JP2001012703A - Burner, and combustor equipped therewith - Google Patents
Burner, and combustor equipped therewithInfo
- Publication number
- JP2001012703A JP2001012703A JP11185550A JP18555099A JP2001012703A JP 2001012703 A JP2001012703 A JP 2001012703A JP 11185550 A JP11185550 A JP 11185550A JP 18555099 A JP18555099 A JP 18555099A JP 2001012703 A JP2001012703 A JP 2001012703A
- Authority
- JP
- Japan
- Prior art keywords
- burner
- combustion
- flow path
- furnace wall
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Air Supply (AREA)
- Combustion Of Fluid Fuel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体燃料または液
体燃料用のバーナと該バーナを備えたボイラなどの燃焼
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a burner for a solid fuel or a liquid fuel and a combustion device such as a boiler provided with the burner.
【0002】[0002]
【従来の技術】オイルショック以降,我が国の事業用火
力発電ボイラにおいては、微粉炭焚ボイラが急速に増加
し、数多く建設されている。これらボイラに用いられる
微粉炭燃焼システムには、分級機を内蔵した微粉炭機
(以下,ミルと称す)で石炭を粉砕し、分級により所定
の大きさ以下の微粉を搬送用空気で微粉炭バーナへ直接
供給する燃焼システムが実用化されている。そして、微
粉炭燃焼用バーナとしては、NOx低減を目的としたも
の、広域負荷(最低負荷の切り下げ)を目的としたもの
を中心に開発実用化の研究が行われている。2. Description of the Related Art Since the oil crisis, pulverized coal-fired boilers have been rapidly increasing and are being built in many commercial thermal power boilers in Japan. The pulverized coal combustion systems used in these boilers include a pulverized coal burner (hereinafter, referred to as a mill) with a built-in classifier, and a pulverized coal burner that uses a carrier air to pulverize the fines of a predetermined size or less. Combustion systems that feed directly to water have been put to practical use. As burners for pulverized coal combustion, research on development and commercialization has been conducted mainly on those for the purpose of reducing NOx and those for the purpose of wide area load (minimum load reduction).
【0003】図4に微粉炭焚きボイラの燃焼系統図を示
す。石炭はバンカ133に貯蔵され、燃焼装置の負荷に
応じて石炭フィーダ134からミル124に送られる。
微粉炭搬送用空気はPAF(Primary Air Fan)125
で加圧され、熱交換器1210を通過後、一次熱空気ダ
クト130からダンパ122を経てミル124に送られ
るか、またはPAF125で加圧された空気は熱交換器
1210を迂回して一次冷空気ダクト131からダンパ
123を経てミル124に送られる。ミル124で粉砕
された微粉炭は送炭管132を経てボイラ火炉121の
微粉炭バーナ128に搬送される。FIG. 4 shows a combustion system diagram of a pulverized coal-fired boiler. Coal is stored in a bunker 133 and sent from a coal feeder 134 to a mill 124 depending on the load on the combustion device.
The air for pulverized coal transportation is PAF (Primary Air Fan) 125
After passing through the heat exchanger 1210, the air is sent from the primary hot air duct 130 to the mill 124 via the damper 122, or the air pressurized by the PAF 125 bypasses the heat exchanger 1210 and cools the primary cold air. It is sent from the duct 131 to the mill 124 via the damper 123. The pulverized coal pulverized by the mill 124 is conveyed to a pulverized coal burner 128 of the boiler furnace 121 via a coal feeding pipe 132.
【0004】一方、燃焼用空気はFDF(Force Draft
Fan)129から熱交換器1210を経由して、風箱1
27に入り、ボイラ121のバーナ部の二次流路及び三
次流路へ搬送される。On the other hand, the combustion air is FDF (Force Draft).
Fan) 129 via heat exchanger 1210, wind box 1
27, and is conveyed to the secondary flow path and the tertiary flow path of the burner section of the boiler 121.
【0005】なお、ボイラ火炉121から排出される排
ガスは脱硝装置135、熱交換器1210、集塵機13
6、脱硫装置137を順次経由して大気中に排出され
る。また、ボイラ排ガスの一部はGRF1211により
火炉121下部のGR投入ダクト1212から火炉12
1内に再投入される。The exhaust gas discharged from the boiler furnace 121 is supplied to a denitration device 135, a heat exchanger 1210, and a dust collector 13.
6. It is discharged into the atmosphere via the desulfurization device 137 sequentially. Further, part of the boiler exhaust gas is supplied from the GR input duct 1212 below the furnace 121 by the GRF 1211 to the furnace 12.
It is re-entered in 1.
【0006】微粉炭バーナの低NOx化技術としては、
燃焼用空気を分割し、火炎中心部にNOx還元雰囲気を
形成しやすいように、微粉炭と燃料搬送用の一次空気と
の混合流体用の流路である一次流路の外周から火炉内に
供給される燃焼用空気に旋回をかけて、一次流路内に供
給される一次空気のみで着火燃焼している前記混合流体
との混合を遅らせる方式の技術があり、そのような方式
のバーナでは、一次流路の外周に設けられる複数の燃焼
用空気流路の中でより外周側の燃焼用空気流路の空気量
ほど供給量を増加させている。As a technique for reducing NOx in pulverized coal burners,
The combustion air is divided and supplied into the furnace from the outer periphery of the primary flow path, which is a flow path for a mixed fluid of pulverized coal and primary air for fuel transfer, so as to easily form a NOx reducing atmosphere in the center of the flame. There is a technique of a method of turning the combustion air to be swirled to delay mixing with the mixed fluid that is igniting and burning only with the primary air supplied into the primary flow path.In a burner of such a method, Of the plurality of combustion air flow paths provided on the outer circumference of the primary flow path, the supply amount is increased as the amount of air in the combustion air flow path on the outer circumference side increases.
【0007】このような燃焼用空気の多段投入方式のバ
ーナの中に、燃焼用空気三分割方式バーナがあり、微粉
炭低NOxバーナ(特許第1750459号)で実用化
されている。[0007] Among such burners of the combustion air multi-stage injection system, there is a combustion air three-division system burner, which has been put into practical use as a pulverized coal low NOx burner (Japanese Patent No. 1750459).
【0008】上記した石炭燃焼ボイラなど微粉炭燃焼装
置において、問題となるのはバーナまわりの火炉壁(以
下、水壁または火炉壁ともいう。)に形成されるスラグ
の付着である。バーナ近傍では、雰囲気温度が高いこと
に加えて石炭の濃度が火炉の他の部分と比較して高いこ
とから、火炉壁にスラグが付着しやすい。また、バーナ
回りはガス流れの循環領域になることから、この領域に
粒子が取り込まれると火炉壁に付着する確率が高くな
り、バーナ近傍の火炉壁にスラグが付着しやすくなる。In the pulverized coal combustion apparatus such as the above-mentioned coal combustion boiler, a problem is adhesion of slag formed on a furnace wall (hereinafter, also referred to as a water wall or a furnace wall) around a burner. In the vicinity of the burner, the slag tends to adhere to the furnace wall because the concentration of coal is higher than other parts of the furnace in addition to the high ambient temperature. Further, since the area around the burner becomes a gas flow circulation area, when particles are taken into this area, the probability of adhering to the furnace wall increases, and slag tends to adhere to the furnace wall near the burner.
【0009】従来の石炭焚きボイラにおける灰(スラ
グ)の除去装置としては、スートブロア(火炉出口バン
ク部分の伝熱管に付着した灰除去装置)や、ウォールブ
ロア(火炉内の水壁面に付着した灰の除去装置)が実用
化されているが、バーナ近傍には設置されていない。バ
ーナ近傍の火炉壁での灰付着を防止する方法として、三
次空気の一部を火炉壁面に沿って流すバーナ構造(特開
平8−285231号)があるが、三次空気の一部を火
炉壁に沿って流すため、火炎の安定性が図れない。As a conventional apparatus for removing ash (slag) in a coal-fired boiler, a soot blower (an ash removing apparatus attached to a heat transfer tube in a furnace outlet bank) or a wall blower (an ash attached to a water wall surface in a furnace) is used. Removal device) has been put to practical use, but is not installed near the burner. As a method of preventing ash adhesion on the furnace wall near the burner, there is a burner structure (Japanese Patent Laid-Open No. 8-285231) in which a part of the tertiary air flows along the furnace wall. Since it flows along, the stability of the flame cannot be achieved.
【0010】[0010]
【発明が解決しようとする課題】火炉伝熱壁も表面に灰
やスラグが付着すると、この領域における熱伝達効率が
低下して、ボイラ効率が低下する原因になる。If ash or slag adheres to the surface of the furnace heat transfer wall as well, the heat transfer efficiency in this region is reduced, causing the boiler efficiency to be reduced.
【0011】この対策として従来スートブロアやウォー
ルブロアを用いて圧縮性の流体をノズルから吹き出し
て、その圧力で付着スラグを吹き飛ばしていた。しか
し、この方法では吹き飛ばす範囲が狭いことや、ボイラ
稼動の際に周囲の灰を同伴することから、伝熱管表面に
これら粒子が吹き付けられ、伝熱管表面の摩耗が起こる
んなどの問題点が指摘されていた。そのため、バーナ近
傍の火炉壁には取り付けることはできなかった。As a countermeasure against this, conventionally, a compressible fluid has been blown out from a nozzle using a soot blower or a wall blower, and the attached slag has been blown off by the pressure. However, this method has problems such as the fact that these particles are sprayed on the surface of the heat transfer tube and the surface of the heat transfer tube is worn, because the range to blow off is small and the surrounding ash is entrained during the operation of the boiler. It had been. Therefore, it could not be mounted on the furnace wall near the burner.
【0012】また、バーナ近傍の火炉壁に圧縮性の流体
をノズルから吹き出すと、燃焼を不安定にするという問
題がある。さらに、スートブロア装置やウォールブロア
装置を稼動させるためには高価な動力源である圧縮空気
や蒸気を必要とし、これらは発電効率を低下させる因子
として働くので、できるだけこれらの装置の稼動を減ら
すことが必要とされている。Further, when a compressive fluid is blown out from a nozzle to a furnace wall near a burner, there is a problem that combustion becomes unstable. In addition, the operation of soot blowers and wall blowers requires expensive power sources such as compressed air and steam, which act as factors that reduce power generation efficiency. is needed.
【0013】また、三次空気流の一部を火炉壁に沿って
流すバーナ構造では、三次空気流を分割するため、本来
の三次空気の役割を果たせず、燃焼が不安定になるとい
う問題がある。Further, in the burner structure in which a part of the tertiary air flow is caused to flow along the furnace wall, the tertiary air flow is divided, so that it does not fulfill the role of the tertiary air and combustion becomes unstable. .
【0014】また、従来の燃焼装置では、バーナ近傍の
火炉壁付近は燃焼ガス流れのよどみ領域であるため、C
Oが発生し、火炉壁の腐食も起こりやすいという問題が
ある。In the conventional combustion apparatus, since the vicinity of the furnace wall near the burner is a stagnation region of the combustion gas flow, C
O is generated, and there is a problem that the furnace wall is likely to corrode.
【0015】そこで本発明の課題は、高価な装置を用い
ることなく、また燃焼を不安定にさせることなく、バー
ナ近傍の火炉壁への灰付着と火炉壁の腐食を防止し、さ
らにCOの発生を抑えることを可能にしたバーナと該バ
ーナを備えた燃焼装置を提供することである。An object of the present invention is to prevent ash deposition on the furnace wall near the burner and corrosion of the furnace wall without using expensive equipment and without making combustion unstable, and furthermore, to generate CO. And a combustion device provided with the burner.
【0016】[0016]
【課題を解決するための手段】上記の課題は固体燃料と
搬送用気体の混合流体または液体燃料を火炉に投入する
ための一次流路と該一次流路の外周に設けた単一または
複数の燃焼用含酸素気体を供給する燃焼用含酸素気体流
路と、該燃焼用含酸素気体流路のさらに外周に設けた燃
焼用含酸素気体を火炉内で、火炉壁面に向けて流す最外
周燃焼用含酸素気体流路を設けたバーナにより解決され
る。The above object is achieved by providing a primary flow path for charging a mixed fluid of a solid fuel and a carrier gas or a liquid fuel into a furnace and a single or a plurality of flow paths provided on the outer periphery of the primary flow path. An oxygen-containing gas flow path for combustion for supplying oxygen-containing gas for combustion, and an outermost peripheral combustion chamber in which the oxygen-containing gas for combustion provided on the outer periphery of the oxygen-containing gas flow path for combustion flows toward the furnace wall surface in the furnace. The problem is solved by a burner provided with an oxygen-containing gas flow path.
【0017】本発明は、最も外周の流路である最外周燃
焼用含酸素気体流路から燃焼用空気の一部を火炉壁に沿
って流すことによって、バーナ近傍の火炉壁への灰付着
と火炉壁の腐食を防止し、CO発生を抑えようとしたも
のである。According to the present invention, a part of the combustion air flows along the furnace wall from the outermost combustion oxygen-containing gas flow path, which is the outermost flow path, to reduce ash adhesion to the furnace wall near the burner. It is intended to prevent the corrosion of the furnace wall and suppress the generation of CO.
【0018】また、最外周燃焼用含酸素気体流路の先端
に火炉壁面に沿って燃焼用含酸素気体を流すための偏向
板を設けることで、最も外周の気体流路から流す燃焼用
空気を確実に火炉壁に沿って流し、バーナ近傍の燃焼を
不安定にすることを防止することができる。Further, by providing a deflection plate for flowing the oxygen-containing gas for combustion along the furnace wall at the end of the oxygen-containing gas channel for the outermost peripheral combustion, the combustion air flowing from the outermost gas channel is provided. It is possible to reliably flow along the furnace wall and prevent unstable combustion near the burner.
【0019】最外周燃焼用含酸素気体流路に気体流量を
調整する流量調整機構を設けると、バーナの最外周から
の気体流量を調整することができ、火炉壁にスラグを付
着させやすい性状の燃料を用いる時には気体流量を多く
し(例えば40m/s)、火炉壁にスラグが付着しにく
い性状の燃料を用いる時には気体流量は、火炉壁によど
み領域ができない程度の流量(例えば20m/s)とす
ることができる。If a flow rate adjusting mechanism for adjusting the gas flow rate is provided in the oxygen-containing gas flow path for outermost circumference combustion, the gas flow rate from the outermost circumference of the burner can be adjusted, and the slag can easily adhere to the furnace wall. When fuel is used, the gas flow rate is increased (for example, 40 m / s), and when fuel having properties that slag hardly adheres to the furnace wall is used, the gas flow rate is such that no stagnation region is formed on the furnace wall (for example, 20 m / s). It can be.
【0020】また、最外周燃焼用含酸素気体流路の外側
に、火炉壁面に接するように断熱材をリング状に設けて
も良い。バーナの燃焼用含酸素気体流路を形成する部材
として、従来ボイラなどの燃焼装置では用いることので
きなかった断熱材を用いることによって、火炉壁を傷つ
けることなく、断熱材と共に偏向板を抜け出せるのでバ
ーナを取り出しやすくなり、バーナのメンテナンス性を
高めることができる。Further, a heat insulating material may be provided in a ring shape outside the outermost peripheral oxygen-containing gas flow path so as to be in contact with the furnace wall surface. By using a heat-insulating material that could not be used in a conventional boiler or other combustion device as a member that forms the oxygen-containing gas flow path for combustion of the burner, the deflection plate can be pulled out together with the heat-insulating material without damaging the furnace wall. The burner can be easily taken out, and the maintainability of the burner can be improved.
【0021】さらに、断熱材と最外周燃焼用含酸素気体
流路を一体化した構成にすると、バーナのメンテナンス
性をより高くすることができる。Further, when the heat insulating material and the oxygen-containing gas flow path for the outermost peripheral combustion are integrated, the maintainability of the burner can be further improved.
【0022】本発明は前記バーナを備えたボイラ、加熱
炉などの燃焼装置も含む。The present invention also includes a combustion device such as a boiler or a heating furnace provided with the burner.
【0023】[0023]
【発明の実施の形態】本発明の実施の形態について、図
面とともに説明する。図1に示す実施の形態について説
明する。図1に示すバーナのノズル配管は複数の流路か
らなり、中心から液体燃料噴射ノズル1、微粉炭と微粉
炭搬送用空気の混合流体用流路(以下、微粉炭流路と言
うことがある)2、二次空気流路3、三次空気流路4、
最外周空気流路5の順で同心軸上に配置されている。Embodiments of the present invention will be described with reference to the drawings. The embodiment shown in FIG. 1 will be described. The nozzle pipe of the burner shown in FIG. 1 is composed of a plurality of flow paths, and the liquid fuel injection nozzle 1 and a flow path for a mixed fluid of pulverized coal and pulverized coal conveying air (hereinafter, may be referred to as a pulverized coal flow path) from the center. ) 2, secondary air flow path 3, tertiary air flow path 4,
The outermost air passages 5 are arranged concentrically in this order.
【0024】最外周空気流路5の先端に火炉壁面に沿っ
て空気を流すための偏向板6を設ける。また、微粉炭流
路2の出口部の外周には保炎板7を配置し、三次空気流
路4には三次空気旋回器9を設け、この三次空気旋回器
9は外部から操作できる三次空気調整器(図示せず)に
より三次空気流の旋回の強さを制御できるようになって
いる。A deflection plate 6 for flowing air along the furnace wall is provided at the end of the outermost air passage 5. Further, a flame holding plate 7 is arranged on the outer periphery of the outlet of the pulverized coal flow path 2, and a tertiary air swirler 9 is provided in the tertiary air flow path 4. A regulator (not shown) can control the strength of the swirling of the tertiary air flow.
【0025】また、二次空気流路3から火炉121(図
4)内に噴出する二次空気流は三次空気流に同伴され、
三次空気流は強い旋回により周囲に広がる。一方、微粉
炭流路2から噴出する微粉炭流は、ほぼ直進流としてバ
ーナから火炉内に噴出されるから、外向きに広がる二次
空気流及び三次空気流との混合が遅れ、高い微粉炭濃度
を保持したまま、着火保炎領域を形成するとともに、バ
ーナ近傍に広い還元領域を形成してNOxを低減する。
最外周空気流路5の出口部には偏向板6が設けてあり、
最外周空気は火炉壁10に沿うように流れる。なお、微
粉炭バーナに用いられる液体燃料噴射ノズル1はバーナ
起動時に微粉炭燃料の着火用に用いられる。The secondary air flow ejected from the secondary air passage 3 into the furnace 121 (FIG. 4) is accompanied by the tertiary air flow,
The tertiary air flow spreads around due to strong swirling. On the other hand, since the pulverized coal stream ejected from the pulverized coal passage 2 is ejected from the burner into the furnace as a substantially straight stream, the mixing with the secondary air stream and the tertiary air stream spreading outward is delayed, and While maintaining the concentration, an ignition flame holding region is formed, and a wide reduction region is formed near the burner to reduce NOx.
A deflection plate 6 is provided at the outlet of the outermost air flow path 5,
The outermost air flows along the furnace wall 10. The liquid fuel injection nozzle 1 used for the pulverized coal burner is used for igniting the pulverized coal fuel when the burner is started.
【0026】図1のバーナでは、低NOx火炎を保持す
るため最外周空気流路5から少量の最外周空気を流す。
最外周空気流量はダンパ11で調整し、理論空気量に対
して0.1以下の割合で、火炉壁にスラグが付着しやす
い性状の燃料を用いる時は最大の割合で、火炉壁にスラ
グが付着しにくい性状の燃料を用いる時はバーナ間によ
どみ領域ができない程度の割合で流す。ダンパ11は最
外周空気の流量調整のために用いる。In the burner shown in FIG. 1, a small amount of the outermost peripheral air flows from the outermost peripheral air passage 5 in order to maintain a low NOx flame.
The outermost air flow rate is adjusted by the damper 11, and the ratio of the slag to the furnace wall is 0.1 or less with respect to the theoretical air amount. When using fuel with a property that does not easily adhere, the fuel is flowed at such a rate that a stagnation region cannot be formed between the burners. The damper 11 is used for adjusting the flow rate of the outermost air.
【0027】最外周空気流は三次空気流に同伴されず
に、偏向板6により火炉壁10に沿うように流すため、
その流速は20〜40m/sとする。偏向板6は焼損の
おそれがあるが、その内側には常に最外周空気流が流れ
ているので焼損することはない。また内側に常に空気を
流して冷却していることから、偏向板6にスラグが付着
するおそれはない。Since the outermost air flow is caused to flow along the furnace wall 10 by the deflecting plate 6 without being entrained by the tertiary air flow,
The flow rate is 20 to 40 m / s. The deflecting plate 6 is liable to burn out, but does not burn out because the outermost airflow always flows inside the deflecting plate 6. Further, since cooling is performed by always flowing air inside, there is no possibility that slag adheres to the deflection plate 6.
【0028】最外周空気流は火炉壁10に沿うように流
すため、その内側で形成される低NOxバーナの性能を
低下させることはなく、燃焼を不安定にすることもな
い。微粉炭流のバーナ出口での流速はノズル配管内への
微粉炭の堆積防止(最低流速の確保)及び配管の摩耗に
対する考慮(最大流速の制限)から15〜25m/sと
し、周囲への広がりを抑制するために旋回は与えない構
造とする。火炉壁10とバーナをつなぐ最外周空気流路
5の外周部は断熱材8がリング状に設けられており、断
熱材8と一体化したバーナが容易に火炉外方向に抜き出
せ、メンテナンス性に優れた構造になっている。Since the outermost air stream flows along the furnace wall 10, the performance of the low NOx burner formed inside the furnace is not reduced and the combustion is not unstable. The flow rate of the pulverized coal flow at the burner outlet is set to 15 to 25 m / s from the viewpoint of preventing pulverized coal from accumulating in the nozzle pipe (securing the minimum flow rate) and considering the wear of the pipe (restricting the maximum flow rate). In order to suppress the rotation, a structure that does not give a turn is adopted. A heat insulating material 8 is provided in a ring shape on the outer peripheral portion of the outermost peripheral air flow path 5 connecting the furnace wall 10 and the burner, and the burner integrated with the heat insulating material 8 can be easily pulled out of the furnace and has excellent maintainability. It has a structure.
【0029】次に、図2に示す本発明の第二の実施の形
態を説明する。図2は液体燃料バーナに適用した例であ
る。図2に示すバーナのノズル配管も図1に示すバーナ
のノズル配管と同じく複数の流路からなり、中心から液
体燃料噴射ノズル1、一次空気流路2、二次空気流路
3、三次空気流路4、最外周空気流路5の順で同心軸上
に配置される。Next, a second embodiment of the present invention shown in FIG. 2 will be described. FIG. 2 shows an example applied to a liquid fuel burner. The nozzle pipe of the burner shown in FIG. 2 also has a plurality of flow paths as in the nozzle pipe of the burner shown in FIG. 1, and the liquid fuel injection nozzle 1, the primary air flow path 2, the secondary air flow path 3, the tertiary air flow The path 4 and the outermost air path 5 are arranged concentrically in this order.
【0030】三次空気流路4には三次空気旋回器9が設
けられており、この三次空気旋回器9は外部から操作で
きる三次空気調整器(図示せず)により三次空気流の旋
回の強さを制御できるようになっている。A tertiary air swirler 9 is provided in the tertiary air flow path 4. The tertiary air swirler 9 is provided with a tertiary air regulator (not shown) which can be operated from the outside. Can be controlled.
【0031】また、最も外周の燃焼用気体流路である最
外周空気流路5の出口先端には、少量の燃焼用空気が火
炉壁10に沿って流れるような偏向板6が設けてある。
また、最外周空気流路5にはダンパ11を設けて流量調
整を行う。A deflection plate 6 is provided at the end of the outlet of the outermost air passage 5 which is the outermost combustion gas passage so that a small amount of combustion air flows along the furnace wall 10.
In addition, a damper 11 is provided in the outermost air passage 5 to adjust the flow rate.
【0032】図2に示すバーナのように燃料用流路の外
周部の空気流路を四分割以上した場合にも、最も外周の
空気流量を理論空気量の0.1以下にし、その気体を火
炉壁10に沿うように流す。Even when the air flow path at the outer circumference of the fuel flow path is divided into four or more parts as in the burner shown in FIG. 2, the air flow rate at the outermost circumference is set to 0.1 or less of the theoretical air amount and the gas is reduced. Flow along the furnace wall 10.
【0033】バーナ部の断熱材8と最外周の空気流路5
の関係の実施の形態を図3(図3(a)はバーナ部の一
部拡大断面図、図3(b)は図3(a)のA−A線矢視
図)を使って説明する。最外周空気流路5と断熱材8は
断熱材接続部材12で接続され、一体化している。断熱
材8と最外周空気流路5が一体化になっていることで、
先の図1及び図2に示したバーナ部の交換が容易にな
り、メンテナンス性に優れた構造となっている。The heat insulating material 8 at the burner portion and the air flow path 5 at the outermost periphery
3 (FIG. 3 (a) is a partially enlarged cross-sectional view of a burner portion, and FIG. 3 (b) is a view taken along line AA of FIG. 3 (a)). . The outermost air passage 5 and the heat insulating material 8 are connected by a heat insulating material connecting member 12 and are integrated. Since the heat insulating material 8 and the outermost air flow path 5 are integrated,
The burner portion shown in FIGS. 1 and 2 can be easily replaced, and the structure is excellent in maintainability.
【0034】本発明の以上の実施の形態で説明したバー
ナは、低NOxバーナの性能を低下させることなく、ま
た燃焼を不安定にすることなくバーナ近傍の火炉壁への
灰付着と火炉壁の腐食防止、CO発生の抑制という効果
がある。The burner described in the above embodiment of the present invention is capable of adhering ash to the furnace wall in the vicinity of the burner without deteriorating the performance of the low NOx burner and without destabilizing the combustion. This has the effect of preventing corrosion and suppressing CO generation.
【0035】[0035]
【発明の効果】本発明によれば、高価な装置を用いるこ
となく、また低NOxバーナの性能を低下させずに、燃
料の安定な燃焼ができ、しかもバーナ近傍の火炉壁への
灰付着と火炉壁の腐食を防止し、COの発生を抑えるこ
とを可能にしたバーナと該バーナを備えた燃焼装置を提
供することができる。According to the present invention, the fuel can be stably burned without using an expensive device and without deteriorating the performance of the low NOx burner, and the ash adheres to the furnace wall near the burner. It is possible to provide a burner capable of preventing corrosion of a furnace wall and suppressing generation of CO, and a combustion device including the burner.
【図1】 本発明の実施の形態のバーナの断面図であ
る。FIG. 1 is a sectional view of a burner according to an embodiment of the present invention.
【図2】 本発明の実施の形態のバーナの断面図であ
る。FIG. 2 is a sectional view of the burner according to the embodiment of the present invention.
【図3】 第1および第2の実施の形態に示す燃焼装置
の最外周気体流路と断熱材の接続を説明する図(図3
(a)はバーナ部の一部拡大断面図、図3(b)は図3
(a)のA−A線矢視図)である。FIG. 3 is a view for explaining the connection between the outermost gas flow path and the heat insulating material of the combustion apparatus shown in the first and second embodiments (FIG. 3).
FIG. 3A is a partially enlarged cross-sectional view of a burner portion, and FIG.
(A) is a view taken along the line AA.
【図4】 微粉炭燃焼装置の系統図である。FIG. 4 is a system diagram of a pulverized coal combustion device.
1 液体燃料噴射ノズル 2 微粉炭流路 3 二次空気流路 4 三次空気流路 5 最外周空気流路 6 偏向板 7 保炎器 8 断熱材 9 三次旋回器 10 火炉壁 11 ダンパ 12 断熱材接続部
材REFERENCE SIGNS LIST 1 liquid fuel injection nozzle 2 pulverized coal flow path 3 secondary air flow path 4 tertiary air flow path 5 outermost air flow path 6 deflection plate 7 flame stabilizer 8 heat insulating material 9 tertiary swirler 10 furnace wall 11 damper 12 heat insulating material connection Element
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23D 17/00 102 F23D 17/00 102 F23L 13/02 F23L 13/02 (72)発明者 馬場 彰 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 大谷津 紀之 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 寳山 登 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 Fターム(参考) 3K023 PA07 PA09 PC01 QA01 QA11 QA14 QB13 QB18 QC05 3K065 TA01 TA04 TB07 TB13 TC01 TC03 TD04 TD07 TE01 TE06 TE10 TF02 TJ03 TJ06 TL06 TM03 3K091 AA01 AA03 AA13 BB02 BB05 BB22 CC02 CC13 CC22 DD02 FB05 FB13 FB23 FB28 FB33 FB44 FB57 FB63 FB66 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F23D 17/00 102 F23D 17/00 102 F23L 13/02 F23L 13/02 (72) Inventor Akira Baba Takaracho, Kure City, Hiroshima Prefecture No. 3-36 Babcock Hitachi Co., Ltd. Kure Research Laboratory (72) Inventor Noriyuki Oyatsu No. 3-36 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Co., Ltd. Kure Research Laboratory (72) Inventor Noboru Hoyama 3-36 Takaracho, Kure City, Hiroshima Prefecture No. B-terminus F-term in Kure Research Laboratory, Hitachi, Ltd. (Reference) 3K023 PA07 PA09 PC01 QA01 QA11 QA14 QB13 QB18 QC05 3K065 TA01 TA04 TB07 TB13 TC01 TC03 TD04 TD07 TE01 TE06 TE10 TF02 TJ03 TJ06 TL06 TM03 3K091 AA01 BB02 CCB CC DD02 FB05 FB13 FB23 FB28 FB33 FB44 FB57 FB63 FB66
Claims (6)
液体燃料を火炉に投入するための一次流路と該一次流路
の外周に設けた単一または複数の燃焼用含酸素気体を供
給する燃焼用含酸素気体流路と、 該燃焼用含酸素気体流路のさらに外周に設けた燃焼用含
酸素気体を火炉内で、火炉壁面に向けて流す最外周燃焼
用含酸素気体流路を設けたことを特徴とするバーナ。1. A primary flow path for introducing a mixed fluid of a solid fuel and a carrier gas or a liquid fuel into a furnace, and a single or a plurality of oxygen-containing gases for combustion provided on an outer periphery of the primary flow path. An oxygen-containing gas flow path for combustion, and an outermost combustion oxygen-containing gas flow path for flowing the oxygen-containing gas for combustion provided on the outer periphery of the oxygen-containing gas flow path in the furnace toward the furnace wall. A burner characterized by that.
炉壁面に沿って燃焼用含酸素気体を流すための偏向板を
設けたことを特徴とする請求項1記載のバーナ。2. The burner according to claim 1, wherein a deflection plate for flowing the oxygen-containing gas for combustion along the furnace wall is provided at the end of the oxygen-containing gas channel for the outermost peripheral combustion.
量を調整する流量調整機構を設けたことを特徴とする請
求項1記載のバーナ。3. The burner according to claim 1, wherein a flow rate adjusting mechanism for adjusting a gas flow rate is provided in the oxygen-containing gas flow path for outermost combustion.
火炉壁面に接するように断熱材をリング状に設けたこと
を特徴とする請求項1記載のバーナ。4. An outside of the outermost combustion oxygen-containing gas flow path,
The burner according to claim 1, wherein the heat insulating material is provided in a ring shape so as to be in contact with the furnace wall.
一体になっていることを特徴とする請求項4記載のバー
ナ。5. The burner according to claim 4, wherein the heat insulating material is integrated with the outermost combustion oxygen-containing gas flow path.
徴とする燃焼装置。6. A combustion device comprising the burner according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11185550A JP2001012703A (en) | 1999-06-30 | 1999-06-30 | Burner, and combustor equipped therewith |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11185550A JP2001012703A (en) | 1999-06-30 | 1999-06-30 | Burner, and combustor equipped therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001012703A true JP2001012703A (en) | 2001-01-19 |
Family
ID=16172781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11185550A Pending JP2001012703A (en) | 1999-06-30 | 1999-06-30 | Burner, and combustor equipped therewith |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001012703A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009093347A1 (en) * | 2008-01-23 | 2009-07-30 | Mitsubishi Heavy Industries, Ltd. | Boiler structure |
CN110300871A (en) * | 2017-02-22 | 2019-10-01 | 三菱日立电力系统株式会社 | Burner |
-
1999
- 1999-06-30 JP JP11185550A patent/JP2001012703A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009093347A1 (en) * | 2008-01-23 | 2009-07-30 | Mitsubishi Heavy Industries, Ltd. | Boiler structure |
JP2009174751A (en) * | 2008-01-23 | 2009-08-06 | Mitsubishi Heavy Ind Ltd | Boiler structure |
US20100279239A1 (en) * | 2008-01-23 | 2010-11-04 | Mitsubishi Heavy Industries, Ltd. | Boiler structure |
CN110300871A (en) * | 2017-02-22 | 2019-10-01 | 三菱日立电力系统株式会社 | Burner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5685242A (en) | Pulverized coal combustion burner | |
AU2011310173B2 (en) | Combustion system and method for operating same | |
SK5112002A3 (en) | Solid fuel burner and combustion method using solid fuel burner | |
JP2004205161A (en) | Solid fuel boiler and boiler combustion method | |
EP0440281B1 (en) | Burner for solid and liquid or gaseous fuel | |
JPH11281010A (en) | Solid fuel combustion burner and solid fuel combustor | |
CN111561695A (en) | Boiler flue gas and air system | |
EP0025219B1 (en) | Apparatus for heating a gas flowing through a duct | |
CN104344399A (en) | Wall-attached wind nozzle, boiler and boiler system | |
JPH10220707A (en) | Burner for powdery solid fuel and combustion apparatus therewith | |
US4462795A (en) | Method of operating a wall fired duct heater | |
WO2023120700A1 (en) | Burner, boiler equipped with same, and method for operating burner | |
JP3830582B2 (en) | Pulverized coal combustion burner | |
CN102032592A (en) | Coal dust ignition system and control method thereof | |
CN201083385Y (en) | Ignition and combustion-supporting burner of coal-fired boiler of power station | |
JP2001012703A (en) | Burner, and combustor equipped therewith | |
KR20240129193A (en) | Burner and boiler equipped with same and method of operating burner | |
JPH11132414A (en) | Super low nox burner | |
JPH11148610A (en) | Solid fuel combustion burner and solid fuel combustion apparatus | |
JPH10318504A (en) | High capacity pulverized solid fuel burner | |
CN211011344U (en) | Cylinder type pulverized coal burner | |
CN203478216U (en) | Wall-adjoined air nozzle, boiler and boiler system | |
US4375952A (en) | Wall fired duct heater | |
JP2954628B2 (en) | Pulverized coal burner | |
JPH08285231A (en) | Low nox pulverized coal burner and pulverized coal combustion device |