system comprising: a display unit that displays an air conditioning monitoring screen generated by an air conditioning monitoring screen generation unit of the air conditioning control support screen generation device.
前記空調制御支援画面生成装置は、
前記空調機内の冷水コイルに冷水を供給する中央熱源装置から、この供給される冷水の温度の設定値である冷水温度設定値と、この冷水を生成するための冷却水の温度の設定値である冷却水温度設定値とを取得し、この冷水温度設定値と冷却水温度設定値とに基づいて、前記中央熱源装置の消費動力値を算出する中央熱源動力算出部をさらに有し、
前記空調制御支援画面生成装置の空調監視画面生成部は、前記送風ファン動力算出部で算出された送風ファンの消費動力値と、前記送水ポンプ動力算出部で算出された送水ポンプの消費動力値と、前記中央熱源動力算出部で算出された中央熱源装置の消費動力値との合計値を総消費動力値として、取得された前記給気温度設定値、前記給気湿度設定値、前記室内温度設定値、前記室内湿度設定値、冷水温度設定値、冷却水温度設定値、および算出された前記給気流量、前記冷水流量から選択された2つのパラメータと前記総消費動力値との関係を3次元で示前記第1のグラフを生成する、
ことを特徴とする請求項5に記載の空調制御支援システム。
The air conditioning control support screen generator is
From the central heat source device that supplies the cold water to the cold water coil in the air conditioner, the cold water temperature set value that is the set value of the temperature of the supplied cold water, and the set value of the temperature of the cooling water for generating the cold water A cooling water temperature setting value is obtained, and based on the cooling water temperature setting value and the cooling water temperature setting value, further comprising a central heat source power calculation unit that calculates a power consumption value of the central heat source device,
The air conditioning monitoring screen generator of the air conditioning control support screen generator includes a power consumption value of the blower fan calculated by the blower fan power calculator, and a power consumption value of the water pump calculated by the water pump power calculator. The acquired supply air temperature setting value, the supply air humidity setting value, and the indoor temperature setting are obtained by using a total value of the consumption power value of the central heat source device calculated by the central heat source power calculation unit as a total consumption power value. The three-dimensional relationship between the value, the indoor humidity setting value, the chilled water temperature setting value, the cooling water temperature setting value, and the calculated two parameters selected from the supply air flow rate and the chilled water flow rate and the total consumption power value Generating the first graph indicated by
The air-conditioning control support system according to claim 5.
JP2008012732A 2008-01-23 2008-01-23 Air conditioning control support screen generation device, air conditioning control support screen generation method, and air conditioning monitoring system Expired - Fee Related JP4836967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008012732A JP4836967B2 (en) 2008-01-23 2008-01-23 Air conditioning control support screen generation device, air conditioning control support screen generation method, and air conditioning monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012732A JP4836967B2 (en) 2008-01-23 2008-01-23 Air conditioning control support screen generation device, air conditioning control support screen generation method, and air conditioning monitoring system

Publications (2)

Publication Number Publication Date
JP2009175952A true JP2009175952A (en) 2009-08-06
JP4836967B2 JP4836967B2 (en) 2011-12-14

Family

ID=41030986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012732A Expired - Fee Related JP4836967B2 (en) 2008-01-23 2008-01-23 Air conditioning control support screen generation device, air conditioning control support screen generation method, and air conditioning monitoring system

Country Status (1)

Country Link
JP (1) JP4836967B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085323A (en) * 2009-10-15 2011-04-28 Toshiba Corp Humidity estimating device and humidity estimating method
JP2013160435A (en) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd Heat source selection assisting device, method thereof, and heat source system
CN108758979A (en) * 2018-06-21 2018-11-06 广东美的暖通设备有限公司 Air-conditioning system and its energy efficiency analysis method for air, device and storage medium
JP2020180782A (en) * 2016-08-25 2020-11-05 高砂熱学工業株式会社 Controller, control method and control program of air conditioning system, and air conditioning system
CN112344519A (en) * 2020-09-25 2021-02-09 国网浙江省电力有限公司绍兴供电公司 Method for debugging and energy-saving control of heating and refrigerating system
JP7100915B1 (en) 2021-04-06 2022-07-14 株式会社麹町エンジニアリング Fan coil unit control method and heat transfer amount calculation method
JP7509971B1 (en) 2023-08-04 2024-07-02 日本キヤリア株式会社 Air Conditioning System

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109612015B (en) * 2018-12-24 2019-12-10 珠海格力电器股份有限公司 Control protection method for air conditioner and air conditioner
JP2022128874A (en) * 2021-02-24 2022-09-05 三菱重工サーマルシステムズ株式会社 Control device of air conditioning device, air conditioning device, air conditioning method, and air conditioning program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126045A (en) * 1988-11-07 1990-05-15 Hitachi Ltd Air conditioning control system for building monitoring control device
JPH11108418A (en) * 1997-10-03 1999-04-23 Nks Kk Air conditioning controller, air conditioning system, degree of discomfort calculator and recording medium
JP2005134052A (en) * 2003-10-31 2005-05-26 Daikin Ind Ltd Area-specific environment providing control system and its method and program
JP2006304595A (en) * 2002-11-18 2006-11-02 Hitachi Ltd Operation support system and operation support computer program
JP2006331372A (en) * 2005-05-30 2006-12-07 Ipsquare Inc Agent device, management manager device, and environment energy management system
JP2007139241A (en) * 2005-11-16 2007-06-07 Hitachi Ltd Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126045A (en) * 1988-11-07 1990-05-15 Hitachi Ltd Air conditioning control system for building monitoring control device
JPH11108418A (en) * 1997-10-03 1999-04-23 Nks Kk Air conditioning controller, air conditioning system, degree of discomfort calculator and recording medium
JP2006304595A (en) * 2002-11-18 2006-11-02 Hitachi Ltd Operation support system and operation support computer program
JP2005134052A (en) * 2003-10-31 2005-05-26 Daikin Ind Ltd Area-specific environment providing control system and its method and program
JP2006331372A (en) * 2005-05-30 2006-12-07 Ipsquare Inc Agent device, management manager device, and environment energy management system
JP2007139241A (en) * 2005-11-16 2007-06-07 Hitachi Ltd Air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085323A (en) * 2009-10-15 2011-04-28 Toshiba Corp Humidity estimating device and humidity estimating method
US8615327B2 (en) 2009-10-15 2013-12-24 Kabushiki Kaisha Toshiba Device and method for humidity estimation
JP2013160435A (en) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd Heat source selection assisting device, method thereof, and heat source system
JP2020180782A (en) * 2016-08-25 2020-11-05 高砂熱学工業株式会社 Controller, control method and control program of air conditioning system, and air conditioning system
CN108758979A (en) * 2018-06-21 2018-11-06 广东美的暖通设备有限公司 Air-conditioning system and its energy efficiency analysis method for air, device and storage medium
CN112344519A (en) * 2020-09-25 2021-02-09 国网浙江省电力有限公司绍兴供电公司 Method for debugging and energy-saving control of heating and refrigerating system
CN112344519B (en) * 2020-09-25 2022-06-07 国网浙江省电力有限公司绍兴供电公司 Debugging and energy-saving control method for heating and refrigerating system
JP7100915B1 (en) 2021-04-06 2022-07-14 株式会社麹町エンジニアリング Fan coil unit control method and heat transfer amount calculation method
WO2022215392A1 (en) * 2021-04-06 2022-10-13 株式会社麹町エンジニアリング Method for controlling fan coil unit, and method for calculating heat transfer amount
JP2022160132A (en) * 2021-04-06 2022-10-19 株式会社麹町エンジニアリング Control method for fan coil unit and heat transfer amount calculation method
JP7509971B1 (en) 2023-08-04 2024-07-02 日本キヤリア株式会社 Air Conditioning System

Also Published As

Publication number Publication date
JP4836967B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4836967B2 (en) Air conditioning control support screen generation device, air conditioning control support screen generation method, and air conditioning monitoring system
JP5132334B2 (en) Air conditioning control device and air conditioning control system using the same
JP5198404B2 (en) Humidity estimation apparatus and humidity estimation method
KR100867365B1 (en) Air conditioning controller
JP5175643B2 (en) Air conditioning control system and air conditioning control device
KR101110216B1 (en) Air conditioner and optimum energy using pmv control managing method thereof
JP5038757B2 (en) Air conditioning control system
JP4899979B2 (en) Air conditioning control system
JP6668010B2 (en) Air conditioning control device, air conditioning control method, and air conditioning control program
Ghaddar et al. Evaporative cooler improves transient thermal comfort in chilled ceiling displacement ventilation conditioned space
JP2011027301A (en) Air conditioning control device
JP2007120889A (en) Air conditioning control device
JP2009109034A (en) Air-conditioning control-supporting data generating device and method
JP2013164260A (en) Air conditioning control device, air conditioning control method, and program for air conditioning control
JP2009109033A (en) Device for generating, device for displaying and method of generating air-conditioning control-supporting data
JP2001004189A (en) Control device for air-conditioning system and control method of the same
JP5284528B2 (en) Air conditioning control device, air conditioning system, air conditioning control method, air conditioning control program
KR20110066675A (en) Pmv control methods of air handling unit
CN106679069A (en) Control method for air conditioner
JP4816536B2 (en) Air conditioning control system
CN106524425A (en) Variable frequency air conditioner control method
JP2008232533A (en) Air-conditioning control system, and person-in-room management system and server using the same
CN106705357A (en) Variable-frequency air conditioner control method
JP2002349933A (en) Controller for air conditioning of air-conditioning facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4836967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees