JP2009174751A - Boiler structure - Google Patents

Boiler structure Download PDF

Info

Publication number
JP2009174751A
JP2009174751A JP2008012503A JP2008012503A JP2009174751A JP 2009174751 A JP2009174751 A JP 2009174751A JP 2008012503 A JP2008012503 A JP 2008012503A JP 2008012503 A JP2008012503 A JP 2008012503A JP 2009174751 A JP2009174751 A JP 2009174751A
Authority
JP
Japan
Prior art keywords
air
furnace
burner
flame
furnace wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008012503A
Other languages
Japanese (ja)
Other versions
JP5022248B2 (en
Inventor
Ryuhei Takashima
竜平 高島
Takuichiro Daimaru
卓一郎 大丸
Shigehide Komada
至秀 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008012503A priority Critical patent/JP5022248B2/en
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to ES08765748T priority patent/ES2706022T3/en
Priority to RU2010129771/06A priority patent/RU2461773C2/en
Priority to BRPI0822013A priority patent/BRPI0822013B1/en
Priority to MX2010007776A priority patent/MX2010007776A/en
Priority to MYPI20103140 priority patent/MY152332A/en
Priority to CN2008801252553A priority patent/CN101925780B/en
Priority to PCT/JP2008/061193 priority patent/WO2009093347A1/en
Priority to US12/811,901 priority patent/US20100279239A1/en
Priority to EP08765748.2A priority patent/EP2233833B1/en
Priority to TW097124616A priority patent/TWI434011B/en
Priority to CL2008002173A priority patent/CL2008002173A1/en
Publication of JP2009174751A publication Critical patent/JP2009174751A/en
Application granted granted Critical
Publication of JP5022248B2 publication Critical patent/JP5022248B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • F23C7/04Disposition of air supply not passing through burner to obtain maximum heat transfer to wall of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/28Disposition of burners to obtain flames in opposing directions, e.g. impacting flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/32Disposition of burners to obtain rotating flames, i.e. flames moving helically or spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Air Supply (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boiler structure capable of efficiently suppressing or preventing corrosion and slugging generated on a furnace wall in a furnace. <P>SOLUTION: In this swirl combustion type boiler structure constituted to burn fuel charged into the furnace 11 from burners 12 disposed on a plurality of parts of the furnace wall 11a forming a rectangular cross-section, and combustion air while forming a swirl flow, an air charging portion 20 for forming an area of a higher air concentration in comparison with its circumference is disposed near a flame influence portion of a furnace wall surface close to or kept into contact with the flame formed by each burner 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、石炭や硫黄分を含有する各種燃料に対応したボイラ構造に関する。   The present invention relates to a boiler structure corresponding to various fuels containing coal and sulfur.

近年、石炭や石油等を燃料とするボイラでは、空気を多段で投入することにより、主バーナから追加空気投入部までの間を還元雰囲気にして燃焼させる還元燃焼ゾーンを形成して低NOx化を図っている。
一方、この還元燃焼ゾーンでは、腐食成分である硫化水素が多量に発生するため、火炉壁面は厳しい腐食環境下にある。このため、炉壁への溶射や定期的な炉壁パネル交換等のメンテナンスが必要となっている。また、上述した還元燃焼ゾーンは、炉内でも熱負荷が高い還元雰囲気となる領域であるため、スラグの付着も懸念されている。
In recent years, boilers that use coal, oil, or the like as fuels have been designed to reduce NOx by forming a reduction combustion zone that burns in a reducing atmosphere from the main burner to the additional air input section by inputting air in multiple stages. I am trying.
On the other hand, in this reductive combustion zone, a large amount of corrosive hydrogen sulfide is generated, so that the furnace wall surface is in a severe corrosive environment. For this reason, maintenance such as thermal spraying on the furnace wall and periodic furnace wall panel replacement is required. In addition, since the above-described reduction combustion zone is a region that has a reducing atmosphere with a high thermal load even in the furnace, there is a concern that slag will adhere.

このような問題に対処するため、火炉内の壁面側を目指して投入した空気により酸素濃度を高める技術が知られており、たとえば、矩形断面の火炉内四隅にバーナを設置して旋回流を形成するとともに、各バーナから炉壁側にオフセットした空気流を形成するものがある。(たとえば、特許文献1参照)
また、火炉壁の中央部に旋回火炎を発生させるバーナが設けられている微粉炭焚きボイラにおいては、火炎の進路を曲げるカーテンエアまたはカーテン排ガスを投入するノズルを設けて、バーナ周辺部のスラッギングを防止する技術が開示されている。(たとえば、特許文献2参照)
米国特許第6237513号明細書 特開平7−119923号公報
In order to deal with such problems, a technology is known to increase the oxygen concentration with the air introduced toward the wall surface inside the furnace. For example, a swirl flow is formed by installing burners at the four corners of the furnace with a rectangular cross section. In addition, there is one that forms an air flow offset from each burner to the furnace wall side. (For example, see Patent Document 1)
In addition, in a pulverized coal fired boiler that has a burner that generates a swirling flame at the center of the furnace wall, a nozzle that feeds curtain air or curtain exhaust gas that bends the course of the flame is provided to slag the periphery of the burner. Techniques for preventing are disclosed. (For example, see Patent Document 2)
US Pat. No. 6,237,513 Japanese Patent Application Laid-Open No. 7-119923

しかしながら、上述した特許文献1の従来技術は、目指した壁面に到達するまでに空気中の酸素が消費されてしまうので、効果的に酸素濃度を増加させることができなかった。しかも、酸素濃度を高めるためには、空気の噴出流速を高める必要があるので、圧縮機等の補機動力が増加して好ましくない。
また、特許文献2の従来技術においても、火炎の進路を曲げる程度の高い流速でカーテンエアまたはカーテン排ガスを投入する必要があるため、やはり圧縮機等の補機動力が増加して好ましくない。
However, the above-described prior art disclosed in Patent Document 1 cannot effectively increase the oxygen concentration because oxygen in the air is consumed before reaching the target wall surface. In addition, in order to increase the oxygen concentration, it is necessary to increase the jet velocity of air, which is not preferable because the auxiliary power such as a compressor increases.
Also in the prior art of Patent Document 2, it is necessary to introduce curtain air or curtain exhaust gas at a flow velocity high enough to bend the course of the flame, which is also not preferable because auxiliary power such as a compressor increases.

このような背景から、石炭や硫黄分を含有する各種燃料に対応し、矩形断面を形成する炉壁の複数箇所に設けたバーナから火炉内へ向けて投入される燃料及び燃焼用空気が旋回流を形成して燃焼するように構成された旋回燃焼型のボイラ構造においては、火炉内の炉壁に発生する腐食やスラッギングを効率よく抑制または防止することが望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、火炉内の炉壁に発生する腐食やスラッギングを効率よく抑制または防止することができるボイラ構造を提供することにある。
Against this background, the fuel and combustion air that are introduced into the furnace from the burners provided at multiple locations on the furnace wall that form a rectangular cross section correspond to various fuels containing coal and sulfur. In a swirl combustion type boiler structure configured to form and burn, it is desired to efficiently suppress or prevent corrosion and slugging generated on the furnace wall in the furnace.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a boiler structure capable of efficiently suppressing or preventing corrosion and slagging occurring on a furnace wall in a furnace. It is in.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係るボイラ構造は、矩形断面を形成する炉壁の複数箇所に設けたバーナから火炉内へ向けて投入される燃料及び燃焼用空気が旋回流を形成して燃焼するように構成された旋回燃焼型のボイラ構造において、前記バーナ毎に形成される火炎が接近または接触する火炉壁面の火炎影響部近傍に、周辺より空気濃度の高い領域を形成する空気投入部を設けたことを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
The boiler structure according to the present invention is configured such that fuel and combustion air that are input from a burner provided at a plurality of locations on a furnace wall that forms a rectangular cross section into a furnace form a swirl and burn. In the swirl combustion type boiler structure, an air charging part is provided in the vicinity of a flame affected part of a furnace wall surface where a flame formed for each burner approaches or contacts, and an air concentration part is formed to have a higher air concentration than the surroundings. To do.

このようなボイラ構造によれば、バーナ毎に形成される火炎が接近または接触する火炉壁面の火炎影響部近傍に、周辺より空気濃度の高い領域を形成する空気投入部を設けたので、腐食やスラッギングが懸念される火炉壁面の領域に補機動力が小さくてすむ低流速の空気を投入し、空気濃度の高い領域を形成することができる。   According to such a boiler structure, since the air injection unit that forms a region having a higher air concentration than the surroundings is provided in the vicinity of the flame affected part of the furnace wall where the flame formed for each burner approaches or contacts, A low-flow-rate air that requires a small auxiliary power can be introduced into the furnace wall area where slagging is a concern, and an area with a high air concentration can be formed.

上記の発明において、前記空気濃度の高い領域は、上下方向に火炉内部の還元燃焼ゾーンをカバーして形成されることが好ましく、これにより、腐食やスラッギングが懸念される火炉内の上下方向についても、低流速の空気投入により空気濃度の高い領域を形成することができる。   In the above invention, the high air concentration region is preferably formed so as to cover the reduction combustion zone inside the furnace in the vertical direction, thereby also in the vertical direction in the furnace where corrosion and slugging are a concern. A region having a high air concentration can be formed by introducing air at a low flow rate.

上記の発明において、前記空気投入部は、近接するバーナから低圧のバーナ2次空気をバイパスさせて導入することが好ましく、これにより、構造の大幅な変更や構成部品の増加を抑えて構造を簡素化することができる。   In the above-mentioned invention, it is preferable that the air input portion introduces the low-pressure burner secondary air by bypass from an adjacent burner, thereby simplifying the structure while suppressing a significant change in structure and an increase in the number of components. Can be

上記の発明において、前記空気投入部は、デスラッガノズルの周囲に設けられていることが好ましく、これにより、スラッギングを生じやすい火炉壁面に空気濃度の高い領域を形成するとともに、熱的に厳しい状況にあるデスラッガノズル挿入部周辺を冷却することができる。   In the above invention, the air input section is preferably provided around the deslagger nozzle, thereby forming a region with a high air concentration on the furnace wall surface that is prone to slagging and being thermally severe. It is possible to cool the periphery of the insertion portion of the deslagger nozzle.

上述した本発明によれば、燃料及び燃焼用空気が旋回流を形成して燃焼するように構成された旋回燃焼型のボイラ構造において、火炉内の炉壁に腐食やスラッギングが発生しやすいと懸念される火炎影響部の近傍に空気投入部から低流速の空気を投入し、周辺部より空気濃度の高い領域を形成するようにしたので、投入空気の流速を増すための大きな補機動力を必要とすることがなく、火炎影響部及びその近傍の酸素濃度を高く維持することができる。   According to the present invention described above, in a swirl combustion type boiler structure configured such that fuel and combustion air burn in a swirl flow, there is a concern that corrosion and slugging are likely to occur on the furnace wall in the furnace. Since a low flow rate of air is introduced from the air input part near the flame affected part to form a region with a higher air concentration than the surrounding part, a large auxiliary power is required to increase the input air flow rate. The oxygen concentration in the flame affected area and its vicinity can be maintained high.

従って、火炉内の火炎影響部及びその近傍においては、酸素濃度が高い空気層の形成により部分的に還元雰囲気から酸化雰囲気となり、この結果、腐食やスラッギングが発生することを効率よく抑制または防止できる。特に、上述した本発明は、石炭焚きボイラにおいてはスラッギングの抑制に有効であり、また、硫黄分を含有する各種燃料に対応したボイラにおいては硫化水素に対する耐腐食性の向上に有効である。
さらに、上述した空気投入部で使用する空気として、近接するバーナから低圧のバーナ2次空気をバイパスさせて導入するようにすれば、ボイラ構造の大幅な変更や構成部品の増加を最小限に抑えて構造を簡素化できる。
Therefore, in the flame-affected zone in the furnace and in the vicinity thereof, the formation of an air layer having a high oxygen concentration partially changes the reducing atmosphere into an oxidizing atmosphere, and as a result, the occurrence of corrosion and slagging can be efficiently suppressed or prevented. . In particular, the present invention described above is effective in suppressing slagging in a coal-fired boiler, and is effective in improving corrosion resistance against hydrogen sulfide in a boiler corresponding to various fuels containing a sulfur content.
Furthermore, if the low-pressure burner secondary air is bypassed and introduced from the adjacent burner as the air used in the air input section described above, significant changes in the boiler structure and increase in the number of components are minimized. To simplify the structure.

以下、本発明に係るボイラ構造の一実施形態を図面に基づいて説明する。
図5に示すボイラ10は、低NOx化を図るため、火炉11内に燃焼用空気を多段投入して燃料を燃焼させるものである。この場合の多段投入は、火炉11において複数のバーナ12が設けられている領域のバーナ部Baと、このバーナ部Baより上部に追加空気投入ノズル13が設けられている領域の追加空気投入部Aaとにおいて、2段階の燃焼用空気投入を行うものである。すなわち、このボイラ10においては、最初のバーナ部Baで燃焼用空気必要量の70%程度が投入され、残る30%程度が追加空気投入部Aaで投入されることにより、還元燃焼ゾーン及び完全燃焼ゾーンよりなるNOx対策の2段燃焼が行われている。
Hereinafter, an embodiment of a boiler structure according to the present invention will be described with reference to the drawings.
A boiler 10 shown in FIG. 5 burns fuel by introducing multiple stages of combustion air into the furnace 11 in order to reduce NOx. In this case, the multistage charging is performed by the burner portion Ba in the furnace 11 where the plurality of burners 12 are provided, and the additional air charging portion Aa in the area where the additional air charging nozzle 13 is provided above the burner portion Ba. And two-stage combustion air injection. That is, in this boiler 10, about 70% of the required amount of combustion air is charged in the first burner portion Ba, and the remaining 30% is charged in the additional air charging portion Aa, so that the reduction combustion zone and complete combustion are performed. Two-stage combustion for NOx countermeasures consisting of zones is performed.

また、上述したボイラ10は、たとえば図1(a)に示すように、火炉11が矩形断面を有する旋回燃焼型である。旋回燃焼型のボイラ10は、炉壁11aに設けた複数のバーナ12から火炉11内へ向けて投入される燃料及び燃焼用空気が、火炉11内で旋回流の火炎を形成して燃焼するように構成されている。
なお、図1(a)に示す8コーナー炉の構成例では、水平断面で8箇所に設けられたバーナ12から燃料及び燃焼用空気が投入され、火炉11内には隣接する二つの旋回流が形成されている。
Moreover, the boiler 10 mentioned above is a revolving combustion type in which the furnace 11 has a rectangular cross section, for example, as shown to Fig.1 (a). In the swirl combustion type boiler 10, the fuel and the combustion air introduced into the furnace 11 from a plurality of burners 12 provided on the furnace wall 11 a form a swirl flame and burn in the furnace 11. It is configured.
In the configuration example of the eight-corner furnace shown in FIG. 1A, fuel and combustion air are input from the burners 12 provided at eight positions in a horizontal section, and two adjacent swirling flows are generated in the furnace 11. Is formed.

このようなボイラ10に対し、本実施形態では、バーナ12毎に形成される火炎が接近または接触する火炉壁面(炉壁11a)の火炎影響部近傍に、周辺より空気濃度の高い領域を形成するための空気投入部20を設けてある。具体的には、図1(a)に示す8コーナー炉の水平断面において、たとえば矩形を形成する各炉壁11aの適所に1箇所ずつ、合計4箇所の空気投入部20が設けられている。
なお、空気濃度の高い領域の形成は、酸素濃度の高い領域の形成を意味しているので、このような領域では還元雰囲気が酸化雰囲気となる。
In this embodiment, a region having a higher air concentration than the surroundings is formed in the vicinity of the flame affected part of the furnace wall surface (furnace wall 11a) with which the flame formed for each burner 12 approaches or comes into contact with such a boiler 10. An air input unit 20 is provided. Specifically, in the horizontal section of the 8-corner furnace shown in FIG. 1 (a), for example, a total of four air inlets 20 are provided at appropriate positions on each furnace wall 11a forming a rectangle.
Note that the formation of a region having a high air concentration means the formation of a region having a high oxygen concentration. Therefore, in such a region, the reducing atmosphere is an oxidizing atmosphere.

すなわち、火炉11内の炉壁11aにおいて、腐食やスラッギングが懸念される箇所から低流速の空気を投入する空気投入部20を設けることにより、周辺より空気濃度の高い領域を略壁面に沿って形成するものである。換言すれば、腐食やスラッギングが懸念される領域の炉壁11aを目指して空気を比較的高流速(たとえば40m/sec以上)で投入するのではなく、腐食やスラッギングが懸念される領域の壁面11aに設けた空気投入部20から低流速(たとえば10m/sec程度)の空気を投入することにより、周辺より空気濃度の高い領域を形成している。   That is, in the furnace wall 11a in the furnace 11, by providing the air input unit 20 that inputs air at a low flow rate from a place where corrosion or slagging is a concern, a region having a higher air concentration than the periphery is formed along the substantially wall surface. To do. In other words, rather than aiming at the furnace wall 11a in a region where corrosion or slagging is a concern, air is not injected at a relatively high flow rate (for example, 40 m / sec or more), but the wall surface 11a in a region where corrosion or slagging is a concern. By introducing air at a low flow rate (for example, about 10 m / sec) from the air input unit 20 provided in the area, a region having a higher air concentration than the periphery is formed.

空気投入部20は、たとえば近接するバーナ12から低圧のバーナ2次空気をバイパスさせて導入し、この空気を火炉11内に低流速で投入することにより、空気濃度の高い領域を形成するためのノズルである。この空気投入部20から投入される空気は、火炉11の平面視において火炎影響部近傍の炉壁11aに沿って空気濃度の高い領域を形成することになるが、さらに、火炉11の上下方向においても火炉内部の還元燃焼ゾーンをカバーするため、上下方向にも複数段の空気投入部20が設けられている。   For example, the air input unit 20 bypasses the low-pressure burner secondary air from the adjacent burner 12 and introduces the air into the furnace 11 at a low flow rate, thereby forming a region with a high air concentration. Nozzle. The air input from the air input unit 20 forms a region with a high air concentration along the furnace wall 11a in the vicinity of the flame affected part in a plan view of the furnace 11, and further, in the vertical direction of the furnace 11. In order to cover the reduction combustion zone inside the furnace, a plurality of stages of air injection portions 20 are also provided in the vertical direction.

すなわち、還元燃焼ゾーンは腐食成分である硫化水素が多量に発生する領域であり、しかも、火炉11の中でも熱負荷の高い還元領域となる領域でもあるため、この領域の壁面11aは、厳しい腐食環境下にあるだけでなくスラグ付着の懸念もある。従って、還元燃焼ゾーンにおいては、火炎が接近または接触する炉壁11aの周辺に、バーナ12と略同じ高さ位置となるように空気投入部20を配設することになる。これは、火炎がバーナ12から略水平方向へ伸びるように形成されるため、炉壁11aの火炎影響部もバーナ12の設置位置と略同じ高さとなるためである。   That is, the reduction combustion zone is a region where a large amount of hydrogen sulfide, which is a corrosive component, is generated, and is also a region that becomes a reduction region with a high thermal load in the furnace 11, and therefore the wall surface 11a in this region has a severe corrosive environment. In addition to being underneath, there is also concern about slag adhesion. Therefore, in the reduction combustion zone, the air injection unit 20 is disposed around the furnace wall 11a where the flame approaches or contacts so as to be at substantially the same height as the burner 12. This is because the flame is formed so as to extend in a substantially horizontal direction from the burner 12, so that the flame affected part of the furnace wall 11 a is substantially the same height as the installation position of the burner 12.

また、還元燃焼ゾーンのバーナ12は、通常上下に複数段配置されているので、炉壁11aの火炎影響部も上下に複数箇所形成されることとなる。従って、上述した空気投入部20についても、バーナ12の段数に合わせて、換言すれば火炎が形成される上下方向の段数に合わせて、上下方向に複数段を配設している。すなわち、腐食やスラッギングが懸念される火炉11内の上下方向についても、低流速の空気投入により空気濃度の高い領域を形成することができる。
この結果、還元燃焼ゾーンにおいて、バーナ12毎に形成される炉壁11aの火炎影響部周辺は、近傍に配設された空気投入部20から投入される低流速の空気が周辺より空気濃度の高い領域を形成することにより、炉壁11aと火炎との間を遮断する空気層として機能する。このため、火炎影響部となっていた領域の炉壁11aは、火炎から受ける熱影響等が低減されるとともに、部分的な酸化雰囲気になることで腐食やスラッギングの低減または防止が可能となる。
Further, since the burner 12 in the reduction combustion zone is usually arranged in a plurality of stages above and below, a plurality of flame-affected portions of the furnace wall 11a are also formed at the top and bottom. Accordingly, the above-described air input unit 20 is also provided with a plurality of stages in the vertical direction according to the number of stages of the burner 12, in other words, according to the number of stages in the vertical direction where the flame is formed. That is, even in the vertical direction in the furnace 11 where corrosion and slugging are a concern, a region with a high air concentration can be formed by introducing air at a low flow rate.
As a result, in the reduction combustion zone, the low-flow-rate air introduced from the air introduction unit 20 disposed in the vicinity of the flame-affected part of the furnace wall 11a formed for each burner 12 has a higher air concentration than the surroundings. By forming the region, it functions as an air layer that blocks between the furnace wall 11a and the flame. For this reason, the furnace wall 11a in the region that has been the flame-affected zone is reduced in the thermal influence received from the flame, etc., and can be reduced or prevented from corrosion and slugging by being in a partially oxidizing atmosphere.

また、上述した空気投入部20は、火炎影響部近傍から周辺に投入すればよいので、補機動力が小さくてすむ低流速の空気を使用できる。すなわち、距離の離れた位置を目指して空気を投入する場合のように、大きな動力で運転される圧縮機等を用いて高圧で高流速の空気を投入する必要がなく、特に、バーナ12から低圧の2次空気を導入して使用すれば、補記動力の低減に加えて、大幅な構造変更や構成部品の増加を抑えることが可能になって構造を簡素化できる。   Moreover, since the air injection | throwing-in part 20 mentioned above should just be injected | thrown-in from the flame influence part vicinity to the circumference | surroundings, it can use the low-flow-rate air which requires small auxiliary machine power. That is, there is no need to supply high-pressure and high-velocity air using a compressor or the like that is operated with large power as in the case of supplying air aiming at a remote position, and in particular, low pressure from the burner 12 If secondary air is introduced and used, in addition to reducing the supplementary power, it is possible to suppress a significant structural change and increase in the number of components, thereby simplifying the structure.

また、上述した空気投入部20は、たとえば図1(b)に示すように、バーナ部Baと追加空気投入部Aaとの間にあるデスラッガノズル挿入部30を利用し、デスラッガノズル31の周囲に設けられている。このデスラッガノズル挿入部30は、炉壁11aに付着したスラグを除去するための装置であり、たとえば図2に示すように、火炉11内に挿入したデスラッガノズル31から噴射する蒸気により炉壁11aを清掃するものである。
すなわち、デスラッガノズル挿入部30は、火炉11内でも還元雰囲気のため熱負荷が高く、スラグの付着が懸念される位置に設置されるため、上述した空気投入による空気濃度の高い領域を形成することが有効である。
In addition, as shown in FIG. 1 (b), for example, the air charging unit 20 described above uses a deslagger nozzle insertion unit 30 between the burner unit Ba and the additional air charging unit Aa to It is provided around. This deslagger nozzle insertion portion 30 is a device for removing slag adhering to the furnace wall 11a. For example, as shown in FIG. 2, the furnace wall is formed by steam sprayed from the deslagger nozzle 31 inserted into the furnace 11. 11a is cleaned.
That is, since the deslagger nozzle insertion portion 30 is installed in a position where the thermal load is high even in the furnace 11 due to the reducing atmosphere and the slag is likely to adhere, the above-described region where the air concentration is high due to the input of air is formed. It is effective.

ここで、デスラッガノズル挿入部30の周囲に設けられる空気投入部20の構成例について、図2を参照して説明する。
図2(a)において、デスラッガノズル挿入部30には、デスラッガノズル31が炉壁11aを貫通するノズル孔32に挿入して取り付けられている。このデスラッガノズル31には、蒸気ダクト33を介してスラグ除去時に噴射する蒸気が供給される。なお、図中の符号34は、後述する空気投入ノズル20のノズル本体21とデスラッガノズル31との間に設けられたシール部材である。
Here, a configuration example of the air input unit 20 provided around the deslagger nozzle insertion unit 30 will be described with reference to FIG.
In FIG. 2 (a), a deslagger nozzle 31 is attached to the deslagger nozzle insertion portion 30 by being inserted into a nozzle hole 32 penetrating the furnace wall 11a. The deslagger nozzle 31 is supplied with steam that is injected through the steam duct 33 when slag is removed. In addition, the code | symbol 34 in a figure is the sealing member provided between the nozzle main body 21 and the deslagger nozzle 31 of the air injection nozzle 20 mentioned later.

一方、空気投入ノズル20は、デスラッガノズル31とノズル孔32との間に形成されるリング状の空間を空気流路22とし、円筒先端に円盤状の鍔部21aを備えたノズル本体21が火炉11内に取り付けられている。このノズル本体21は、たとえばデスラッガノズル31の外周にシール部材34を介して固定され、火炉11内の鍔部21aと炉壁11とが所定の間隔で略平行に対向している。従って、ノズル本体21から火炉11内へ投入される空気は、鍔部21aに衝突することにより、炉壁11aに沿って周方向の全周へ向けて流出する。   On the other hand, the air injection nozzle 20 has a ring-shaped space formed between the deslagger nozzle 31 and the nozzle hole 32 as an air flow path 22, and a nozzle main body 21 having a disk-shaped flange 21 a at the end of the cylinder. It is attached in the furnace 11. The nozzle body 21 is fixed to the outer periphery of the deslagger nozzle 31 via a seal member 34, for example, and the flange portion 21a in the furnace 11 and the furnace wall 11 face each other substantially in parallel at a predetermined interval. Therefore, the air introduced into the furnace 11 from the nozzle body 21 flows out along the furnace wall 11a toward the entire circumference in the circumferential direction by colliding with the flange portion 21a.

また、空気投入ノズル20は、火炉11の外壁側に設けられた風箱23を備えている。風箱23は、空気流路22を介して火炉11内のノズル本体21と連通し、空気供給源24から供給された空気を供給する。この場合の空気供給源24は、たとえばバーナ12から導入される低圧の2次空気を使用することが好ましいのであるが、必要に応じて1次空気や加圧した空気を使用してもよい。   The air injection nozzle 20 includes a wind box 23 provided on the outer wall side of the furnace 11. The wind box 23 communicates with the nozzle body 21 in the furnace 11 through the air flow path 22 and supplies air supplied from the air supply source 24. In this case, the air supply source 24 preferably uses, for example, low-pressure secondary air introduced from the burner 12, but primary air or pressurized air may be used as necessary.

このような空気投入ノズル20は、スラッギングを生じやすい領域にある火炉11の炉壁11aに空気濃度の高い領域を形成するとともに、熱的に厳しい状況にあるデスラッガノズル挿入部30の周辺を冷却することができる。従って、スラッギングを生じやすい炉壁11aの周辺には、周辺より空気濃度の高い空気層が形成されるので、部分的な酸化雰囲気により壁面の腐食が防止または低減されて火炉壁を長寿命化することができる。   Such an air injection nozzle 20 forms a high air concentration region on the furnace wall 11a of the furnace 11 in a region where slagging is likely to occur, and cools the periphery of the deslagger nozzle insertion portion 30 in a thermally severe situation. can do. Accordingly, since an air layer having a higher air concentration than the periphery is formed around the furnace wall 11a that is likely to cause slagging, the corrosion of the wall surface is prevented or reduced by the partial oxidizing atmosphere, and the life of the furnace wall is extended. be able to.

また、空気投入部20のノズル本体21に供給される空気がデスラッガノズル31の外周を通過するので、この空気の流れによって熱的に厳しいシール部材34等を冷却することができる。
さらに、空気投入ノズル20が設けられた炉壁11aの近傍では、空気濃度が上昇することにより酸素濃度も上昇して酸化雰囲気となる。このような酸化雰囲気ではスラグの溶融温度が高くなるので、スラッギングの緩和が可能となる。
Further, since the air supplied to the nozzle body 21 of the air input unit 20 passes through the outer periphery of the deslagger nozzle 31, the thermally strict seal member 34 and the like can be cooled by this air flow.
Furthermore, in the vicinity of the furnace wall 11a where the air injection nozzle 20 is provided, the oxygen concentration increases due to the increase in the air concentration and an oxidizing atmosphere is formed. In such an oxidizing atmosphere, the melting temperature of the slag becomes high, so that slugging can be alleviated.

このようなボイラ構造によれば、バーナ12毎に形成される火炎が接近または接触して火炎影響部となる炉壁11aの近傍に、周辺より空気濃度の高い領域を形成する空気投入部20を設けたので、火炎影響部の周辺が酸素濃度の増加により部分的に還元雰囲気から酸化雰囲気となり、この結果、腐食やスラッギングを抑制または防止して壁面寿命を延ばすことができる。このようなボイラ構造は、石炭焚きボイラにおいては、特にスラッギング抑制に有効であり、また、硫黄分を含有する各種燃料に対応したボイラにおいては、特に耐腐食性の向上に有効となる。   According to such a boiler structure, the air charging unit 20 that forms a region having a higher air concentration than the surroundings is provided in the vicinity of the furnace wall 11a that becomes a flame-affected portion when a flame formed for each burner 12 approaches or contacts. Since it is provided, the vicinity of the flame affected part is partially changed from a reducing atmosphere to an oxidizing atmosphere due to an increase in oxygen concentration. As a result, corrosion and slagging can be suppressed or prevented to extend the wall life. Such a boiler structure is particularly effective in suppressing slagging in a coal-fired boiler, and is particularly effective in improving corrosion resistance in a boiler corresponding to various fuels containing sulfur.

ところで、空気投入部20の水平断面位置については、火炉11の形状、バーナ12の位置や数、旋回流の火炎形成等の諸条件により最適位置が異なる。すなわち、バーナ12の配置や形成される旋回流火炎等により、バーナ12毎に形成される火炎が炉壁11aに接近または接触する火炎影響部の領域は異なるので、たとえば図1に示す8コーナー炉や図3及び図4に示す4コーナー炉のように、バーナ12と空気投入部20との位置関係はボイラ構造毎に異なった配置となる。   By the way, as for the horizontal cross-sectional position of the air input unit 20, the optimal position differs depending on various conditions such as the shape of the furnace 11, the position and number of burners 12, and the formation of a swirling flow flame. That is, the region of the flame-affected zone where the flame formed for each burner 12 approaches or contacts the furnace wall 11a differs depending on the arrangement of the burners 12 and the swirling flow flame formed. As in the four-corner furnace shown in FIGS. 3 and 4, the positional relationship between the burner 12 and the air input unit 20 is different for each boiler structure.

図1に示す構成例では、火炉11が長方形とされ、対向する長辺の2面に各々4箇所のバーナ12が配置されて左右二つの旋回流を形成している。この場合のバーナ12は、各旋回流の略中心位置に向けて、すなわち、長方形を2分割して得られる正方形の略中心位置を向くように傾斜しているので、略楕円形状に近い旋回流が二つ形成されている。
従って、この場合の火炎が接近または接触する火炎影響部は、2箇所の角部と長辺中央部付近となり、これらの領域をカバーするようにして空気投入部20が4箇所に設けられている。
In the configuration example shown in FIG. 1, the furnace 11 is rectangular, and four burners 12 are arranged on two opposing long sides to form two left and right swirling flows. In this case, the burner 12 is inclined toward the approximate center position of each swirl flow, that is, toward the approximately center position of a square obtained by dividing the rectangle into two, so that the swirl flow that is nearly elliptical. Two are formed.
Therefore, in this case, the flame-affected portion where the flame approaches or contacts is in the vicinity of the two corners and the central portion of the long side, and the air injection portions 20 are provided at four locations so as to cover these regions. .

また、図3に示す構成例(第1変形例)では、火炉11が正方形とされ、各辺の中心位置からオフセットした4箇所のバーナ12が配置されてひとつの旋回流を形成している。この場合のバーナ12は、対向する壁面に向けられているので、各バーナ12のオフセットにより旋回流が形成される。このようなバーナ12の配置において、各火炎は、旋回流上流側に形成された火炎の影響により、下流側の壁面中央付近に向けて流れている。
従って、この場合の火炎影響部は各辺の中央部付近となるため、これらの領域をカバーするようにして、各辺中央部に空気投入部20が4箇所に設けられている。
Moreover, in the structural example (1st modification) shown in FIG. 3, the furnace 11 is made into the square, and the four burners 12 offset from the center position of each side are arrange | positioned, and one swirl flow is formed. Since the burner 12 in this case is directed to the opposing wall surface, a swirl flow is formed by the offset of each burner 12. In such an arrangement of the burner 12, each flame flows toward the vicinity of the center of the wall surface on the downstream side due to the influence of the flame formed on the upstream side of the swirl flow.
Accordingly, since the flame-affected zone in this case is in the vicinity of the center of each side, four air injection portions 20 are provided at the center of each side so as to cover these regions.

また、図4に示す構成例(第2変形例)では、火炉11が正方形とされ、4箇所の角部にバーナ12が配置されてひとつの旋回流を形成している。この場合の火炎影響部も各辺の中央部付近となるため、これらの領域をカバーするようにして、各辺中央部に空気投入部20が4箇所に設けられている。
このように、空気投入部20の設置位置については、バーナ20の配置等に応じて適宜最適位置を選択すればよい。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
Moreover, in the structural example (2nd modification) shown in FIG. 4, the furnace 11 is made into a square, the burner 12 is arrange | positioned at the corner | angular part of 4 places, and forms one swirl flow. In this case, since the flame-affected zone is also near the center of each side, air injection portions 20 are provided at four locations in the center of each side so as to cover these regions.
Thus, the optimal position may be selected as appropriate for the installation position of the air input unit 20 according to the arrangement of the burner 20 and the like.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

本発明に係るボイラ構造の一実施形態を示す図で、(a)は火炉の還元燃焼ゾーンを示す水平断面図、(b)は外観概要を示す斜視図である。It is a figure which shows one Embodiment of the boiler structure which concerns on this invention, (a) is a horizontal sectional view which shows the reduction combustion zone of a furnace, (b) is a perspective view which shows the external appearance outline | summary. デスラッガノズル挿入部に設けた空気投入部の構成例を示す図で、(a)は火炉の断面図、(b)は(a)のA矢視図である。It is a figure which shows the structural example of the air injection | throwing-in part provided in the deslagger nozzle insertion part, (a) is sectional drawing of a furnace, (b) is A arrow directional view of (a). 本発明に係るボイラ構造の第1変形例を示す図で、(a)は火炉の還元燃焼ゾーンを示す水平断面図、(b)は外観概要を示す斜視図である。It is a figure which shows the 1st modification of the boiler structure which concerns on this invention, (a) is a horizontal sectional view which shows the reduction combustion zone of a furnace, (b) is a perspective view which shows the external appearance outline | summary. 本発明に係るボイラ構造の第2変形例を示す図で、(a)は火炉の還元燃焼ゾーンを示す水平断面図、(b)は外観概要を示す斜視図である。It is a figure which shows the 2nd modification of the boiler structure which concerns on this invention, (a) is a horizontal sectional view which shows the reduction combustion zone of a furnace, (b) is a perspective view which shows the external appearance outline | summary. 燃焼用空気を多段投入して燃料を燃焼させるボイラ構造の概要を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline | summary of the boiler structure which injects combustion air in multistage and burns a fuel.

符号の説明Explanation of symbols

10 ボイラ
11 火炉
11a 炉壁
12 バーナ
20 空気投入部
30 デスラッガノズル投入部
DESCRIPTION OF SYMBOLS 10 Boiler 11 Furnace 11a Furnace wall 12 Burner 20 Air supply part 30 Deslagger nozzle input part

Claims (4)

矩形断面を形成する炉壁の複数箇所に設けたバーナから火炉内へ向けて投入される燃料及び燃焼用空気が旋回流を形成して燃焼するように構成された旋回燃焼型のボイラ構造において、
前記バーナ毎に形成される火炎が接近または接触する火炉壁面の火炎影響部近傍に、周辺より空気濃度の高い領域を形成する空気投入部を設けたことを特徴とするボイラ構造。
In the boiler structure of the swirl combustion type configured so that the fuel and the combustion air injected into the furnace from the burners provided at a plurality of locations on the furnace wall forming a rectangular cross section form a swirl flow and burn,
The boiler structure characterized by providing the air injection part which forms the area | region where air concentration is higher than the periphery in the flame influence part vicinity of the furnace wall surface where the flame formed for every said burner approaches or contacts.
前記空気濃度の高い領域が、上下方向に火炉内部の還元燃焼ゾーンをカバーして形成されることを特徴とする請求項1に記載のボイラ構造。   2. The boiler structure according to claim 1, wherein the region having a high air concentration is formed so as to cover a reduction combustion zone inside the furnace in a vertical direction. 前記空気投入部が、近接するバーナから低圧のバーナ2次空気をバイパスさせて導入することを特徴とする請求項1または2に記載のボイラ構造。   3. The boiler structure according to claim 1, wherein the air introduction unit bypasses and introduces low-pressure burner secondary air from an adjacent burner. 前記空気投入部が、デスラッガノズルの周囲に設けられていることを特徴とする請求項1から3のいずれかに記載のボイラ構造。   The boiler structure according to any one of claims 1 to 3, wherein the air input unit is provided around a deslagger nozzle.
JP2008012503A 2008-01-23 2008-01-23 Boiler structure Expired - Fee Related JP5022248B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2008012503A JP5022248B2 (en) 2008-01-23 2008-01-23 Boiler structure
US12/811,901 US20100279239A1 (en) 2008-01-23 2008-06-19 Boiler structure
BRPI0822013A BRPI0822013B1 (en) 2008-01-23 2008-06-19 circulating heating boiler structure
MX2010007776A MX2010007776A (en) 2008-01-23 2008-06-19 Boiler structure.
MYPI20103140 MY152332A (en) 2008-01-23 2008-06-19 Boiler structure
CN2008801252553A CN101925780B (en) 2008-01-23 2008-06-19 Boiler structure
ES08765748T ES2706022T3 (en) 2008-01-23 2008-06-19 Boiler structure
RU2010129771/06A RU2461773C2 (en) 2008-01-23 2008-06-19 Boiler design
EP08765748.2A EP2233833B1 (en) 2008-01-23 2008-06-19 Boiler structure
PCT/JP2008/061193 WO2009093347A1 (en) 2008-01-23 2008-06-19 Boiler structure
TW097124616A TWI434011B (en) 2008-01-23 2008-06-30 Boiler construction
CL2008002173A CL2008002173A1 (en) 2008-01-23 2008-07-24 Boiler structure with circulating ignition, where the fuel and combustion air supplied from the burners, are burned forming a spiral flow, and also comprises parts that supply air, which are arranged near the parts of the wall surfaces of the oven, which are affected by flames.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012503A JP5022248B2 (en) 2008-01-23 2008-01-23 Boiler structure

Publications (2)

Publication Number Publication Date
JP2009174751A true JP2009174751A (en) 2009-08-06
JP5022248B2 JP5022248B2 (en) 2012-09-12

Family

ID=40900863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012503A Expired - Fee Related JP5022248B2 (en) 2008-01-23 2008-01-23 Boiler structure

Country Status (12)

Country Link
US (1) US20100279239A1 (en)
EP (1) EP2233833B1 (en)
JP (1) JP5022248B2 (en)
CN (1) CN101925780B (en)
BR (1) BRPI0822013B1 (en)
CL (1) CL2008002173A1 (en)
ES (1) ES2706022T3 (en)
MX (1) MX2010007776A (en)
MY (1) MY152332A (en)
RU (1) RU2461773C2 (en)
TW (1) TWI434011B (en)
WO (1) WO2009093347A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096319A1 (en) 2011-01-12 2012-07-19 バブコック日立株式会社 Boiler device
JP2015096788A (en) * 2013-11-15 2015-05-21 三菱日立パワーシステムズ株式会社 Boiler

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374404B2 (en) 2009-12-22 2013-12-25 三菱重工業株式会社 Combustion burner and boiler equipped with this combustion burner
JP4955117B1 (en) * 2011-03-15 2012-06-20 新日鉄エンジニアリング株式会社 Top-fired hot air furnace
JP4892107B1 (en) 2011-03-23 2012-03-07 新日鉄エンジニアリング株式会社 Top-fired hot air furnace
CN102777880B (en) * 2012-07-19 2014-10-01 国网浙江省电力公司电力科学研究院 Adjustable hot air device preventing high-temperature corrosion of power station boiler
CN106871112A (en) * 2017-04-07 2017-06-20 贵州电网有限责任公司电力科学研究院 A kind of burner and coal pulverizer matching process for being punched circle combustion system station boiler
CN106871113A (en) * 2017-04-07 2017-06-20 贵州电网有限责任公司电力科学研究院 A kind of system of selection of the burner model of the tangential firing mode station boiler that liquidates
CN112413635A (en) * 2020-11-17 2021-02-26 华能沁北发电有限责任公司 High-temperature corrosion protection device for water-cooled wall of boiler

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131106A (en) * 1985-12-04 1987-06-13 Mitsubishi Heavy Ind Ltd Burning method of steam generator
JPH04143503A (en) * 1990-10-05 1992-05-18 Babcock Hitachi Kk Boiler and method of its operation
JPH05215305A (en) * 1992-01-31 1993-08-24 Mitsubishi Heavy Ind Ltd Pulverized solid-fuel combustion equipment
JPH0642710A (en) * 1992-03-13 1994-02-18 Babcock & Wilcox Co:The Low nox burner system
JPH07119923A (en) * 1993-10-26 1995-05-12 Mitsubishi Heavy Ind Ltd Burner for pulverized coal firing boiler
JPH0921506A (en) * 1995-07-05 1997-01-21 Babcock Hitachi Kk Pulverized coal firing equipment and its method
JPH11237003A (en) * 1998-02-19 1999-08-31 Ishikawajima Harima Heavy Ind Co Ltd Corrosion preventive device for furnace
JP2001012703A (en) * 1999-06-30 2001-01-19 Babcock Hitachi Kk Burner, and combustor equipped therewith
JP2002323215A (en) * 2001-04-26 2002-11-08 Ishikawajima Harima Heavy Ind Co Ltd Boiler ash removal apparatus
JP2005030675A (en) * 2003-07-11 2005-02-03 Ishikawajima Harima Heavy Ind Co Ltd Boundary air supply device for boiler furnace

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI79403C (en) * 1984-06-01 1989-12-11 Ahlstroem Oy FOERBRAENNINGSMETOD.
SU1437613A1 (en) * 1986-07-09 1988-11-15 Красноярский Политехнический Институт Furnace
RU2032125C1 (en) * 1989-04-06 1995-03-27 Калинин Дмитрий Сергеевич Primary furnace
JP2540636B2 (en) * 1989-11-20 1996-10-09 三菱重工業株式会社 boiler
RU2032853C1 (en) * 1992-09-01 1995-04-10 Сибирский филиал Всероссийского теплотехнического научно-исследовательского института Prismatic water-cooled furnace
EP0856700B1 (en) * 1996-08-22 2004-01-28 Babcock-Hitachi Kabushiki Kaisha Combustion burner and combustion device provided with same
JP3344694B2 (en) * 1997-07-24 2002-11-11 株式会社日立製作所 Pulverized coal combustion burner
DE19749431C1 (en) * 1997-11-08 1999-03-18 Steinmueller Gmbh L & C Method of burning fuel dust
US6237513B1 (en) * 1998-12-21 2001-05-29 ABB ALSTROM POWER Inc. Fuel and air compartment arrangement NOx tangential firing system
US7175423B1 (en) * 2000-10-26 2007-02-13 Bloom Engineering Company, Inc. Air staged low-NOx burner
US7484956B2 (en) * 2003-09-16 2009-02-03 Praxair Technology, Inc. Low NOx combustion using cogenerated oxygen and nitrogen streams
JP4150968B2 (en) * 2003-11-10 2008-09-17 株式会社日立製作所 Solid fuel burner and combustion method of solid fuel burner
JP4309853B2 (en) * 2005-01-05 2009-08-05 バブコック日立株式会社 Solid fuel burner and combustion method
RU2303203C1 (en) * 2006-06-29 2007-07-20 Закрытое акционерное общество Акционерная фирма "Перспектива" Опытно-механический завод Gas generator with water boiler

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131106A (en) * 1985-12-04 1987-06-13 Mitsubishi Heavy Ind Ltd Burning method of steam generator
JPH04143503A (en) * 1990-10-05 1992-05-18 Babcock Hitachi Kk Boiler and method of its operation
JPH05215305A (en) * 1992-01-31 1993-08-24 Mitsubishi Heavy Ind Ltd Pulverized solid-fuel combustion equipment
JPH0642710A (en) * 1992-03-13 1994-02-18 Babcock & Wilcox Co:The Low nox burner system
JPH07119923A (en) * 1993-10-26 1995-05-12 Mitsubishi Heavy Ind Ltd Burner for pulverized coal firing boiler
JPH0921506A (en) * 1995-07-05 1997-01-21 Babcock Hitachi Kk Pulverized coal firing equipment and its method
JPH11237003A (en) * 1998-02-19 1999-08-31 Ishikawajima Harima Heavy Ind Co Ltd Corrosion preventive device for furnace
JP2001012703A (en) * 1999-06-30 2001-01-19 Babcock Hitachi Kk Burner, and combustor equipped therewith
JP2002323215A (en) * 2001-04-26 2002-11-08 Ishikawajima Harima Heavy Ind Co Ltd Boiler ash removal apparatus
JP2005030675A (en) * 2003-07-11 2005-02-03 Ishikawajima Harima Heavy Ind Co Ltd Boundary air supply device for boiler furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096319A1 (en) 2011-01-12 2012-07-19 バブコック日立株式会社 Boiler device
JP2015096788A (en) * 2013-11-15 2015-05-21 三菱日立パワーシステムズ株式会社 Boiler

Also Published As

Publication number Publication date
TW200933091A (en) 2009-08-01
EP2233833A4 (en) 2016-04-13
CN101925780A (en) 2010-12-22
MX2010007776A (en) 2010-08-09
BRPI0822013A2 (en) 2015-07-21
MY152332A (en) 2014-09-15
EP2233833B1 (en) 2018-10-24
WO2009093347A1 (en) 2009-07-30
CN101925780B (en) 2013-01-09
BRPI0822013B1 (en) 2020-02-04
RU2010129771A (en) 2012-02-27
EP2233833A1 (en) 2010-09-29
CL2008002173A1 (en) 2009-11-13
ES2706022T3 (en) 2019-03-27
US20100279239A1 (en) 2010-11-04
JP5022248B2 (en) 2012-09-12
RU2461773C2 (en) 2012-09-20
TWI434011B (en) 2014-04-11

Similar Documents

Publication Publication Date Title
JP5022248B2 (en) Boiler structure
US9447969B2 (en) Low NOx combustion process and burner therefor
JP5931415B2 (en) Pulverized coal burner
JP7202467B2 (en) Method for denitration of cement kiln exhaust gas
US9702545B2 (en) Oil-fired burner, solid fuel-fired burner unit, and solid fuel-fired boiler
CN104344399A (en) Wall-attached wind nozzle, boiler and boiler system
CN103968374B (en) Fire oxygen coupling combustion and recirculating system
JP2010271001A (en) Coal fired boiler
KR102012468B1 (en) Pulverized coal burner for pressurized pure oxygen
JP2010139182A (en) Turning combustion boiler
CN203478216U (en) Wall-adjoined air nozzle, boiler and boiler system
EP3479021B1 (en) Bubbling fluidized bed furnace
JP6326593B2 (en) Burner device, boiler using the same, and combustion method of burner device
JP2016118330A (en) Combustion burner and boiler
JP5800423B2 (en) Burner and boiler equipped with it
JP2007107850A (en) Boiler equipment
JP4647837B2 (en) Coal-fired boiler and method for preventing slagging of coal-fired boiler
JP6109718B2 (en) boiler
JP7285685B2 (en) Furnaces and boilers equipped therewith
JP2015102266A (en) Gas turbine combustor
JP2015096790A (en) Boiler and combustion burner
TH43937B (en) Radiator structure
WO2014010034A1 (en) Boiler combustion device
TH98436A (en) Radiator structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R151 Written notification of patent or utility model registration

Ref document number: 5022248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees